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Measuring the quadrature coherence scale on a cloud quantum computer
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Coherence underlies quantum phenomena, yet it is manifest in classical theories; delineating coherence’s role
is a fickle business. The quadrature coherence scale (QCS) was invented to remove such ambiguity, quantifying
quantum features of any single-mode bosonic system without choosing a preferred orientation of phase space.
The QCS is defined for any state, reducing to well-known quantities in appropriate limits, including Gaussian
and pure states, and perhaps most importantly for a coherence measure, it is highly sensitive to decoherence.
Until recently, it was unknown how to measure the QCS; we here report on an initial measurement of the QCS
for squeezed light and thermal states of light. This is performed using Xanadu’s machine Borealis, accessed
through the cloud, which offers the configurable beam splitters and photon-number-resolving detectors essential
for measuring the QCS. The data and theory match well, certifying the usefulness of interferometers and photon-
counting devices in certifying quantumness.
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I. INTRODUCTION

Coherence is essential to interference and enables quan-
tum properties, including superposition and entanglement
[1–7]. There are many ways to quantify coherence [2,3,8–
18], including its use as a resource [19–30], which agree
that coherence is related to the magnitudes of off-diagonal
components of a density matrix.

Quantifying coherence is thus notoriously ambiguous be-
cause coherence is a basis-dependent quantity. This has long
been a concern when trying to demonstrate macroscopic quan-
tum effects [31–34], from quantum effects in photosynthesis
and light-harvesting compounds [35–42] to coherence in the
human brain [43–45] to entanglement of a tardigrade [46–48].
One must always talk about coherence with respect to a par-
ticular basis, which can be tied to the eigenbasis of some
particular observable.

The coherence scale associated with a particular operator A
can be defined for any state ρ as the probability that ρ couples
two eigenstates of A, weighted by the distance between the
two respective eigenvalues of A [49]. In the case of a quan-
tum system described by a single harmonic oscillator mode,
which is ubiquitous in quantum optics and beyond, one can
remove operator or basis ambiguity by defining the quadra-
ture coherence scale (QCS) as the average of the coherence
scales associated with the position and momentum operators
[49–52]. The QCS can be proven to be independent from the
quadratures chosen, can constitute a witness of quantumness
for any state, and can be reduced to well-studied quantities
for pure and Gaussian states with many desirable proper-
ties, including providing a bound for the distance between
a state and the set of classical states [50]. Until now, the
QCS has not been measured; a recent proposal for measuring
the QCS with no reconfigurable parts using a balanced beam

splitter and photon-number-resolving detectors (PNRDs)
changes that [53].

We generate states and measure their QCSs using Xanadu’s
cloud quantum computer Borealis, which recently demon-
strated quantum advantages in a Gaussian boson sampling
task [54]. Borealis provides squeezed-vacuum states for QCS
measurements, as well as linear-optical networks capable of
generating other states from squeezed-vacuum states, such
as thermal states, to have their QCSs measured. Ideally, the
measured QCSs will show that squeezed states have sig-
natures of quantumness that thermal states do not possess.
However, because the networks are lossy and the detectors
do not have perfect efficiency, we instead measure the QCS
of lossy versions of squeezed-vacuum and thermal states. Al-
though we find that the QCS is not able to certify quantumness
in squeezed states with this amount of loss, we demonstrate
excellent measurement agreement with theoretically predicted
QCS values for the variety of states tested here. We explain
how to extrapolate these results to other settings and how
to interpret a state for which the QCS alone cannot be used
to certify quantumness; other forms of quantumness are still
present in such states. As a by-product of our protocol, we also
use Borealis to directly measure purity and other properties
of our quantum states. These together showcase the diversity
of the QCS and the usefulness of Borealis and its underlying
components.

II. MATHEMATICAL PRELIMINARIES

Consider a single bosonic mode annihilated by â. Starting
from the vacuum state, one can create Fock states with n
excitations via

|n〉 = â†n

√
n!

|vac〉 . (1)
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In this context, the most classical states are agreed to be the
canonical coherent states

|α〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉 , (2)

while the most quantum states differ from coherent states in
some maximal way [55]. An arbitrary quantum state can be
represented in the respective bases as

ρ̂ =
∑

m,n�0

ρmn |m〉 〈n| =
∫

d2αP(α) |α〉 〈α| (3)

and must obey the positivity and trace constraints 〈ψ | ρ̂ |ψ〉 �
0 ∀ |ψ〉 and Tr(ρ̂) = 1. Many important notions of quantum-
ness relate to the negativity or singularness of the P function;
a P function that is positive and no more singular than a Dirac
δ function indicates that a state is a convex combination of
“classical” coherent states.

For such a single bosonic mode, the QCS is defined as

C2(ρ̂) = 1

2P (ρ̂)
{Tr ([ρ̂, x̂][x̂, ρ̂]) + Tr ([ρ̂, p̂][ p̂, ρ̂])} (4)

for the purity P (ρ̂) = Tr(ρ̂2) and the quadrature operators
x̂ = (â + â†)/

√
2 and p̂ = −i(â − â†)/

√
2. This is the aver-

age of the coherence scales associated with the two quadrature
operators and is equal to the same quantity with rotated
quadratures x̂ → x̂ cos θ + p̂ sin θ , p̂ → −x̂ sin θ + p̂ cos θ .
In the position and momentum representations formed from
eigenstates |x〉 and |p〉 of the operators x̂ and p̂, respectively,
the properties of the QCS are evident:

C2(ρ̂) = 1

2

[∫
dxdx′(x − x′)2 |〈x| ρ̂ |x′〉|2∫

dydy′|〈y| ρ̂ |y′〉|2

+
∫

d pd p′(p − p′)2 |〈p| ρ̂ |p′〉|2∫
dkdk′|〈k| ρ̂ |k′〉|2

]
. (5)

This quantifies the average of two quantities: the strength
of the off-diagonal elements in the position basis, weighted
by the difference between the positions in question, and the
same for the momentum basis. The purity factors appearing
in the denominators are necessary to ensure that the weights
are normalized to represent a true probability distribution.
As such, the QCS not only quantifies how much coherence
is present; it also quantifies where the coherence is present,
thereby giving more weight to macroscopic superpositions
than their microscopic counterparts. Canonical coherent states
have C2 = 1, from which one can infer that all states with
classical P functions have C2 � 1. Conversely, larger values
of the QCS signify the presence of quantumness, which is
witnessed by

C2 > 1. (6)

For pure states, the QCS reduces to

C2(|ψ〉 〈ψ |) = Varψ (x̂) + Varψ ( p̂), (7)

coinciding with well-studied indicators of quantumness, in-
cluding the total noise [56,57], total variance [58], mean
quadrature variance [59], and average quantum Fisher infor-
mation for sensing displacements in phase space [55]. For

Gaussian states centered at the origin of phase space, pure or
mixed, the QCS takes the simple form

C2(ρ̂G) = [
Varρ̂G (x̂) + Varρ̂G ( p̂)

]
P (ρ̂G)2, (8)

which is proportional to the trace of the inverse of the state’s
covariance matrix. These have been used to directly compare
the quantum properties of a variety of states to each other and
to establish the agreement of the QCS with other measures of
quantumness in appropriate limits [49,50,52].

The most quantum state we investigate here is the squeezed
vacuum:

|reiφ〉 = exp

(
− â†2reiφ − â2re−iφ

2

)
|vac〉 . (9)

Such states are directly provided by Borealis and have QCS

C2(r) = cosh(2r), (10)

which is equivalent to 1 + 2n̄, with n̄ = 〈â†â〉, as for all pure
states with 〈â〉 = 0. The quantumness grows with increasing
squeezing magnitude r.

The least quantum state we investigate here is a thermal
state:

ρ̂n̄ = 1

n̄ + 1

∞∑
m=0

(
n̄

n̄ + 1

)m

|m〉 〈m| . (11)

Such states are not directly provided by Borealis and have
QCS

C2(ρ̂n̄) = 1

1 + 2n̄
. (12)

The quantumness shrinks with increasing average number of
excitations n̄, corresponding to increasing temperature of the
thermal state. To generate such states, we use the known result
that a single mode of a two-mode squeezed vacuum (TMSV)
state

|TMSV〉ab = 1√
cosh r

∞∑
m=0

(eiφ tanh r)m |m〉a ⊗ |m〉b (13)

is a thermal state

Trb (|TMSV〉ab 〈TMSV|) = 1

cosh r

∞∑
m=0

tanh2m r |m〉a 〈m|

(14)

along with the remarkable property that a careful phase rela-
tionship between two single-mode squeezed states impinging
on a symmetric beam splitter (BS) will generate a two-mode
squeezed-vacuum state:

ˆBSS

∣∣reiφ+i
π
2
〉
a
⊗ ∣∣reiφ+i

π
2
〉
b
= |TMSV〉ab , (15)

where the second mode is annihilated by b̂ and the beam
splitter enacts

ˆBSS

(
â
b̂

)
ˆBS†

S = 1√
2

(
1 i
i 1

)(
â
b̂

)
. (16)

The latter relationship is at the heart of the entanglement-
generating property of beam splitters, where a different phase
relationship will leave the two inputs unchanged and thereby
generate zero entanglement [60–67].
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True experiments exist in the laboratory [68], so the quan-
tum states that will be measured are the above states subject
to loss, detector inefficiencies, and other imperfections. Com-
bining the majority of these effects into a single aggregate
transmission probability η, without loss of generality, we can
consider the loss transformation

â → √
ηâ +

√
1 − ηv̂ (17)

to have acted on the initial states and take all expectation
values assuming the orthogonal vacuum mode annihilated by
v̂ is initially unpopulated. This yields the QCS for the lossy
squeezed-vacuum state [see the Appendix, Eq. (A4)]

C2(r; η) = 1

1 + (1 − 2η) η cosh(2r)−η

η cosh(2r)−η+1

, (18)

which is greater than 1 for any nonzero r and η > 1/2; with
η > 1/2, the QCS of the squeezed vacuum increases mono-
tonically with r. For the lossy thermal states, which transform
into other thermal states with diminished energies n̄ → ηn̄,
the QCS becomes

C2(ρ̂n̄; η) = 1

1 + 2ηn̄
. (19)

Since these are both Gaussian states, the QCS diminishes
due to [Varρ̂G (x̂) + Varρ̂G ( p̂)] → η[Varρ̂G (x̂) + Varρ̂G ( p̂) −
1] + 1, with “interesting” nonmonotonic dependence on η

coming from the transformation of the purity P when a state is
subject to loss (again, see the Appendix for an explicit form).
In the appropriate limit of complete loss, every state becomes
a zero-amplitude coherent state with C2 = 1.

III. SETUP

To measure the QCS of a particular state, one requires
access to two copies of that state, a balanced beam splitter,
and PNRDs. This can be seen by expressing the QCS as [53]

C2(ρ̂) = Tr[ ˆBSB(ρ̂ ⊗ ρ̂ ) ˆBS†
B(−1)â†â(1 + 2â†â)]

Tr[ ˆBSB(ρ̂ ⊗ ρ̂ ) ˆBS†
B(−1)â†â]

, (20)

where the balanced beam splitter enacts

ˆBSB

(
â
b̂

)
ˆBS†

B = 1√
2

(
1 1
1 −1

)(
â
b̂

)
. (21)

Each component of this expression is provided by Borealis;
technical specifications and diagrams of the setup can be
found in Ref. [54]. The code used to deploy these circuits
on Borealis is available in our Github repository [69]. Impor-
tantly, this same setup can be used to measure the QCS of any
input state without changing any measurement configurations.

First, multiple copies of identical squeezed-vacuum states
are created by pumping an optical parametric oscilla-
tor repeatedly with identical pulses carved from a single
continuous-wave laser source up-converted to 775 nm pulses
repeated at 6 MHz with an average power of 3.7 mW and
a duration of 3 ns per pulse. This prepares a state |reiφ〉⊗m

for a desired number of time-bin modes m each separated
by τ = 1/(6 MHz), where r is chosen to be 0.653, 0.978, or
1.156. The pulse trains are sent to a series of delay loops of
different lengths with configurable phase shifters and beam

splitters at the entrance of each loop. To interfere a particular
pair of time-bin modes, the earlier time-bin mode must be
sent through a delay loop to exit coincidentally with the later
time-bin mode arriving at the loop. Then, after all of the
interference occurs, the time-bin modes are each sent to one
of 16 transition-edge sensors that measures the total number
of photons in the corresponding mode. Calibration data for the
efficiencies and phases imparted by each of these components
are recorded in our Github repository. The photon-number
statistics of the final global state �̂

p(na, . . . , nm) = 〈na|a ⊗ · · · ⊗ 〈nm|m �̂ |na〉a ⊗ · · · ⊗ |nm〉m
(22)

can then be used to determine the QCS and other relevant
properties of the input state ρ̂. These are determined by per-
forming between N = 9.5 × 105 and 106 trials and counting
the number of times each arrangement of photon numbers is
recorded. A figure of the general setup as well as more details
about the squeezed-light generation, the beam splitters, the
delay loops, and the detectors can be found in Ref. [54]; we
sketch our specific setups in Figs. 1 and 2.

Any experiment to measure the QCS for the squeezed
vacuum requires two squeezed-vacuum states, m = 2. As
depicted in Fig. 1, the first mode is sent through the first
delay line and interacts with the second mode on a bal-
anced beam splitter after the latter arrives at the delay and
the former traverses the delay; then the number of photons
in each mode is measured. Ignoring the results of the mea-
surement in mode a [i.e., computing the marginal pnb =∑

na,nc,...,nm
p(na, nb, nc, . . . , nm)] allows us to compute the

QCS as [53]

C2(ρ̂) = 1 + 2

∑
nb

nb(−1)nb pnb∑
nb

(−1)nb pnb

, (23)

where one may notice that the expression in the denominator
is the parity of the output state, exactly equal to the purity of
the input state: P = ∑

nb
(−1)nb pnb . We can then assign errors

to this value using multinomial statistics.
Measuring the QCS for thermal light requires extra steps.

As depicted in Fig. 2, four identical squeezed-vacuum states
are created; the first from each pair traverses the first delay
loop to then interfere with the second from each pair, and the
interference creates a TMSV in each pair with 2 sinh2 r pho-
tons on average. The reduced state for each of the four modes
is a thermal state with an average of n̄ = sinh2 r photons. Once
these identical thermal states are created, we can determine
the QCS from any two of them. We send the first time-bin
mode to wait at the second delay loop until the first of the
second pair of time-bin modes arrives. These then interact at
a balanced beam splitter; the photon-number statistics of the
modes are measured, and the marginal statistics in the mode
with destructive interference are used to compute the QCS.

The Borealis device supplies calibration data from which
one can compute the total transmission parameter η. When
the loss is not identical among the time-bin modes, we can
pretend to add loss throughout the circuit until the loss is equal
throughout, without “loss” of generality. This means that the
overall transmission η must be the lowest of all the relevant
time-bin modes. We can also find an upper bound for η by
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FIG. 1. Schematic for measuring the QCS of a squeezed-vacuum state of light. Two copies of the same squeezed-vacuum state are created
by the source S; one gets stored in a delay line equal to the pulse separation of τ = 1/(6 MHz), and then the second gets sent through a phase
shift φ before impinging upon a symmetric beam splitter (BS) coincidentally with the first photon. The phases are chosen so that one mode
destructively interferes, the photon numbers are measured for each mode by a PNRD, and then the photon-number distribution from the mode
with destructive interference is used to infer the QCS. Loss and inefficiencies are present throughout and can be collected as one large loss
channel acting identically on each input state. Inset: the schematic “unraveled” to represent the time-bin modes as spatial modes.

dividing the average number of photons arriving at a detector
by the input energy sinh2 r. There will be more uncertainty
regarding η as one increases the time between when the device

was calibrated and when the demonstration is performed, so
we use both the quoted values of η and the energy calcula-
tion to inspect our measurement results. When demonstrating

FIG. 2. Schematic for measuring the QCS of a thermal state of light. Two copies of the same squeezed-vacuum state are created by the
source S and then interfere as in Fig. 1, but with a different phase φ to generate a TMSV state. Both branches of the TMSV are sent into
a second, larger delay loop with period 6τ while the first delay loop is reused to generate another copy of the TMSV from another two
squeezed-vacuum states. The time bins are chosen such that the first branch of the first TMSV exits the second delay loop coincident with the
first branch of the second TMSV arriving there. The phases are now chosen so that one mode destructively interferes, the photon numbers are
measured for each mode by a PNRD, and then the photon-number distribution from the mode with destructive interference is used to infer the
QCS. Loss and inefficiencies are present throughout and can be collected as one large loss channel acting identically on each input state. Inset:
the schematic unraveled to represent the time-bin modes as spatial modes.
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TABLE I. Measured QCS values for squeezed-vacuum and ther-
mal states of light with average energy n̄ = sinh2 r. The transmission
parameter for the initial state calculated using the device calibration
parameters is ηC, while that from the measurement of the transmitted
energy is ηM. The transmission parameters are different for different
scenarios because (a) the demonstrations are not conducted simulta-
neously and (b) the squeezed light has to traverse extra delay loops
relative to the thermal light for technical reasons. The numbers in
parentheses are the square roots of the calculated variances from the
observed data and multinomial statistics.

Squeezed vacuum Thermal light

QCS ηC ηM QCS ηC ηM

r = 0.653 0.9003(9) 0.190 0.2010(2) 0.792(1) 0.267 0.2564(2)
r = 0.978 0.809(2) 0.190 0.1901(8) 0.584(3) 0.267 0.2447(8)
r = 1.156 0.760(3) 0.190 0.183(2) 0.459(5) 0.267 0.240(2)

quantum computational advantage, the Borealis machine had
at most η � 0.482 ± 0.009 in any mode [54], so we do not
expect to certify quantumness in this demonstration due to
the requirement of η > 1/2 for lossy squeezed states to have
C2(r, η) > 1.

Finally, we must model the uncertainty in our determina-
tion of the QCS, requiring an estimate for the uncertainty on
each probability that enters into Eq. (23). For a single PNRD,
each trial measures a particular number of photons. Assuming
some arbitrarily large number of photons is the maximum that
can be measured, the data from these trials are multinomially
distributed, with some underlying probability to observe n
photons. We estimate that underlying probability using the
observed probability distribution by counting the total number
of times Nn that n photons are observed: pn = Nn/N . The
estimated sample covariances of these estimates are given
by Cov(pm, pn) = 1

N−1 pn(δmn − pm). Differentiating the QCS
with respect to the underlying probabilities yields

Var(C2) =
∑
mn

Cov(pm, pn)
∂C2

∂ pm

∂C2

∂ pn

=
∑
mn

pn(δmn − pm)

N − 1

(−1)m+n

P2
(2m + 1 − C2)

× (2n + 1 − C2)

= 1

P2

∑
n

pn

N − 1
(2n + 1 − C2)2, (24)

where each component is evaluated at the observed values
of pn and the final expression can be recast in terms of the
measured purity, QCS, and moments of the measured mode’s
photon number â†

outâout. The multinomial statistics reduce to
Poisson statistics because

∑
m pm(−1)m(2m + 1 − C2) = 0.

IV. RESULTS

The results are given in Table I and are depicted as points
in Figs. 3 and 4; all of the raw data and the scripts used for
processing them are available in our Github repository. The
uncertainties in the QCS computed using Eq. (24) are too
small to be seen. The data always yield a slightly smaller

FIG. 3. Expected QCS for a single-mode squeezed vacuum with
squeezing parameter r (energy sinh2 r) that has been subject to
loss (overall transmission η); all parameters are unitless. Three data
points from the Borealis machine are included. Since η is, in prin-
ciple, not known a priori, the η value ascribed to the measured data
point is plotted at the calibrated point supplied by a query to the
Borealis machine ηC and the point measured using the transmitted
energy ηM . The zoomed-in inset shows that the measured QCS is
always slightly smaller than the predicted one. Errors for the data are
too small to see; errors for the theory curves are given by ascribing
uncertainties to the measured photon-number distribution. QCS less
than or equal to unity cannot be used to certify quantumness, even if
the latter is present in some other form.

FIG. 4. Expected QCS for a thermal state with average energy
n̄ that has been subject to loss (overall transmission η); all pa-
rameters are unitless. Three data points from the Borealis machine
are included. Since η is, in principle, not known a priori, the η

value ascribed to the measured data point is plotted at the calibrated
point supplied by a query to the Borealis machine ηC and the point
measured using the transmitted energy ηM . The measured QCS is
always slightly smaller than the predicted one. Errors for the data are
too small to see; errors for the theory curves are given by ascribing
uncertainties to the measured photon-number distribution.
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QCS than predicted, possibly due to other realistic imperfec-
tions such as decoherence of the squeezed-vacuum states that
uniformly reduces the QCS and spurious detector counts that
cannot be absorbed into the model for η.

Spurious count rates are likely on the order of 10−3 [54],
including light leakage other than detector dark counts [70],
for example, from mode-mismatched photons [71], which are
not enough to explain the discrepancy between the theory
and observations. Instead, we look for errors on the theory
curve due to discrepancies between the measured distribution
{pn} and the expected distribution from a lossy squeezed
state { p̃n(r, η)}. Writing Cov(pm, pn) = δmn(pn − p̃n)2/3 to
consider a flat distribution of half-width |pn − p̃n|, we can
compute the variance as per Eq. (24) for the theoretical result
and plot this as the error bar on the theory curves in Figs. 3
and 4 centered at the value of ηM for each measurement. The
errors are larger for larger squeezed states, which are sub-
ject to greater decoherence; the errors are larger for thermal
states than for squeezed-vacuum states, which is likely due
to the extra steps required to generate the thermal light, and
the data points fall well within these ranges of error bars. The
amount of loss is sufficiently high that the QCS cannot certify
quantumness for the lossy squeezed-vacuum states, always
finding C2 < 1, but the close agreement between the data and
theory for squeezed states implies that the QCS could readily
certify quantumness if less loss were present.

The measured transmission parameters listed in Table I and
depicted in Figs. 3 and 4 diminish with increasing probe-state
energy. This could be due to greater mode mismatch for the
beams of light with more light or due to deviations from the
calibrated squeezing strengths that are more pronounced at
higher squeezing.

Even though the states measured here have η < 1/2 and so
cannot be certified quantum by the QCS, they still have other
quantum properties. It turns out that such states have negative
P functions for any transmission value η > 0, as can be seen
by performing the scaling transformation P(α) → P(α/

√
η)

when any state undergoes loss, so such states can still be use-
ful for some quantum information protocols.1 For example,
Gaussian boson sampling can still have quantum advantages
with η ≈ 0.3 [54]. In contrast, QCS less than unity implies
no possible quantum advantage in displacement sensing with
the present state. This means that we have demonstrated the
usefulness of this device for measuring the QCS but that
the quantum states it provides are insufficient to be certified
quantum by the QCS and therefore that the quantum states
measured here may only be useful for specific quantum appli-
cations.

1This can also be demonstrated by showing that any lossy
squeezed-vacuum state will generate entanglement when impinging
on a beam splitter with a vacuum state in the other input port, a nec-
essary and sufficient condition for P nonclassicality [72], by using
known conditions for bipartite entanglement of Gaussian states. It
also agrees with the bound from Ref. [52] that says entanglement
negativity can be nonzero only if C2 > exp(−2/e) ≈ 0.48, which is
the case here with a minimum of 1/2 at r → ∞.

V. DISCUSSION AND CONCLUSIONS

The QCS is an intriguing quantifier of the amount of
quantumness in any single-mode bosonic state. We measured
the QCS for squeezed vacuum and thermal light with vari-
ous average energies using the squeezed light, programmable
interferometer, and PNRDs provided by Xanadu’s Borealis.
We found a maximal QCS of 0.9003(9) and 0.792(1) for
the squeezed and thermal states, respectively, which occurred
for the smallest input energies n̄ ≈ 0.5 that we tested due
to the amount of loss present in the system. The distance
between any state and the set of P-classical states is lower
bounded by C − 1 [50], so QCS values smaller than 1 cannot
distinguish between P-classical and P-nonclassical states. The
amount of loss present prohibited certification of quantumness
using the QCS; with transmission probability η > 1/2, larger
energies would have led to larger witnesses of quantumness
for the squeezed-vacuum states to distinguish them from the
thermal states. Since the data closely followed the theory, it
follows that the present scheme, developed in Ref. [53], could
certainly be used to certify quantumness using PNRDs to
measure the QCS if less loss were present.

Most of the trials reported on here measured small numbers
of photons. This brings to bear the possibility of measuring
the QCS with other types of PNRDs, such as superconducting
nanowire detectors that were recently shown to discriminate
between photon numbers up to four [73–75]. Such devices
are faster than the transition-edge sensors used by Borealis,
although they suffer from poorer confidence in determining
photon numbers. If we perform the analysis on our data by
artificially truncating the probability distributions at four pho-
tons, the resultant QCS values are always within 5% of those
reported in Table I. These imply that a variety of devices can
be used to measure the QCS, which can be optimized for any
given context.

Other interesting properties of quantum states can be mea-
sured using multiple copies of the state to be measured,
configurable interferometers, and photon-number-resolving
detectors, as detailed in Ref. [76]. We measured 〈â†

outâout〉
in the difference mode at the output to estimate the over-
all transmission parameter η. This measurement is a direct
measurement of 〈â†

inâin〉 − |〈âin〉|2 for the input state [76],
which, indeed, diminishes proportionally to the loss param-
eter. Moreover, if we were to measure 2〈â†

outâout ⊗ b̂†
outb̂out〉 of

the photon numbers at the two output ports, we would have
measured 〈â†2

inâ2
in〉 − |〈â2

in〉|2 of the input, which would also
diminish proportionally to the loss parameter. However, the
latter quantity cannot be measured by assuming a constant loss
throughout the circuit without loss of generality; moreover,
neither constitutes a measure of quantumness. More copies
of the state and more intricate circuits can be used to in-
spect a whole host of indicators of quantumness [76] using
machines like Borealis, which is well suited to these applica-
tions because it repeatedly produces identical quantum states
in subsequent time bins that can then be made to interfere
coherently with each other.

These devices can also be used to herald the production of
other quantum states. For example, by heralding on measuring
certain numbers of photons in one branch of the TMSV, one
creates states like those studied in Ref. [77]. The QCS for
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such states was evaluated in Ref. [51], which also required
transmission parameters η > 1/2 to certify quantumness, so
this could be measured in another system with less overall
loss to certify quantumness.

It is perhaps a coincidence that η = 1/2 is the cutoff below
which the QCS cannot certify quantumness for a variety of
states. For initially pure Gaussian states with C2 > 1, one
may prove (see the Appendix) that the QCS shrinks to unity
exactly at η = 1/2. One might expect this property to be true
in general, as it holds true for non-Gaussian states such as
Fock states and the aforementioned convex combinations of
Fock states. However, it is not true for initially mixed Gaus-
sian states. We thus may have the supposition that the QCS
stops signifying quantumness when transmission reaches 50%
for all pure states and some mixed non-Gaussian states, but
even that finds counterexamples in simple states like (|1〉 +
|2〉)/

√
2. More study of the sensitivity of this coherence mea-

sure to loss is certainly warranted, as it may simultaneously
constitute a transmission and a coherence quantifier.

Is photon counting strictly necessary for measuring the
QCS? Not if one has access to full-state tomography, which
can be done using heterodyne detection or by finding all
of the moments of many different quadrature operators us-
ing homodyne detection. The problem with tomography is
that it is expensive, slow, and error prone: many different
measurements are required for many different measurement
settings in order to recreate a state’s characteristic function,
from which one can compute any property. Homodyne de-
tection, for example, also requires a phase-stabilized local
oscillator to be mode matched with the state being analyzed.
In contrast, the setup here works efficiently for any input
state and never requires changes in measurement settings;
moreover, the detectors used here are highly efficient, with
slight degradation due to multiplexing for the purpose of being
sensitive to hundreds of modes [54]. It is also true that states
guaranteed to be Gaussian require only measurements of the
second-order moments in order to be fully characterized, so
the strength of the current technique is that it is the only known
one that works for arbitrary states and requires only a single
measurement setting.

At the heart of this demonstration is an array of PNRDs.
The ability to reliably count and distinguish between different
numbers of photons enables numerous quantum technologies,
of which measuring the QCS is but one example. We expect
both the QCS and devices like Borealis to find great applica-
tion.

All of the source code for deploying the circuits on Borealis
and analyzing the data, all of the data files, and the device
certificate, including details such as the squeezing strength,
efficiencies of each delay loop and detector, static phases that
are compensated for throughout the circuit, and more, are
available on Github [69].
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APPENDIX: QCS FOR LOSSY GAUSSIAN STATES

A single-mode Gaussian state has covariance matrix V
with elements(

Vxx Vxp

Vxp Vpp

)
≡

( 〈x̂2〉 − 〈x̂〉2
〈 x̂ p̂+p̂x̂

2

〉 − 〈x̂〉〈p̂〉〈 x̂ p̂+p̂x̂
2

〉 − 〈x̂〉〈p̂〉 〈p̂2〉 − 〈p̂〉2

)
.

(A1)

As an example, single-mode squeezed-vacuum states have
〈x̂〉 = 〈p̂〉 = 0, with

Vreiφ = 1

2
cosh 2r

(
1 0
0 1

)
− 1

2
sinh 2r

(
cos φ sin φ

sin φ − cos φ

)
,

(A2)

while thermal states have diagonal covariance matrices with
n̄ + 1/2 for each variance on the diagonal.

Losing photons from such a state maintains its Gaussianity.
This is represented by supplying another Gaussian state with
a covariance matrix corresponding to the vacuum state, ap-
plying a beam-splitter transformation to the joint covariance
matrix, and then ignoring the auxiliary state [78]. The result is

V → V(η) =
( 1−η

2 + Vxxη Vxpη

Vxpη
1−η

2 + Vppη

)
. (A3)

This transformation and the property P = 1/2
√

det V [79]
suffice for calculating the QCS of any lossy Gaussian state.

We use Eq. (19) to write, for any Gaussian state,

C2(ρ̂G; η) = [η(W − 1) + 1]P2
i

η2 + (1 − η)[η(2W − 1) + 1]P2
i

=1+ η
[
η
(
1 − 2P2

i W + P2
i

) + P2
i (W − 1)

]
η
[
2(η − 1)P2

i W − η
(
P2

i + 1
) + 2P2

i

] − P2
i

,

(A4)

where we have combined the total variance W = Vxx + Vpp �
1 and written the initial (i.e., η = 1) purity as Pi. We can
inspect the zeros of C2(ρ̂G; η) − 1 to find when a quantum
state subject to loss stops being certifiably quantum according
to the QCS. The numerator reaches zero when either η = 0,
corresponding to the transmitted state being the vacuum, or

η∗ = P2
i (W − 1)

2P2
i W − P2

i − 1
. (A5)

This value is 1/2 for initially pure states with Pi = 1 and
grows monotonically with Pi; when WP2

i > 1 such that the
initial state has C2(ρ̂G) > 1, the state remains quantum ac-
cording to the QCS for values of η greater than η∗ given in
Eq. (A5).
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