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Sensitivity of quantum gate fidelity to laser phase and intensity noise
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The fidelity of gate operations on neutral atom qubits is often limited by fluctuations of the laser drive. Here,
we quantify the sensitivity of quantum gate fidelities to laser phase and intensity noise. We first develop models
to identify features observed in laser self-heterodyne noise spectra, focusing on the effects of white noise and
servo bumps. In the weak-noise regime, characteristic of well-stabilized lasers, we show that an analytical theory
based on a perturbative solution of a master equation agrees very well with numerical simulations that incorporate
phase noise. We compute quantum gate fidelities for one- and two-photon Rabi oscillations and show that they
can be enhanced by an appropriate choice of Rabi frequency relative to spectral noise peaks. We also analyze
the influence of intensity noise with spectral support smaller than the Rabi frequency. Our results establish
requirements on laser noise levels needed to achieve desired gate fidelities.
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I. INTRODUCTION

Logical gate operations on matter qubits rely on coher-
ent driving with electromagnetic fields. For solid-state qubits
these are generally at microwave frequencies of 1–10 GHz.
For atomic qubits microwave as well as optical fields with
carrier frequencies of several hundred THz are used for gates.
High fidelity gate operations require well-controlled fields
with very low phase and amplitude noise. In this paper we
quantify the influence of control field noise on the fidelity of
gate operations on qubits. While we mainly focus on the case
of optical control with lasers, our results are also applicable
to high fidelity control of solid-state qubits with microwave
frequency fields.

Since the limits imposed on qubit coherence and gate fi-
delity by control field noise are of central importance in the
quest for improving performance, the topic has been treated in
a number of earlier works. Relaxation of qubits in the presence
of noise, with and without a driving field, was analyzed in
[1–8]. Using a filter function methodology the influence of
control field noise on gate fidelity was analyzed in a series of
papers by Biercuk and coworkers [9–12]. In [11] experimental
measurements based on adding noise to microwave control
signals were compared with theoretical results. Subsequent
work [13–15] has concentrated on qubit control with optical
frequency fields, including the application to Rydberg gates
for neutral atom qubits [13]. It was shown convincingly in [16]
that filtering of the laser phase noise spectrum improves the fi-
delity of coherent Rydberg atom excitation and in the work of
Day et al. [15] an average gate fidelity based on the filter func-
tion formalism was calculated numerically which provided
a prediction of achievable performance based on measured
laser noise power spectra. Here we take a complementary
approach to [15] and use models for servo bump noise with
Gaussian distributed amplitude as well as underlying white
noise to provide compact analytical expressions that can be
used to predict gate fidelity based on fits to measured laser
noise spectra.

In this paper we develop a detailed theory of the depen-
dence of gate fidelity on the noise spectrum of the driving
field based on a perturbative solution of the master equation.
Results for the cases of one- and two-photon driving are
presented as well as average control fidelities together with the
fidelity achieved when the qubit starts in a computational basis
state, which is of particular relevance to Rydberg excitation
experiments. We show analytically using a Gaussian model
for the spectral shape of servo bump noise that the spectral
distribution of phase and amplitude noise relative to the Rabi
frequency of the qubit drive is an important parameter that
determines the extent to which noise impacts gate fidelity.
Related numerical results for the impact of servo bumps on
gate fidelity were presented in [15]. When the noise spectrum
is peaked near the Rabi frequency the deleterious effects are
most prominent. Our one-photon, state-averaged results for
the influence of the noise spectrum on gate error are similar to,
yet quantitatively different from, the predictions of filter func-
tion theory [10]. As is shown in Appendix A the differences
can be traced to the use of different gate fidelity measures
here, and in [10].

We proceed in Sec. II with a summary of the theory of the
laser line shape and its relation to self-heterodyne spectral
measurements. In Sec. III we show how the theory can be
used to extract parameters describing the laser phase noise
spectrum from experimental self-heterodyne measurements.
In Sec. IV we present a master equation description for the
coherence of Rabi oscillations with a noisy drive field. A
Schrödinger equation-based numerical simulation is given in
Sec. V, followed by a quasistatic approximation in Sec. VI.
The effect of intensity noise on gate fidelity is presented in
Sec. VII. The results obtained, as well as a comparison with
filter function theory, are summarized in Sec. VIII and the
Appendices.

II. LASER NOISE ANALYSIS

The self-heterodyne interferometer is a powerful tool for
characterizing laser noise [17]. In a typical arrangement, the
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heterodyne circuit outputs a current I (t ) [or normalized cur-
rent i(t ), as defined below] containing the noise signal. The
resulting power spectral density, Si( f ), provides a convenient
proxy for laser field and frequency fluctuations, SE ( f ) and
Sδν ( f ), although the correspondence is not one to one. In this
section, we derive these three functions and show how they
are related, focusing on the regime of weak frequency noise.
While many of the results in this section have been obtained
previously, we rederive them here to establish a common
framework and notation. We then apply our results to two
types of noise affecting atomic qubit experiments: white noise
and servo bumps. This analysis forms the starting point for the
master equation calculations that follow.

The Rabi oscillations of a qubit are driven by a classical
laser field, which we define as

E(t ) = êE0(t )

2
e−ı[2πνt+φ(t )] + c.c., (1)

where c.c. stands for complex conjugate. Here we assume the
polarization vector ê and E0 may be complex. Fluctuations
of the laser field are a significant source of decoherence in
current atomic qubit experiments, and are the focus of the
present paper. The fluctuations may occur in any of the field
parameters, ê, E0, or φ, where the latter is the phase of the
drive. For lasers of interest, the fluctuations predominantly
occur in the phase and amplitude variables. In this paper, we
therefore ignore noise in the polarization vector and focus
on the fluctuations of φ(t ). The effect of relative intensity
noise (RIN), where the intensity is proportional to |E0(t )|2,
is considered briefly in Sec. VII.

Phase fluctuations may alternatively be analyzed in terms
of fluctuations of the frequency, ν(t ) = ν0 + δν(t ), which are
related to phase fluctuations through the relation

φ(t ) =
∫ t0+t

t0

2πδν(t ′)dt ′, (2)

where t0 is a reference time. The fluctuations of δν(t ) [or
φ(t )] have a direct influence on the Rabi oscillations, and must
therefore be carefully characterized.

A compact description of a general fluctuating variable
X (t ) is given by its autocorrelation function. Making use of
the ergodic theorem, we can equate the ensemble and time
averages to obtain the following definition for the autocorre-
lation function:

RX (τ ) = 〈X (t )X ∗(t + τ )〉

≡ lim
T →∞

1

2T

∫ T

−T
X (t )X ∗(t + τ )dt . (3)

Throughout this paper, we will only consider random vari-
ables, X (t ), that are wide-sense stationary.

According to the Wiener-Khintchine theorem, the autocor-
relation function of X (t ) is related to its noise power spectrum
by the Fourier transform,

SX ( f ) =
∫ ∞

−∞
RX (τ )e−i2π f τ dτ, (4)

and its inverse transform,

RX (τ ) =
∫ ∞

−∞
SX ( f )ei2π f τ df , (5)

where in this paper, we only consider two-sided power spec-
tra.

The main goal of this paper is to characterize the noise
spectrum of E (t ). However, SE ( f ) (also called the laser line
shape) cannot be measured directly, due to the high fre-
quency of the carrier. We must therefore transduce the power
spectrum to lower frequencies. Here, we consider the self-
heterodyne transduction technique, in which the laser field
is split, delayed, and recombined to perform interferometric
measurements. The resulting signal is read out as a pho-
tocurrent containing a direct imprint of the underlying noise
spectrum. For the dimensionless photocurrent i(t ), which we
define below, the self-heterodyne power spectrum is denoted
Si( f ).

In this section, we derive the interrelated power spectra of
SE ( f ) and Si( f ), which are in turn functions of the underly-
ing noise spectrum Sδν ( f ) [or Sφ ( f )]. To perform noisy gate
simulations, as discussed in later sections, one would like to
use actual self-heterodyne experimental data to characterize
the underlying noise spectra. In principle, such a deconvolu-
tion cannot be implemented exactly [18]. However, we will
show that reliable results for the noise power may indeed be
obtained, particularly for lasers with very low noise levels,
such as the locked and filtered lasers used in recent qubit
experiments.

A. Laser line shape

The autocorrelation function for the laser field is defined as
[18,19]

RE (τ ) = 〈E (t )E (t + τ )〉, (6)

where we note that E (t ) is the real, scalar amplitude of E(t ).
This function contains information about both the carrier sig-
nal, centered at frequency ν0, and the fluctuations, which are
typically observed as a fundamental broadening of the carrier
peak. Additional features of importance for qubit experiments
include structures away from the peak that may be caused
by the laser locking and filtering circuitry, such as the “servo
bump,” discussed in detail below.

The time average in Eq. (6) has been evaluated by a number
of authors. For completeness, we summarize these derivations
here, following the approach of [19]. Let us begin by assuming
the noise process is strongly stationary, so that Eq. (6) does not
depend on t ; for simplicity, we set t = 0. Using Eqs. (1) and
(6) and trigonometric identities, defining E0 = |E0|e−iα , and
neglecting fluctuations of E0, we then have

RE (τ ) = |E0|2
2

{cos(2πν0τ )〈cos[φ(τ ) − φ(0)]〉
+ cos(2πν0τ )〈cos[φ(τ ) + φ(0) + 2α]〉
− sin(2πν0τ )〈sin[φ(τ ) − φ(0)]〉
− sin(2πν0τ )〈sin[φ(τ ) + φ(0) + 2α]〉}. (7)

We then assume the phase difference �(τ ) ≡ φ(τ ) − φ(0) to
be a Gaussian random variable centered at �(τ ) = 0, with
probability distribution

p(�) = 1

σ�

√
2π

e−�2/2σ 2
�,
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and variance �2 = σ 2
�. Here, the bar denotes an ensemble

average. According to the ergodic theorem, the ensemble and
time averages should give the same result, so that

σ 2
�(τ ) = 〈[φ(τ ) − φ(0)]2〉 = 2Rφ (0) − 2Rφ (τ ), (8)

where we note that

〈φ2(0)〉 = 〈φ2(τ )〉 = Rφ (0).

Again, making use of the ergodic theorem, we have

〈cos(�)〉 = e−σ 2
�/2 and 〈sin(�)〉 = 0, (9)

which is also known as the moment theorem for Gaussian
random variables. Finally we note that only biased variables
like φ(τ ) − φ(0) are Gaussian. An unbiased variable like
φ(τ ) + φ(0) is simply a random phase, for which 〈cos[φ(τ ) +

φ(0)]〉 = 〈sin[φ(τ ) + φ(0)]〉 = 0. Combining these facts, we
obtain the important relation [20]

RE (τ ) = |E0|2
2

cos(2πν0τ )e[Rφ (τ )−Rφ (0)]. (10)

Note that since φ can take any value, Rφ (0) does not have
physical significance on its own; only the difference Rφ (τ ) −
Rφ (0) is meaningful.

Another useful form for Eq. (10) can be obtained from
the relation 2πδν(t ) = ∂φ/∂t , together with Eq. (4) and the
stationarity of Rφ (t ), yielding

Sδν ( f ) = f 2Sφ ( f ). (11)

Applying trigonometric identities, we then obtain the follow-
ing, well-known results for the laser line shape [18]:

RE (τ ) = |E0|2
2

cos(2πν0τ ) exp

[
−2

∫ ∞

−∞
Sδν ( f )

sin2(π f τ )

f 2
df

]
(12)

and

SE ( f ) = |E0|2
2

∫ ∞

−∞
cos(2π f τ ) cos(2πν0τ ) exp

[
−2

∫ ∞

−∞
Sδν ( f ′)

sin2(π f ′τ )

( f ′)2
df ′

]
dτ. (13)

It is common to adopt a line shape that is centered at zero
frequency; henceforth, we therefore set ν0 = 0. We note
that SE ( f ) is properly normalized here, with

∫ ∞
−∞ SE ( f )df =

|E0|2/2. Thus, fluctuations that broaden the line shape also
reduce the peak height.

Some additional interesting results follow from Eq. (13).
First, in the absence of noise [Sδν = 0], we see that the laser
line shape immediately reduces to an unbroadened carrier
signal: SE ( f ) = (|E0|2/2)δ( f ). Second, when Sδν is nonzero
but small, as is typical for a locked and filtered laser, the
exponential term in Eq. (13) may be expanded to first order,
yielding [21]

2SE ( f )/|E0|2 ≈ [1 − Rφ (0)]δ( f ) + Sφ ( f ). (14)

This approximation is generally very good, but breaks down
in the asymptotic limit τ → ∞ of the τ integral, and therefore
in the limit f → 0. To see this, we note that sin2(π f τ ) may
be replaced by its average value of 1/2 in the integral; for
nonvanishing values of Sδν (0), the argument of the exponen-
tial then diverges. To estimate the frequency fx, below which
Eq. (14) breaks down, we set the argument of the exponential
in Eq. (14) to 1/2:

2
∫ ∞

fx

Sδν ( f )

f 2
df ≈ 1

2
. (15)

This criterion clearly depends on the noise spectrum.
To conclude, we note that for some analytical calcula-

tions (such as the servo-bump analysis, described below), it
may be convenient or pedagogical to separate the noise spec-
trum into distinct components: Sδν ( f ) = Sδν,1( f ) + Sδν,2( f ),
corresponding to different physical noise mechanisms. From

Eq. (12), the resulting line shapes can then be written as

RE (τ ) = 2

|E0|2 RE ,1(τ )RE ,2(τ ), (16)

where RE ,1(τ ) and RE ,2(τ ) are the autocorrelation functions
corresponding to Sδν,1( f ) and Sδν,2( f ). Applying the Fourier
convolution theorem, we obtain

SE ( f ) = 2|E0|−2
∫ ∞

−∞
SE ,1( f − f ′)SE ,2( f ′) df ′. (17)

B. Self-heterodyne spectrum

We consider the self-heterodyne optical circuit shown in
Fig. 1. As depicted in the diagram, one of the paths is delayed
by time td , through a long optical fiber, and then shifted in
frequency by νs, by means of an acousto-optic modulator.
Here, the delay loop allows us to interfere phases at different
times, while the frequency shift provides a beat tone that is
readily accessible to electronic measurements, since it occurs
at submicrowave frequencies, νs ≈ 100 MHz. The two beams

FIG. 1. Self-heterodyne setup. The laser signal is split equally
between two paths. One path passes through a single-mode fiber
(SMF), where it is delayed by time td . It then passes through an
acousto-optic modulator (AOM), where its frequency is shifted by νs.
The interfering signals are combined and measured by a photodiode
(PD), and finally processed through a spectrum analyzer (SA).
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are then recombined and the total intensity is measured by a
photodiode, using conventional measurement techniques.

For simplicity, we assume the laser signal is split equally
between the two paths, although unequal splittings may also
be of interest [22]. The recombined field amplitude is defined
as

E (t ) = |E0|
2

{exp[−i2πν0t − iφ(t ) − iα]

+ exp[−i2π (ν0 + νs)(t − td )

− iφ(t − td ) − iα]} + c.c. (18)

The output current of the photodiode is then proportional to
|E (t )|2. For convenience, we consider instead a dimensionless
photocurrent i(t ), defined as

i(t ) = 1
2 {cos [2πν0t + φ(t ) + α]

+ cos [2π (ν0 + νs)(t − td ) + φ(t − td ) + α]}2. (19)

The corresponding autocorrelation function is defined as

Ri(τ ) = 〈i(t )i(t + τ )〉. (20)

The evaluation of Ri(τ ) is greatly simplified by noting that
cosine terms with ν0 in their argument average to zero in a
physically realistic measurement. Again making use of the
fact that unbiased variables like φ(τ ) + φ(0) are random
phases (i.e., non-Gaussian), we find that

Ri(τ ) = 4 + 2〈cos[2πνsτ + φ(t ) − φ(t − td )

− φ(t + τ ) + φ(t + τ − td )]〉. (21)

Taking the same approach as in the derivation of RE (τ ), we
take �′ = φ(t ) − φ(t − td ) − φ(t + τ ) + φ(t + τ − td ) to be
a Gaussian random variable centered at zero, and apply the
Gaussian moment relations,

〈cos(�′)〉 = e−σ 2
�′ /2 and 〈sin(�′)〉 = 0, (22)

where

σ 2
�′ = 〈[φ(t ) − φ(t − td ) − φ(t + τ ) + φ(t + τ − td )]2〉.

(23)
In this way we obtain

Ri(τ ) = 4 + 2 cos(2πνsτ )

× exp[2Rφ (τ ) + 2Rφ (td ) − 2Rφ (0)

− Rφ (τ − td ) − Rφ (τ + td )]. (24)

Here, the cosine function represents the beat tone, and the
noise information is reflected in its amplitude. It can be seen
that the corresponding power spectrum, Si( f ), includes a
central peak, δ( f ), which contains no information about the
laser noise, and two broadened but identical satellite peaks,
centered at f = ±νs. We now recenter Ri(τ ) at one of the
satellite peaks, as consistent with typical self-heterodyne mea-
surements, such that

Ri(τ ) → Ri(τ ) = exp[2Rφ (τ ) + 2Rφ (td ) − 2Rφ (0)

− Rφ (τ − td ) − Rφ (τ + td )]. (25)

Applying trigonometric identities, we then obtain

Ri(τ ) = exp

[
−8

∫ ∞

−∞
Sδν ( f )

sin2(π f τ ) sin2(π f td )

f 2
df

]
.

(26)
Taking Sδν ( f ) to be an even function, we can write

Si( f ) =
∫ ∞

−∞
cos(2π f τ )Ri(τ )dτ. (27)

We note that the self-heterodyne peak defined in this way is
normalized such that

∫ ∞
−∞ Si( f )df = Ri(0) = 1.

In the absence of noise [Sδν = 0], we see from Eqs. (26)
and (27) that the self-heterodyne power spectrum reduces to
the bare carrier: Si( f ) = δ( f ). For nonzero but small Sδν ,
we can expand the exponential in Eq. (26), as was done in
Eq. (14), to obtain

Si( f ) ≈ [1 + 2Rφ (td ) − 2Rφ (0)]δ( f )

+ 4 sin2(π f td )Sφ ( f ). (28)

The second term in this expression is closely related to the
envelope-ratio power spectral density described in [23], fol-
lowing on the earlier work of [24], and provides a theoretical
basis for the former.

As in the derivation of Eq. (14), the expansion leading
to Eq. (28) breaks down at low frequencies. However, the
well-known “scallop” features in the power spectrum are seen
to arise from the factor sin2(π f td ). This result clarifies the
relation between the self-heterodyne signal, the underlying
laser noise, and the laser line shape. The latter relation is
given by

|E0|2Si( f ) ≈ 2 sin2(π f td )SE ( f ), (29)

where we have omitted the central carrier peak.
To conclude, we again consider the possibility that the

noise spectrum may be separated into distinct components,
Sδν ( f ) = Sδν,1( f ) + Sδν,2( f ). As for the laser line shape,
the self-heterodyne autocorrelation function may then be
written as

Ri(τ ) = Ri,1(τ )Ri,2(τ ), (30)

yielding the combined power spectrum

Si( f ) =
∫ ∞

−∞
Si,1( f − f ′)Si,2( f ′)df ′. (31)

C. White noise

The self-heterodyne laser noise measurements, reported
below, are well described by a combination of white noise and
a Gaussian servo bump. We now obtain analytical results for
the SE ( f ) and Si( f ) power spectra, for these two noise models.
The results for white noise are well known [25]. However, we
reproduce them here for completeness.

The underlying noise spectrum for white noise is given by

Sδν = h0 or Sφ ( f ) = h0

f 2
(32)

where h0 is the amplitude of the power spectral density of the
frequency noise and has units of Hz2/Hz.
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Note that it is common to use a one-sided noise spectrum
for such calculations; however, we use a two-sided spectrum
here. Our results may therefore differ by a factor of 2 from
others reported in the literature. The most straightforward
calculation of Rφ (τ ), from Eq. (5), immediately encounters
a singularity. We therefore proceed by calculating RE (τ ) from
Eq. (12). Setting ν0 = 0, to center the power spectrum, then
gives

RE (τ ) = |E0|2
2

e−2π2h0|τ |. (33)

From Eq. (10), we can identify

Rφ (τ ) − Rφ (0) = −2π2h0|τ |, (34)

where the singularity has now been absorbed into Rφ (0). Solv-
ing for the laser line shape yields

SE ( f ) = |E0|2
2

h0

f 2 + (πh0)2
, (35)

for which the full-width-at-half-maximum (FWHM)
linewidth is 2πh0. Away from the carrier peak, which is
very narrow for a locked and well-filtered laser, we find

2SE ( f )/E2
0 ≈ h0

f 2
= Sφ ( f ), (36)

which is consistent with Eq. (14).
We can also evaluate the self-heterodyne autocorrelation

function, Eq. (25), obtaining

Ri(τ ) = exp[−2π2h0(2td + 2|τ | − |τ − td | − |τ + td |],
(37)

and the corresponding power spectrum,

Si( f ) = 2h0

f 2 + (2πh0)2
+ e−4π2h0td

{
δ( f ) − 2h0

f 2 + (2πh0)2

×
[

cos(2π f td ) + 2πh0

f
sin(2π f td )

]}
. (38)

It is interesting to visualize the results and approximations
employed above. In Fig. 2 we plot the white-noise power
spectral densities Sφ ( f ), SE ( f ), and Si( f ) corresponding to
Eqs. (32), (35), and (38), on both linear and logarithmic scales,
for the noise amplitude h0 = 100 Hz2/Hz. In the inset, we
also plot the approximate relation between Si( f ) and SE ( f )
given by Eq. (29), which clarifies how self-heterodyne mea-
surements may be used to characterize the laser noise. Here,

we also plot the crossover frequency fx from Eq. (15), below
which the approximations in Eq. (29) begin to fail. For the
case of white noise, this expression can be evaluated analyti-
cally, giving fx = 4h0.

The scallop features in Fig. 2 are caused by beating be-
tween the interfering fields in the self-heterodyne circuit. We
note that, in principle, the fine-scale noise features present in
Sφ ( f ) or SE ( f ) are inherited by Si( f ). However, some features
are obscured by the scallops, which suppress the measured
signal at frequency intervals of � f = 1/td .

D. Servo bump

Lasers are commonly stabilized by locking to narrow-
linewidth reference cavities [26]. The error signal derived
from the reference cavity is fed into a feedback system or
servo loop [21], and the finite bandwidth of the servo loop
induces peaks in Sδν ( f ) called servo bumps, which are typi-
cally shifted above and below the central peak by frequencies
on the order of 1 MHz. We find that experimental servo bumps
have approximately Gaussian shapes. In fact, we find that the
full noise model is well described by a Gaussian servo bump
combined with white noise, as defined by

FIG. 2. White-noise power spectral densities, Sφ ( f ) (blue),
2SE ( f )/E 2

0 (gold), and Si( f )/4 (red), defined in Eqs. (32), (35),
and (38), respectively, for noise strength h0 = 100 Hz2/Hz. Here we
have omitted the δ-function peak in Si( f ). The inset shows the same
quantities plotted on a logarithmic frequency scale. An approximate
form for Si/4 (red, dotted) is obtained from Eq. (29). The cutoff fx

(vertical black), defined in Eq. (15), indicates the frequency where
Eq. (14) begins to fail.

Sδν ( f ) = h0 + hg exp

[
− ( f − fg)2

2σ 2
g

]
+ hg exp

[
− ( f + fg)2

2σ 2
g

]

= h0 + sg f 2
g√

8πσg

exp

[
− ( f − fg)2

2σ 2
g

]
+ sg f 2

g√
8πσg

exp

[
− ( f + fg)2

2σ 2
g

]
. (39)

Here, hg is the bump’s height, σg is its width with a FWHM
given by

√
ln 4 σg, and fg is the center frequency of the bump.

In the second line of Eq. (39), we use an alternative expres-
sion for the bump height, in terms of its total, dimensionless
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phase-noise power, sg = ∫ ∞
−∞ Sφ,g( f )df , where the subscript g

refers to the Gaussian noise components. We use this expres-
sion in the simulations described below, to explore the effects
of different bump shapes. To perform the sg conversion here,
we note that Sφ,g( f ) is actually singular at f = 0, causing
its integral to diverge. We can regularize this divergence by
assuming that the servo bump is narrow (which appears to be
true in many experiments), and by making the substitution

Sφ ( f ) = Sδν ( f )/ f 2 ≈ Sδν ( f )/ f 2
g , (40)

yielding

sg ≈
√

8πσghg/ f 2
g , (41)

which is the form used in Eq. (39). We can think of this
expression as describing the noise power in just the servo
bump, and not the low-frequency portion of the spectrum. We
emphasize that the latter is not ignored but it is subsumed into
the white noise, which we treat separately.

We first consider just the Gaussian term in Eq. (39), setting
h0 = 0. Fourier transforming Eq. (40), we obtain

Rφ (τ ) ≈ sg cos(2π fgτ )e−2π2σ 2
g τ 2

. (42)

Thus for sg � 1, Eq. (14) gives

2SE ( f )/|E0|2 ≈ δ( f ) + hg

f 2
g

exp

[
− ( f − fg)2

2σ 2
g

]

+ hg

f 2
g

exp

[
− ( f + fg)2

2σ 2
g

]
, (43)

and Eq. (28) gives

Si( f ) ≈ δ( f ) + 4hg

f 2
g

sin2(π f td ) exp

[
− ( f − fg)2

2σ 2
g

]

+ 4hg

f 2
g

sin2(π f td ) exp

[
− ( f + fg)2

2σ 2
g

]
. (44)

The white-noise component of Sδν ( f ) can now be included,
and using Eqs. (17) and (31) yields

SE ( f ) = 2

|E0|2
∫ ∞

−∞
SE ,w( f − f ′)SE ,g( f ′)df ′, (45)

Si( f ) =
∫ ∞

−∞
Si,w( f − f ′)Si,g( f ′)df ′, (46)

where the subscripts w and g refer to white and Gaussian
power spectra, which have already been computed. We solve
these integrals, approximately, by noting that a convolution
between two peaks, with very different widths, is dominated
by the wider peak. We further note that, for the lasers of inter-
est here, the servo bump is much wider than the white-noise
Lorentzian peak, which is in turn much wider than a delta
function. Hence, we find that

2SE ( f )/E2
0 ≈ h0

f 2 + (πh0)2
+ hg

f 2
g

exp

[
− ( f − fg)2

2σ 2
g

]

+ hg

f 2
g

exp

[
− ( f + fg)2

2σ 2
g

]
, (47)

and

Si( f ) ≈ 2h0

f 2 + (2πh0)2
+ e−4π2h0td

{
δ( f )

− 2h0

f 2 + (2πh0)2

[
cos(2π f td ) + 2πh0

f
sin(2π f td )

]}

+ 4hg

f 2
g

sin2(π f td ) exp

[
− ( f − fg)2

2σ 2
g

]

+ 4hg

f 2
g

sin2(π f td ) exp

[
− ( f + fg)2

2σ 2
g

]
. (48)

In the following section, we apply these equations as fitting
forms for experimental self-heterodyne data.

III. LASER CHARACTERIZATION

To help visualize these results, we now characterize a stabi-
lized solid-state Ti:Sa laser used in quantum gate experiments
with atomic qubits [27]. In Fig. 3(a), we plot two experimental
data sets from the same laser (red and blue markers). We find
that the central peak is broadened more significantly than the
resolution bandwidth (RBW) settings of the spectrum ana-
lyzer. The corresponding linewidths are approximately equal,
despite their different RBW, suggesting that RBW is not the
only source of broadening.

Although the central peak does not exhibit a clear charac-
teristic form, we find that that it is well described by

Si,peak( f ) = spσ
2α−1

( f 2 + π2σ 2)α
. (49)

Fitting the data to this form yields α = 5/2 and σ = 240 Hz.
The corresponding FWHM is 850 Hz, which is indeed several
times larger than the RBW of the measurements. Integrating
Eq. (49) over frequency yields 4sp/3π4. The data are therefore
shifted vertically in Fig. 3(a) to give the correct normalization,∫ ∞
−∞ Si( f )df = 1.

After this normalization step, the self-heterodyne data
away from the peak are fit to Eq. (48), where we introduce two
distinct servo bumps, obtaining the result shown in Fig. 3(b)
(black line). The corresponding power spectral densities for
the noise are plotted in Fig. 3(c). We can use these results to
determine the fractional noise power in different components
of the Sφ spectrum For the first servo bump, we obtain the frac-
tional power sg1 = 0.000 27, and for the second servo bump,
we obtain the fractional power sg2 = 0.000 13. Together, these
represent a small but non-negligible fraction of the total laser
power.

The spectral features of the locked laser can be related to
the stabilization system. The laser is stabilized using three
feedback loops: a slow piezo with bandwidth of approxi-
mately 50 Hz, a faster piezo with bandwidth of 100 kHz, and
an electro-optic phase modulator with bandwidth of several
MHz. The servo bumps centered at fg1 and fg2 are attributable
to the fast piezo and the electro-optic modulator.
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FIG. 3. Self-heterodyne data from a 1040-nm solid-state Ti:Sa laser (MSquared SolsTiS) with fits to white and Gaussian-bump noise
models. The laser was locked to a reference cavity with linewidth of approximately 5 kHz using the Pound-Drever-Hall method [26]. (a) Self-
heterodyne power spectral density, obtained in a 50-kHz frequency window with RBW = 100 Hz (open blue circles) and in a 600-kHz
window with RBW = 300 Hz (closed red markers). An optical delay fiber of 11 km was used for both data sets, corresponding to a delay time
of td = 5.445 × 10−5 s. The data were shifted horizontally to center their peaks at zero frequency, and the peak data were then fit to Eq. (49)
(black line), obtaining α = 5/2 and σ = 240 Hz. The data were finally renormalized (i.e., shifted vertically) to ensure the correct total power,
as described in the main text. (b) Same red data set as (a), plotted over a wider frequency window. The data were fit to Eq. (48), including white
noise and two Gaussian servo bumps, obtaining h0 = 13 Hz2/Hz, hg1 = 25 Hz2/Hz, σg1 = 18 kHz, fg1 = 130 kHz, hg2 = 2.0 × 103 Hz2/Hz,
σg12 = 1.5 kHz, and fg2 = 234 kHz. (c) Phase and frequency power spectral densities, Sφ ( f ) and Sδν ( f ) (inset), resulting from the fitting.

IV. DENSITY-MATRIX SOLUTIONS
FOR RABI OSCILLATIONS

In this section, we compute the density matrix of a qubit
undergoing Rabi oscillations driven by a laser (or lasers) with
frequency noise. The calculation involves taking an average
over all possible noise realizations. In Sec. IV A, we perform
a Fourier expansion of a generic Gaussian noise process,
which is incorporated into the master equation calculation of
Sec. IV B, and is used again in the numerical simulations of
Sec. V. In Secs. IV C and IV D, we use our master equation re-
sults to compute one- and two-photon gate fidelities for the
Rabi oscillations.

A. Time-series expansion of the laser noise

A real, fluctuating Gaussian process X (t ), with zero mean
and variance σ 2

X , can generally be expressed as a Fourier time
series:

X (t ) =
∞∑
j=1

x j cos(2π f jt + ϕ j ), (50)

where f j = j� f . Here, we define X (0) = 0 for convenience.
The random variables x j can be selected as Rayleigh-
distributed random values [28], while the random variables
ϕ j are uniformly distributed over [0, 2π ].

We can compute the variance of X (t ) as

σ 2
X =

〈∑
j,k

x jxk cos(2π f jt + ϕ j ) cos(2π fkt + ϕk )

〉
, (51)

where an average is taken over the various random variables.
Since these variables are assumed to be statistically indepen-
dent, the double sum vanishes, except for the case j = k.

Hence,

σ 2
X =

∞∑
j=1

〈
x2

j

〉
/2. (52)

The variance is also related to the same-time autocorrelation
function, defined in Eq. (3), such that

σ 2
X = RX (0) = 2

∫ ∞

0
SX ( f )df = 2

∞∑
j=1

SX, j � f , (53)

where we have assumed that SX ( f ) is an even function, and
converted the integral to a series representation, with SX, j ≡
SX ( f j ). Comparing Eqs. (52) and (53), we note the correspon-
dence

〈x2
j 〉 ↔ 4SX, j � f . (54)

To generate time traces of X (t ), it is then standard practice to
make the following replacement for the random variable x j in
Eq. (50) [28]:

x j → 2
√

SX, j � f . (55)

Defined in this way, x j is deterministic rather than random.
The resulting time trace X (t ) inherits the correct statistical
properties of x j . Although this procedure cannot account for
all random behavior of X (t ) [29], it successfully describes
most behavior.

The method described above is used to generate random
time traces in our numerical simulations, as described below
in Sec. V A. Specifically, the simulations employ time traces
of the laser phase fluctuations, defined as

φ(t ) =
∞∑
j=1

2
√

Sφ ( f j )� f cos(2π f jt + ϕ j ). (56)

Here, we note that, while time-series amplitude coefficients
have been replaced by their deterministic averages, the
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random phases ϕ j must still be chosen from the uniform
distribution [0, 2π ]. In the following section, we employ time
traces of the laser frequency fluctuations, defined as

δν(t ) = 1

2π

dφ

dt
=

∞∑
j=1

δν j sin(2π f jt + ϕ j ), (57)

where

δν j = −2
√

Sδν ( f j )� f , (58)

and we make use of the relation Sδν ( f ) = f 2Sφ ( f ).

B. Time-series master equation

We consider a two-level system {|g〉, |e〉}, with correspond-
ing energy levels Eg and Ee, and qubit energy hν0 = Ee − Eg.
The Hamiltonian for a qubit driven resonantly by a monochro-
matic laser with frequency ν0 and angular Rabi frequency 
0

(assumed to be real) is then

H = hν0

2
(|e〉〈e| − |g〉〈g|) + h̄
0 cos(2πν0t )

× [eiφ(t )|e〉〈g| + e−iφ(t )|g〉〈e|], (59)

where we have explicitly included phase fluctuations
φ(t ). Moving to a rotating frame defined by U (t ) =
exp[−iπν0t (|e〉〈e| − |g〉〈g|)] and applying a rotating wave ap-
proximation (RWA), we obtain the transformed Hamiltonian

H ′ ≈ h̄
0

2
[eiφ(t )|e〉〈g| + e−iφ(t )|g〉〈e|]

= h̄
0

2
[cosφ(t ) σx − sinφ(t ) σy], (60)

where the Pauli matrices are defined as σx = |g〉〈e| + |e〉〈g|,
σy = i(|g〉〈e| − |e〉〈g|), and σz = |g〉〈g| − |e〉〈e|.

In Eqs. (59) and (60), the axis of Rabi rotations shifts
with the fluctuating phase φ(t ). Although this description
captures the physics of the problem, it is inconvenient for our
calculations. We therefore consider a frame that follows the
fluctuating phase, in which the rotation axis is fixed [30]. This
fluctuating frame is defined by the transformation Uϕ (t ) =
diag[eiϕ/2, e−iϕ/2], yielding the Hamiltonian

H ′′ ≈ h̄
0

2
σx − h̄(dφ/dt )

2
σz

= h̄
0

2
σx − hδν(t )

2
σz

= h̄
0

2
σx −

∞∑
j=1

hδν j

2
sin(2π f jt + ϕ j )σz, (61)

where we make use of Eq. (57), and the only approximation
employed is the standard RWA in Eq. (60).

In Eq. (61), we have moved to a frame where 
0 now rep-
resents the quantizing field, and where δν j represents a Rabi
driving term, applied simultaneously at multiple frequencies.
To formalize this correspondence, we move to the frame
where 
0 points towards the north pole of the Bloch sphere,
as defined by the transformation U = exp[−i(π/4)σy],

obtaining

H ′′′ ≈ h̄
0

2
σz +

∞∑
j=1

hδν j

2
sin(2π f jt + ϕ j )σx. (62)

For simplicity, we drop the primed notation on H ′′′ in the
following derivations.

We now solve for the time evolution of the density operator,
for a two-level system governed by Eq. (62):

h̄
dρ

dt
= i[ρ, H]. (63)

Although Eq. (62) has the standard form of a Rabi rotation,
we note that conventional Rabi techniques are not applicable
here, because in the frame of Eq. (62), the initial state of
the system is along the driving axis (x̂), as discussed below.
As such, the time evolution arises entirely from the counter-
rotating terms in Eq. (62), rather than the corotating terms.
(Note that “counter-rotating” and “corotating” refer, here, to
the δν j fluctuations, not the original Rabi drive.) Moreover,
we will need to consider perturbative corrections to ρ(t ) of
order O(δν2

j ) in the frequency fluctuations.
To construct a perturbation theory, we first note that 2πδν j

is typically smaller than 
0, allowing us to define the di-
mensionless small parameter, δ j = 2πδν j/
0 � 1. Defining
ω j = 2π f j , the Hamiltonian becomes

H

h̄
0
= σz

2
+

∞∑
j=1

δ j
σx

2
sin(ω jt + ϕ j ). (64)

We can then solve the density matrix by expanding in powers
of the small parameter,

ρ = ρ0 + ρ1 + ρ2 + . . .

= ρ0 +
∞∑
j=1

δ jρ
( j)
1 +

∞∑
j,k=1

δ jδkρ
( j,k)
2 + . . . , (65)

where ρ
( j,... )
m are assumed to be independent of δ j . Inserting

Eqs. (64) and (65) into (63), collecting terms of equal order in
δ j , and solving up to O(δ2

j ) gives

1


0

dρ0

dt
= i

[
ρ0,

σz

2

]
, (66)

∞∑
j=1

δ j


0

dρ
( j)
1

dt
= i

∞∑
j=1

δ j

{[
ρ

( j)
1 ,

σz

2

]

+
[
ρ0,

σx

2
sin(ω jt + ϕ j )

]}
, (67)

∞∑
j,k=1

δ jδk


0

dρ
( j,k)
2

dt
= i

∞∑
j,k=1

δ jδk

{[
ρ

( j,k)
2 ,

σz

2

]

+
[
ρ

( j)
1 ,

σx

2
sin(ωkt + ϕk )

]}
. (68)

For a Rabi driving experiment, in the frame of Eq. (59),
we consider a qubit initialized to the north pole of the Bloch
sphere. In the frame of Eq. (64), the corresponding initial
state on the Bloch sphere is ρ(0) = 1

2 (1 + σx ). Since ρ0, ρ
( j)
1 ,

and ρ
( j,k)
2 are independent of δ j , the initial conditions for the
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different terms in the density operator expansion are given by
ρ0(0) = 1

2 (1 + σx ), with ρ1(0) = ρ2(0) = 0.
Taking into account these initial conditions, the jth term of

the expansion in Eq. (67), can be solved independently of the
other terms, as follows:

1


0

dρ
( j)
1

dt
= i

[
ρ

( j)
1 ,

σz

2

]
+ i

[
ρ0,

σx

2
sin(ω jt + ϕ j )

]
. (69)

Now defining ρ1 ≡ ∑∞
j=1 δ jρ

( j)
1 , rewriting Eq. (67) in the

form

1


0

dρ1

dt
= i

[
ρ1,

σz

2

]
+ i

⎡
⎣ρ0,

σx

2

⎧⎨
⎩

∞∑
j=1

δ j sin(ω jt + ϕ j )

⎫⎬
⎭
⎤
⎦,

(70)
and making use of the uniqueness theorem for differential
equations, we see that this solution for ρ1 is unique.

In Eq. (68), we note the presence of mixed terms, involv-
ing parameters j and k. This is inconvenient; however, in
the following derivations, we perform an average over the
independent, fluctuating variables {ϕ j, ϕk} ∈ [0, 2π ], which
leads to a helpful simplification. Let us define the averaging
procedure as

〈 f (ϕ)〉ϕ = 1

2π

∫ 2π

0
f (ϕ)dϕ. (71)

In the derivations described below, it can be shown that〈[
ρ

( j)
1 ,

σx

2
sin(ωkt + ϕk )

]〉
ϕ j ,ϕk

= δ jk

〈[
ρ

( j)
1 ,

σx

2
sin(ω jt + ϕ j )

]〉
ϕ j

, (72)

where δ jk is the Kronecker δ function. As a result, we
find that 〈ρ ( j,k)

2 〉ϕ j ,ϕk = δ jk〈ρ ( j, j)
2 〉ϕ j ≡ δ jk〈ρ ( j)

2 〉ϕ j . Anticipat-
ing this step, we can preemptively eliminate the mixed terms
in Eq. (68), so that the sum runs only over the variable j. As
was the case for ρ

( j)
1 , we can then independently solve for

each ρ
( j)
2 , obtaining a unique solution for ρ2. Equation (68)

can therefore be replaced by the decoupled equation

1


0

dρ
( j)
2

dt
= i

[
ρ

( j)
2 ,

σz

2

]
+ i

[
ρ

( j)
1 ,

σx

2
sin(ω jt + ϕ j )

]
. (73)

Thus, we may solve for the density-matrix terms ρ
( j)
1 and ρ

( j)
2

independently, and combine the results for different j values
afterwards.

Following the procedure described above, we perturba-
tively solve for ρ, apply initial conditions, and perform an
average over the fluctuating variable ϕ j , obtaining

〈ρ(t )〉 ≈ 1

2
+

⎡
⎣1

2
cos(
0t ) −

∞∑
j=1

δ2
j

2 cos(
0t ) − 2 cos(ω jt ) + (

2

0 − ω2
j

)
(t/
0) sin(
0t )

8
(

2

0 − ω2
j

)2
/
4

0

⎤
⎦σx

+
⎡
⎣1

2
sin(
0t ) −

∞∑
j=1

δ2
j

2 sin(
0t ) − 2(ω j/
0) sin(ω jt ) + (

2

0 − ω2
j

)
(t/
0) cos(
0t )

8
(

2

0 − ω2
j

)2
/
4

0

⎤
⎦σy. (74)

The perturbative expansion leading up to this result is formally
related to a cumulant expansion [31], with an explicit, gener-
alized averaging procedure.

Finally we note that certain terms in the σy sum of Eq. (74)
diverge when ω j → 
0. However, we emphasize that the
continuum limit is implied for both of the sums in Eq. (74),
as discussed below. In this limit, the singularity is found to
be integrable, provided that Sδν ( f ) is smooth at 2π f = 
0, as
discussed in Appendix B. The singularity therefore poses no
problems.

C. One-photon gate fidelity

We now use Eq. (74) to compute quantum gate errors
incurred during Rabi oscillations. In Appendix B, we provide
expressions that allow gate errors to be computed numerically,
for general gate periods, t = tg. However, analytical results
are available for special gate periods. We specifically con-
sider gates defined by the periods t = 2πN/
0 with N =
1/2, 1, 3/2, . . . , where N = 1/2 corresponds to a π rotation,
N = 1 corresponds to a 2π rotation, and so on. In the absence
of fluctuations (δ j = 0), the ideal solution for such gates is

given by

ρideal(N ) = 1
2 + 1

2 (−1)2Nσx. (75)

Defining the gate errors as E = 1 − F , where F =
Tr[〈ρ〉ρideal] is the gate fidelity, and making the substitutions
ω j → 2π f , � f → df , and

∞∑
j=1

δ2
j →

∫ ∞

0

(
4π


0

)2

Sδν ( f )df , (76)

we obtain

E = 4π2
∫ ∞

0
Sδν ( f )


2
0[1 − (−1)2N cos(4π2N f /
0)](


2
0 − 4π2 f 2

)2 df .

(77)
As noted above, this expression remains finite for all f ,
including 2π f = 
0. Repeating these calculations for the
initial conditions ρ(0) = 1

2 (1 + σy) and 1
2 (1 + σz ), and per-

forming an average over the results yields the average gate
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error [32,33]

E = 8π2

3

∫ ∞

0
Sδν ( f )

(

2

0 + 4π2 f 2
)
[1 − (−1)2N cos(4π2N f /
0)](

2

0 − 4π2 f 2
)2 df . (78)

In the remainder of the paper we will calculate E and E in
various scenarios. The error E gives a state averaged error
which is of interest for characterizing the typical performance
of gate operations. Alternatively E is the gate error for the
particular case of the qubit starting in |0〉 in the computational
basis, which is of particular relevance for optical excitation of
Rydberg states.

Equation (78) is our main result, which may now be ap-
plied to cases of interest, including white noise and servo
bumps. For the t = 2πN/
0 gates, defined above, with white
noise defined in Eq. (32), we obtain the simple result

E = π3h0N


0
, E = 4π3h0N

3
0
(white noise). (79)

As a benchmark, we can determine the white-noise level
needed to implement a π pulse (N = 1/2) with errors below
10−4: starting in a computational basis state and assuming
a Rabi rate of 
0/2π = 1 MHz, we find this is given by
h0 � 40 Hz2/Hz.

For servo bumps, the frequency noise is defined in Eq. (39).
To simplify the error calculation, we make use of the fact that
the peak in Sδν ( f ) is typically sharper and narrower than other
frequency-dependent terms in Eq. (78). This sharp peak can
be observed, for example, in Fig. 3(c). We therefore make the
following substitution in Eq (78),

Sδν ( f ) → sg f 2
g

2
δ( f − fg), (80)

which yields the following expressions for the gate error:

E ≈ 2sg(π fg
0)2 1 − (−1)2N cos(4π2N fg/
0)(

2

0 − 4π2 f 2
g

)2

(servo bump),

(81)

E ≈ 4π2sg f 2
g

(

2

0 + 4π2 f 2
g

)
3
(

2

0 − 4π2 f 2
g

)2

×[1 − (−1)2N cos(4π2N fg/
0)] (servo bump).

(82)

Due to its narrow bandwidth, servo-bump noise causes the
qubit to evolve coherently at a well-defined frequency, with
interference occurring at its other characteristic frequency,
that of the Rabi drive. In contrast, the broadband nature of
white noise precludes any type of interference. As shown in
later sections, the largest errors due to servo bumps occur
when 2π fg ≈ 
0. For integer or half-integer values of N ,
evaluating Eqs. (81) and (82) in the limit 2π fg → 
0 (worst-
case scenario) gives

E ≈ sg(πN )2

4
, E ≈ sg(πN )2

3
. (83)

Comparing Eqs. (79) and (83) we see that the worst-case
error due to a servo bump is smaller than the error due to the

background white noise when

sg <
4πh0

N
0
. (84)

For the measured laser spectrum, shown in Fig. 3, the corre-
sponding requirement for a π pulse with 
0/2π = 1 MHz is
sg < 1.0 × 10−4. In this case, the measured sg values for the
two servo bumps (sg1 = 1.3 × 10−4 and sg2 = 2.7 × 10−4) do
not satisfy this criterion. However, there is a known interplay
between the stabilized white noise and the servo bumps [15].
From Eq. (82), we see that servo bumps are most dangerous
when peaked near the Rabi frequency. When the servo bump
peak is well separated from the Rabi frequency, the gate error
is dominated by the white-noise background.

D. Two-photon gate fidelity

We can extend the time-series master equation approach to
describe two-photon Rabi oscillations in the ladder geometry
shown in Fig. 4. This approach is widely used for Rydberg
excitation in quantum gate experiments with atomic qubits
[34]. We consider a three-level system {|g〉, |e〉, |r〉} with the
corresponding energy levels Eg, Ee, and Er . We also consider
two monochromatic lasers with angular frequencies ω1 and ω2

and Rabi angular frequencies 
1 and 
2. As is well known
there is an additional error source associated with two-photon
excitation due to photon scattering from the intermediate level
[35,36]. This can lead to depolarization errors of the qubit as
well as leakage errors when the atomic ground state includes
additional sublevels outside of the computational basis. Our
analysis is focused on the effects of laser noise, and does not
account for additional scattering related errors.

As before, we allow for phase fluctuations in both lasers,
characterized by their individual noise spectral densities,

FIG. 4. Coupling scheme for two-photon Rabi oscillations in
a ladder configuration, for states |g〉, |e〉, and |r〉. Two lasers are
employed, with photon angular frequencies ω1,2 and associated Rabi
angular frequencies 
1,2. The lasers are detuned away from ladder
excitations by angular frequencies �1 and �2.
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S1,δν ( f ) and S2,δν ( f ):

φi(t ) = −
N∑

j=1

δνi, j cos(2π f jt + ϕi, j ), (85)

where

δνi, j = −2
√

Si,δν ( f j )� f , (86)

and i = 1, 2. Here, the random phases {ϕi, j} are assumed to
be independent for all i and j.

In analogy with Eq. (59), the full system Hamiltonian in
the laboratory frame is now given by

H = Eg|g〉〈g| + Ee|e〉〈e| + Er |r〉〈r|
+ h̄
1 cos(ω1t )(e−iφ1 |e〉〈g| + eiφ1 |g〉〈e|)
+ h̄
2 cos(ω2t )(e−iφ2 |r〉〈e| + eiφ2 |e〉〈r|). (87)

Moving to the rotating frame defined by

U (t ) = exp

[
i

(
2ω1t

3
+ ω2t

3

)
(|e〉〈e| − |g〉〈g|)

+ i

(
ω1t

3
+ 2ω2t

3

)
(|r〉〈r| − |e〉〈e|)

]
,

(88)

and applying a RWA, we obtain

H ′ ≈ h̄�

2
|g〉〈g| − h̄δ

2
|e〉〈e| − h̄�

2
|r〉〈r|

+ h̄
1

2
(e−iφ1 |e〉〈g| + eiφ1 |g〉〈e|)

+ h̄
2

2
(e−iφ2 |r〉〈e| + eiφ2 |e〉〈r|), (89)

where we have removed a constant energy term and
defined h̄�1 = h̄ω1 + Eg − Ee, h̄�2 = h̄ω2 + Ee − Er , and
� = �1 + �2, as illustrated in Fig. 4, with δ = �1 − �2.

As in the previous section, we next move to a fluctuation
frame, defined by the transformation

Uφ (t ) = e−iφ1/2−iφ2/2|g〉〈g| + eiφ1/2−iφ2/2|e〉
× 〈e| + eiφ1/2+iφ2/2|r〉〈r|, (90)

yielding the Hamiltonian

H ′′ ≈ h̄

2
(� + φ̇1 + φ̇2)|g〉〈g|

+ h̄

2
(−δ − φ̇1 + φ̇2)|e〉〈e|

+ h̄

2
(−� − φ̇1 − φ̇2)|r〉〈r|

+ h̄
1

2
(|e〉〈g| + |g〉〈e|) + h̄
2

2
(|r〉〈e| + |e〉〈r|). (91)

Now if we assume that |δ| � 
1,
2, |φ̇1|, |φ̇2|, and that
the system wave function |ψ〉 is not initialized into state |e〉,
then at later times we still have |〈ψ |e〉|2 � 1. Hence, it is a
good approximation to slave |e〉 to states |g〉 and |r〉, such that

|e〉 ≈ 
1

δ
|g〉 + 
2

δ
|r〉. (92)

Eliminating |e〉 from H ′′, we arrive at an effective two-
dimensional (2D) Hamiltonian that describes the dynamical

evolution of |g〉 and |r〉:

H2D ≈ h̄
̃0

2
σx − h̄

2
(�+ + φ̇1 + φ̇2)σz, (93)

where we define �+ = � + (
2
1 − 
2

2)/2δ, 
̃0 = 
1
2/δ,
σz = |r〉〈r| − |g〉〈g|, and σx = |r〉〈g| + |g〉〈r|, and we have
again removed a constant energy term. The shift �+ is due
to the dynamic Stark shift of the bare atomic levels that arises
from the intermediate state detuning.

In the absence of noise (φ̇1, φ̇2 = 0), H2D describes rota-
tions tilted slightly away from the x axis, which is undesirable
from a gating perspective. This situation can be avoided by
adopting the special detuning value defined by the relation
�+ = 0, or equivalently,

� = �1

⎛
⎝1 −

√
1 + 
2

1 − 
2
2

2�2
1

⎞
⎠. (94)

For this case, we obtain

H2D ≈ h̄
̃0

2
σx − h̄

2
(φ̇1 + φ̇2)σz, (95)

which maps immediately onto Eq. (61) of our previous one-
photon analysis.

In the one-photon calculation, we were able to make
progress by noting that the random phases ϕ j , corresponding
to frequency variables ω j , were independent, yielding additive
contributions to the total error in the quantum gates. Now in
the two-photon case, the random variables ϕ j1 and ϕ j2, cor-
responding to lasers 1 and 2, are also independent; therefore
their contributions to the total error should also be additive.
Accounting for the separate power spectral densities in the
two lasers, we obtain the following two-photon results, for
gates defined by t = 2πN/
̃0, with N = 1/2, 1, 3/2, . . . . For
white noise defined by the parameters h1 and h2 in the two
lasers, and for the initial state ρ(0) = 1

2 (1 + σx ), we obtain

E = π3(h1 + h2)N


̃0
(white noise), (96)

which is relevant for Rydberg excitations. Averaging over
initial states, we obtain the average gate fidelity

E = 4π3(h1 + h2)N

3
̃0
(white noise). (97)

For the servo-bump model of laser phase noise, the differ-
ences in the lasers are characterized by the total power of the
phase noise in the two servo bumps (sg1 and sg2) and their cor-
responding peak frequencies ( fg1 and fg2). The resulting error
for two-photon gates, for the initial state ρ(0) = 1

2 (1 + σx ), is
given by

E ≈ 2sg1(π fg1
̃0)2 1 − (−1)2N cos(4π2N fg1/
̃0)(

̃2

0 − 4π2 f 2
g1

)2

+ 2sg2(π fg2
̃0)2 1 − (−1)2N cos(4π2N fg2/
̃0)(

̃2

0 − 4π2 f 2
g2

)2

× (servo bump). (98)
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FIG. 5. Coupling scheme for two-photon Rabi oscillations in a
� configuration, for states |g〉, |e〉, and |p〉. In the setup considered
here, the two driving frequencies are assumed to differ by the qubit
frequency: h̄(ω1 − ω2) = Ee − Eg. The figure also shows the associ-
ated Rabi angular frequencies 
1 and 
2, and the detuning �.

Averaging over initial states gives

E ≈ 4π2sg1 f 2
g1

(

̃2

0 + 4π2 f 2
g1

)
3
(

̃2

0 − 4π2 f 2
g1

)2

×[1 − (−1)2N cos(4π2N fg1/
̃0)]

+ 4π2sg2 f 2
g2

(

̃2

0 + 4π2 f 2
g2

)
3
(

̃2

0 − 4π2 f 2
g2

)2

× [1 − (−1)2N cos(4π2N fg2/
̃0)] (servo bump).

(99)

E. Two-photon Raman transitions

While the main focus of this paper is on two-photon tran-
sitions in the ladder configuration (Fig. 4), we also briefly
consider two-photon Raman transitions in the � configuration
(Fig. 5). An important difference in the latter case is that only
one laser is used in a typical setup. The single laser field is
modulated such that it acquires sidebands of frequency ω1 and
ω2, separated by the qubit frequency, h̄(ω1 − ω2) = Ee − Eg.
Both fields are then made to copropagate in the same spatial
mode when exciting the atom. In practice this is most often
done by modulating the current of a laser diode [37], or with
an electro-optic modulator to add sideband frequencies [38].
Either of these techniques results in correlated phase noise at
both sideband frequencies. As is well known, such an arrange-
ment is resilient to dephasing induced by the Doppler effect
[39].

Here we show explicitly that the � configuration is also
resilient to laser phase noise. While we do not show all the
steps of the derivation, we follow the same procedure as
the preceding sections. In the rotating frame equivalent to
Eq. (89), the two-photon Hamiltonian becomes

H ′ ≈ h̄�|p〉〈p| +
(

h̄
1

2
eiφ|p〉〈g| + H.c.

)

+
(

h̄
∗
2

2
e−iφ |e〉〈p| + H.c.

)
, (100)

where we have subtracted a constant energy. The phase φ de-
pends on the noise spectrum of the laser as defined in Eq. (85)
and the parallel treatment of |g〉 and |e〉 is evident. We note that
the Rabi frequencies associated with the two drives, 
1 and


2, include complex phases ξ1 and ξ2 which determine the
azimuthal angle on the Bloch sphere of the Rabi rotation axis
according to φrot = ξ1 − ξ2. Now, moving to the fluctuation
frame, assuming |�| � |
1|, |
2|, |φ̇|, and eliminating the
detuned level |p〉, we obtain the effective 2D Hamiltonian
describing the states |g〉 and |e〉 in the � configuration:

H2D ≈ − h̄(|
1|2 − |
2|2)

8�
(|g〉〈g| − |e〉〈e|)

−
(

h̄
̃R

2
|e〉〈g| + H.c.

)
− h̄φ̇(|g〉〈g| + |e〉〈e|),

(101)

where we have again subtracted a constant energy and defined
the two-photon Rabi frequency 
̃R = 
1


∗
2/2�. Notice that

the phase fluctuations φ̇ are now proportional to the identity
operator in the qubit subsystem, and therefore only contribute
to the global phase. The phase fluctuations are therefore harm-
less, and do not affect Rabi gates at linear order, although
they do affect the dynamics at higher order. However, that is
beyond the scope of the current paper.

V. DYNAMICAL SIMULATION OF RABI
OSCILLATIONS WITH PHASE NOISE

In this section, we perform simulations of Rabi oscil-
lations, including laser phase fluctuations. We specifically
consider the effects of white noise, defined in Eq. (32), for
a range of noise amplitudes, h0 ∈ (0, 4000) Hz2/Hz. We also
consider servo bumps, defined in Eq. (39), for fixed parameter
values of hg = 1100 Hz2/Hz and σg = 1.4 kHz, which are
similar to the experimental values obtained in Sec. III. Since
gate errors caused by servo bumps are maximized when the
bump peak occurs near the Rabi frequency, fg ≈ (
0/2π ), we
focus on the parameter range fg ∈ (0, 2) × (
0/2π ). In the
latter simulations, we set the white-noise amplitude to h0 = 0,
to focus exclusively on the servo bump. For all simulations,
we adopt the typical Rabi frequency 
0/2π = 1 MHz. For the
two-photon gates, for simplicity, we assume that both lasers
have the same noise spectra.

A. One-photon gates

We first consider gates implemented with one-photon
Rabi drives with laser phase noise. The gates are defined in
Sec. IV C, with N = 1/2 (π rotations) and N = 1 (2π rota-
tions). As previously, we assume that the qubit is driven reso-
nantly. Defining |ψ (t )〉 = cg(t )|g〉 + ce(t )|e〉, the Schrödinger
equation associated with Eq. (60) can be written as

ċg = −i

0

2
e−iφ(t )ce, (102)

ċe = −i

0

2
eiφ(t )cg. (103)

To solve these equations, we first obtain a random time
trace for φ(t ) from Eq. (56). The infinite series expansion
must be truncated and we therefore write

φ(tk ) =
M/2∑
j=1

2
√

Sφ ( f j )� f cos(2π f jtk + ϕ j ), (104)
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(a)

(b)

FIG. 6. Rabi errors for one-photon Rabi oscillations due to white
phase noise, plotted as a function of noise amplitude h0. Results are
obtained following the procedure described in Sec. V A for (a) π

rotations and (b) 2π rotations. Red markers represent averages from
numerical simulations, while pink shading shows the correspond-
ing 1σ error bars. Blue curves show theoretical results for E from
Eq. (79).

where � f = f j+1 − f j = 1/T for times sampled in the range
0 � tk � T , with tk+1 − tk = T/M, according to the Nyquist
sampling theorem. For the simulations described below, white
noise poses the most serious challenge to numerical con-
vergence. In this case, we find that a frequency bandwidth
of fM/2 = 10 MHz is sufficient for our purposes, and that
convergence is achieved when M ≈ 103. Equations (102) and
(103) are then solved numerically, using the computed time
series. Statistical properties are obtained by performing av-
erages over results based on many random time series. As
in previous sections, the resulting gate errors are defined as
E = 1 − F , where F = tr[〈ρ〉ρideal].

In Fig. 6, we plot the numerical gate errors for π and
2π rotations, obtained by solving the the Schrödinger equa-
tions in the presence of white noise. In this figure, as in all
figures that follow, the numerical averages are shown as red
markers, while 1σ error bars are shown with pink shading.
All reported errors E , both theoretical and numerical, cor-
respond to the qubit initial state |0〉. Theoretical results are
shown as blue curves. For the case of white noise, these
correspond to Eq. (79). For typical white-noise amplitudes
(h0 < 100 Hz2/Hz), the observed error levels are low. Theo-

(a)

(b)

FIG. 7. Rabi errors for one-photon Rabi oscillations due to servo-
bump phase noise. Results are plotted as a function of the center
frequency of the servo bump fg, scaled by the Rabi frequency

0/2π = 1 MHz, with additional noise parameters described in
Sec. V A. Similar to Fig. 6, (a) shows results for π rotations and
(b) shows results for 2π rotations. Theory results are obtained from
Eq. (81).

retical results are found to reproduce the numerical ones quite
accurately.

In Fig. 7, we plot π and 2π gate errors for Rabi oscillations
in the presence of servo-bump noise. The results are plotted as
a function of the center frequency of the servo bump, scaled
by the Rabi frequency 
0/2π = 1 MHz. The calculations are
performed while holding the total power sg and peak height hg

fixed at the values obtained for the larger servo bump observed
in Fig. 3, while simultaneously varying the peak frequency
fg and width σg according to Eq. (41). Corresponding theory
results are also shown, based on Eq. (81). Again, the theo-
retical results are found to describe well the nonmonotonic
behavior of the numerical results. As expected, gate errors
are maximized for servo bumps centered near the Rabi fre-
quency. Also as expected from the theoretical calculations
of Sec. IV B, the gate errors are strongly suppressed for the
condition fg = 2(
0/2π ). This is an interesting interference
effect induced by the shape of Gaussian noise peaks, which
is not observed, for example, in the case of white noise. Such
error suppression could potentially be leveraged for reducing
Rabi gate errors.
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(a)

(b)

FIG. 8. Rabi errors for one-photon Rabi oscillations due to servo-
bump phase noise: (a) π rotations and (b) 2π rotations. Calculations
are very similar to Fig. 7, except that here, the central peak frequency
of the servo bump is held fixed at 1.2 MHz, while the total power sg

is varied, where sg is defined in Eq. (41).

In Fig. 8, we also show results as a function of the servo-
bump noise level. In this case, the center frequency of the
servo bump is held fixed at the experimentally observed value
fg = 234 kHz reported in Sec. III, while the total noise power
in the servo bump is varied, using the definition of sg in
Eq. (41). Plotted on a log-log scale, we observe an initial linear
dependence of the gate error on noise power.

B. Two-photon gates

Two-photon gates are described in Sec. IV D. For the
gates considered here, both lasers are detuned, in con-
trast with the one-photon gates described above. Defin-
ing |ψ (t )〉 = cg(t )e−i�t/2|g〉 + ce(t )eiδt/2|e〉 + cr (t )ei�t/2|r〉,
the Schrödinger equation associated with Eq. (89) can be
written as

ċg = −i

1

2
eiφ1(t )ei�1t ce, (105)

ċe = −i

1

2
e−iφ1(t )e−i�1t cg − i


2

2
eiφ2(t )ei�2t cr, (106)

ċr = −i

2

2
e−iφ2(t )e−i�2t ce. (107)

(a)

(b)

FIG. 9. Rabi errors for two-photon Rabi oscillations due to white
phase noise: (a) π rotations and (b) 2π rotations. All simulations
and plots are analogous to Fig. 6, while theory results are given by
Eq. (96).

As in experiments, the detuning parameters in two-photon
simulations should be chosen carefully. Referring to the no-
tation of Sec. IV D, we adopt the following criteria: (1) the
effective, two-photon Rabi frequency is chosen to be 
̃0 =

1
2/δ = 2π × 1 MHz (as in the one-photon simulations);
(2) the ratio δ/
̃0 should be large enough to avoid populating
the intermediate level |e〉, but small enough for simulations
to complete in a reasonable time (here we choose δ/
̃0 =
100). For convenience, we also choose 
1 = 
2, and we
note that the resonance condition, Eq. (94), must be satisfied.
These combined criteria yield �1 = −�2 = 2π × 5 GHz,

1 = 
2 = 2π × 100 MHz, and δ = 2π × 10 GHz. These
choices yield a resonant excitation of the state |r〉, defined as
� = 0 (see Fig. 4), as consistent with the resonant excitation
scheme for one-photon gates. For convenience, we assume
identical noise parameters for the two lasers (e.g., h1 = h2,
etc.), although the time series for φ1(t ) and φ2(t ) are still
generated independently via Eq. (104). Finally, Eqs. (105)–
(107) are solved numerically for many random time series,
and averaged.

Figure 9 shows two-photon results for the case of white
phase noise. The corresponding theoretical results are given
in Eq. (96). These results may be compared directly to
one-photon gates. Indeed, the two-photon gate errors appear
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(a)

(b)

FIG. 10. Rabi errors for two-photon Rabi oscillations due to
servo-bump phase noise: (a) π rotations and (b) 2π rotations. All
simulations and plots are analogous to Fig. 7, while theory results
are given by Eq. (98).

similar in shape, but doubled in magnitude, as compared to
Fig. 6. This is consistent with the expectation that errors
should be additive in the limit of weak noise, as discussed
in Sec. IV D.

Figure 10 shows two-photon results for the case of servo-
bump phase noise. Here, the theoretical results are given in
Eq. (98). Again, we observe an approximate doubling of the
gates error as compared to the single-photon case, shown in
Fig. 7. In all cases, the theoretical results of Sec. IV appear
quite accurate.

VI. BANDWIDTH-LIMITED PHASE NOISE
AND THE QUASISTATIC LIMIT

Narrow bandwidth noise may provide a good approxi-
mation for certain highly filtered lasers. In this section, we
extend the previous theoretical approach to the case of qua-
sistatic phase noise, where the spectral content of the noise
is restricted to very low frequencies. To begin, we consider
the more general situation of bandwidth-limited white noise,
defined as

Sδν ( f ) =
{

h0 when | f | � fc,

0 when | f | > fc.
(108)

A noise spectrum of this type could describe a strongly
filtered laser with no noise except a broadened carrier signal.

Di Domenico et al. [18] have studied how band-limited
white noise is manifested in laser field noise, SE ( f ). They
observe two distinct behaviors, with an abrupt transition be-
tween them occurring at fc = π2h0/8 ln(2) ≈ 1.78h0. When
fc � 1.78h0, SE ( f ) takes the form appropriate for white noise,
which we previously characterized in Sec. II C. When fc �
1.78h0, Eqs. (13) and (27) are readily solved, giving

SE ( f ) ≈ |E0|2√
16πh0 fc

e− f 2/4h0 fc , (109)

Si( f ) ≈
√

3

16π3h0t2
d f 3

c

e−3 f 2/16π2h0t2
d f 3

c . (110)

In the context of Rabi gate operations, when we also have
fc � 
0/2π , we refer to this compressed-noise regime as
quasistatic.

The singular nature of quasistatic noise causes the in-
terrelations between Sφ ( f ), SE ( f ), and Si( f ), embodied in
Eqs. (28) and (29), to collapse. This is particularly evident
in Eq. (110) which exhibits no scallop features typical of
self-heterodyne measurements. We also note that the FWHMs
of the broadened carrier signals in Eqs. (109) and (110) are no
longer related, and exhibit different scaling properties. In this
limit, Si( f ) can no longer be taken as a proxy for SE ( f ).

A. Master equation approach

While Sδν ( f ), SE ( f ), and Si( f ) depend only on h0 and fc,
Rabi gate errors also depend on 
0. Single-photon gate errors
caused by finite-bandwidth white noise can be computed from
Eq. (78), without approximation, giving

E = πh0

2
0

{
2y[1 − (−1)2N cos(2πNy)]

1 − y2

+ 2arctanh(y) + Ci[2πN (1 − y)] − Ci[2πN (1 + y)]

− 2πN Si[2πN (1 − y)] + 2πN Si[2πN (1 + y)]

}
,

(111)

E = 4πh0

3
0

{
y[1 − (−1)2N cos(2πNy)]

1 − y2

− πN Si[2πN (1 − y)] + πN Si[2πN (1 + y)]

}
, (112)

where Ci(x) and Si(x) are cosine and sine integral functions
[40], and y ≡ 2π fc/
0.

In the limit fc � 
0, Eqs. (111) and (112) reduce to the
previously obtained results in Eq. (79) for wide-bandwidth
white noise. In the opposite limit, fc � 
0, we obtain the
following results for 2πN Rabi gates:

E ≈
⎧⎨
⎩

8π2h0 fc


2
0

(N = 1/2, 3/2, . . . ),

32π6h0 f 3
c N2

3
4
0

(N = 1, 2, . . . ),
(113)

E ≈
⎧⎨
⎩

16π2h0 fc

3
2
0

(N = 1/2, 3/2, . . . ),

64π6h0 f 3
c N2

9
4
0

(N = 1, 2, . . . ),
(114)
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where we have also taken h0 � 
0, as consistent with the
weak-noise approximation. In this regime, we note that the
results do not depend on fc being larger or smaller than h0. As
in Sec. IV D, the two-photon gate errors are additive, yielding

E =

⎧⎪⎨
⎪⎩

8π2(h1 fc1+h2 fc2 )

̃2

0
(N = 1/2, 3/2, . . . ),

32π6
(

h1 f 3
c1+h2 f 3

c2

)
N2

3
̃4
0

(N = 1, 2, . . . ),
(115)

E =

⎧⎪⎨
⎪⎩

16π2(h1 fc1+h2 fc2 )
3
̃2

0
(N = 1/2, 3/2, . . . ),

64π6
(

h1 f 3
c1+h2 f 3

c2

)
N2

9
̃4
0

(N = 1, 2, . . . ).
(116)

Qualitatively different types of behavior are observed in
Eqs. (113)–(116) for half vs full rotations, which may be
understood as follows. Frequency noise causes the Rabi ro-
tation axis to tilt away from the equator of the Bloch sphere,
resulting in gate errors. However, for the special case of full
rotations, the Bloch state returns to its initial value (to leading
order in a noise expansion), regardless of the tilted rotation
axis. A secondary effect of the tilt is to increase the rotation
speed, resulting in over-rotation. This effect is higher order,
however, yielding smaller errors for full rotations. In other
words, for the special case of full rotations, in the limit of
quasistatic noise, the leading-order contribution to the gate
error vanishes; for all other cases, lower-order contributions
are still present.

In Fig. 11, we show results of numerical simulations for
bandwidth-limited white noise, for both π and 2π rotations.
The corresponding theoretical predictions from Eq. (111) are
also shown as blue curves. The theory clearly captures the ma-
jority of the errors arising from such noise spectra. However,
for the case of 2π rotations, the theory breaks down in the
limit of small fc/h0. Specifically, we find that Eq. (111) fails
when fc � 1.43h0. (Failure also requires that fc � 
0/2π .)
We attribute this failure to the fact that the master equa-
tion derivation in Sec. IV employs an expansion in powers
of the noise strength, keeping only the leading-order term.
Hence, for the special case of full rotations, in the quasistatic
limit (where the leading-order contribution to the gate error
vanishes), our theory does not capture the central physics.

B. Quasistatic Gaussian-distributed noise

To obtain an accurate solution for the singular problem of
full rotations in the quasistatic limit, we modify the master
equation approach of Sec. IV B. The starting point for these
calculations is the fluctuating frame Hamiltonian of Eq. (62),

H = h̄
0

2
σz + hδν

2
σx, (117)

which describes a rotation tilted slightly away from the de-
sired Rabi rotation axis. In the quasistatic limit, the frequency
fluctuation δν remains constant for the duration of the gate
operation.

(a)

(b)

FIG. 11. One-photon Rabi errors for white, band-limited fre-
quency noise with fixed amplitude h0 = 3.18 kHz2/kHz, as a
function of the noise bandwidth, fc. (a) π rotations. (b) 2π rota-
tions. Here, red data correspond to numerical simulations, while the
blue curves correspond to master-equation theory, Eq. (111), and
the green curves correspond to the quasistatic theory, Eq. (121).
The master-equation result fails only for the special case of 2π

rotations, for bandwidths below the (vertical-dashed) crossover fre-
quency, fc ≈ 1.43h0. The quasistatic theory works well for both π

and 2π rotations, for the case of narrow bandwidths.

The dynamics of the density matrix is readily solved for a
static Hamiltonian, yielding

ρ(t ) = 1

2
+

{
(2πδν)2

2
′
0

2 + 
2
0

2
′
0

2 cos(
′
0t )

}
σx

+
{


0

2
′
0

sin(
′
0t )

}
σy

+
{

2πδν 
0

2
′
0

2 [1 − cos(
′
0t )]

}
σz, (118)

where 
′
0 ≡

√

2

0 + (2πδν)2, and we have adopted the same
initial conditions as in Sec. IV B, namely, ρ(0) = 1

2 (1 + σx ).
Equation (118) describes the evolution of a pure state in

a rotating frame. We now assume the fluctuation δν is drawn
from a Gaussian distribution with probability

pδν = 1

σδν

√
2π

e−(δν)2/2σ 2
δν . (119)
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Here, the connection to the bandwidth-limited white-noise
power spectrum in Eq. (108) is provided through the variance:

σ 2
δν = 〈(δν)2〉δν =

∫ ∞

−∞
Sδν ( f )df = 2h0 fc. (120)

As in Sec. IV C, the error in a Rabi gate defined by the
gate period t = 2πN/
0 is given by E = 1 − tr[〈ρ〉δνρideal],
where ρideal is defined in Eq. (75). Expanding Eq. (118) in
leading powers of 2πδν/
0, we obtain the following result
for one-photon quasistatic gate errors:

E ≈
⎧⎨
⎩

8π2h0 fc


2
0

(N = 1/2, 3/2, . . . ),

48π6h2
0 f 2

c N2


4
0

(N = 1, 2, . . . ).
(121)

Repeating these calculations for the initial states ρ(0) =
1
2 (1 + σy) and 1

2 (1 + σz ), and averaging the results, gives the
average gate error

E ≈
⎧⎨
⎩

16π2h0 fc

3
2
0

(N = 1/2, 3/2, . . . ),

32π6h2
0 f 2

c N2


4
0

(N = 1, 2, . . . ).
(122)

For the case of half rotations (N = 1/2, 3/2, . . . ), we note that
Eq. (122) agrees with Eq. (114). However, for full rotations
(N = 1, 2, . . . ), the results disagree. We plot Eq. (122) as
a green line in Fig. 11, finding that the quasistatic theory
accurately captures the physics of both π and 2π rotations,
for narrow bandwidths.

For two-photon gates, we follow a similar procedure. The
Hamiltonian in the fluctuating frame, Eq. (95), can be rewrit-
ten as

H = h̄
̃0

2
σz + h(δν1 + δν2)

2
σx, (123)

where δν1 and δν2 are the fluctuations of the two dif-
ferent lasers. After making the replacements 
0 → 
̃0 =

1
2/δ and δν → δν1 + δν2, the problem is then identical
to Eq. (117). We note that, although 
̃0 depends on the Rabi
frequencies of the two lasers, the fluctuations are contained
in parameters δν1 and δν2, not 
̃0. Assuming independent
Gaussian distributions for δν1 and δν2, as defined by their vari-
ances, σ 2

δν1
= 2h1 fc1 and σ 2

δν2
= 2h2 fc2, the error calculation

then gives

E ≈
⎧⎨
⎩

8π2(h1 fc1+h2 fc2 )

̃2

0
(N = 1/2, 3/2, . . . ),

48π6(h1 fc1+h2 fc2 )2N2


̃4
0

(N = 1, 2, . . . ),
(124)

for the initial condition ρ(0) = 1
2 (1 + σx ), and

E ≈
⎧⎨
⎩

16π2(h1 fc1+h2 fc2 )
3
̃2

0
(N = 1/2, 3/2, . . . ),

32π6(h1 fc1+h2 fc2 )2N2


̃4
0

(N = 1, 2, . . . )
(125)

for the average gate fidelity.

VII. INTENSITY NOISE

Up to this point, we have only considered phase fluctu-
ations of the laser field. We now also consider fluctuations

FIG. 12. Measured RIN spectrum of the Ti:Sa laser used in
Fig. 3. The orange curve shows the integrated variance at frequency
f , and indicates that nearly all intensity noise occurs below 10 Hz, so
the quasistatic approximation should be excellent for this laser. The
variance integrated from 0.1 to 105 Hz is σ 2

αI
= 3.7 × 10−6.

of the field amplitude, or more specifically, the intensity I (t ),
which is proportional to the laser power, or |E0|2. We define
the fluctuating intensity as

I (t ) = I0 + δI (t ) = I0[1 + αI (t )] (126)

where I0 is the intensity of the noise-free laser and αI (t )
is the time-varying relative intensity fluctuation. The RIN is
a quantity frequently used to characterize the laser quality,
defined as [21]

RIN = SδI ( f )/I2
0 = SαI ( f ), (127)

where SδI ( f ) and SαI ( f ) are power spectral densities corre-
sponding to the autocorrelation functions for δI and αI , as
defined in Eq. (4).

In certain types of lasers, including semiconductor diode
lasers, relaxation oscillations may lead to intensity noise at
frequencies of several GHz [41]. In principle, the effect of
such wide-band intensity noise on gate fidelities can be cal-
culated for arbitrary SαI ( f ), using methods similar to those
derived in previous sections for phase noise. However, for op-
tically pumped solid-state lasers, relaxation oscillations tend
to be limited to much lower, sub-MHz frequencies [42]. These
fluctuations are typically well below the Rabi frequency, and
can therefore be considered as quasistatic for our purposes. A
typical measured RIN spectrum for a solid-state Ti:Sa laser is
shown in Fig. 12. Apart from narrow spikes at multiples of
the 60-Hz power-line frequency, the noise is seen to decrease
rapidly with frequency, such that the variance σ 2

αI
arises pri-

marily from frequencies below 10 Hz. We therefore expect a
quasistatic analysis, as provided below, to be accurate.

Similar to the approach in the previous section, we assume
the fluctuations of αI are drawn from a Gaussian distribution
with probability

pαI = 1

σαI

√
2π

e−α2
I /2σ 2

αI . (128)
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The connection to conventional RIN measurements is made
through the variance:

σ 2
αI

= 〈
α2

I

〉
αI

=
∫ ∞

−∞
SαI ( f )df . (129)

The time-varying Rabi frequency due to intensity noise,
for one-photon gate operations, is given by 
(t ) =

0

√
1 + αI (t ), where 
0 is the noise-free Rabi frequency.

However, to avoid unphysical behavior in this expression, for
the extremely unlikely event that αI < −1, we simply assume
that |αI | � 1, to obtain the leading-order expression for the
fluctuating Hamiltonian in the rotating frame, given by

H ≈ h̄
0

2

(
1 + αI

2

)
σz. (130)

In this section we consider only the worst-case scenario for
intensity-induced errors, which corresponds to the initial con-
dition ρ(0) = 1

2 (1 + σx ), on the equator of the Bloch sphere in
the fluctuating frame, or the north pole of the Bloch sphere in
the laboratory frame of Eq. (59). Solving Eq. (63) for a given,
time-independent fluctuation αI , we then obtain

ρ(t ) = 1

2
+ 1

2
cos

[

0

(
1 + αI

2

)
t

]
σx

+ 1

2
sin

[

0

(
1 + αI

2

)
t

]
σy. (131)

We again compute the error E for a Rabi gate defined by gate
period t = 2πN/
0, where E = 1 − tr[〈ρ〉αI ρideal] and ρideal

is defined in Eq. (75), obtaining

E ≈
〈

(πNαI )2

4

〉
αI

= π2N2σ 2
αI

4
. (132)

For two-photon gates, the situation is only a little more
complicated. Following the approach leading up to Eq. (95),
and performing an additional rotation around the y axis, we
obtain the approximate two-photon Rabi Hamiltonian,

H = h̄
̃

2
σz + h̄�+

2
σx, (133)

where we now include intensity noise:


̃ = [
1(1 + αI1/2)][
2(1 + αI2/2)]

δ

≈ 
̃0

(
1 + αI1

2
+ αI2

2

)
, (134)

Here, 
̃0 is the noise-free version of the two-photon Rabi
frequency. Including intensity noise, the effective detuning is
given by

�+ = � + 
2
1(1 + αI1/2)2 − 
2

2(1 + αI2/2)2

2δ

≈ �+,0 + 
2
1αI1 − 
2

2αI2

2δ
, (135)

where �+,0 is the noise-free detuning, which we set to zero to
achieve full-range x rotations, as described in Sec. IV D.

The complication for two-photon gates is pictured in
Fig. 13. As consistent with Eq. (134), the driving strength
along the original Rabi rotation axis is modified by δ
z =

FIG. 13. Tilted rotation axis (
̂) for two-photon Rabi gates, due
to intensity fluctuations.


̃0(αI1 + αI2)/2. However, in addition, the rotation axis is
tilted by the presence of δ
x = �+, where the average de-
tuning �+ = �+,0 = 0. The density matrix can be solved as
before, to leading order in αI1 and αI2, giving

ρ(t ) = 1

2
+ 1

2
cos

[

0

(
1 + αI1

2
+ αI2

2

)
t

]
σx

+ 1

2
sin

[

0

(
1 + αI1

2
+ αI2

2

)
t

]
σy + ρzσz, (136)

where ρz ∝ δ
x. However, since ρideal does not contain a σz

component, ρz does not enter into the final error expression.
The leading-order errors for two-photon gates are therefore
found to be additive:

E = π2N2
(
σ 2

αI1
+ σ 2

αI2

)
4

. (137)

To test these predictions, we simulate intensity noise by
modeling it as finite-bandwidth white noise, using an ap-
proach very similar to Sec. VI B. Specifically, we define the
intensity noise power spectral density as

SαI ( f ) =
{

hI when | f | � fc,

0 when | f | > fc,
(138)

where fc is the bandwidth. From Eq. (129), we see that σ 2
αI

=
2hI fc, and since αI is dimensionless, hI must have units of
time. In analogy with Eq. (104), we define

αI (t ) =
M/2∑
j=1

2
√

SαI ( f j )� f cos(2π f jt + ϕ j ), (139)

where φ j ∈ [0, 2π ], as usual.
We now solve Eqs. (102) and (103) numerically, using

the one-photon Rabi frequency 
(t ) ≈ 
0[1 + αI (t )/2] for
a given time series αI (t ), generated from Eq. (139). The
procedure is repeated for many random time series and the
results are averaged to compute the fidelity F and the error
E = 1 − F .

The results of these numerical simulations are shown
in Fig. 14 for π and 2π rotations, and for the cases of
narrow-bandwidth noise fc � 
0/2π and wide-bandwidth
noise fc � 
0/2π . Here in panels (a) and (b), fc is held fixed
while σαI is swept. Due to the constraints of our noise model,
this implies that we sweep the parameter hI = σ 2

αI
/2 fc. To

determine where the quasistatic approximation breaks down,
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(c)(a)

(d)(b)

FIG. 14. Rabi errors due to RIN for one-photon gate operations. (a, c) π rotations. (b, d) 2π rotations. (a, b) Results for narrow-bandwidth
noise, fc = 0.1 × 
0/2π . (c, d) We sweep the cutoff frequency fc = 10 × 
0/2π holding σαI = 0.05 constant. In all cases we choose 
0 =
2π × 1 MHz.

we also plot our results while holding σαI fixed and sweeping
fc in panels (c) and (d). We see that the results are well
described by our theoretical predictions in Eq. (132) for the
low-bandwidth regime, as expected, but diverge quantitatively
in the high-bandwidth regime.

For two-photon gates, we follow the same procedure, now
using the two-qubit Rabi frequency of Eq. (134). The corre-
sponding results are shown in Fig. 15. We again obtain good
agreement with our theoretical predictions in Eq. (137) for
the low-bandwidth regime, but poor agreement for the high-
bandwidth regime.

VIII. SUMMARY AND DISCUSSION

In this paper, we theoretically investigated errors in quan-
tum gate operations of neutral-atom qubits. We focused on
a noise mechanism that dominates many qubit experiments:
phase fluctuations of the driving laser. We considered both
one- and two-photon Rabi oscillations. We also considered
generic noise spectra, such as flat-background (white) noise,
and noise peaked at finite frequencies. We refer to the latter as
“servo-bump noise,” due to the common occurrence of noise
peaks due to servo-loop feedback circuitry.

We have specifically considered the weak-noise regime,
which is typical of modern qubit experiments. In this limit,
we uncover simple relations between the underlying phase-
noise spectra and noise spectra measured in self-heterodyne
experiments. These relations are given in Eqs. (14), (28),
and (29), and they allow us to analyze and fit experimental

self-heterodyne data using specific white and servo-bump
noise models, as described in Sec. III.

The weak-noise limit also allows us to solve a master
equation, describing the effects of laser phase noise on Rabi
oscillations, which we then use to calculate gate fidelities. We
perform realistic numerical simulations of Rabi gates by gen-
erating random time series that include white and servo-bump
phase noise. The results are well explained by our master
equation solutions, yielding a deeper understanding of the
decoherence process. Our main results are given in Eqs. (78),
(79), (82), (97), and (99).

In the case of servo-bump phase noise, we observe that gate
errors are most prominent when the central frequency of the
noise peak occurs near the Rabi frequency, as expected for
T1ρ-type noise mechanisms [5]. For π pulses the gate-error
peak frequency falls in the range 1 � fg/(
0/2π ) � 1.5. The
one-photon error contributions from white noise and servo
bumps are given by Eqs. (79) and (82), respectively. For a
two-photon drive the white noise and servo bump errors are
given by Eqs. (97) and (99), respectively. For a 2π pulse the
gate-error peak frequency is close to fg = 
0/2π . Away from
these peaks, the gate error may be suppressed by many orders
of magnitude, such that the residual errors are dominated by
background noise (e.g., weak white noise). Generally, the con-
tributions to the gate error from different noise mechanisms
are found to be additive in the weak-noise regime.

To demonstrate how these results may be used to guide
future experiments, we consider the case of π rotations (N =
1/2), starting in a computational basis state with two-photon
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˜

(a)

(b)

(c)

(d)

FIG. 15. Rabi errors due to RIN for two-photon gate operations. All panels and simulations parameters are the same as in Fig. 14, but with

0 replaced by 
̃0.

driving. Assuming a Rabi frequency of 
̃0/2π = 1 MHz,
our results show that a white-noise background below h0 =
20 Hz2/Hz would be required on each laser field, to obtain
gate errors below 10−4. As shown in Fig. 3, a locked Ti:Sa
laser satisfies this requirement, while other laser types such
as semiconductor diode lasers typically have larger frequency
noise, even when locked to a reference cavity [23].

If a servo bump is present and its peak frequency occurs
near the Rabi frequency of one of the two transitions, then
achieving a gate-error level of 10−4 would require a total
(integrated) servo bump noise power of no more than sg =
0.000 16. (Note that sg, as defined here, includes the power
in the servo bumps on both sides of the carrier peak.) In the
self-heterodyne noise measurements analyzed in Sec. III, we
observed noise powers of sg1 = 0.000 13 and sg2 = 0.000 27.
Moreover, since the peak frequency of the larger servo bump
occurs at fg = 234 kHz, we can suppress its effect on the
fidelity by choosing a Rabi frequency of 
0/2π ≈ 117 kHz,
or alternatively, a Rabi frequency larger than 1–2 MHz. In this
way, we can realistically expect to achieve gate errors below
10−4 in this system. For more complex gate operations, such
as Rydberg gates for preparing entangled states, longer pulses
are involved and the requirements on laser noise are corre-
spondingly more stringent. A two-qubit entangling Rydberg
gate requires about 2π of ground-Rydberg rotation on each
atom. This implies that limiting the laser noise contribution to
gate fidelities to below 10−4 would require a white-noise spec-
trum with a more demanding noise level of h0 � 5 Hz2/Hz.

Similar estimates of the RIN level required for a desired
gate fidelity can be made. Assuming the RIN is concentrated
at frequencies much lower than the Rabi frequency, Eq. (137)

shows that the gate error is independent of 
0. For a two-
photon π pulse with error at the 10−4 level, the RIN variance
must satisfy σ 2 � 8 × 10−5 and for a Rydberg entangling
gate with errors below 10−4 we need σ 2 � 1 × 10−5. The
data in Fig. 12 show that this variance level is reached with
a well-stabilized laser, although the experimentally relevant
variance corresponds to the light seen by the atomic qubit,
which typically has increased variance due to the instability
of optical components, as well as atomic position fluctuations
[43].

In the limit of weak noise, the errors due to laser phase
noise and RIN are additive. It is apparent that achieving very-
high-fidelity, optically driven gate operations puts stringent
limits on laser noise parameters. This is true for one-photon
and two-photon drives in the ladder configuration considered
here. The highest fidelity optically driven gate we are aware
of is the demonstration of Raman gates on trapped 9Be+ ions
using a two-photon � configuration, where an average error
per gate of 3.8 × 10−5 was achieved [44]. Notably the use of a
� configuration with both beams derived from the same laser
implies a cancellation of phase noise that is not present in the
ladder configuration analyzed here.
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APPENDIX A: FIDELITY MEASURES

In general, the fidelity of a quantum operation depends on
the initial state that it is applied to. It is useful to have an
expression for the operator fidelity averaged over all possible
initial states. It can be shown [32] that for a single qubit,
the fidelity averaged over all possible initial states can be
compactly calculated as the fidelity averaged over just six
states: | ± x〉, | ± y〉, and | ± z〉. For pure states of a qubit the
resulting fidelity can be written as F = 1

6

∑6
j=1 Tr[〈ρ j〉ρ0 j]

where 〈ρ j〉 and ρ0 j are the states due to a noisy gate operation,
and the ideal states for each of the initial states are labeled
by j.

The fidelity appearing in this way can be expressed in a
form that depends on the operator, without specifying the
states. Consider an ideal operator U0 and a noisy operator U.
The fidelity of U with respect to U0 can be expressed as [45]

F = Tr(U†
0UU†U0) + |Tr(U†

0U)|2
n(n + 1)

= n + ∣∣Tr(U†
0U)

∣∣2

n(n + 1)
,

where n is the dimension of the Hilbert space and we have
used the fact that U0 and U are unitary. Clearly when U = U0

we recover F = 1.
We can gain some intuition about this expression for the

particular case of a rotation operator acting on a single qubit.
Let U0 = Rx(θ0) and U = Rx(θ ) with θ = θ0 + δ where δ is
a rotation angle error. After a short calculation we find

F = 1
3 + 2

3 cos2(δ/2). (A1)

An alternative fidelity definition for operations on a single
qubit (n = 2) has been used in [10]:

F ′ = |Tr(U†
0U)|2

4
,

which leads to

F ′ = cos2(δ/2). (A2)

Although F and F ′ agree at δ = 0, they provide different
results for finite δ. For this reason our expressions for the
average gate fidelity of a one-photon transition in Eq. (78),
which derive from F , the standard definition of the fidelity,
differ from the corresponding results that can be derived from
Eqs. (37a) and (40) in [10], even in the limit of low-bandwidth
noise.

APPENDIX B: ERROR ESTIMATES
FOR ARBITRARY RABI GATES

In the main text, we computed errors for Rabi gates with
gate periods t = 2πN/
0, for N = 1/2, 1, 3/2, . . . . These
special gates were chosen because they can be solved ana-
lytically. However, the master equation formalism developed
in this paper can be applied to arbitrary Rabi gates.

Let us consider the arbitrary gate period t = tg. Making
the substitutions ω j → 2π f and � f → df , as well as the
substitution in Eq. (76), Eq. (74) can be rewritten as

〈ρ(tg)〉 ≈ 1

2
+

[
1

2
cos(
0tg) − 2π2
2

0

∫ ∞

0
df Sδν ( f )

2 cos(
0tg) − 2 cos(2π f tg) + (

2

0 − 4π2 f 2
)
(tg/
0) sin(
0tg)

(
2
0 − 4π2 f 2)2

]
σx

+
[

1

2
sin(
0tg)−2π2
2

0 p.v.
∫ ∞

0
df Sδν ( f )

2 sin(
0tg) − 2(2π f /
0) sin(2π f tg)+(

2

0−4π2 f 2
)
(tg/
0) cos(
0tg)(


2
0 − 4π2 f 2

)2

]
σy,

(B1)

where p.v. stands for principal value (applied at the singularity, f → 
0/2π ), and we have made use of the facts that (1) the
singularity in the integrand takes the form (
0 − 2π f )−1 and (2) Sδν ( f ) is generally a smooth function near f = 
0/2π . In this
form, Eq. (B1) can be solved numerically.

We may also compute the gate error associated with Eq. (B1) by noting that

ρideal(tg) = 1
2 + 1

2 cos(
0tg)σx + 1
2 sin(
0tg)σy. (B2)

Defining the gate error as usual by E = 1 − F , where F = Tr[〈ρ〉ρideal], we obtain

E ≈ (2π
0)2 cos(
0tg)
∫ ∞

0
df Sδν ( f )

2 cos(
0tg) − 2 cos(2π f tg) + (

2

0 − 4π2 f 2
)
(tg/
0) sin(
0tg)

(
2
0 − 4π2 f 2)2

(B3)

+ (2π
0)2 sin(
0tg) p.v.
∫ ∞

0
df Sδν ( f )

2 sin(
0tg) − 2(2π f /
0) sin(2π f tg) + (

2

0 − 4π2 f 2
)
(tg/
0) cos(
0tg)

(
2
0 − 4π2 f 2)2

,

which can also be solved numerically.
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