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Spin squeezing plays a crucial role in quantum metrology and quantum information science. Its generation
is the prerequisite for further applications but still faces an enormous challenge since the existing physical
systems rarely contain the required squeezing interactions. Here we propose a universal scheme to generate
spin squeezing in coupled spin models with collective spin-spin interactions, which commonly exist in various
systems. Our scheme can transform the coupled spin interactions into squeezing interactions and reach the
extreme squeezing with Heisenberg-limited measurement precision scaling as 1/N for N particles. Only constant
and continuous driving fields are required, which is a requirement that is accessible to a series of current realistic
experiments. This work greatly enriches the variety of systems that can generate the Heisenberg-limited spin
squeezing, with broad applications in quantum precision measurement.
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I. INTRODUCTION

Squeezed spin states (SSSs) are entangled quantum states
of collective spins with reduced quantum fluctuations in one
spin component perpendicular to the mean spin direction, due
to the quantum correlation between spins [1–4]. The reduced
quantum fluctuations allow them to surpass the so-called stan-
dard quantum limit with measurement precision scales as ∝
1/N1/2 for N particles [5–9], which is permitted by the coher-
ent spin states (CSSs). Thereby, the SSSs are the key resources
in the field of quantum metrology, which have significant
applications in high-precision measurements [2,3,10–21].
Due to their close relationship with quantum correlation,
they also serve as a significant witness to reveal the many-
particle entanglement, which has attracted extensive research
interests during the past few decades [22–33]. Since their
preparation is the prerequisite for further applications, many
efforts have been made to produce the SSSs, mainly in two
categories of platforms: atom-light interactions [15,34–42]
and nonlinear atom-atom interactions, e.g., Bose-Einstein
condensates (BECs) [13,14,22,27,43,44].

Among the category of atom-light interaction platforms,
one method of generating spin squeezing is by transferring
the squeezing from squeezed light to the spin system [34,45–
47]. It is straightforward but limited by the transfer effi-
ciency and the performance of light squeezing. Besides, some
proposals use photon-mediated spin-spin interactions gener-
ated in an optical cavity to obtain SSSs [48,49], in which
case superradiance is the main restriction on the achievable
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squeezing. Quantum nondemolition measurement is another
experimentally feasible way to generate spin squeezing
[7,50–54], but the acquired squeezing is not deterministic and
therefore strongly depends on the performance of the pho-
todetector [18,55]. For the nonlinear atom-atom interaction
platform, two well-known mechanisms, i.e., one-axis twist-
ing (OAT) and two-axis twisting (TAT), can deterministically
generate the spin squeezing [1,4,56–61]. Interparticle interac-
tions in BEC lead to OAT dynamics in certain circumstances,
which has been realized in several experiments to create
metrologically useful squeezing [13,14]. Studies in trapped
ions [31,62,63] and superconducting qubits [64–66] also wit-
ness OAT interaction and use it for entanglement generation.
Though the OAT squeezing has been experimentally demon-
strated in these systems, the squeezing degree only scales
as ∝ 1/N2/3, which is still far from the Heisenberg-limited
measurement precision. In contrast, the TAT squeezing can
provide a fascinating squeezing degree scaling as ∝ 1/N ,
which can reach the Heisenberg-limit measurement preci-
sion, but its generation remains a great challenge since the
interaction form is not found naturally in current realistic
physical systems [40,40,56–61,67–70]. For certain existing
interactions with weak squeezing ability or without squeezing
ability, utilization of pulse sequences is shown to possibly
induce engineered OAT or TAT Hamiltonians [71–75]. Sev-
eral other theoretical schemes are devoted to transforming
the OAT interaction into a TAT type to approach the ulti-
mate Heisenberg limit [56–59,61]. However, either special
experimental systems or complicated designs are required in
these proposals. Therefore, it is essential to explore feasible
schemes capable of realizing Heisenberg-limited squeezing
with commonly existing systems and easily implementable
designs.
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Here we propose a universal scheme to produce
Heisenberg-limited spin squeezing in generic coupled spin
systems with collective spin-spin interactions by continuous
drivings. An effective OAT interaction can be induced by
simply applying a constant direct-current (DC) field, leading
to strong spin squeezing. We can further obtain the TAT spin
squeezing with an additional continuous alternating-current
(AC) field, and the Heisenberg-limited measurement precision
is ultimately achieved. Unlike schemes such as those reported
in Refs. [76,77], which require an intrinsic spin-squeezing
interaction that can be enhanced through drives, our scheme
focuses on generating spin squeezing from a collective inter-
action that does not intrinsically result in spin squeezing. As
a result, our scheme largely enriches the variety of systems
that can realize or enhance spin squeezing. Meanwhile, unlike
previous studies, our approach only needs a constant field to
generate effective OAT interaction and a additional contin-
uous driving to generate effective TAT interaction, which is
favorable for experimental implementation.

II. SYSTEM MODEL

A broad category of coupled spin systems can be univer-
sally described by the collective interaction Hamiltonian

Hint =
∑

μ
gμSμJμ, (1)

where gμ (μ = x, y, and z) denotes the coupling strength
between the two subsystems for different spin components,
described by the collective spins (or pseudospins) S and J,
respectively. The operators are defined as Sμ = ∑Ns

k=1 σ
(k)
S,μ/2

and Jμ = ∑Nj

k=1 σ
(k)
J,μ/2, denoting the collective spin com-

ponents, with σ
(k)
S,μ and σ

(k)
J,μ being the corresponding Pauli

matrices for the kth spin-1/2 (or two-level) particle. They
can also describe the Stokes operators of light, which are
related to the differences between the number operators of
the photons polarized in different orthogonal bases [4,18].
The operators satisfy the SU(2) angular momentum commu-
tation relations [Si, S j] = iεi jkSk and [Ji, Jj] = iεi jkJk , where
εi jk (i, j, k = x, y, z) is the Levi-Civita symbol. The above
model can be used to describe the atom-light interaction
system [9,55], the spin-exchange interaction system, the
dipole-dipole interaction system, etc. The corresponding typ-
ical interaction Hamiltonians are H1 = gSzJz, H2 = g(SxJx +
SyJy + SzJz ), and H3 = g(SxJx + SyJy − 2SzJz ), as illustrated
in Figs. 1(a), 1(b), and 1(c), respectively.

Considering the practical applications, we focus on the
spin squeezing of one subsystem, e.g., spin S. The interaction
Hamiltonian (1) does not contain the intraspecies nonlinear
interaction form like S2

μ and thus is not able to generate the
OAT interactions. We apply constant DC driving fields on both
subsystems, generally described by

HDC
driv = �Jz + �′Sz. (2)

Here � and �′ denote the magnitudes of homogeneous fields
along the z axis applied on spins S and J , respectively.
Thereby, the total Hamiltonian becomes Htot = Hint + HDC

driv,
which is demonstrated to be equivalent to an effective OAT
form ∝ S2

z in the following.

FIG. 1. Schematic diagram of coupled spin systems and spin
squeezing via constant drivings. (a) Schematic diagram of the
atom-light interaction system with Faraday magneto-optic rotation.
(b) Schematic diagram of the spin-exchange interaction between
two spins. (c) Schematic diagram of the dipole-dipole interaction
between two spins. (d) Evolution of the quantum state for spin S
at the time instants denoted by the vertical gray dashed lines in panel
(e), represented by the Husimi Q function on the generalized Bloch
spheres. (e) The blue, green, and orange dashed curves respectively
present the free evolution of the squeezing parameters ξ 2 for spin
S under the Hamiltonians H1, H2, and H3 as defined in the main
text. The red solid balls denote the results of our scheme with H2

under constant drivings, compared with the effective OAT interaction
(5) (black solid curve). The vertical gray dashed lines mark time
instants of t = tmin/4, tmin/2, 3tmin/4, and tmin, with tmin being the
optimal squeezing time of OAT. The parameters are Ns = 50, Nj =
50, and �/g = 50. The initial state is the product of coherent spin
states polarized along the y axis for spin S and along the z axis for
spin J .

To be specific, the mechanism of inducing OAT spin
squeezing is analogous to that of electron-phonon interaction
in condensed matter physics, in which the effective electron-
electron interaction is mediated by the phonons (lattice
vibrations). In our scheme, the spin J acts as an intermediary
(analogous to the role of phonons) to induce the intraspecies
interaction in the spin S (analogous to the role of electrons).
The effective intraspecies interaction in spin S can be derived
by performing the Fröhlich-Nakajima transformation (FNT)
[78,79] with U = eS on the total Hamiltonian of the coupled
spin system as

Heff = e−SHtote
S = HDC

driv + (
Hint + [

HDC
driv, S

])
+ 1

2

{(
Hint + [

HDC
driv, S

])
, S

} + 1
2 [Hint, S] + · · · . (3)

Choosing an appropriate S = −iθxySxJy − iθyxSyJx, with θxy

and θyx being undetermined coefficients, so that the first-
order term Hint + [HDC

driv, S] almost vanishes, the Hamiltonian
is simplified as Heff � HDC

driv + [Hint, S]/2. The commutator
[Hint, S] contains the quadratic terms S2

μ, thus being able to
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generate the OAT spin squeezing (see Appendix A for detailed
derivations).

Furthermore, the initial state of spin J is chosen to be a
CSS polarized along the z axis, i.e., the eigenstate of Jz with
eigenvalue Nj/2, where Nj is the corresponding particle num-
ber. During a short time evolution, the operators describing
the spin J can be approximately replaced by their expectation
values in the initial state. As a result, the Hamiltonian becomes

Heff = f Sz + pS2
x + qS2

y , (4)

where f , p, and q are functions of � and �′ (see Appendix A).
The appropriate combination of � and �′ can make f = 0,
eliminating the linear term in Eq. (4). When p = q (the case
is similar when p or q is 0), Eq. (4) is reduced to a pure OAT
Hamiltonian:

HOAT
eff = χeffS

2
z , (5)

with the effective nonlinear interaction strength χeff =
−g2/(2�). Here � = 2(� − �′)/(Nj ) is a parameter charac-
terizing the difference between the magnitudes of two external
fields. The condition p = q can be satisfied when gx = gy ≡
g. Note that the sign and the magnitude of the interaction
strength χeff can be easily modulated by adjusting the mag-
nitudes of fields � and �′, which allows our scheme to be
directly applied in the twisting echo protocol proposed in
Refs. [80,81] that is robust against detection noise.

III. NUMERICAL INVESTIGATION OF SQUEEZING
DYNAMICS

Now we investigate the evolutions of the quantum state
with constant drivings. Demonstrated by the Husimi Q rep-
resentation on the generalized Bloch spheres, the isotropic
variance of the initial CSS of spin S is continuously redis-
tributed and reduced in a certain direction, indicating the
spin squeezing, as is shown in Fig. 1(d). The degree of spin
squeezing is usually quantified by the squeezing parameter
ξ 2 = 4(�S⊥)2

min/Ns [1], where (�S⊥)2
min is the minimum of

the fluctuation (�S⊥)2 = 〈S2
⊥〉 − 〈S⊥〉2 for the spin compo-

nent perpendicular to the mean spin direction. We compare
the squeezing parameters for free evolution under the three
Hamiltonians H1, H2, and H3, and for the evolution of H2 with
constant drivings, as shown in Fig. 1(e). It clearly shows that
our scheme largely improves the squeezing properties. Note
that applying constant drivings on Hamiltonians H1 and H3

would also lead to the improvement of the OAT squeezing.
According to the previous conclusion of OAT squeezing

[82] and based on the obtained effective interaction coefficient
χeff , we derive the optimal spin squeezing parameter and the
corresponding squeezing time as

ξ 2
min � 1

2

(
Ns

3

)− 2
3

, tmin � 2 × 31/6�

g2N2/3
s

. (6)

The validity of effective OAT squeezing is further demon-
strated in Fig. 2. The evolution of the squeezing parameter
with constant drivings agrees well with the corresponding
effective OAT Hamiltonian (5), as is shown in Fig. 2(a).
The power-law scalings given in Eq. (6) are also verified in
Figs. 2(b) and 2(c).

FIG. 2. The effective OAT spin squeezing under Hamiltonian H1

with constant DC driving fields. (a) Evolution of the spin squeezing
parameter ξ 2 of our scheme with constant drivings (red solid balls),
compared with that of the corresponding effective OAT Hamiltonian
(5) (black solid curve). Panels (b) and (c) demonstrate the optimal
spin squeezing parameter ξ 2

min and the corresponding squeezing time
tmin as functions of the particle number Ns (red solid balls). The blue
solid lines are predicted by Eq. (6). The parameter � = 50Njg, with
particle numbers given in each subgraph.

Although Eq. (4) shows that both S2
x and S2

y exist, the tuning
ranges of parameters p and q are not broad enough to directly
obtain the effective TAT interaction with the form ∝ (S2

i −
S2

j ). This imperfection can be overcome by adding an addi-
tional continuous AC driving field, e.g., HAC

driv = A cos(ωt )Sz,
with A and ω being the amplitude and the frequency of the
driving field, respectively. The total driving terms including
HDC

driv and HAC
driv become

Hdriv = �Jz + �′Sz + A cos(ωt )Sz, (7)

and the total Hamiltonian then becomes H ′
tot = Hint + Hdriv.

Now we apply two transformations on the total Hamiltonian,
one is the same FNT as described by Eq. (3), the other
is UI(t ) = exp[−i

∫ t
0 HAC

driv(τ )dτ ]. Then the Hamiltonian can
be simplified as HI � [(p + q)/2 − (q − p)J0(2A/ω)/2]S2

x +
[(p + q)/2 + (q − p)J0(2A/ω)/2]S2

y , where Jn(z) is the nth
Bessel function of the first kind. Therefore, when A/ω is
properly chosen, HI will be a TAT Hamiltonian under the
condition (p − 2q)(2p − q) � 0. For other cases, e.g., p = q,
the continuous AC driving field can be applied along the y
direction with HAC

driv = A cos(ωt )Sy, which yields

HTAT
eff = χeff

3

(
S2

x − S2
y

)
, (8)

where χeff is the same as the OAT case (see Appendix B for
detailed derivations).

To verify the validity of our TAT scheme, we numeri-
cally study the evolution of the spin squeezing parameter
of Hamiltonian (1), coupled with the total driving (7), com-
pared with the effective TAT Hamiltonian (8). As is shown
in Fig. 3(a), the evolution of the spin squeezing parameter
under our scheme agrees well with that of the effective TAT
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FIG. 3. The effective TAT spin squeezing under Hamiltonian H2

with DC and AC driving fields. (a) Evolution of the spin squeezing
parameter ξ 2 for coupled spin systems with drivings (red solid balls)
and for the effective TAT Hamiltonian (8) (black solid curve), com-
pared with the OAT spin squeezing (blue dashed curve) governed
by Hamiltonian (5). (b) and (c) The optimal spin squeezing ξ 2

min and
the optimal squeezing time tmin as functions of the particle number
Ns for the TAT scheme with drivings (red solid balls), compared with
the effective TAT results (blue solid curves). The black dashed line in
panel (b) corresponds to ξ 2

min = 1.8/Ns. The parameter �/g = 100,
and the particle numbers are given in each subgraph.

Hamiltonian dynamics, performing much better than the OAT
spin squeezing. As the effective interaction strength of TAT
spin squeezing is obtained in Eq. (8) (χeff/3), the power-
law scalings can be approximately obtained according to the
standard TAT squeezing [56]:

ξ 2
min � 1.8

Ns
, tmin � 3� ln(4Ns)

g2Ns
. (9)

They are also verified in Figs. 3(b) and 3(c). Therefore, adding
both DC and AC driving fields will finally transform the initial
interaction (1) into the TAT interaction, with squeezing degree
up to the Heisenberg-limited measurement precision.

IV. DISCUSSION ON PARAMETER IMPERFECTIONS

Considering the realistic experimental system, we investi-
gate the influence of parameter imperfections. On one hand,
during the derivation of effective interaction, the magnitudes
of � and �′ should satisfy the constraint f = 0 in order to
eliminate the linear term in the effective Hamiltonian. Here we
investigate the influence of the deviation of � or �′ from their
ideal values, keeping the value of the other one unchanged.
The deviations are quantified by the relative error, defined
as ε = (� − �ideal )/�ideal for � and ε′ = (�′ − �′

ideal )/�
′
ideal

for �′, respectively. As shown in Figs. 4(a1)–4(d1) (the first
column), the evolutions of the spin squeezing parameters ξ 2

deviate from the ideal cases to some extent, but the squeezing
is not much degraded. The optimal squeezing is insensi-
tive to the deviations for OAT squeezing while it is slightly
sensitive to the deviations for TAT squeezing, as shown in

FIG. 4. The influence of parameter imperfections. The first row
[panels (a1)–(a3)] shows the effective OAT spin squeezing under
different deviations of �, denoted as ε. The second row [panels
(b1)–(b3)] shows the results for the deviation of �′, denoted as ε′.
The third [panels (c1)–(c3)] and fourth [panels (d1)–(d3)] rows are
the corresponding results of the effective TAT spin squeezing under
different ε and ε′, respectively. The deviations ε and ε′ and relative
error δ are defined in the main text. For the first column [panels (a1)–
(d1)], the dotted red, solid blue, and dashed green curves correspond
to (a1) ε = −0.5, 0, and 0.5; (b1) ε′ = −1, 0, and 1; (c1) ε = −0.3,
0, and 0.3; and (d1) ε′ = −2 × 10−5, 0, and 2 × 10−5, respectively.
The parameters are �/g = 50 for OAT and �/g = 250 for TAT spin
squeezing, and the particle numbers are Ns = Nj = 40.

Figs. 4(a2)–4(d2) (the second column) with the relative error
of the optimal squeezing parameter δ = (ξ 2

min − ξ 2
min0)/ξ 2

min0.
This is due to the fact that the effective TAT squeezing needs
the rotation of the twisting axis, which is susceptible to the
linear term in the total Hamiltonian. Nevertheless, it still stays
within the relative error of 10% for relatively large deviations,
as shown in Figs. 4(c2)–4(d2). Therefore, our scheme is over-
all robust to the deviation from the ideal combination of �

and �′. The optimal squeezing times tmin increase linearly
as the deviation of � increases, but are not sensitive to the
deviation of �′. This is because χeff is in inverse proportion to
� ∝ (� − �′), and � is assumed to be much larger than �′
in the plots.

On the other hand, we investigate the influence of � on
the effective spin squeezing, as is shown in Fig. 5. Over-
all, the best attainable squeezing ξ 2

min becomes better with
the increase of � [Figs. 5(a2) and 5(b2)], while the optimal
squeezing time tmin also increases [Figs. 5(a3) and 5(b3)].
Specifically, given the particle numbers, when the value of �
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FIG. 5. Spin squeezing under different �. The top row [panels
(a1)–(a3)] demonstrates the evolution of the spin squeezing param-
eter ξ 2 under different �, the optimal spin squeezing ξ 2

min, and the
optimal squeezing time tmin as functions of �, for the OAT spin
squeezing. The bottom row [panels (b1)–(b3)] shows the results for
the TAT spin squeezing. For the first column [panels (a1)–(b1)], the
solid red, dashed orange, dotted blue, and dash-dotted green curves
correspond to (a1) �/g = 5, 10, 15, and 20 and (a2) �/g = 50, 100,
150, and 200, respectively. The horizontal dashed lines denote the
optimal spin squeezing achieved by a standard OAT squeezing in
panels (a1) and (a2) and a standard TAT squeezing in panels (b1) and
(b2). The particle numbers are Ns = Nj = 40.

is larger than a certain value, the best attainable spin squeezing
can achieve the optimal spin squeezing for the corresponding
effective OAT or TAT spin squeezing, as shown in Figs. 5(a2)
and 5(b2). Approximately, it requires �/g 	 10 for OAT
squeezing and �/g 	 50 for TAT squeezing, which shows
that the condition for realizing TAT squeezing is relatively
more stringent than that for realizing OAT squeezing, and
the required squeezing time seems to be longer. Nevertheless,
the above discussions are limited by the particle numbers due
to the constraint of numerical computation resources. Since
the optimal squeezing time tmin scales as ln(4Ns)/Ns for TAT
squeezing, for very large Ns, the required squeezing time will
not need to be too long.

V. CONCLUSION

In summary, we have proposed a universal scheme to
generate the effective OAT and TAT spin squeezing in a

broad category of coupled spin systems with the collective
interaction Hamiltonian Hint = ∑

μ gμSμJμ, by applying only
constant and continuous drivings, which are simple to im-
plement. Both the best attainable spin squeezing and the
corresponding optimal time as functions of particle number
are demonstrated to satisfy the power-law scalings of OAT
or TAT squeezing. In particular, Heisenberg-limited measure-
ment precision can be reached in such coupled spin systems.
Furthermore, our scheme is demonstrated to be tolerant of the
parameter imperfections of the driving fields. This work offers
the opportunity to realize Heisenberg-limited spin squeezing
in a variety of coupled spin systems that are common in
realistic physical systems.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
SQUEEZING HAMILTONIAN

Starting from the total Hamiltonian

Htot = �Jz + �′Sz +
∑

μ

gμSμJμ, (A1)

we perform the Fröhlich-Nakajima transformation (FNT) to
obtain the squeezing Hamiltonian.

To be specific, we introduce a unitary transformation,

U = eS, (A2)

where

S = −i(θxySxJy + θyxSyJx ). (A3)

The Hamiltonian is then transformed into

H ′ = e−SHtote
S

= Htot + [Htot, S] + 1
2 [[Htot, S], S] + . . . (A4)

We calculate the commutator [Htot, S] as

[Htot, S] = �[Jz,−i(θxySxJy + θyxSyJx )] + �′[Sz,−i(θxySxJy + θyxSyJx )] + [gxSxJx + gySyJy + gzSzJz,−i(θxySxJy + θyxSyJx )]

= −(θxy� + θyx�
′)SxJx + (θyx + θxy�

′)SyJy + gxθxyS2
x Jz − gyθyxS2

y Jz + gxθyxSzJ
2
x − gyθxySzJ

2
y

+ gzθxy(−SzSxJx + SyJyJz ) + gzθyx(SzSyJy − SxJxJz ), (A5)

and we further obtain

[[Htot, S], S] = −(θxy� + θyx�
′)θxyS2

x [Jx,−iJy] + (θyx� + θxy�
′)θxy[Sy,−iSx]J2

y

− (θxy� + θyx�
′)θyx[Sx,−iSy]J2

x + (θyx� + θxy�
′)θyxS2

y [Jy,−iJx] + . . .

= −(θxy� + θyx�
′)θxyS2

x Jz − (θyx� + θxy�
′)θxySzJ

2
y

− (θxy� + θyx�
′)θyxSzJ

2
x − (θyx� + θxy�

′)θyxS2
y Jz + · · · . (A6)
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Substitute them into Eq. (A4) and we get

H ′ = �Jz + �′Sz + (gx − θxy� − θyx�
′)SxJx + (gy + θyx� + θxy�

′)SyJy + gzSzJz

+ [
gx − 1

2 (θxy� + θyx�
′)
]
θxyS2

x Jz − [
gy + 1

2 (θyx� + θxy�
′)θyx

]
S2

y Jz

+ [
gx − 1

2 (θxy� + θyx�
′)
]
θyxSzJ

2
x − [

gy + 1
2 (θyx� + θxy�

′)θxy
]
SzJ

2
y

+ gzθxy(−SzSxJx + SyJyJz ) + gzθyx(SzSyJy − SxJxJz ) + · · · . (A7)

In the spirit of FNT, we require

gx − θxy� − θyx�
′ = 0,

gy + θyx� + θxy�
′ = 0,

(A8)

which leads to

θxy = gx� + gy�
′

�2 − �′2 , θyx = −gy� + gx�
′

�2 − �′2 . (A9)

The expression of H ′ now becomes

H ′ = �Jz + �′Sz + gzSzJz + g2
x� + gxgy�

′

2(�2 − �′2)
S2

x Jz + g2
y� + gxgy�

′

2(�2 − �′2)
S2

y Jz − g2
x�

′ + gxgy�

2(�2 − �′2)
SzJ

2
x − g2

y�
′ + gxgy�

2(�2 − �′2)
SzJ

2
y

+ gxgz� + gygz�
′

�2 − �′2 (−SzSxJx + SyJyJz ) − gygz� + gxgz�
′

�2 − �′2 (SzSyJy − SxJxJz ) + · · · . (A10)

In order to ignore higher-order terms safely, the derivations
above require

gNs

|� − �′| 
 1 and
gNj

|� − �′| 
 1. (A11)

When focusing on the evolution of subsystem S, we choose
the initial state of subsystem J as the coherent spin state
along the +z axis, i.e., |ψ (t = 0)〉J = |z〉, and we assume it
is almost unchanged during evolution. Then we can replace
the operators of subsystem J with their expected values:

〈Jz〉 = Nj

2
,

〈
J2

x

〉 = 〈
J2

y

〉 = Nj

4
,

〈Jx〉 = 〈Jy〉 = 〈JzJy〉 = 〈JzJx〉 = 0.

(A12)

After that, we finally obtain the effective Hamiltonian for the
subsystem S:

Heff = f Sz + pS2
x + qS2

y , (A13)

where

f = �′ + 1

2
gzNj − Nj

8(�2 − �′2)

[(
g2

x + g2
y

)
�′ + 2gxgy�

]
,

p = Nj (g2
x� + gxgy�

′)
4(�2 − �′2)

, q = Nj (g2
y� + gxgy�

′)

4(�2 − �′2)
.

(A14)

For three typical interactions, H1 = gSxJx, H2 = g(SxJx +
SyJy + SzJz ), and H3 = g(SxJx + SyJy − 2SzJz ), the corre-

sponding effective Hamiltonians are

H1eff =
[
�′ − g2�′Nj

8(�2 − �′2)

]
Sz + χ1effS

2
x ,

H2eff =
[
�′ + 1

2
gNj − g2�′Nj

4(�2 − �′2)

]
Sz + χ2effS

2
z ,

H3eff =
[
�′ − gNj − g2�′Nj

4(�2 − �′2)

]
Sz + χ3effS

2
z ,

(A15)

with the effective interaction strengths χ1eff =
g2�Nj/[4(�2 − �′2)] and χ2eff = χ3eff = −g2Nj/[4(� −
�′)]. For H2 and H3, we have used the identity
S2

x + S2
y = S2 − S2

z = s(s + 1) − S2
z and ignored the constant

terms. The linear term ∝ Sz can be eliminated by choosing
appropriate magnitudes of the driving fields to make f = 0,
and then all three effective Hamiltonians are reduced to pure
OAT Hamiltonians HOAT

eff = χeffS2
μ.

APPENDIX B: GENERATION OF THE EFFECTIVE TAT
HAMILTONIAN WITH CONTINUOUS DRIVING

An effective Hamiltonian with the form pS2
x + qS2

y can be
obtained by adding constant DC driving fields in coupled spin
systems, as shown in Appendix A. If p = −q or p = 2q or
p = q/2 is satisfied, the effective TAT interaction ∝ (S2

i − S2
j )

(i, j = x, y, z) can be obtained. Unfortunately, considering the
condition of Eq. (A11), the tuning ranges of parameters p and
q are not broad enough to directly obtain the effective TAT
interaction. This imperfection can be overcome by adding an
additional driving field. As suggested in Refs. [56,58], we
could transform an OAT Hamiltonian into an effective TAT
Hamiltonian by using a pulsed or continuous driving. Here
we provide a general scheme to transform any Hamiltonian
of the form pS2

x + qS2
y into a pure effective TAT Hamiltonian

with continuous driving.
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If (p − 2q)(2p − q) � 0, we add a continuous AC field
along the z axis and get

H = pS2
x + qS2

y + ASz cos ωt . (B1)

In the interaction picture defined by

|ψI(t )〉 = UI(t )|ψ (t )〉,
HI = U †

I (t )H0UI(t ),
(B2)

where

H0 = pS2
x + qS2

y ,

UI = exp

(
−i

∫ t

0
ASz cos ωτdτ

)

= exp

(
−i

A

ω
Sz sin ωt

)
,

(B3)

we can obtain

HI =
[

p + q

2
− q − p

2
cos

(
2A

ω
sin ωt

)]
S2

x

+
[

p + q

2
+ q − p

2
cos

(
2A

ω
sin ωt

)]
S2

y

+ q − p

2
sin

(
2A

ω
sin ωt

)
(SxSy + SySx ), (B4)

where we have used eiφSz Sxe−iφSz = Sx cos φ − Sy sin φ and
eiφSz Sye−iφSz = Sy cos φ + Sx sin φ.

Now we apply the Jacobi-Anger expansion eiz sin θ =∑∞
n=−∞ Jn(z)einθ , where Jn(z) is the nth Bessel function of

the first kind, and only keep the zero-order term with n = 0

(rotating-wave approximation), and the Hamiltonian becomes

HI ≈
[

p + q

2
− q − p

2
J0

(
2A

ω

)]
S2

x

+
[

p + q

2
+ q − p

2
J0

(
2A

ω

)]
S2

y . (B5)

This approximation requires ω 
 Ns(p + q).
The Hamiltonian HI can be rewritten by adding a con-

stant term, −[(p + q)/2 − (q − p)J0(2A/ω)/2]S2 or −[(p +
q)/2 + (q − p)J0(2A/ω)/2]S2, which leads to

H (1)
I = (q − p)J0

(
2A

ω

)
S2

y −
[

p + q

2
− q − p

2
J0

(
2A

ω

)]
S2

z ,

H (2)
I = (p − q)J0

(
2A

ω

)
S2

x −
[

p + q

2
+ q − p

2
J0

(
2A

ω

)]
S2

z .

(B6)

The effective TAT Hamiltonian is obtained when setting
J0(2A/ω) = ±(p + q)/[3(q − p)] [“+” for (1) and “–” for
(2)], that is,

H (1)
eff = p + q

3

(
S2

y − S2
z

)
,

H (2)
eff = p + q

3

(
S2

x − S2
z

)
.

(B7)

If (p − 2q)(2p − q) < 0, we may add a continuous AC
field along the y axis. The Hamiltonian is equivalent to

H ′ = −qS2
z + (p − q)S2

x + ASy cos ωt . (B8)

With similar analysis, we find the effective TAT Hamiltonian
is obtained when J0(2A/ω) = ±(p − 2q)/3p, and the result is

H ′
eff

(1) = p − 2q

3

(
S2

x − S2
y

)
,

H ′
eff

(2) = p − 2q

3

(
S2

z − S2
y

)
.

(B9)
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Rev. A 96, 013823 (2017).
[69] J. Borregaard, E. J. Davis, G. S. Bentsen, M. H. Schleier-Smith,

and A. S. Sørensen, New J. Phys. 19, 093021 (2017).
[70] V. Macrì, F. Nori, S. Savasta, and D. Zueco, Phys. Rev. A 101,

053818 (2020).
[71] P. Cappellaro and M. D. Lukin, Phys. Rev. A 80, 032311 (2009).
[72] K. I. O. Ben ’Attar, D. Farfurnik, and N. Bar-Gill, Phys. Rev.

Res. 2, 013061 (2020).
[73] J. Choi, H. Zhou, H. S. Knowles, R. Landig, S. Choi, and M. D.

Lukin, Phys. Rev. X 10, 031002 (2020).
[74] H. Zhou, J. Choi, S. Choi, R. Landig, A. M. Douglas, J. Isoya,

F. Jelezko, S. Onoda, H. Sumiya, P. Cappellaro, H. S. Knowles,
H. Park, and M. D. Lukin, Phys. Rev. X 10, 031003 (2020).

[75] L.-G. Huang, F. Chen, X. Li, Y. Li, R. Lü, and Y.-C. Liu, npj
Quantum Inf. 7, 168 (2021).

042613-8

https://doi.org/10.1103/PhysRevLett.123.260505
https://doi.org/10.1038/s41586-020-3006-1
https://doi.org/10.1103/PhysRevLett.125.100402
https://doi.org/10.1038/35051038
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/PhysRevA.68.012101
https://doi.org/10.1103/PhysRevLett.95.120502
https://doi.org/10.1103/PhysRevA.74.052319
https://doi.org/10.1038/nature07332
https://doi.org/10.1103/PhysRevA.79.042334
https://doi.org/10.1103/PhysRevA.86.012337
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1126/science.aad9958
https://doi.org/10.1103/PhysRevLett.126.080502
https://doi.org/10.1103/PhysRevA.104.013318
https://doi.org/10.1103/PhysRevLett.83.1319
https://doi.org/10.1103/PhysRevLett.94.023003
https://doi.org/10.1103/PhysRevA.81.021804
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1103/PhysRevA.89.023838
https://doi.org/10.1103/PhysRevA.91.033625
https://doi.org/10.1103/PhysRevLett.118.083604
https://doi.org/10.1515/nanoph-2020-0513
https://doi.org/10.1103/PhysRevLett.125.203601
https://doi.org/10.1126/science.1058149
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1103/PhysRevA.62.063812
https://doi.org/10.1103/PhysRevLett.88.070404
https://doi.org/10.1103/PhysRevLett.79.4782
https://doi.org/10.1126/science.aar3102
https://doi.org/10.1103/PhysRevLett.121.070403
https://doi.org/10.1103/PhysRevLett.85.1594
https://doi.org/10.1073/pnas.0901550106
https://doi.org/10.1103/PhysRevLett.106.133601
https://doi.org/10.1103/PhysRevLett.125.200505
https://doi.org/10.1103/PhysRevA.103.023318
https://doi.org/10.1209/epl/i1998-00277-9
https://doi.org/10.1103/PhysRevLett.107.013601
https://doi.org/10.1103/PhysRevA.90.013604
https://doi.org/10.1103/PhysRevA.91.043642
https://doi.org/10.1103/PhysRevA.87.051801
https://doi.org/10.1103/PhysRevA.96.050301
https://doi.org/10.1103/PhysRevA.100.041801
https://doi.org/10.1038/s41586-019-1427-5
https://doi.org/10.1038/s41586-019-1428-4
https://doi.org/10.1103/PhysRevLett.119.180511
https://doi.org/10.1126/science.aay0600
https://doi.org/10.1126/sciadv.aba4935
https://doi.org/10.1103/PhysRevLett.87.170402
https://doi.org/10.1103/PhysRevA.96.013823
https://doi.org/10.1088/1367-2630/aa8438
https://doi.org/10.1103/PhysRevA.101.053818
https://doi.org/10.1103/PhysRevA.80.032311
https://doi.org/10.1103/PhysRevResearch.2.013061
https://doi.org/10.1103/PhysRevX.10.031002
https://doi.org/10.1103/PhysRevX.10.031003
https://doi.org/10.1038/s41534-021-00505-z


HEISENBERG-LIMITED SPIN SQUEEZING IN COUPLED … PHYSICAL REVIEW A 107, 042613 (2023)

[76] W. Muessel, H. Strobel, D. Linnemann, T. Zibold, B. Juliá-Díaz,
and M. K. Oberthaler, Phys. Rev. A 92, 023603 (2015).

[77] S. A. Haine and J. J. Hope, Phys. Rev. Lett. 124, 060402
(2020).

[78] H. Fröhlich, Phys. Rev. 79, 845 (1950).
[79] S. Nakajima, Adv. Phys. 4, 363 (1955).

[80] E. Davis, G. Bentsen, and M. Schleier-Smith, Phys. Rev. Lett.
116, 053601 (2016).

[81] S. P. Nolan, S. S. Szigeti, and S. A. Haine, Phys. Rev. Lett. 119,
193601 (2017).

[82] G.-R. Jin, Y.-C. Liu, and W.-M. Liu, New J. Phys. 11, 073049
(2009).

042613-9

https://doi.org/10.1103/PhysRevA.92.023603
https://doi.org/10.1103/PhysRevLett.124.060402
https://doi.org/10.1103/PhysRev.79.845
https://doi.org/10.1080/00018735500101254
https://doi.org/10.1103/PhysRevLett.116.053601
https://doi.org/10.1103/PhysRevLett.119.193601
https://doi.org/10.1088/1367-2630/11/7/073049

