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We analyze the differences between relativistic fields with or without quantum degrees of freedom in
relativistic quantum information protocols. We classify the regimes where the existence of quantum degrees of
freedom is necessary to explain the phenomenology of interacting quantum systems. We also identify the precise
regimes where quantum fields can be well approximated by quantum-controlled classical fields in relativistic
quantum information protocols. Our results can be useful to discern which features are fundamentally different
in classical and quantum field theory.
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I. INTRODUCTION

All interactions which can be derived from the Standard
Model rely on quantum fields as mediators. However, there
are many regimes in which some of the fundamental prop-
erties of these mediating quantum fields are not relevant. In
these cases, one can treat the fields as nondynamical, estab-
lishing effective potentials that set a direct interaction between
quantum systems. The question of whether a particular phys-
ical phenomenon is fundamentally due to the quantum nature
of a field requires one to identify the relevant quantum features
in interactions between quantum sources. This is particularly
important if one wants to propose an experiment that can dis-
tinguish if a particular field has quantum degrees of freedom
or not.

This distinction is also especially relevant in the study of
quantum information protocols implemented through quan-
tum fields, as is usually considered in the field of relativistic
quantum information (RQI). Among its topics of study, RQI
explores quantum information tasks that are implemented
through local interactions with relativistic quantum fields.
Examples of protocols that can be implemented via local
operations in quantum field theory are entanglement har-
vesting [1–14], entanglement farming [15], quantum energy
teleportation [16,17], quantum collect calling [18–20] and
noise-assisted quantum communication [21,22].

The main goal of this paper is to understand the role played
by the quantum degrees of freedom of a relativistic field
in mediating interactions between quantum systems, paying
special attention to relativistic quantum information protocols.
We study communication and entangling protocols between
two localized quantum systems, exploring the channel ca-
pacity of communication channels mediated by fields with
or without quantum degrees of freedom, and quantifying the
amount of entanglement that can be acquired by probes that
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interact via the field. We will also identify the regimes where
the interaction of localized quantum systems with a quantum
field can be well approximated by a simpler interaction with
a quantum-controlled classical field (which has no quantum
degrees of freedom of its own).

In this paper we will show that there are indeed cases
where fully featured quantum fields cannot be modeled by
relativistic quantum-controlled classical fields with no quan-
tum degrees of freedom. Specifically, these cases are when the
interactions are either short or strong, or when the sources of
the field are not in causal contact with each other. On the other
hand, we show that in the regimes where none of these three
conditions is satisfied, it is not possible to distinguish whether
a field theory has quantum degrees of freedom or not.

Establishing the regimes that can actually distinguish fields
with or without quantum degrees of freedom can also be used
to identify experimental settings which can witness whether
a field is fundamentally quantum or not. For instance, this
reasoning has been applied in the context of the gravitational
field in [23,24], where sufficiently precise experiments were
argued to have the potential to witness the quantum nature of
the gravitational field.

This paper is organized as follows. In Sec. II we briefly
review how classical fields are coupled to classical sources,
and how to write the field’s dynamics in terms of the currents
that source it. In Sec. III we use these results to model the in-
teraction between quantum sources via a quantum-controlled
classical field with no quantum degrees of freedom. In Sec. IV
we describe the interaction of localized quantum sources with
quantum fields. In Sec. V we discuss the differences between
considering a field with or without quantum degrees of free-
dom in communication protocols. In Sec. VI we study the
role of the field’s quantum degrees of freedom in entangling
protocols. In Sec. VII we compare the quantum-controlled
classical field model with the quantum field theory model and
identify the conditions where the quantum degrees of freedom
of the field can be neglected. The conclusions of our work can
be found in Sec. VIII.
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II. CLASSICAL FIELDS SOURCED BY CLASSICAL
CURRENTS

In this section we briefly review the interaction of two
classical systems which source a classical field. Consider
two general classical systems labeled by A and B in (3 + 1)
Minkowski spacetime (denoted by M) with Lagrangian den-
sities LA and LB, and an arbitrary field (scalar, spinor, vector,
tensor, etc.) φa with Lagrangian Lφ . Here a stands for any
collection of Lorentz indices, corresponding to the spin of the
field. The dynamics of the system will be prescribed by the
action

S =
∫

dV
[
LA+LB+Lφ −λ j (A)

a (x)φa(x)−λ j (B)
a (x)φa(x)

]
,

(1)

where dV = d4x is the Minkowski spacetime volume ele-
ment, j (I)

a (x) are current densities associated with the systems
labeled by I ∈ {A, B}, and λ is the coupling constant for the
interaction.

The equation of motion for the field is obtained by varying
the action of Eq. (1) with respect to the field:

∂Lφ

∂φa
− ∂μ

[
∂Lφ

∂ (∂μφa)

]
= λ j (A)

a (x) + λ j (B)
a (x). (2)

We will assume that the equation of motion above is linear, in
the sense that it can be written as

P[φa(x)] = λ j (A)
a (x) + λ j (B)

a (x), (3)

where P is a linear differential operator. We will further as-
sume that the solution of the equation of motion P[φa(x)] =
λ ja(x) can be written in terms of a retarded Green function
Gab

R (x, x′):

φa(x) = λ

∫
dV Gab

R (x, x′) jb(x′). (4)

We will work under the assumption that systems A and
B are the only sources for the field; that is, if they were not
present, the field would vanish. Under this assumption for the
field, and neglecting the self-energy of systems A and B, one
obtains the following Hamiltonian for the system in an inertial
frame (t, x):

H (t ) = HA(t ) + HB(t ) + λ

2

∫
d3x

[
j (A)
a (x)φa

B (x)

+ j (B)
a (x)φa

A(x)
]
, (5)

where HA(t ) and HB(t ) are the free Hamiltonians for systems
A and B, and

φa
I (x) = λ

∫
dV ′Gab

R (x, x′) j (I)
b (x′) (6)

is the field sourced by system I. Thus, the interaction of two
classical systems with a field φa(x) via currents j (I)

a (x) is
associated with the interaction Hamiltonian

Hint(t ) = λ

2

∫
d3x

[
j (A)
a (x)φa

B (x) + j (B)
a (x)φa

A(x)
]
, (7)

and using Eq. (6), the Hamiltonian can be rewritten as

Hint(t ) =λ2

2

∫
d3x dV ′Gab

R (x, x′) (8)

× [
j (A)
a (x) j (B)

b (x′) + j (B)
a (x) j (A)

b (x′)
]
.

For reference, we note that∫
dt Hint(t ) = λ2

2

∫
dV dV ′ j (A)

a (x)�ab(x, x′) j (B)
b (x′),

where

�ab(x, x′) = Gab
R (x, x′) + Gab

A (x, x′) (9)

and Gab
A (x, x′) = Gba

R (x′, x) is the advanced propagator for
the differential operator P . The Hamiltonian of Eq. (8) then
prescribes the dynamics of the classical systems A and B
in terms of the field’s propagator, without requiring one to
specify the field’s degrees of freedom.

A. Pointlike systems coupled to a real scalar field

A simple but instructive example is to consider that the
classical systems are pointlike and undergo fixed inertial tra-
jectories zI(t ). Let us also consider that they are coupled to a
massless real scalar field φ(x) and have monopole moments
μI(t ) which source the field. In this case the field satisfies the
Klein-Gordon equation with P = � = ∂μ∂μ,

�φ(x) = 0, (10)

and the retarded Green’s function is

GR(x, x′) = − 1

4π
δ(4)[−(t − t ′)2 + (x − x′)2]θ (t − t ′),

(11)
where θ (t ) denotes the Heaviside theta function.

The coupling of the systems with the field can be modeled
by considering current densities j (I)(x) = μI(t )δ(3)[x − zI(t )].
In this case we obtain the Hamiltonian density

Hint(t ) = λ2

2

∫
dt ′[μA(t )μB(t ′)GR(zA(t ), zB(t ′))

+ μB(t )μA(t ′)GR(zB(t ), zA(t ′))], (12)

so that∫
dt Hint(t ) = λ2

2

∫
dt dt ′μA(t )μB(t ′)�(zA(t ), zB(t ′)).

(13)
Notice that for this example we are not considering the dy-
namics of the particles’ trajectories (they are fixed). However,
we have internal dynamics for the monopoles μA and μB.

III. QUANTUM SYSTEMS COUPLED VIA A CLASSICALLY
PROPAGATED INTERACTION

In this section we describe how two quantum systems can
interact via a field using the model presented in Sec. II. In
essence, the quantum systems source a field which propagates
according to its classical equations of motion implemented
by the retarded Green’s function. This gives rise to what we
will call a quantum-controlled field (that we will also refer
to as qc-field), which has no quantum degrees of freedom of
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its own. This will allow us to study examples where qc-fields
can be used for quantum information protocols between two
quantum systems and will allow us to compare them with pro-
tocols mediated by a fully featured quantum field. We start this
section by studying two pointlike two-level systems coupled
to a real scalar qc-field, and later generalize the formalism,
allowing for smeared sources and more general spins.

A. Pointlike two-level systems coupled to a real scalar field

In order to consider quantum sources for the model ana-
lyzed at the end of Sec. II, we consider the case where the
monopoles that source the field, μA and μB, are quantum. In
order to implement this, we associate a Hilbert space HI

∼= C2

to each system and consider the monopoles to be described
by observables μ̂I(0) = σ̂+

I + σ̂−
I , where σ̂±

I are the SU(2)
ladder operators of system I.

The free dynamics for the systems is implemented by the
free Hamiltonians

ĤA = 
σ̂+
A σ̂−

A , ĤB = 
σ̂+
B σ̂−

B . (14)

We picked ĤI noncommuting with μ̂I(0) in order to imple-
ment nontrivial dynamics for the monopoles.1 We further
introduce switching functions χA(t ) and χB(t ), which control
the time duration of the interactions, so that the interaction
Hamiltonian for the particles in the interaction picture can be
written as

Ĥint(t ) = λ2

2

∫
dt ′[χA(t )χB(t ′)μ̂A(t )μ̂B(t ′)GR(zA(t ), zb(t ′))

+ χB(t )χA(t ′)μ̂B(t )μ̂A(t ′)GR(zB(t ), zA(t ′))], (15)

where the interaction picture monopole moments are μ̂I(t ) =
ei
t σ̂+

I + e−i
t σ̂−
I . It is also possible to write this Hamiltonian

explicitly in terms of the quantum controlled field sourced by
each particle:

Hint(t ) = λ

2

{
μ̂A(t )φ̂qc

B [zA(t )] + μ̂B(t )φ̂qc
A [zB(t )]

}
, (16)

where the field sourced by particle I, φ̂qc
I : M → HI is defined

as

φ̂
qc
I (x) = λ

∫
dV ′GR(x, x′) ĵI(x′), (17)

and the operator-valued operator current which sources the
field is

ĵI(x′) = χI(t
′)μ̂I(t

′)δ(3)[x′ − zI(t
′)]. (18)

In this sense, the Hamiltonian of Eq. (16) simply couples
the current of one system along its trajectory with the field
sourced by the other system. Notice that the field of Eq. (17)
does not posses any quantum degree of freedom and is entirely
determined by the quantum states of its sources. In other
words, the Hilbert space in which φ̂

qc
I (x) acts is not associated

with the field at all—it is instead the Hilbert space of the
degrees of freedom of the sources.

1Notice that, while simple, this model is the analog to the Unruh-
DeWitt detector model [25,26] interacting with a classical field
instead of a quantum one, as we will discuss in detail later.

The interaction picture unitary time evolution for the sys-
tem is then given by

Û = T exp

[
−i

∫
dtĤint(t )

]

= 1 − i
∫

dtĤint(t ) + O(λ4). (19)

In the basis {|gAgB〉 , |gAeB〉 , |eAgB〉 , |eAeB〉}, such that
σ̂+

I |gI〉 = |eI〉 and σ̂+
I |eI〉 = 0, this unitary can be written to

leading order in the coupling constant as

Û =

⎛
⎜⎜⎝

0 0 0 −M∗
C

0 0 −N ∗
C 0

0 NC 0 0
MC 0 0 0

⎞
⎟⎟⎠ + O(λ4), (20)

where

MC = − i

2
λ2

∫
dt dt ′ei
(t+t ′ )χA(t )χB(t ′)�(zA(t ), zB(t ′)),

NC = − i

2
λ2

∫
dt dt ′ei
(t−t ′ )χA(t )χB(t ′)�(zA(t ), zB(t ′)).

(21)

If the two systems start in their ground state, ρ̂0 =
|gA〉〈gA| ⊗ |gB〉〈gB|, then, after the interaction, the state of the
quantum systems is given by ρ̂ = Û ρ̂0Û †. To fourth order in
the coupling λ, we obtain

ρ̂C =

⎛
⎜⎜⎝

1 − |MC|2 0 0 M∗
C

0 0 0 0
0 0 0 0

MC 0 0 |MC|2

⎞
⎟⎟⎠ + O(λ6). (22)

We note that ρ̂C above is a pure state due to the fact that
the evolution of two quantum systems interacting through a
qc-field is unitary. Hence, the final state of the systems can
also be written as ρ̂C = |ψ〉〈ψ |, where the state vector |ψ〉 is
given by

|ψ〉 = |gAgB〉 + MC |eAeB〉√
1 + |MC|2

+ O(λ6) (23)

to fourth order in λ.
One can also formulate a smeared version of the model

of Eq. (15). This is done by replacing the switching func-
tions χI(t ) by spacetime smearing functions �I(x), which
control both the space and time duration of the interaction, and
also smear the Green’s functions with respect to space. The
resulting Hamiltonian for two smeared two-level quantum
systems interacting via a relativistic quantum field can then be
written as

Ĥint(t ) = λ2

2

∫
dt ′

∫
d3xA d3xB

× [μ̂A(t )μ̂B(t ′)�A(t, xA)�B(t ′, xB)GR(t, xA; t ′, xB)

+ μ̂B(t )μ̂A(t ′)�B(t, xB)�A(t, xA)GR(t, xB; t ′, xA)],

(24)

where �A and �B denote the spacetime smearing function
associated with the chosen energy eigenspace.
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The model of Eq. (24) is the smeared version of the
model of Sec. III A, where the retarded Green’s functions are
smeared by the spacetime smearing functions �I(x) instead
of simply the switching functions χI(t ). The unitary time
evolution takes the shape of Eq. (20), but in this case with
the following expressions for MC and NC:

MC = − i

2
λ2

∫
dV dV ′ei
(t+t ′ )�A(x)�B(x′)�(x, x′),

NC = − i

2
λ2

∫
dV dV ′ei
(t−t ′ )�A(x)�B(x′)�(x, x′), (25)

which are now integrated over the spacetime volume corre-
sponding to the four-dimensional interaction regions. Notice
that if �I(x) = χI(t )δ(3)[x − zI(t )] we recover the exact ex-
pressions for MC and NC for the pointlike case. Under the
assumptions that led to Eq. (22), the final state of the systems
after the interaction is also given by Eq. (22), but with MC

and NC given by Eq. (25).

B. General localized quantum sources coupled
to a relativistic field

In this section we describe how general quantum sources
can couple to a qc-field of arbitrary spin, using the theory
developed in Sec. II. The sources will be described by local-
ized quantum systems with a position degree of freedom, and
possibly internal degrees of freedom in a finite dimensional
Hilbert space, according to the general framework presented
in [27]. The position and momentum operators of the two
respective systems will be denoted x̂I and p̂I for I ∈ {A, B}.
We will denote the algebraic basis of operators in the finite
dimensional Hilbert space by {ŝI,i} where i parametrizes a
set of operators in Cn. Thus, any observable in system I can
be written as an algebraic combination of ŝI,i. Under these
assumptions we can write the free Hamiltonians of each of
the systems as ĤI(x̂I, p̂I, {ŝI,i}).

In order to couple the systems with a field φa(x), we will
associate a current density ĵ (I)

a (t, x̂I ) to each system sourcing
the field and acting on the Cn portion of the Hilbert space.
In order to prescribe the interaction between the probes via
the field, it is then enough to replace the classical currents in
Eq. (1) by their quantum counterparts, so that the interaction
Hamiltonian in the position basis reads

Ĥint(t ) = λ2

2

∫
dt ′

∫
d3xA d3xB |xA〉〈xA| ⊗ |xB〉〈xB|

× [
ĵ (A)
a (t, xA) ĵ (B)

b (t ′, xB)Gab
R (t, xA; t ′, xB)

+ ĵ (B)
a (t, xB) ĵ (A)

b (t, xA)Gab
R (t, xB; t ′, xA)

]
. (26)

This is the general formalism for two localized quantum sys-
tems interacting via a relativistic classical field. Particular
examples of the Hamiltonian of Eq. (26) can then be used to
reproduce the interaction of atoms with electromagnetism (a
classical version of the models of [7,28]), the interaction of
nucleons with neutrinos (the classical version of the models of
[29,30]), and the coupling of quantum systems with classical
gravity [23,24].

C. Discussion: Fields with no quantum degrees of freedom

In this subsection we discuss the fields that participate in
the quantum-controlled interaction. Recall that the field con-
sidered to mediate the interaction is devoid of any degrees of
freedom and is entirely sourced by the systems which couple
to it. In fact, it was possible to prescribe the Hamiltonians of
Eqs. (15) and (26) entirely in terms of the propagator. On the
other hand, it is possible to define fields that act on the Hilbert
space of the sources. In the general case, the field sourced by
a current ĵa(x) can be written as

φ̂a
I (x) = λ

∫
dt ′ dx′

IG
ab
R (x, x′) ĵ (I)

b (t ′, x′
I ) |x′

I〉〈x′
I| , (27)

which acts on the Hilbert space of each source. The quantum-
controlled field could then be written as φ̂a

qc(x) = φ̂a
A(x) +

φ̂a
B (x). In this sense, the field would be a well-defined

spacetime-valued operator that acts on the Hilbert space of the
sources. From the equation above, it is also clearly possible to
see that the field does not possess its own degrees of freedom:
it is entirely determined by the sources. Although it is devoid
of degrees of freedom, the field does obey equations of motion
in the sense that

P
[
φ̂qc

a (x)
] = λ ĵ (A)

a (t, x) |x〉〈x|A + λ ĵ (B)
a (t, x) |x〉〈x|B , (28)

where P is the differential operator of Eq. (3).
There are cases where the qc-field can be completely re-

duced to a classical field. Indeed, whenever either of the
quantum systems which source the qc-field is in an eigen-
state of the interaction Hamiltonian, it is possible to define
a single classical field that takes a single value in each point
of spacetime. However, in the the cases considered here, the
Hamiltonian of the particles does not commute with the in-
teraction Hamiltonian. Although some authors would refer to
this as a “quantum superposition of fields,” we will refrain
from using this nomenclature because there is no Hilbert space
associated with the dynamics of the qc-field.

Finally, we remark that the fields in this model are fully
relativistic and causal. The compatibility with relativity is
implemented by the retarded propagation of the field which is
prescribed in the Hamiltonian of Eq. (26). The retarded prop-
agation also prevents any faster-than-light signaling from one
source to another and makes this model suitable for analyzing
quantum information protocols in relativistic setups.

IV. QUANTUM SYSTEMS INTERACTING
VIA QUANTUM FIELDS

In this section we describe the interaction of localized
quantum systems with a quantum field. That is, instead of pre-
scribing a direct interaction which neglects the field’s degrees
of freedom, the systems will interact with the local degrees of
freedom of a quantum field.

A general localized nonrelativistic quantum system which
is coupled to a quantum field is usually termed a particle de-
tector [26,31], and the general framework for describing these
systems has been widely studied in the literature, especially
in the field of relativistic quantum information (RQI), where
many protocols using particle detectors have been devised
(e.g., entanglement harvesting [1–3], entanglement farming

042612-4



ROLE OF QUANTUM DEGREES OF FREEDOM OF … PHYSICAL REVIEW A 107, 042612 (2023)

[15], quantum collect calling [18,20], and quantum energy
teleportation [16,17] to name a few). In this section we will
review the formulation of a general setup in which two de-
tectors interact with a quantum field and compare it with
the case where two localized quantum systems interact via a
quantum-controlled classical field.

A. The two-level UDW model coupled to a real scalar field

The simplest particle detector model is the two-level
Unruh-DeWitt (UDW) particle detector [25,26]. It consists
of a two-level quantum system which interacts locally with
a scalar quantum field. Albeit simple, this model has been
shown to reproduce some fundamental features of more com-
plex and realistic systems, such as atoms interacting with the
electromagnetic field [28,32] and gravitational [24,33] fields,
as well as nucleons interacting with the neutrino fields [29,34].

In more detail, the two-level UDW model consists of a
detector, a field, and an interaction between them. The quan-
tum field is assumed to be a real scalar field which obeys an
equation of motion of the form P[φ(x)] = 0, where P is the
linear differential operator that defines the field’s equation of
motion. Using the classical description for this free field, it
is possible to build the local algebras of observables for the
corresponding quantum field theory as follows. Consider the
set of smooth compactly supported functions in Minkowski
spacetime, C∞

c (M), and the formal operators φ̂( f ) ∈ A with
f ∈ C∞

c (M), where A is the ∗-algebra with an identity el-
ement generated by the φ̂( f ). We impose the commutation
relations

[φ̂( f )φ̂(g)] = iE ( f , g), (29)

where E ( f , g) is the causal propagator distribution,

E ( f , g) =
∫

dV dV ′E (x, x′) f (x)g(x′), (30)

and where E (x, x′) = GR(x, x′) − GA(x, x′) is the retarded-
minus-advanced propagator associated with the differential
operator P . For example, one could obtain a massive Klein-
Gordon field by considering P = � − m2 and its massless
version by considering P = �. For all purposes, one can
then think of the quantum field φ̂( f ) as an operator-valued
distribution, where the field φ̂(x) is formally defined by

φ̂( f ) =
∫

dV φ̂(x) f (x). (31)

For more details about this construction, we refer the reader
to [35–37] and references therein.

In the context of operator algebras, states are defined as
positive functionals ω : A → C which are normalized such
that ω(1) = 1. Then the expected value of a field observ-
able Â ∈ A is defined as 〈Â〉ω ≡ ω(Â). A particularly useful
class of states is that of Hadamard states, which are zero
mean Gaussian states and such that the local behavior of
the field’s two-point function distribution ω(φ̂(x)φ̂(x′)) has
a particular singular structure [35,38,39]. Such states are
also required in order to obtain a regular version of the
stress-energy tensor and can be seen as a generalization of
a notion of vacuum states via the GNS construction (see,
e.g., [35,36,38,39]). The field’s two-point Wightman function

W (x, x′) = 〈φ̂(x)φ̂(x′)〉ω can be decomposed as

W (x, x′) = i

2
E (x, x′) + 1

2
H (x, x′), (32)

where E (x, x′) is the causal propagator and H (x, x′) =
〈{φ̂(x), φ̂(x′)}〉ω is the Hadamard distribution, which con-
tains the state-dependent part of the Wightman function.
We can also define the Feynman propagator GF (x, x′) =
〈T φ̂(x)φ̂(x′)〉ω, where T denotes the time ordering operation.
Its real and imaginary parts can be written as

GF (x, x′) = i

2
�(x, x′) + 1

2
H (x, x′), (33)

where �(x, x′) is the retarded plus advanced propagator de-
fined in Eq. (9) (which is independent of the state ω). One
can then interpret E (x, x′) as the quantum-state-independent
part of the propagators. It is fundamentally quantum since it
comes from the commutation relations of Eq. (29). The state-
dependent distribution H (x, x′) represents the role played by
the quantum state in the Wightman function and in the Feyn-
man propagator. �(x, x′) represents the classical symmetric
propagation of the field between the events x and x′. Finally,
notice that it is possible to write the retarded and advanced
propagators in therms of the Wightman function and the Feyn-
man propagator as

iGR(x, x′) = W (x, x′) − GF ∗ (x, x′), (34)

iGA(x, x′) = GF (x, x′) − W (x, x′). (35)

Notice that the real part of W (f, x′) and GF (x, x′) cancels, so
that there is no state dependence in GR(x, x′) and GA(x, x′).
For a summary of the distributions used throughout the paper,
their description, and the relationship between them, please
refer to Table I.

The interaction of a UDW detector with the scalar quantum
field [25,26] is prescribed by the interaction Hamiltonian2

Ĥint(t ) = λ

∫
dnx�(x)μ̂(t )φ̂(x), (36)

where μ̂(t ) = ei
t σ̂+ + e−i
t σ̂− is the monopole moment op-
erator in the interaction picture and �(x) is the spacetime
smearing function supported locally around the trajectory
z(t ). �(x) implements a spatial profile for the detector as well
as a finite time duration.

In order to draw a parallel between communication pro-
tocols using the UDW model above and the classical model
of Eq. (24), we consider two UDW detectors undergoing
comoving inertial trajectories in Minkowski spacetime. Each
detector interacts with the same quantum field φ̂(x). To each
of these detectors, we associate a spacetime smearing function
�I(x) and a monopole operator μ̂I(t ). We further assume
that the detectors are identical, so that they have the same
energy gap.

This description for the interaction of the field and the
probes involves three quantum systems with three different
Hilbert spaces: The Hilbert space of each of the detectors

2For a covariant description see, for instance, [40,41].
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TABLE I. The different distributions and their descriptions. The distributions with “Classical” as an entry in the third column are the
functions that appear in the interaction of classical systems—notice that it is in principle possible to artificially write them as a function of
φ̂(x), but the state-dependent part from different propagators cancel. Notice that there are different conventions for the Green’s functions and
that different authors might use different conventions for each of the propagators summarized above.

Distribution name Symbol In terms of φ̂(x) Alternative form Description

Retarded Green’s function GR(x, x′) Classical i[G∗
F (x, x′) − W (x, x′)] Retarded propagation from x′ to x

Advanced Green’s function GA(x, x′) Classical i[W (x, x′) − GF (x, x′)] Retarded propagation from x′ to x
Symmetric propagator �(x, x′) Classical GR(x, x′) + GA(x, x′) Classical exchange between x and x′

Hadamard function H (x, x′) 〈{φ̂(x), φ̂(x′)}〉 2Re[W (x, x′)], 2Re[GF (x, x′)] State-dependent correlations

Causal propagator E (x, x′) −i〈[φ̂(x), φ̂(x′)]〉 GR(x, x′) − GA(x, x′) Commutator-dependent correlations

Wightman function W (x, x′) 〈φ̂(x)φ̂(x′)〉 1
2 H (x, x′) + i

2 E (x, x′) Field’s correlation function

Feynman propagator GF (x, x′) 〈T φ̂(x)φ̂(x′)〉 1
2 H (x, x′) + i

2 �(x, x′) Time-ordered correlation function

(isomorphic to C2) and the quantum field’s Fock space. The
interaction of the detectors with the field is then prescribed as
the sum of the individual interaction Hamiltonians:

Ĥint(t ) = λ

[∫
dnx�A(x)μ̂A(t )φ̂(x)+

∫
dnx�B(x)μ̂B(t )φ̂(x)

]
.

(37)

In this setup the probes do not interact directly with each other,
unlike the case of the model of Sec. III. That is to say that the
interaction Hamiltonian of each detector acts trivially on the
Hilbert space of the other one.

We can now proceed to compute the final state of the
detectors after the interaction with the field. The unitary time
evolution operator for the system will be given by

Û = T exp

[
−i

∫
dtĤint(t )

]
, (38)

where T exp denotes the time ordering exponential. Û then
admits a Dyson expansion of the form

Û = 1 + Û (1) + Û (2) + Û (3) + Û (4) + O(λ5), (39)

with

Û (1) = −i
∫

dt1Ĥint(t1), (40)

Û (2) = −
∫

dt1dt2Ĥint(t1)Ĥint(t2)θ (t1 − t2), (41)

where all integrals range from −∞ to ∞. In general, for n > 2
we have

Û (n) = (−i)n
∫

dt1dtnθ (t1 − t2)

×
[

n−1∏
k=2

Ĥint(tk )θ (tk − tk−1)

]
θ (tn − tn−1). (42)

Usually the calculations with two UDW detectors are per-
formed to second order in λ, with a few exceptions which
go to fourth order [5]. We will display the results to fourth
order in λ so that we can draw a natural comparison with the
classical model presented in Sec. III.

We assume that the system starts in the uncorrelated
state ρ̂0 = |gA〉〈gA| ⊗ |gB〉〈gB| ⊗ |0〉〈0|, where |0〉 denotes the

Minkowski vacuum. The final state of the detectors-field sys-
tem will then be given by ρ̂ = Û ρ̂0Û †. This interaction results
in corrections for the detectors’ state which mix different
products of field operators evaluated around the trajectories A
and B. Once the interaction is completed, one can compute the
final state of the two detectors system by tracing out the field
degrees of freedom. Tracing out the field replaces the products
of field operators with its correlation functions, which are then
smeared by the detectors’ spacetime smearing functions. We
obtain the following final state of the detectors system:

ρ̂D =

⎛
⎜⎜⎜⎝

1 − Y 0 0 M∗ + ϒ

0 LBB + �BA LAB + �AB 0
0 L∗

AB + �∗
AB LAA + �AB 0

M + ϒ∗ 0 0 |M|2 + �

⎞
⎟⎟⎟⎠,

(43)

where Y is given by

Y = LAA + LBB + |M|2 + �AB + �BA + �, (44)

or, to leading order in λ,

ρ̂D =

⎛
⎜⎜⎜⎝

1 − LAA − LBB 0 0 M∗

0 LAA LAB 0
0 L∗

AB LBB 0
M 0 0 0

⎞
⎟⎟⎟⎠ + O(λ4),

(45)

where we have

LIJ = λ2
∫

dV dV ′�I(x)�J(x′)e−i
(t−t ′ )W (x, x′), (46)

M = −λ2
∫

dV dV ′�A(x)�B(x′)ei
(t+t ′ )GF (x, x′), (47)

and the remaining terms are of order O(λ4).
At this stage one can already see that the operator ρ̂D in

Eq. (43) can be written as

ρ̂D = ρ̂C + ρ̂Q, (48)

where ρ̂C is the final state obtained in Eq. (22) and ρ̂Q are
the quantum corrections to the previous result, which are
associated with the presence of quantum degrees of freedom
in the field. This comparison will be made more precise in
Sec. IV C, where we will discuss how one recovers the results
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of the classical model in Sec. III A from the interaction of
Eq. (37).

It is also interesting to interpret the final state of the de-
tectors in terms of the decoherence that they experience when
interacting with the quantum field. Due to the chosen inter-
action Hamiltonian being proportional to ei
t σ̂+ + ei
t σ̂− =
cos(
t )σ̂x − sin(
t )σ̂y, the state of the detectors experiences
an amplitude-damping type of decoherence [42]. Had we cho-
sen a different coupling proportional to the detectors’ free
Hamiltonian, we would obtain a dephasing type of decoher-
ence, as described in detail in [43]. However, this type of
coupling would not allow the detectors to become entangled
in the setups we consider, as in this case, the interaction with
the field would commute with their free Hamiltonians and
would not generate nontrivial dynamics. For this reason we
will focus on the interaction of the form (37) in order to study
quantum information protocols with this model.

Finally, it is worth interpreting the different terms of
Eq. (43) in terms of the field mode and detector excitation or
deexcitation terms. With respect to a given choice of vacuum,
it is possible to write the free quantum field as

φ̂(x) =
∫

dnk[uk(x)âk + uk∗ (x)âk† ], (49)

where uk(x) is a set of modes [solutions to the homogeneous
equation of motion for the field φ(x)] and âk and â†

k are
creation and annihilation operators, whose action can be in-
terpreted as exciting or deexciting the mode labeled by k.
In this context, the interaction Hamiltonian contains terms
of the form σ̂±

A/Bâ and σ̂±
A/Bâ†, which implement the detector

and field modes’ excitations or deexcitations. In the specific
scenario in which we computed ρ̂D in Eq. (43), both detec-
tors start in their ground state, but they can still affect the
field through counterrotating terms (σ̂−

A/Bâ and σ̂+
A/Bâ†) due to

the time dependence introduced by the switching functions,
which effectively encode the energy deposited into the system
when the detectors-field interactions are switched on and off.
This picture may be useful to give some interpretation for the
physical origin of the entanglement acquired by the detectors.

B. General particle detectors

The model presented in Sec. IV A is the simplest particle
detector model, in the sense that the detectors are qubits which
couple linearly to a real scalar field. Generalizations of this
model have been explored in the literature in many different
contexts, such as the study of the interaction of atoms with
light [7,28,32] and the study of the interaction of nucleons
with neutrinos [29,30,34]. A general particle detector model
has been described in [27]. Here we briefly review such a
model and present the formalism for the coupling of two
detectors to the same quantum field theory.

Following the discussion of Sec. IV A and in line with the
model of [27], a particle detector will be a localized nonrel-
ativistic quantum system with a position degree of freedom
and internal degrees of freedom described in Cn. These can be
described in a Hilbert space of the form L2(R3) ⊗ Cn. In order
to couple with a field of arbitrary spin, φ̂a(x) (where a is any
collection of Lorentz indices), we must prescribe operator-
valued currents ĵ (I)

a (t, x̂I ) for each detector which act on the

Cn portion of the Hilbert space. x̂I here denotes the position
operator for each system. The description of a quantum field
of general spin can be found in [44]. Assuming the detectors
to be inertial and comoving in Minkowski spacetime, the
interaction Hamiltonian of two detectors with the quantum
field can be written as

Ĥint(t ) = λ
[

ĵ (A)
a (t, x̂A)φ̂a(t, x̂A) + ĵ (B)

a (t, x̂B)φ̂a(t, x̂B)
]
. (50)

This interaction Hamiltonian can be obtained from the one
presented in [27] adding the assumption of flat spacetime and
inertial comoving trajectories for each detector.

In order to draw a more direct comparison with the clas-
sical Hamiltonian of Eq. (26), it is possible to expand the
interaction Hamiltonian above in the position basis of each
detector, yielding

Ĥint(t ) = λ

[ ∫
d3xA |xA〉〈xA| ĵ (A)

a (t, xA)φ̂a(t, xA)

+
∫

d3xB |xB〉〈xB| ĵ (B)
a (t, xB)φ̂a(t, xB)

]
. (51)

In order to recover the scalar coupling model of Sec. IV A, it
is enough to make the replacements j (I)

a (t, x) �−→ �(x)μ̂I(t ),
φ̂a(x) �−→ φ̂(x), and to expand the interaction Hamiltonian
in the eigenbasis of the free Hamiltonian of each detector, re-
stricting the accessible Hilbert space to two relevant subspaces
(see Appendix A).

C. Comparing quantum fields and qc-fields

At this stage, it is possible to make a general comparison
between the models presented in Sec. III and in this section.
Let us compare Eqs. (22) and (45) for the final state of the
quantum systems in the qc-field and fully quantum cases,
respectively. To leading order, there are two differences: the
LIJ terms only appear for the fully quantum case, and the M
terms are replaced by MC in the qc-field model.

These differences can also be phrased in terms of the distri-
butions E (x, x′), H (x, x′) and �(x, x′) that compose the real
and imaginary parts of the Wightman function and the Feyn-
man propagator in Eqs. (32) and (33). Indeed, if one could
set the quantum state-dependent part of the propagators to
zero, H (x, x′) �−→ 0, only the imaginary part of the Feynman
propagator survives in M. This would make M �−→ MC.
By the same token, if one could also set the quantum-state-
independent part of the propagator to zero [E (x, x′) �−→ 0],
one would then get rid of the contributions from W (x, x′),
giving LIJ �−→ 0. That is, if one could neglect the quantum
contributions from E (x, x′) and H (x, x′) in the propagators,
and keep only the classical symmetric propagation between
the sources �(x, x′), one would recover the results of the
quantum-controlled classical model. Later in the paper we will
be able to identify the physical regimes where the contribu-
tions of E (x, x′) and H (x, x′) can be neglected, and where the
quantum-controlled field can be seen as an approximation of
a fully featured quantum field.

Another important difference between the quantum-
controlled and fully quantum cases is related to unitarity. In
the qc-model the full Hilbert space is given by the Hilbert
space of the quantum sources. This implies that the time
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evolution of the sources is unitary, and that no information
about the sources is lost through the interaction. However, in
the coupling with a fully featured quantum field, the sources
will get entangled with the field itself. This implies that in-
formation about the sources can (and in general will) be lost
after they interact, because the field now decoheres them.
Concretely, after interacting with a quantum field, the probes
end up in a mixed state, with purity equal to Tr(ρ̂2

D ) = 1 −
2(LAA + LBB) + O(λ4). Notice that the loss in purity of the
detectors at leading order is given by the vacuum excitation
probability of each detector, which is present only in the
quantum field model.

Remarkably, the models have one important feature in
common: both are compatible with the notion of causality
given by relativity. This implies that neither of the models
allows for faster-than-light signaling and both respect the
underlying spacetime causality.3 However, while both models
are relativistically causal and local in the spacetime sense,
the qc-model implements a direct interaction between the
two quantum systems. This is in contrast to the quantum
field theoretic approach, where the probes interact through
an intermediary system (the quantum field). For a pictorial
representation of the interaction Hamiltonians and regions of
interaction for each of the models considered see Appendix B.

Overall, the main distinctions between the qc-model and
the quantum field model are associated with the intrinsically
quantum properties of the field (e.g., spontaneous vacuum
excitation, decoherence through the field, etc.). Although dif-
ferent, we will later see that there are regimes in which
the quantum field can be well modeled by a qc-field. We
will dedicate the remainder of this paper to (1) identifying
these regimes and (2) studying how the differences between
the models affect several relativistic quantum information
protocols.

V. COMMUNICATION PROTOCOLS

Communication protocols that are mediated by quantum
fields have been extensively studied in the literature (see,
among others, [18,20,21,37,47–53]). In this section we briefly
review some of the results in the literature when the protocol
consists of two parties, and compare the results when the me-
diating field is quantum versus the case where it is a qc-field.
We will focus on the case where the detectors are two-level
systems, as communication protocols become simpler and
often more intuitive with this choice.

A. Quantum collect calling

In this section we will consider the communication proto-
col named “quantum collect calling” which was introduced
in [18]. This protocol involves the transmission of classical
information between a sender (Alice) and a receiver (Bob)
that operate quantum emitters coupled to a field. We will first

3Although the smeared models contain causality violating issues
even for relativistic fields, these issues are of the order of the detector
size and are well understood to stipulate a limit of validity of the
nonrelativistic quantum theory for the detectors [45,46].

discuss the model presented in [18], where a quantum field is
considered for the protocol. Next we will adapt the protocol
to the case where a qc-field mediates the interaction between
sender and receiver. The comparison between these two cases
will allow us to study the role of quantum degrees of freedom
in quantum collect calling.

1. Quantum collect calling via a quantum field

Following [18], one can describe the protocol of quan-
tum collect calling by modeling the sender and emitter
using the UDW model presented in Sec. IV A with �A(x) =
χA(t )δ(3)(x − xA) and �B(x) = χB(t )δ(3)(x − xB), which de-
fines detectors A and B as localized at xA and xB with
switching functions χA(t ) and χB(t ), respectively. In agree-
ment with standard convention in the quantum information
literature, we will assume that Alice has control over the qubit
labeled A and Bob has control over qubit B. For convenience,
we will assume that Alice has a qubit in a pure state |ψA〉 =
αA |gA〉 + βA |eA〉 and Bob starts with a qubit in the pure state
|ψB〉 = αB |gB〉 + βB |eB〉. Alice and Bob will then both couple
to a massless real scalar field, according to the interaction
Hamiltonian of Eq. (37), and their intention is to send classical
information from Alice to Bob.

Assuming that Alice couples to the field before Bob, one
can then define a quantum channel between Alice’s sys-
tem and Bob’s, E : DA −→ DB, where DI denotes the set of
density states of system I. If ρ̂0 = |ψA〉〈ψA| ⊗ |ψB〉〈ψB| ⊗ ρ̂φ

denotes the state of the Alice-Bob-field system before their
couplings with the field, then the channel E maps the state
|ψA〉〈ψA| into the state

E (|ψA〉〈ψA|) = TrA,φ (Û ρ̂0Û
†), (52)

where Û is the time evolution operator of Eq. (38) and TrA,φ

denotes the partial trace over Alice’s and the field’s degrees of
freedom, which yields a state in Bob’s space of states DB.

In [18] the authors find a lower bound for the classical
channel capacity of a general setup where Alice and Bob
possess qubits coupled to a quantum field. Their strategy was
to consider a binary asymmetric channel, where Alice could
send a “0” by not coupling to the field or a “1” by coupling to
it. This allows the channel capacity to be bound from below
from Alice’s influence on Bob’s excitation probability.

In general, the probability that Bob finds his qubit in the
excited state, |eB〉, after the interaction can be written as

Pe,B = |βB|2 + RB + SAB, (53)

where RB is the portion of the excitation probability which
is independent of Alice’s coupling, and SAB is dependent on
Alice’s interaction with the field. The contributions in RB are
due to Bob’s switching of the interaction and the local noise of
the quantum field at his site. SAB is the contribution due to sig-
naling from Alice’s qubit. The term |βB|2 is Bob’s excitation
probability previous to any coupling with the quantum field.
Then in [18] it is shown that the lower bound for the channel
capacity can be approximated to leading order in the coupling
constant by

CE ∼ 2

ln 2

( SAB

4|αB||βB|
)2

+ O(λ6), (54)
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where SAB is given by

SAB = −4λ2
∫

dt1 dt2χA(t1)χB(t2)Re(α∗
AβAei
t1 )

× Im[α∗
BβBei
t2 ]GR(t1, xA; t2, xB). (55)

Notice that the integral above depends only on the retarded
Green’s function of the field. For this reason, the lower bound
of the channel capacity is independent of the field’s quantum
state. Our goal in the next subsection is to check whether
the estimate above for the channel capacity changes when
one considers the interaction with a qc-field instead, and to
check whether quantum degrees of freedom play any role in
the information protocol described here.

2. Quantum collect calling using a quantum-controlled field

It is possible to consider the same communication protocol
discussed above when the detectors are instead coupled to a
qc-field, according to the formalism described in Sec. III A.
In this context, there is no degree of freedom for the field, and
the initial state of the Alice-Bob system is ρ̂0 = |ψA〉〈ψA| ⊗
|ψB〉〈ψB|. The quantum channel is then

E (|ψA〉〈ψA|) = TrA(Û ρ̂0Û
†), (56)

where Û here denotes the time evolution operator of Eq. (19).
The same as in the case of a fully featured quantum field,
we can find a lower bound for the channel capacity from
the excitation probability of Bob’s qubit. In the case of the
qc-field, there is no vacuum noise, and the term RB vanishes,
so that the excitation probability can be written as

Pe,B = |βB|2 + Sclass
AB . (57)

To leading order in the coupling constant one finds

Sclass
AB = − α∗

AβAα∗
BβBMC − αAβ∗

AαBβ
∗
BM∗

C

+ α∗
AβAαBβ

∗
BNC + αAβ∗

Aα∗
BβBN ∗

C , (58)

where MC and NC are defined in Eq. (21). Alice’s leading
order contribution to Bob’s excitation probability can then be
recast as

Sclass
AB = −2λ2

∫
dt1 dt2χA(t1)χB(t2)Re(α∗

AβAei
t1 )

× Im[α∗
BβBei
t2 ]�(t1, xA; t2, xB). (59)

In essence, the difference between the qc-model and the fully
quantum model is the replacement GR �−→ 1

2� = 1
2 (GR +

GA) in Eq. (55). In particular, if Alice interacts with the field
before Bob, and no signal can be sent from Bob to Alice
(so the GA contribution vanishes), the channel capacity of the
qc-model is half as much as the one of the quantum case. On
the other hand, in the limit where both interactions happen
for times much longer than the space separation between
the interactions (for instance, with χA → 1 and χB → 1), we
obtain Sclass

AB → SAB, so that both models yield the same lower
bound for the channel capacity.

In order to understand why, when Alice interacts with the
field before Bob, the channel capacity of the classical case is
half as much as the quantum case, let us look at the retarded

propagator. It can be expressed in terms of the Feynman prop-
agator and the Wightman function as

iGR(x, x′) = W (x, x′) − [GF (x, x′)]∗

= i

2
E (x, x′) + i

2
�(x, x′). (60)

That is, in Eq. (55) the appearance of the retarded Green’s
function is due to a combination of the quantum [E (x, x′)]
and classical [�(x, x′)] state-independent propagators. The
(quantum) term E (x, x′) is responsible for increasing the
transmission of classical information in this protocol.

Overall, we saw that in this specific protocol it is possible
to use a field with quantum degrees of freedom to better
transmit classical information. However, in the following sub-
section we will analyze a case where the qc-field is always
better at transmitting classical information than a fully fea-
tured quantum field.

B. A nonperturbative approach to channel capacities

In contrast to the previous subsection where the interaction
of the qubits with the field was weak, in this subsection we
turn our attention to the case where Alice and Bob strongly
couple to the field for just an instant. This kind of coupling
is usually called a delta-coupling and can be treated non-
perturbatively. This model can be obtained from the models
presented in Secs. III A and IV A by considering the spacetime
smearing functions to be given by

�I(x) = ηIδ(t − tI ) fI(x), (61)

where ηI defines an energy scale for the coupling and the
δ(t − tI ) factor sharply localized the interaction of detector
I in the space slice t = tI. Because we want to consider the
situation where Alice sends a message to Bob, we will assume
that Alice’s interaction happens first.

In [37] the classical channel capacity of the channel es-
tablished between Alice and Bob when they interact via a
delta coupling with a quantum field is computed analytically.
The authors show that if the initial state of the Alice-Bob
system is separable, ρ̂AB,0 = ρ̂A,0 ⊗ ρ̂B,0, Bob’s final state after
the interaction and after tracing over Alice’s and the field’s
degrees of freedom is given by

ρ̂B =
{

1

2
+ νB

2
cos [2E (�A,�B)]

}
ρ̂B,0

+
{

1

2
− νB

2
cos [2E (�A,�B)]

}
μ̂B(tB)ρ̂B,0μ̂B(tB)

− iνB

2
sin[2E (�A,�B)]θA(tA)[μ̂B(tB)ρ̂B,0], (62)

where E ( f , g) denotes the integrated causal propagator [see
Eq. (30)],

νB = e−2LBB , (63)

and θA(tA) = Tr[μ̂A(tA)ρ̂A], where tA is the time of the interac-
tion of Alice’s detector with the field.
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In [37] it is then shown that the classical channel capacity
of the quantum channel ρ̂A,0 �→ ρ̂B is given by

CE = H

{
1

2
+ νB

2
| cos[2λ2E (�A,�B)]|

}
− H

(
1

2
+ νB

2

)
,

(64)

where H (x) = −x log2(x) − (1 − x) log2(1 − x). Notice that
because Alice’s interaction happens before Bob’s, one can
replace the causal propagator E (�A,�B) by the retarded prop-
agator; that is, we end up with

CE = H

{
1

2
+ νB

2
| cos[2λ2GR(�A,�B)]|

}
− H

(
1

2
+ νB

2

)
.

(65)

In particular, if Alice’s region of interaction [supp(�A)] is
spacelike separated from Bob’s [supp(�B)], then the channel
capacity is zero, as there is no signaling between sender and
receiver.

For comparison, let us now consider the case where Alice
and Bob are coupled via a qc-field according to the coupling
prescribed in Sec. III A, with the choice of spacetime smearing
function of Eq. (61). We also assume Alice’s interaction to
happen before Bob’s at t = tA < tB according to an inertial
time t . In this case, it is possible to show that if the initial state
of Alice’s and Bob’s system is separable, ρ̂AB,0 = ρ̂A,0 ⊗ ρ̂B,0,
then Bob’s state after the interaction is given by

ρ̂B = cos2[�(�A,�B)]ρ̂B,0

+ sin2[�(�A,�B)]μ̂B(tB)ρ̂B,0μ̂B(tB)

− i sin[�(�A,�B)] cos[�(�A,�B)]θA(tA)[μ̂B(tB)ρ̂B,0].

(66)

Comparing the result of Eq. (62) with Eq. (66), we see4 that
the channel capacity in the quantum-controlled case corre-
sponds to the channel capacity in the quantum case setting
νB = 1, or, equivalently, by setting the vacuum excitation
probability to LBB = 0. In particular, the channel capacity of
this quantum channel is given by Eq. (64) evaluated at νB = 1:

Cclass
E = H

{
1
2 + 1

2 | cos[2λ2GR(�A,�B)]|}, (67)

where we used H (1) = 0.
We can now compare the channel capacity in the cases

where a fully featured quantum field or a quantum-controlled
classical field mediates the interaction. It is possible to show
that the channel capacity in Eq. (64) is monotonically increas-
ing with νB, which always satisfies νB � 1. This implies that
we always have Cclass

E > CE : delta-coupled interactions me-
diated by qc-fields are always better at transmitting classical
information than when mediated by quantum fields. This can
be traced back to the fact that a true quantum field has its own
quantum degrees of freedom, which become entangled with

4In order to compare Eq. (62) and Eq. (66), notice that cos2(θ ) =
1
2 + 1

2 cos(2θ ), sin2(θ ) = 1
2 − 1

2 cos(2θ ), sin(2θ ) = 2 sin(θ ) cos(θ )
and that if Alice interacts with the field with tA < tB, then
E (�A, �B ) = GR(�A, �B ) = �(�A, �B ).

the probes and produce noise. This noise can harm commu-
nication protocols, which can be seen from the fact that the
channel capacity in Eq. (64) is monotonically decreasing as a
function of the vacuum excitation probability LBB.

While one cannot switch off the quantum degrees of free-
dom of a field that is fundamentally quantum, the analysis of
this section shows that when the vacuum effects of the field
are negligible, the effect of the quantum degrees of freedom
of the field can also be neglected, at least for the purpose of
classical communication.

VI. ENTANGLING PROTOCOLS: ENTANGLEMENT
ACQUIRED BY TWO INTERACTING QUANTUM SYSTEMS

Two quantum systems that are initially uncorrelated can
become entangled via an interaction. Most known interac-
tions between quantum systems are fundamentally mediated
by quantum fields. However, we do not always have to go
to quantum field theory to describe the interaction of two
quantum systems. For example, to describe two spins in-
teracting via the electromagnetic field one does not usually
describe the field with quantum electrodynamics. Instead, it
is common to replace the mediator by an effective direct
interaction (e.g., spin-spin coupling), which is also able to
entangle the systems. In this section we analyze the difference
in the entanglement acquired by probes which are coupled to
a quantum field or directly via the interaction described by a
quantum-controlled classical field, according to the model of
Sec. III.

The study of entanglement acquired between two quantum
systems coupled to a field in relativistic setups has been ex-
tensively studied in the literature, mostly in the context of
quantum field theory [1–14]. Among the discoveries resulting
from this line of study is the fact that even causally discon-
nected probes can become entangled via the interaction of a
quantum field, which gave rise to the entanglement harvesting
protocol. In essence this protocol allows probes to extract
entanglement previously existing in a quantum field. On the
other hand, it is well known that a classical field cannot
entangle two spacelike separated probes, because the field
cannot contain previous quantum correlations. The main goal
of this section is to precisely quantify the difference between
qc-fields and quantum fields in entangling protocols.

A. Entanglement via communication through a classical field

In this section we consider two pointlike two-level
quantum systems directly coupled according to the quantum-
controlled classical model described in Sec. III A. In this case
we have seen that if the detectors start in the ground state, the
final state of the system is given by Eq. (22). In particular,
we see that the relevant matrix elements of the final state are
proportional to the MC term, which is given by an integral
of the propagator �(x, x′). The first conclusion that can be
drawn from this description is that if the interactions of de-
tectors A and B are causally disconnected, then the detector’s
state is unaffected. This is because the retarded and advanced
Green’s functions GR(x, x′) and GA(x, x′) have support only
when the events x and x′ are causally connected. In particular,
for a massless field in a spacetime that respects the strong
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Huygens’s principle [54–56], GR(x, x′) and GA(x, x′) are zero
only when x and x′ are lightlike separated, and there is no
“leakage” of the propagators inside the lightcone. In this case,
two detectors can affect each other when interacting via a
qc-field only if their interactions are at some point lightlike
separated. Overall, we can establish an important result re-
garding the quantum-controlled classical model: detectors can
become entangled only if their interactions with the field are
causally connected.

It is possible to quantify the entanglement acquired by the
detectors via communication through the propagation of the
qc-field. In order to quantify the entanglement of the final
state of Eq. (22) it is convenient to choose the negativity as
an entanglement quantifier. The negativity is a faithful entan-
glement quantifier for bipartite two-level systems and can be
used even for mixed states, which will make the comparison
between the quantum-controlled and truly quantum cases sim-
pler later. The negativity of a bipartite state ρ̂, N(ρ̂), is defined
as the absolute value of the sum of the negative eigenvalues of
the partial transpose (with respect to one of the partitions) of
ρ̂. The partial transpose of the state of Eq. (22) has a single
negative eigenvalue (if MC = 0), so that its negativity reads,
to leading order in λ,

N(ρ̂C) = |MC|. (68)

From the expression above we can also confirm that when the
detectors’ regions of interaction are not causally connected,
they will also not be entangled [see the definition of MC in
Eq. (21)].

In order to consider a concrete example, let us consider
a massless real scalar field in Minkowski spacetime and a
specific spatial and temporal profile for the detectors, which
undergo inertial comoving trajectories separated by a distance
L = |L|, where L is the separation vector between them. We
will first prescribe the spacetime smearing functions as

�A(x) = χT (t )δ(3)(x), (69)

�B(x) = χT (t − t0)δ(3)(x − L), (70)

where

χT (t ) =
{

1 + cos(2πt/T ), t ∈ [− T
2 , T

2

]
0, otherwise.

(71)

With these choices the detectors are pointlike, t0 is the time de-
lay between the switchings, and T controls the time duration
of the interactions, being equal to both the width of the support
of χT (t ) and the value of its integral in time. The interaction of
detector A is centered at the origin of the coordinate system,
and the interaction of detector B is centered at the event
(t0, L).

We will analyze the negativity acquired by the detectors
as we position detector B around different events of the form
(L sin(θ ), L cos(θ ), 0, 0) parametrized by the parameter θ ∈
(0, π/2), as shown in Fig. 1. In Fig. 2 we plot the negativity
in the detectors state as a function of θ . As we can see, there is
no entanglement until a certain value of θ , where the detectors
become causally connected. We see two peaks of negativity
at the values of θ corresponding to the regions where the
center of the switching of detector B is lightlike separated

FIG. 1. Setup for the configuration of the detectors as a function
of the angle θ .

from the initial and final points of the interaction of detector
A. The plot is not completely symmetric with respect to the
θ = π/4 axis because the interaction regions are smeared in
time, which slightly breaks the symmetry. We can see oscil-
lations in the entanglement acquired by the detectors when
they are in causal contact. These happen due to the chosen
value of 
, which creates noticeable oscillations in the MC

term in Eq. (21) once it becomes larger than the characteristic
frequency of the switching function, 1/T .

In order to draw a more direct comparison with other
cases often studied in the literature, we also consider Gaussian
switching functions,

χ (t ) = e−t2/T 2
. (72)

FIG. 2. Plot of the negativity in the detectors state as a function
of the angle θ for 
T = 30, L = 2.5T for the compact supported
switching functions.
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FIG. 3. Plot of the negativity in the detectors state as a function
of the angle θ for 
T = 10, L = 10T for the Gaussian switching
functions.

This choice makes the interaction not compactly supported.
The main consequence of this choice is that in principle the
detectors will always be in causal contact due to the tails of the
Gaussians. However, 99.9999% of the area of the detectors’
switching function is concentrated in an interval of width 7T
centered at the Gaussian peak. We then define the interval
[tm − 3.5T, tm + 3.5T ] as the strong support of the Gaussian,
where tm is its peak value. As we will see, signaling outside
that region will be negligible compared to the effect of the
interaction when the strong supports are lightlike separated.

In Fig. 3 we consider the position of the detectors
parametrized by the angle θ , according to the scheme of Fig. 1,
increasing the distance between the detectors to L = 10T ,
which ensures that the strong support of the Gaussians is
spacelike separated. Here we see a peak of the negativity when
the detectors’ interaction regions are lightlike separated at
θ = π/4, unlike the case of compactly supported switching
functions, where we saw two peaks due to the nonsmooth
switching on and off of detector A. We also have no oscil-
lations in this case, as there is no well-defined characteristic
frequency for the Gaussian switching function.

B. Entanglement through quantum fields

In this section we consider the entangling protocol outlined
above in the case where the detectors are coupled to a real
scalar quantum field, following the interaction described in
Sec. IV A. This protocol is usually termed entanglement har-
vesting and has been thoroughly studied in the literature in
many different scenarios [1–14]. While usually the goal in
entanglement harvesting is to extract entanglement from the
field itself, here we will also be concerned with comparing our
results with the ones obtained in the case where the detectors
are coupled to a qc-field. For this reason we will consider
regimes where the detectors’ interaction regions are within
causal contact, and we will use the same choice of spacetime
smearing functions for the probes as we did in Sec. VI A.
Importantly, in the fully featured quantum case the detectors
will be able to get entangled both via communication and by
harvesting entanglement previously present in the background
field.

FIG. 4. Plot of the negativity in the detectors state as a function
of the angle θ for 
T = 30, L = 2.5T for the compactly supported
switching functions.

Considering two UDW detectors initially in their ground
states coupled to the vacuum state of a real scalar quantum
field, the final state of the detectors to leading order will
be given by Eq. (45). As in the previous section, we will
use negativity (at leading order) to quantify the entanglement
acquired by the detectors. For identical detectors interacting
with the vacuum of Minkowski spacetime, the leading order
negativity of the state ρ̂D is given by

N(ρ̂D) = max(0, |M| − L), (73)

where L ≡ LAA = LBB for identical detectors. In this case the
negativity reflects the competition between the nonlocal terms
arising from M defined in Eq. (47) and the local noise term
L defined in Eq. (46). This local “vacuum” noise term is
present only in the case where the field is quantum, as can
be seen comparing Eqs. (68) and (73). Notice, however, that
the negativity in (73) can actually be larger than the negativity
(68), as we will see below.

In order to draw a fair comparison between the quantum-
controlled and the truly quantum models, we consider the
same choice of spacetime smearing function of Eqs. (69) and
(70). We first consider the compactly supported switching
function of Eq. (71). In Fig. 4 we see the analog of Fig. 2,
where we picked the same parameters L, t0, and 
. Unlike
the classical case, here we see that when the detectors’ inter-
action regions are fully spacelike separated (θ ≈ 0) it is still
possible for the detectors to become entangled. This is the
entanglement that is extracted from the field and not acquired
by the detectors via communication. Namely, this is a truly
quantum feature of the protocols of entanglement harvesting.
We also see that there are two peaks when detector B is
lightlike separated from the start and end of the interaction of
detector A but no oscillations in the negativity. We don’t see
oscillations in the quantum field model because the real part
of the propagator contributes out of phase with the imaginary
part, yielding a nonzero value for the M term at all times.

In Fig. 5 we fix t0 = 0 (interactions happen simultaneously
in the detector’s frame) and show how the harvested entan-
glement varies with 
 for different values of L. The behavior
displayed in this plot is well known in the literature, where
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FIG. 5. Plot of the negativity in the detectors state as a function
of the detectors’ gap for various values of the detector separation L
for the compactly supported switching functions.

there is a threshold 
 so that the detectors become able to
extract entanglement, after which the negativity peaks and
slowly decreases with 
 [5,30,57]. We also see oscillations
due to the particular compactly supported switching functions
picked.

Next, we consider the noncompact switching functions of
Eq. (72). In Fig. 6 we see the analog of Fig. 3, where we
picked the same parameters L, t0 and 
. We see that even
when the detectors’ interaction regions are spacelike separated
they are able to extract entanglement from the field, as we saw
in the noncompactly supported case above. Moreover, in this
scenario it is possible to harvest entanglement for every value
of θ .

In Fig. 7 we fix t0 = 0 and plot the negativity as a function
of 
 for different values of the detector separations. The same
as in the compact switching case, the negativity peaks and
then decreases to zero as 
 increases. Also notice that in the
case of smooth switching functions we do not see oscillations
with 
.

We can also provide some physical intuition about the ori-
gin of the entanglement acquired by the detectors. At leading
order there is no real exchange of energy between detectors
A and B through the field (this happens only at fourth or-
der). In other words, at leading order there are no terms of
the form σ̂−

A â† times σ̂+
B â; that is, one needs a fourth-order

FIG. 6. Plot of the negativity in the detectors state as a function
of the angle θ for 
T = 10, L = t0 = 10T for Gaussian switching
functions.

FIG. 7. Plot of the negativity in the detectors state as a function
of the detectors’ gap for various values of the detector separation L
for Gaussian switching functions.

process in order for A and B to exchange energy through
real emission-absorption processes. The leading order entan-
glement between the detectors is, therefore, acquired from
the correlations of the field between the interaction regions,
which can either be preexisting (as in the case of spacelike
entanglement harvesting) or be modified by the interaction of
detector A (if A is in the causal past of B). In the latter case the
entanglement is created through energyless communication at
leading order between A and B [18,58]. Something similar
can also be seen in the quantum-controlled interaction, where
the final state of the detectors is |ψ〉 ∼ |gAgB〉 + MC |eA eB〉
[Eq. (22)], which is a superposition of the two detectors be-
ing in their ground and both detectors becoming excited, but
does not contain any combinations that involve one detector
being deexcited and another detector excited. In both models,
energy-wise, the two detectors can become excited through
the interaction with the field because the energy is coming
by the time dependence of the interaction Hamiltonian: it is
energy that is involved in switching the interaction on and off,
as mentioned in Sec. IV A.

VII. WHEN ARE THE QUANTUM DEGREES
OF FREEDOM OF THE FIELD NEGLIGIBLE?

One legitimate question that can be asked about the
quantum-controlled classical model with quantum sources is
whether it can reproduce the phenomenology of the fully
quantum model in some regimes. If the qc-field model is to
hold any physical value it should indeed be able to reproduce
the same physics as the fully quantum model in the regimes
where the quantum features of the field do not play any rel-
evant role. To answer this question, in this section we will
compare the two models studied in Secs. VI A and VI B, giv-
ing special attention to the regimes where the quantum field
case can be well approximated by the quantum-controlled
case.

We choose to do this comparison for the study of the
entanglement acquired by two detectors when they interact
with the field. The question of whether a model where the field
is not fully quantum can predict that two systems that interact
with the field get entangled is certainly relevant [59], and as
we will see this comparison already showcases the differences
that will appear in any other more general protocol when
considering two quantum systems communicating through a
quantum field.
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FIG. 8. Plot of the negativity in the detectors state for both the
classical and quantum cases as a function of the angle θ for L = t0 =
2.5T and multiple values of 
T for compactly supported switching
functions.

The scales relevant for addressing the regimes where
qc-fields can approximate quantum fields are the detectors’
spatial separation L, their time separation t0, their energy gap

, and the time of their switching T . The relevant dimen-
sionless parameters are then L/T , t0/T , and 
T . It is already
known that as L/T increases past t0/T and as t0/T increases
past L/T , the entanglement acquired by the detectors de-
creases (the further from light contact, the less entanglement
between the detectors there will be in both models), so that

FIG. 9. Plot of the negativity in the detectors state for both the
classical and quantum cases as a function of the angle θ for L = t0 =
10T and multiple values of 
T for Gaussian supported switching
functions.

the optimal rate L/t0 is approximately 1 making the detec-
tors approximately lightlike separated. We also saw that the
quantum field case can feature entanglement even when the
detectors’ interaction regions are spacelike separated, which
is impossible in the quantum-controlled case. In this sense,
one of the conditions that is required for the quantum case
to reduce to the model with no quantum degrees of free-
dom is that the detectors have to be causally connected. This
imposes a restriction on the parameters L/T and t0/T , so
that the quantum field case can be well approximated by the
quantum-controlled classical case. The study that remains to
be conducted is what are the conditions over 
T which allow
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the fully featured quantum field case to be well modeled by
the quantum-controlled field scenario.

As mentioned in Sec. IV C, a main difference between
the cases where the field has quantum degrees of freedom or
not is the fact that fully featured quantum fields can produce
local noise excitations in the detectors. This local noise is a
consequence of the detectors becoming entangled with the
field itself, which decoheres the state of the detectors. The
decoherence results in a decrease of the entanglement between
the detectors, as they share part of the entanglement with the
field. This can be seen in Eq. (73) for the negativity of the
detectors, where we see that the vacuum noise L contributes
negatively to the entanglement acquired by them. It is then
clear that a condition so that the true quantum case can be
mimicked by the quantum-controlled case is that the L term is
much smaller than the nonlocal M term. This condition can
be achieved in the case where 
T � 1, or, in other words, in
the limit where the interaction time is much larger than the
characteristic timescale of the detectors.

Another condition for the quantum field and qc-field mod-
els to behave similarly is that M ≈ MC, that is, that the
imaginary part of the propagator contributes significantly
more to the M term than its real part. In Figs. 8 and 9 we
show plots for the negativity as a function of θ for the setup
of Fig. 1 for different values of 
T considering both the
cases of compact and noncompact support switching [Eq. (71)
and (72)]. We see that when the detectors’ interaction regions
are in light contact it is possible to get more entanglement
between the detectors when their interaction is via the qc-field
than when the detectors interact via the quantum field. As
we mentioned earlier, this is due to the local noise, which
decreases the entanglement acquired by the detectors when
they interact with a quantum field. That is, although we always
have |M| � |MC|, we also have L > 0, which allows the

negativity in the quantum-controlled case to surpass that of
the quantum case when L is comparable to |M|.

In Figs. 8 and 9 we also see that under the assumption
that 
T � 1, the quantum field and qc-field models give
similar predictions when the detectors’ interaction regions
are causally connected (θ ≈ π/4). We also have differences
between the case of compact and noncompact switching,
which were mentioned previously. Namely, there are oscil-
lations present in the compactly supported case coupled to
the qc-field due to the finite frequency range of the switching
function, and there are two peaks corresponding to when
the events when detector A is switched on and off become
lightlike separated to the peak of detector B. The oscillations
also make it so that a precise value of the detector’s gap has to
be selected if one wishes to entangle the detectors, depending
on the specific spacetime position of the interactions. Never-
theless, we see that the peaks of the quantum-controlled case
become similar to the quantum results in the regime 
T � 1,
depicted in Figs. 8 and 9 in the example of 
T = 1000.

Overall, we can conclude that the fully quantum case
can be well modeled by the quantum-controlled case only
if three conditions are satisfied: (1) the systems involved in
the protocol must be causally connected, (2) the interaction
time with the mediating field has to be much larger than the
characteristic timescale of the detectors (T � 1/
), and (3)
the interactions with the field have to be sufficiently weak.
Condition 3 is necessary to avoid the major discrepancies
between classical and quantum physics that take place for high
energies, which are not implemented simply by the retarded
Green’s function.

Finally, notice that if the three conditions above are satis-
fied, then the density operator of Eq. (45) obtained in the fully
quantum case reduces to the density operator obtained in the
qc-model in Eq. (22). Indeed, assuming the three conditions,
we have |LIJ| � L � |M|. Then to leading order in λ we have

ρ̂D = |M|

⎛
⎜⎜⎝

(1 − 2L)/|M| 0 0 M∗/|M|
0 L/|M| LAB/|M| 0
0 LBA/|M| L/|M| 0

M/|M| 0 0 0

⎞
⎟⎟⎠

≈

⎛
⎜⎜⎝

1 0 0 M∗
0 0 0 0
0 0 0 0
M 0 0 0

⎞
⎟⎟⎠, (74)

which is the leading order result from Eq. (22); that is, the
three assumptions discussed above ensure that the classical
model can be used to approximate the interaction with the
quantum field.

VIII. CONCLUSIONS

We studied the difference between two models for
fields which mediate interactions between quantum systems.
Namely, we analyzed the differences between a fully featured
quantum field theory and a theory where the field is stripped
from all of its quantum features.

In more detail, we studied quantum information protocols
which are mediated by relativistic fields with or without quan-
tum degrees of freedom. We discussed the regimes in which a
quantum-controlled field (qc-field) theory (where the sources
are quantum but the field has no quantum degrees of freedom)
can be used to model a process that is mediated by a quantum
field. We also classified the regimes which display behavior
that explicitly depends on genuinely quantum features of the
field. We then compared communication protocols and entan-
gling protocols using the two different models for the field.

In the case of communication protocols, we found that
for short time interactions, fields without quantum degrees
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of freedom would often outperform fully featured quantum
fields at transmitting classical information. This is because,
for protocols that do not explicitly make use of the quantum
nature of the field, the field itself gets entangled with the
sender and receiver, producing an effective noise in com-
munication channels between two systems. In our analysis,
we explicitly showed that the channel capacity associated
with quantum-controlled fields is indeed larger than the one
associated with true quantum fields in specific scenarios. Nev-
ertheless, for protocols where the quantum features of the
field play a relevant role, such as quantum collect calling, we
also showed that quantum fields can yield a larger channel
capacity.

We also studied entangling protocols mediated by qc-fields
and quantum fields. We found that there are regimes in which
a field with no quantum degrees of freedom can entangle two
probes more than a quantum field can. This is due to the
fact that when interacting with a quantum field, the probes
also become entangled with the field itself, which decreases
the entanglement between each other. We also verified the
well-known result that a quantum field can entangle spacelike
separated probes [58], while a field with no quantum degrees
of freedom cannot. This result is key to numerous protocols
in relativistic quantum information such as entanglement har-
vesting and quantum energy teleportation [16,17].

Finally, we identified three conditions which are necessary
for a relativistic quantum information protocol to be inde-
pendent of the quantum degrees of freedom of the field. It
is necessary (1) that the probes are causally connected, (2)
that they interact for a time long enough, and (3) and that
the interaction with the field is weak. These conditions set
the regimes where a quantum field can be well modeled by
a qc-field with no quantum degrees of freedom. Our results
could also be relevant if one wishes to experimentally verify
whether a field is fundamentally quantum or not. In this case,
at least one of the conditions above must not be satisfied in an
experimental setup, so that the experiment explores regimes
where the qc-field model and the fully quantum one make
different predictions.
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APPENDIX A: SMEARED TWO-LEVEL SYSTEMS
COUPLED TO A REAL SCALAR FIELD

In this Appendix, we will show one way in which one
can obtain the smeared model of Eq. (24) by considering two
quantum sources with a position degree of freedom. Assume
that quantum systems A and B are described each in a Hilbert
space H ∼= L2(R3) ⊗ C2, where C2 is associated to their

monopole and L2(R3) is associated to their position degree
of freedom. Assume the free Hamiltonian of the systems to be
given by

ĤI = Hx
I (x̂I, p̂I ) + 
σ̂+

I σ̂−
I (A1)

for I = A, B, where Hx
I (x̂I, p̂I ) is a function of each system’s

position and momentum operators x̂I and p̂I and acts only
on the L2(R3) portion of their respective Hilbert spaces. We
further assume that the eigenfunctions of the Hamiltonians Hx

I

are localized around the trajectories zI(t ) and have discrete
energy levels [e.g., an atom or a harmonic oscillator where
the potential is centered at zI(t )].

In order to write the interaction of a quantum system with a
classical field, we replace the classical current density j (I)(x)
by a quantum current density ĵ (I)(t, x̂I ) = χI(t )μ̂I(t ) fI(x̂I ),
which acts both in the particle’s position degree of freedom
via its functional dependence on the position operator x̂I and
in the C2 portion of the Hilbert space via μ̂I(t ). As in the pre-
vious example, we introduce switching functions χI(t ). The
interaction Hamiltonian can then be written in the interaction
picture in the position basis as

Ĥint(t ) = λ2

2

∫
dt ′

∫
d3xA d3xB |xA〉〈xA| ⊗ |xB〉〈xB|

× [μ̂A(t )μ̂B(t ′)χA(t )χB(t ′) fA(xA) fB(xB)

× GR(t, xA; t ′, xB) + μ̂B(t )μ̂A(t ′)χB(t )χA(t ′)

× fB(xB) fA(xA)GR(t, xB; t ′, xA)]. (A2)

One can then expand these in terms of the energy levels of
the Hamiltonians Ĥx

I . Let Ĥx
I |n(I)〉 = E (I)

n |n(I)〉 with ψ (I)
n (x) =

〈xI|n(I)〉 for I ∈ {A, B}, so that the interaction Hamiltonian
reads

Ĥint(t ) = λ2

2

∑
n,m

n′,m′

∫
dt ′

∫
d3xAd3xB|n(A)〉〈m(A)| ⊗ |n′(B)〉〈m′(B)|

× [
μ̂A(t )μ̂B(t ′)ei(E (A)

nm t+E (B)
n′m′ t ′ )

× �(A)
nm (t, xA)�(B)

n′m′ (t ′, xB)GR(t, xA; t ′, xB)

+ μ̂B(t )μ̂A(t ′)ei(E (B)
n′m′ t+E (A)

nm t ′ )

× �
(B)
n′m′ (t, xB)�(A)

nm (t, xA)GR(t, xB; t ′, xA)
]
, (A3)

where E (I)
nm = E (I)

n − E (I)
m and we defined the spacetime smear-

ing functions associated with energy levels (n, m) for system
I as

�(I)
nm(t, x) = χI(t )ψ (I)∗

n (x)ψ (I)
m (x) fI(x). (A4)

In order to obtain the smeared version of the model presented
in Sec. III A, one must restrict the Hamiltonian in Eq. (A3) to
a single one-dimensional eigenspace of the Hamiltonian Ĥx

I .
Physically, this restriction is reasonable if one assumes that
the energy gap between the eigenstates of the Hamiltonians
Ĥx

I is much larger than any other scale involved in the setup.
Under this assumption, the transition probability |n(I)〉 �−→
|m(I)〉 is negligible, and the dynamics of the problem can be
approximated to only be in the C2 portion of the Hilbert space
H. Restricting the system to a given energy gap then yields the
effective interaction Hamiltonian of Eq. (24).
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APPENDIX B: ILLUSTRATION OF THE INTERACTION
OF QUANTUM SYSTEMS VIA QUANTUM-CONTROLLED INTERACTIONS AND INTERACTIONS WITH

A QUANTUM FIELD

In this Appendix, we present a series of pictorial representations of localized quantum systems that interact via a quantum-
controlled fields and with a quantum field when interacting with a massless scalar field. In Figs. 10 and 11 we display the
interaction of quantum systems when their interaction regions are lightlike separated for the quantum-controlled and fully
quantum cases, respectively. In Figs. 12 and 13 we display the interaction of quantum systems when their interaction regions are
spacelike separated for the quantum-controlled and fully quantum cases, respectively.

FIG. 10. Pictorial representation of the quantum-controlled model mediating the interaction between systems A (red) and B (blue) when
they are lightlike separated. Notice that the interaction Hamiltonian becomes nonzero only where the region of interaction of detector A is in
the past light cone of the interaction region of detector B, where the current that sources A appears evaluated at the retarded time t3 − L due to
the retarded Green’s function, where L is the separation between the detectors’ trajectories in their comoving frame.

FIG. 11. Pictorial representation of the quantum field model mediating the interaction between systems A (red) and B (blue) when they
are lightlike separated. Notice that the interaction Hamiltonian is nonzero both at the times where detector A interacts with the field (when the
correlations of the field become changed due to this interaction) and when detector B interacts with the field (when it probes the field and may
notice the change in correlations due to the interaction of detector A).
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FIG. 12. Pictorial representation of the quantum-controlled model mediating the interaction between systems A (red) and B (blue) when
they are spacelike separated. Notice that the interaction Hamiltonian is always zero, as there is never a time at which the interaction of the
detectors is causally connected.

FIG. 13. Pictorial representation of the quantum field model mediating the interaction between systems A (red) and B (blue) when they
are spacelike separated. Notice that the interaction Hamiltonian is nonzero while A and B are interacting with the field. The preexisting
entanglement in the field state may then allow the detectors to become entangled with each other through the interaction.
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