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Joint Gaussian measurements of two quantum systems are important for quantum communication between
remote parties and are often used in continuous-variable teleportation or entanglement-swapping protocols.
Many of the errors in real-world implementations can be modeled by independent Gaussian error channels
acting prior to measurement. In this work we study independent single-mode Gaussian error channels on two
modes A and B that take place prior to a joint Gaussian measurement. We determine the set of pairs of such
channels that render all Gaussian measurements separable and therefore unsuitable for entanglement swapping
or teleportation of arbitrary input states. For example, if the error channels are loss with parameters lA and lB
followed by added noise with parameters nA and nB, then all Gaussian measurements are separable if and only
if lA + lB + nA + nB � 1.
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I. INTRODUCTION

Quantum communication between remote parties is a key
requirement in the establishment of a quantum network [1].
One important tool for quantum communication is a joint
measurement of two parties, as in teleportation or entangle-
ment swapping [2–5]. Photonic modes are typically the easiest
quantum systems to directly transmit between remote par-
ties, and this motivates a joint measurement of two bosonic
systems [6–8] as a natural choice for quantum communi-
cation. Although both Gaussian [9–12] and non-Gaussian
[13,14] joint measurements have been studied in this context
and realized experimentally [15–20], high-efficiency Gaus-
sian measurements are more readily available. Furthermore,
many types of physical error sources throughout a protocol
can be modeled by independent Gaussian error channels act-
ing prior to measurement [21–24]. The combination of an
ideal Gaussian measurement with Gaussian error channels
results in an effective total measurement that is also Gaussian
[25]. If this effective Gaussian measurement is separable,
meaning that the positive-operator-valued measure (POVM)
elements of the measurement are all convex combinations of
positive product operators, then it is unsuitable for teleporta-
tion or entanglement swapping regardless of the input states.

In this work we investigate independent pairs of single-
mode Gaussian error channels on modes A and B acting prior
to a joint Gaussian measurement of AB. We determine the set
of pairs of such channels that render all effective Gaussian
measurements separable. We achieve this by first analyzing
the case of amplification channels with the parameters aA and
aB followed by loss channels with the parameters lA and lB.
In this case we prove that all effective Gaussian measure-
ments are separable if and only if lA + lB � 1, regardless
of the amplification parameters. We refer to this inequality
as the loss condition for separability. Although applying an

entanglement-breaking Gaussian channel [26] prior to mea-
surement immediately implies that the effective measurement
is separable, we note that the loss condition for separabil-
ity does not follow from analysis of entanglement-breaking
Gaussian channels. For example, loss channels with the loss
parameter 0 � l < 1 are not entanglement breaking. In this
paper we provide a direct and self-contained proof of the loss
condition for separability. We note that it can also be obtained
by applying the results of Refs. [27,28] to dual Gaussian
channels and we elaborate on this point in Sec. VI. For related
prior work we also refer to Refs. [29,30].

We then use the classification of single-mode Gaussian
channels in Ref. [21] to reduce all non-entanglement-breaking
pairs of single-mode Gaussian channels to the loss condi-
tion for separability. For example, if the channels consist of
losses lA and lB followed by added noises nA and nB, then
all effective Gaussian measurements are separable if and only
if lA + lB + nA + nB � 1. In contrast, joint photon number
measurements, which are non-Gaussian, can remain insepa-
rable when large loss channels act prior to measurement. For
example, in the protocol of Duan et al. [31] the probability of
successfully swapping entanglement with a joint photon num-
ber measurement remains nonzero even when arbitrary loss
0 � l < 1 is applied to the two modes prior to measurement.

Experimentally, joint Gaussian measurements can be re-
alized optically with high efficiency and low noise, meaning
lA + lB + nA + nB � 1 when errors like detection ineffi-
ciency, electronic noise, and loss from mode matching to
local oscillators are all combined and parametrized as loss
followed by noise. For example, Ref. [20] reports a total
loss of roughly l = 0.1 on the measured half of an entangled
resource state in an experiment that performs hybrid telepor-
tation with a joint Gaussian measurement. Similarly, Ref. [18]
reports a loss of roughly l = 0.1 on each of the two measured
modes in an all-Gaussian entanglement swapping experiment.
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However, we emphasize that all Gaussian error sources, in-
cluding, for example, noisy resource states, mode-matching
loss, or transmission loss, that act prior to measurement must
also be included when the inequality lA + lB + nA + nB � 1 is
evaluated. As a result, there can be situations where the total
combination of all Gaussian errors that act prior to measure-
ment is sufficiently destructive to prevent even a perfect joint
Gaussian measurement from being used for teleportation or
entanglement swapping. As one example, consider a proto-
col to generate entanglement between two distant microwave
modes by first creating optical-microwave entangled resource
states at the distant nodes, transmitting the optical modes to
a central node, and then performing entanglement swapping
on the optical modes. Creation of the optical-microwave re-
source states requires some form of transduction or related
processes, such as those discussed in Ref. [32]. Some trans-
duction processes considered in Ref. [32] can be modeled, for
realistic device parameters, as creating a pure state followed
by loss of l = 0.5 or more on the optical side. In this case,
a perfect joint optical Gaussian measurement cannot be used
for entanglement swapping, even when all transmission losses
are neglected.

In the microwave domain, single-mode quadrature mea-
surements with effective losses of roughly l = 0.38 and 0.31
have been reported in Refs. [33,34], respectively. These effec-
tive loss parameters are obtained by modeling the imperfect
measurement as a loss channel followed by a perfect quadra-
ture measurement. An equivalent model is a noise channel
followed by a perfect quadrature measurement, in which case
the noise parameters are n = 1/(2 − 2l ) − 1

2 = 0.31 and n =
0.22, respectively [33,34]. This indicates that the requirement
lA + lB + nA + nB � 1 may be especially relevant to joint mi-
crowave Gaussian measurements when all additional sources
of loss and noise are considered.

Our results also provide a more general context for some of
the results of Refs. [9,11,16,35–43], which study teleportation
or entanglement swapping with specific Gaussian measure-
ments on specific input states in the presence of Gaussian error
channels.

This paper is organized as follows. In Sec. II we pro-
vide preliminaries about Gaussian states, measurements, and
channels. In Sec. III we prove Proposition 2, which directly
establishes the loss condition for separability in the special
case that the amplification parameters are zero. In Sec. IV
we establish the loss condition for separability for arbitrary
amplification parameters in Proposition 3 and obtain the cor-
responding condition when the channels are loss followed
by noise in Proposition 5. In Sec. V we provide a method
of determining, for any pair of single-mode Gaussian error
channels that act prior to measurement, whether or not all
effective Gaussian measurements are separable. In Sec. VI we
show how the loss condition for separability can be obtained
by applying the dual error channels to the POVM elements of
a Gaussian measurement.

II. PRELIMINARIES

In this paper we assume familiarity with continuous-
variable quantum mechanics and Gaussian quantum informa-
tion as described, for example, in the review article in Ref. [6].

We also assume a basic understanding of Gaussian channels
as described in Ref. [21].

A bosonic system of m modes is characterized by m
creation and annihilation operators {âi, â†

i }m
i=1 with com-

mutation relations [âi, â j] = 0 and [âi, â†
j ] = δi j . We work

with quadrature operators x̂i = (âi + â†
i )/

√
2 and p̂i = i(â†

i −
âi )/

√
2 with commutation relations [x̂i, p̂ j] = iδi j . We label

individual modes as A, B, C, D, E, and F and the annihilation
operators corresponding to those modes are denoted by â, b̂,
ĉ, d̂ , ê, and f̂ , respectively. We also occasionally use A and B
to refer to multimode systems, in which case the annihilation
operators are denoted by âi or b̂i, where i is the mode index.

The single-mode Gaussian channels that are especially
relevant are loss, amplification, and added noise, which are
referred to in Ref. [28] as types C1, C2, and B2, respectively,
and are phase insensitive. We choose the conventions that the
covariance matrix of vacuum is 1/2, a loss channel with the
parameter 0 � l � 1 transforms covariance matrices V ac-
cording to V �→ (1 − l )V + l · 1/2, an amplification channel
with the parameter a > 1 acts according to V �→ aV + (a −
1) · 1/2, and a noise channel with the parameter n acts ac-
cording to V �→ V + n · 1. A particular family of single-mode
channels that we study in this paper is realized by amplifica-
tion with the parameter a followed by loss with the parameter
l , which transforms covariance matrices V according to

V �→ a(1 − l )V + [a(1 − l ) + 2l − 1]
1

2
. (2.1)

We emphasize that a Gaussian channel is uniquely defined, up
to displacement, by its action on covariance matrices. Some
Gaussian channels are entanglement breaking, meaning that
for any input state the output system is unentangled from ev-
ery other system. We refer to Ref. [26] for further information
about entanglement-breaking Gaussian channels.

Following Refs. [25,44], we adopt the definition of a noise-
less Gaussian measurement on a system A of m modes to be
any measurement consisting of an arbitrary Gaussian unitary
followed by homodyne measurements on k modes and hetero-
dyne measurements on the remaining m − k modes. We use
the definitions of homodyne and heterodyne measurement in
Ref. [25] and we summarize them here. A homodyne mea-
surement is a von Neumann measurement of a quadrature x̂
with a POVM that is the spectral measure of the operator x̂ and
has the associated resolution of the identity conventionally
written as id = ∫

dx|x〉〈x|. A heterodyne measurement is de-
fined by the POVM given by the resolution of the identity id =
1
π

∫
C dα|α〉〈α|, where |α〉〈α| is the projector onto the coherent

state labeled by α [7]. We refer to the improper projectors
|x〉〈x| and the projectors |α〉〈α| as the POVM elements of the
homodyne and the heterodyne measurements, respectively.
We use the notation |x = 0〉 to denote the improper 0 eigen-
state of the operator x̂ and |0〉 to denote vacuum, which is the 0
eigenstate of the operator â. The results of Ref. [25] imply that
a noiseless Gaussian measurement of a joint system AB where
system B is initialized in a pure Gaussian state is equivalent
to a noiseless Gaussian measurement of system A alone. It
follows that our results for arbitrary Gaussian measurements
hold even when Gaussian ancillas are permitted. Furthermore,
Ref. [25] implies that a noiseless Gaussian measurement of a
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system of m modes can be characterized by a family {Mi}m
i=1

of linear combinations of creation and annihilation operators
with the properties in the following list:

(i) {Mi}m
i=1 are mutually commuting,

(ii) {Mi}m
i=1 are linearly independent,

(iii) Mi = M†
i for i = 1, . . . k, for some integer k,

(iv) [Mj, M†
j′ ] = δ j j′ for k + 1 � j, j′ � m. (2.2)

Thus, the first k operators behave like quadrature opera-
tors and the last m − k behave like annihilation operators.
We note that k can be 0, in which case all of the opera-
tors {Mi}m

i=1 satisfy property (iv) and none of them satisfy
property (iii). If the operators {Mi}m

i=1 satisfy the properties
in the list (2.2), then they can be mapped to the operators
x̂1, . . . , x̂k, âk+1, . . . , âm by a Gaussian unitary U . This fol-
lows from the fact that the m operators {M1, . . . , Mk, (Mk+1 +
M†

k+1)/
√

2, . . . , (Mm + M†
m)/

√
2} and the m − k opera-

tors {i(M†
k+1 − Mk+1)/

√
2, . . . , i(M†

m − Mm)/
√

2} satisfy the
same commutation relations as the quadrature opera-
tors {x̂1, . . . , x̂m} and { p̂k+1, . . . , p̂m}, respectively, and by
Ref. [45] they can be extended to a symplectic basis, which
is defined as a basis that is related to the original quadra-
ture operators by a symplectic transform that corresponds
to a Gaussian unitary U . As a result, the state |ψ〉 :=
U (|x̂ = 0〉1 ⊗ · · · ⊗ |x̂ = 0〉k ⊗ |0〉k+1 ⊗ · · · ⊗ |0〉m) is anni-
hilated by all the {Mi}m

i=1, meaning Mi |ψ〉 = 0 for all i. If
an arbitrary multimode displacement α is applied, the state
D(α) |ψ〉 is also a simultaneous eigenstate of the {Mi}m

i=1 with
eigenvalues determined by the displacement. In this paper,
when we say that a Gaussian measurement is characterized
by {Mi}m

i=1, we mean that the Mi satisfy the properties in the
list (2.2) and that the POVM elements of the measurement
consist of the joint eigenstates of {Mi}m

i=1, which are of the
form D(α)|ψ〉〈ψ |D†(α) for all possible displacements α. An
important property of operators M in the span of {Mi} is
that they have non-negative commutators with their adjoints,
that is, [M, M†] � 0. Furthermore, any operator M satisfying
[M, M†] � 0 can be extended to a list of operators {Mi}m

i=1
that characterize a Gaussian measurement such that M is in
the span of the {Mi}m

i=1. This can be verified in the case that
[M, M†] = 0 by first observing that M + M† and iM† − iM
are commuting self-adjoint operators so their span, which
contains M, admits a basis of commuting self-adjoint oper-
ators. This basis can be extended to a symplectic basis and in
particular can be extended to a list of m linearly independent
mutually commuting self-adjoint operators [45]. Similarly, if
[M, M†] > 0 then it can be rescaled so that [M, M†] = 1 and
the operators {(M + M†)/

√
2, i(M† − M )/

√
2} then satisfy

the commutation relations of x̂m and p̂m. These can be ex-
tended to a symplectic basis {x̂1, . . . , x̂m, p̂1, . . . , p̂m}, and the
list of operators {x̂1, . . . , x̂m−1, M} then satisfies the properties
in the list (2.2) for k = m − 1.

As part of our methods of proof we analyze Gaussian
measurements on a system AC when the subsystem C is
initialized in vacuum. If |ψ〉〈ψ |AC is a POVM element of the
full AC measurement, then the effective POVM element on

system A is

�A = trC[idA ⊗ |0〉〈0|C|ψ〉〈ψ |AC]. (2.3)

The right-hand side is mathematically equivalent to the calcu-
lation of the state on A after the system AC is initialized in
the Gaussian state |ψ〉〈ψ |AC and then system C is projected
into vacuum |0〉〈0|C. In such a situation, the resulting state on
system A is a Gaussian pure state, which implies that the ef-
fective POVM element �A is a projector (possibly improper)
onto a pure Gaussian state on system A.

When error channels are applied before a joint measure-
ment the effective measurement may be separable. We use the
definition that a Gaussian measurement is separable if it has
POVM elements that are all convex combinations of positive
product operators. If a measurement is separable according to
this definition then it cannot be used to generate entanglement
during entanglement swapping or to teleport a state such that
entanglement with another system is preserved. For complete-
ness we elaborate on this point in Appendix B.

In this paper the Gaussian measurements that we directly
prove are separable can be expressed by circuits of the form
shown on the left-hand side of the diagram (2.4), which shows
a Gaussian unitary UG acting on two modes A and B and
two vacuum ancilla modes E and F, followed by a noiseless
Gaussian measurement G of A and B and loss of the modes E
and F that is mathematically represented by a partial trace:

(2.4)

To obtain a sufficient condition for the separability of certain
Gaussian measurements of this form, we introduce a hypothet-
ical Gaussian measurement G̃ on modes E and F, as shown on
the right-hand side of the diagram (2.4). The original measure-
ment on the left-hand side is equivalent to the measurement
shown on the right side followed by loss of the outcome of
the measurement G̃. The measurement on the right-hand side
can be interpreted as a noiseless Gaussian measurement of
the full system of A, B, E, and F where the modes E and F
are initialized in vacuum. This measurement is equivalent to
some Gaussian measurement of just the modes A and B and
we refer to its POVM elements as the effective system AB
POVM elements. If the effective system AB POVM elements
are all product operators then the original measurement on
the left-hand side of the diagram (2.4) must have POVM
elements that are all separable. This follows because the ef-
fective system AB POVM elements of the measurement on
the left-hand side must be convex combinations of the system
AB POVM elements of the measurement on the right, where
the convex combinations result from the loss of the outcome
of the measurement G̃.

042604-3



ALEX KWIATKOWSKI et al. PHYSICAL REVIEW A 107, 042604 (2023)

III. LOSS CONDITION FOR SEPARABILITY

In this section we establish that the effective measurement
shown in the circuit

(3.1)

is separable for all Gaussian measurements G when the loss-
channel parameters lA and lB satisfy

lA + lB � 1. (3.2)

The separability condition (3.2) is proven in Proposition 2.
The overall strategy is to first dilate the loss channels by
applying beam splitters with two vacuum ancilla modes E and
F [21,28], as on the left-hand side of the diagram

(3.3)

Here vertical lines connecting two horizontal mode lines in-
dicate beam splitters. The beam-splitter labels indicate the
beam-splitter reflectivity for the labeled mode, which is equal
to the loss parameter. Then consider replacing the trace on
the two ancilla modes E and F by a Gaussian measurement G̃
to be determined, as on the right-hand side of the diagram
(3.3). We show that whenever lA + lB � 1, for all Gaus-
sian measurements G there exists a corresponding Gaussian
measurement G̃ for which the effective system AB POVM
elements of the combined G and G̃ measurement are all prod-
uct operators. As discussed after the diagram (2.4), it follows
in this case that the effective measurement on the left-hand
side of the diagram (3.3) is separable. To this end, we first
give an algebraic sufficient condition for noiseless Gaussian
measurements with vacuum ancillas to have POVM elements
that are all product operators.

Proposition 1. Let A, B, E, and F be one-mode bosonic sys-
tems where modes E and F are prepared in vacuum. Consider
a noiseless Gaussian measurement G of ABEF characterized
by four operators {M1, M2, M3, M4} as described after the list
(2.2). If there exists a complex linear combination of the {Mi}
of the form

M̂ = Â + ξ ê† + ζ f̂ †, (3.4)

with Â a nonzero linear combination of {â, â†} on system A
and ξ and ζ arbitrary complex coefficients, then the effective
measurement on system AB has POVM elements that are all
projectors onto pure product Gaussian states.

Proof. Let |φ〉ABEF be a simultaneous eigenstate of the Mi.
The displacements of |φ〉ABEF are also simultaneous eigen-
states and there is a displacement for which the eigenvalue

of M̂ is not zero. Without loss of generality, assume that
M̂ |φ〉 = λ |φ〉 with λ 	= 0. By rescaling M̂ we can assume that
λ = 1. According to Eq. (2.3), the effective system AB POVM
elements of the measurement G can be expressed as

�AB = trEF(idAB ⊗ |0〉〈0|EF|φ〉〈φ|ABEF) (3.5)

or are related to �AB by displacements. Insert M̂ in the partial
trace to obtain

�AB = trEF(idAB ⊗ |0〉〈0|EFM̂|φ〉〈φ|ABEF). (3.6)

The creation operators ê† and f̂ † annihilate vacuum from the
right, so this simplifies to

�AB = trEF(idAB ⊗ |0〉〈0|EFÂ|φ〉〈φ|ABEF) = Â�AB. (3.7)

By taking adjoints on both sides, we also have �AB = �ABÂ†.
By construction there is a one-mode Gaussian measurement
that is characterized by Â and the 1 eigenstate |ϕ〉A of Â is
unique. Intuitively, because Â − idA annihilates �AB on the
left and Â† − idA annihilates it on the right, �AB must be of
the form �B ⊗ |ϕ〉〈ϕ|A. To verify this statement, let {|k〉B}∞k=0
be an orthonormal basis of B, for example, the number state
basis. Then idB = ∑

k |k〉〈k|B and we can express

�AB =
∑

k

|k〉〈k|B�AB

∑
k′

|k′〉〈k′|B

=
∑
k,k′

|k〉〈k|k′
B 〈k|B �AB |k′〉B . (3.8)

The operators �k,k′ := 〈k|B �AB |k′〉B on A are annihilated
on the left by Â − 1 and on the right by Â† − 1. They are
therefore proportional to |ϕ〉〈ϕ|A. Substituting accordingly on
the right-hand side of Eq. (3.8) expresses �AB as a tensor
product of a projector acting on B with a projector onto a
pure Gaussian state acting on A. Since �AB is a pure Gaussian
state, the projector acting on B is also pure Gaussian. Because
all POVM elements of a Gaussian measurement are related by
displacements, it follows that all effective system AB POVM
elements of the measurement G are product operators. �

Proposition 2. Let G be a Gaussian measurement of modes
AB. Consider the effective Gaussian measurement described
in the circuit

(3.9)

If the loss channel parameters lA and lB satisfy lA + lB � 1,
then this effective Gaussian measurement is separable.

Proof. If the proposition holds for all noiseless Gaussian
measurements, then it holds for all, potentially noisy, Gaus-
sian measurements. We therefore restrict G to be a noiseless
Gaussian measurement for the remainder of the proof.

We first dilate the loss in the circuit of the proposition to
obtain the circuit shown on the left-hand side of the diagram
(3.3) and then determine a measurement G̃ as on the right-

hand side of the diagram to prove separability. We write ˜̂a, ˜̂b,
˜̂e, and ˜̂f for the Heisenberg-evolved mode operators after the
unitary implementing the dilated loss. In terms of the original
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mode operators, we have

˜̂a =
√

1 − lAâ +
√

lAê,

˜̂e =
√

1 − lAê −
√

lAâ,

˜̂b =
√

1 − lBb̂ +
√

lB f̂ ,

˜̂f =
√

1 − lB f̂ −
√

lBb̂. (3.10)

If either lA = 1 or lB = 1, then one of the modes is replaced by
vacuum before the measurement, which implies separability
of the effective measurement. For the remainder of the proof,
we assume that neither equality holds.

Choose M1 and M2 acting on modes AB so that they
characterize G, as described after the list (2.2). The operators
Mi are independent commuting linear combinations of the

four operators ˜̂a, ˜̂b, ˜̂a†, and ˜̂b†. By independence, there is a
nonzero linear combination M of the Mi that is in the three-
dimensional span of ˜̂a, ˜̂a†, and ˜̂b†. Write M = α ˜̂a + α′ ˜̂a† +
β ′ ˜̂b† for complex coefficients α, α′, and β ′. In terms of the
incoming mode operators,

M = α(
√

1 − lAâ +
√

lAê) + α′(
√

1 − lAâ† +
√

lAê†)

+ β ′(
√

1 − lBb̂† +
√

lB f̂ †). (3.11)

We wish to apply Proposition 1, which requires eliminating
the terms of M involving ê and b̂† without introducing terms
involving b̂ or f̂ . Suppose the Gaussian measurement G̃ is
applied to modes EF and suppose M̃ is one of a pair of
operators that characterize G̃. Then M + M̃ is a linear combi-
nation of the operators that characterize the full measurement
on ABEF and it can be used with Proposition 1. With fore-

sight, let M̃ := γ ˜̂e + δ ˜̂f † with γ = −α
√

lA/
√

1 − lA and δ =
β ′√1 − lB/

√
lB. The coefficient γ of ˜̂e is chosen to cancel the

term involving ê in M and the coefficient δ of ˜̂f † is chosen
to cancel the term involving b̂†. By design, no unwanted
terms are introduced. If this assignment of M̃ is possible
then M + M̃ can be expressed as M + M̃ = A + ξ ê† + ζ f̂ †

for some complex ξ and ζ with A acting on mode A, in which
case Proposition 1 implies that the full measurement is sep-
arable across A and B. We next show that if lA + lB � 1,
then there exists a Gaussian measurement G̃ such that M̃ :=
γ ˜̂e + δ ˜̂f † is one of a pair that characterize G̃. In fact, as
discussed after the list (2.2), it suffices for M̃ to satisfy
[M̃, M̃†] = |γ |2 − |δ|2 � 0. In terms of the loss parameters,
this condition is expressed as

|α|2
(

lA
1 − lA

)
− |β ′|2

(
1 − lB

lB

)
� 0. (3.12)

As noted in Sec. II, because M is an operator in the span
of a family characterizing a Gaussian measurement, we have
[M, M†] � 0. In terms of the coefficients in the expression for
M, this becomes |α|2 − |α′|2 − |β ′|2 � 0. In particular, the in-
equality |α|2 � |β ′|2 is satisfied. Thus Eq. (3.12) is satisfied if
lA/(1 − lA ) � (1 − lB)/lB. Multiplying out the non-negative
denominators gives the inequality lAlB � (1 − lA )(1 − lB),
which can be rewritten as lA + lB � 1. �

IV. PAIRS OF PHASE-INSENSITIVE
SINGLE-MODE CHANNELS

We now use Proposition 2 to determine conditions for
separability of all Gaussian measurements when other phase-
insensitive single-mode Gaussian error channels are applied
prior to measurement. We find it convenient to begin with
channels that take the form of amplification followed by loss.

Proposition 3. Let G be a Gaussian measurement of modes
AB, let aA and aB be parameters of amplification channels,
and let lA and lB be parameters of loss channels. The effective
measurement shown in the diagram

(4.1)

is separable for all G if and only if lA + lB � 1.
Proof. If lA + lB � 1, then Proposition 2 applies and

the effective measurement is separable regardless of the
amplification parameters aA and aB. If lA + lB < 1, then sim-
ulating an all-Gaussian entanglement swapping scenario with
a continuous-variable (CV) Bell measurement, similar to the
one in Ref. [35], and checking for entanglement [46,47] of the
two output modes demonstrates that entanglement swapping
is possible regardless of the values of aA and aB. This calcula-
tion is described in further detail in Proposition 9. As a result,
the CV Bell measurement cannot be separable if lA + lB < 1,
so the inequality in Proposition 2 is tight even when arbitrary
amplification channels act prior to loss. �

We next address the problem of establishing a condition for
separability when the error channels take the form of losses
lA and lB followed by added noise with the parameters nA
and nB. We obtain this condition, given in Proposition 5, by
reparametrizing the channels as amplification followed by loss
and applying Proposition 3. The relationship between the two
parametrizations is given by Proposition 4.

Proposition 4. A non-entanglement-breaking Gaussian er-
ror channel that consists of loss l followed by added noise n
is equivalent to a channel that consists of amplification with
the parameter a′ = 1−l

1−l−n followed by a loss channel with the
parameter l ′ = l + n as shown in the diagram

(4.2)

Proof. By applying the definitions in Sec. II, loss with the
parameter l followed by noise with the parameter n acts on
covariance matrices V according to

V �→ (1 − l )V +
(

l

2
+ n

)
1. (4.3)

This can be matched to Eq. (2.1) to recover the effec-
tive amplification and loss parameters a′ and l ′. Matching
terms proportional to V requires (1 − l ′)a′ = (1 − l ) and then
matching the constant terms and solving for l ′ gives l ′ =
l + n. The denominator of a′ is positive as long as l + n < 1,
which is equivalent to requiring that the channel is not entan-
glement breaking [26]. �
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Proposition 5. Let G be a Gaussian measurement of modes
AB, let lA and lB be parameters of loss channels, and let
nA and nB be parameters of noise channels. The effective
measurement shown in the diagram

(4.4)

is separable for all G if and only if lA + lB + nA + nB � 1.
Proof. By Proposition 4, this is equivalent to the circuit

(4.5)

for loss parameters l ′
A = lA + nA and l ′

B = lB + nB and am-
plification parameters a′

A and a′
B. Applying Proposition 3

immediately gives the condition for separability lA + lB +
nA + nB � 1. �

V. ALL PAIRS OF SINGLE-MODE GAUSSIAN CHANNELS

We now show that Proposition 3, which covers error chan-
nels that are amplification followed by loss, can be extended
to cover all pairs of single-mode Gaussian error channels. To
summarize the result, for any pair of single-mode Gaussian
channels, the following procedure can be used to determine
whether all effective Gaussian measurements are separable.
First, check if either channel in the pair is entanglement
breaking, which would immediately imply that the effective
measurement is separable. Then, if any channel is unitarily
equivalent to a channel that adds noise to a single quadra-
ture, treat it as the identity channel in what follows. Finally,
reparametrize the remaining channel(s), up to unitary equiva-
lence, as amplification followed by loss and apply Proposition
3. Unitary equivalence of two channels means that one can be
transformed into the other by applying single-mode Gaussian
unitaries before and after. We emphasize that reparametriza-
tion up to unitary equivalence is suitable for our purpose
because any single-mode unitaries after the channels can
be absorbed into a general Gaussian measurement and any
single-mode unitaries before the channels can be absorbed
into state preparation. In either case this will not affect the
determination of whether or not all effective Gaussian mea-
surements are separable.

We now prove that this procedure works for all pairs of
single-mode Gaussian channels. In particular, we prove in
Proposition 6 that a non-entanglement-breaking single-mode
Gaussian channel can be reparametrized as amplification fol-
lowed by loss, unless it is unitarily equivalent to a channel that
adds noise to a single quadrature. We then show that a channel
that adds noise to a single quadrature can be treated as an iden-
tity, meaning l = a = 0, when the inequality in Proposition
3 is evaluated. Intuitively, this follows because a squeezing
unitary can be applied before and after the channel in order

to make the amount of noise added to a single quadrature
arbitrarily small.

Proposition 6. All non-entanglement-breaking single-
mode Gaussian channels are unitarily equivalent to amplifi-
cation followed by loss or unitarily equivalent to a channel
that adds noise to only one quadrature.

Proof. Single-mode Gaussian channels have been classified
up to unitary equivalence in Ref. [21]. We use the notation
from Refs. [21,26,28], which define four families of single-
mode Gaussian channels denoted by A, B, C, and D and prove
that any single-mode Gaussian channel is a member of one
of these families. Channels of type A represent complete loss
of one or both quadratures and are entanglement breaking
[6,26]. Channels of type D are the complements of amplifica-
tion channels and are also entanglement breaking [26]. Types
B and C are further subdivided into B1, B2, C1, and C2 in
Refs. [26,28]. The channel B1 adds a constant amount of noise
to a single quadrature. Matching the definitions in Ref. [28]
to the definitions in Sec. II shows that channels of type B2

are noise channels with the parameter n, channels of type C1

can be parametrized as loss l followed by added noise nl , and
channels of type C2 can be parametrized as amplification a
followed by added noise na. These channels may or may not
be entanglement breaking depending on the specific values of
the parameters. We showed that non-entanglement-breaking
channels of type C1 can be reparametrized as amplification
followed by loss in Proposition 4 and we show it for channels
of type B2 in Lemma 1 and for channels of type C2 in Lemma
2.

Lemma 1. A non-entanglement-breaking noise channel
with the parameter n can be parametrized as amplification
with the parameter a′ = 1

1−n followed by loss with the param-
eter l ′ = n.

Proof. A noise channel with the parameter n has the action
on a covariance matrix V of V �→ V + n · 1 and is entan-
glement breaking if and only if n � 1 [26]. If n < 1, then
matching to the action of amplification a′ followed by loss
l ′ in Eq. (2.1) shows that a′ = 1

1−n and l ′ = n. �
Lemma 2. A non-entanglement-breaking Gaussian error

channel that consists of amplification a followed by added
noise n is equivalent to an amplification channel followed by
a loss channel with parameters a′ = a

1−n and l ′ = n, respec-
tively. This equivalence is shown in the diagram

(5.1)

Proof. A channel that consists of amplification with the
parameter a followed by noise with the parameter n is en-
tanglement breaking if and only if n � 1 [26]. If n < 1, then
applying the definitions in Sec. II shows that the channel acts
on covariance matrices V as

V �→ aV + (a − 1)/21 + n1. (5.2)

Matching this to the action of amplification a′ followed by
loss l ′ in Eq. (2.1) shows that a′ = a/(1 − n) and l ′ = n. �

As a result, all pairs of non-entanglement-breaking single-
mode channels of types B2, C1, and C2 can be reparametrized
as amplification followed by loss and are covered by Propo-
sition 3. The only remaining non-entanglement-breaking
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channels are of type B1 and add noise to a single quadrature.
This completes the proof of Proposition 6. �

To address channels of type B1, which add noise to a single
quadrature, we first observe that the amount of added noise
can be made arbitrarily small by antisqueezing that quadrature
before the channel and squeezing it afterward. As a result,
these channels are arbitrarily close to the identity channel by
unitary equivalence and can be treated as such when combined
with another channel on the second system for the purpose of
checking whether a pair of error channels makes all effective
Gaussian measurements separable. To make this claim pre-
cise, consider a channel B that adds noise ε to one quadrature.
We can compose it with a channel B′ that adds ε of noise
to the orthogonal quadrature to get the added noise channel
N = B′ ◦ B with noise parameter ε. Following a pair of chan-
nels with another channel on one of the two systems cannot
result in an inseparable effective measurement if the original
pair makes all effective measurements separable. Since we
can make ε arbitrarily small by the squeezing procedure men-
tioned above, for the purpose of checking whether a pair of
channels including a channel of type B1 allows for inseparable
effective measurement, we can treat the type B1 channel as
equivalent to the identity channel. On the other hand, if the
other channel together with the identity channel makes all
effective measurements separable, then replacing the identity
channel with B cannot change this fact. In conclusion, when
combining a channel of type B1 with another channel, separa-
bility of all effective measurements is equivalent to that when
the channel of type B1 is replaced by the identity.

This completes the proof that the procedure stated at the
beginning of Sec. V is sufficient to determine, for any pair of
single-mode Gaussian channels, whether all effective Gaus-
sian measurements are separable.

VI. PROOF OF PROPOSITION 3 USING DUAL CHANNELS

An alternative method to obtain the inequality in Proposi-
tion 3 is to consider dual channels and apply the characteri-
zation found in Ref. [27] of pairs of channels that annihilate
entanglement of Gaussian states, meaning that the output of
every Gaussian input state is separable. If � is a channel
expressed as a completely positive map from an input state
ρ to an output state �(ρ), then the dual channel is the com-
pletely positive map �∗ from input bounded operators �

to output bounded operators �∗(�) such that the following
equation holds for all states ρ and all bounded operators �:

tr[�(ρ)�] = tr[ρ�∗(�)]. (6.1)

For further information about dual Gaussian channels, we
refer to Ref. [28]. In particular, we use the fact from Ref. [28]
that the dual of a loss channel, when restricted to density
operators, is proportional to an amplification channel and vice
versa. The proportionality constants do not affect our analyses
of separability.

To determine whether a joint Gaussian measurement on
modes A and B after error channels �A and �B results in
a separable effective measurement, we can apply the dual
channels �∗

A and �∗
B to the POVM elements of the joint

measurement. These POVM elements are proportional to
the density operators of Gaussian states, so if �∗

A ⊗ �∗
B

annihilates entanglement of Gaussian states then the effective
measurement is separable. It suffices to check POVM ele-
ments that are pure Gaussian states, which can be prepared
by applying a Gaussian unitary to vacuum states. Therefore, it
suffices to consider circuits of the form

(6.2)

where UG is an arbitrary Gaussian unitary. The dual of an
amplification channel with parameter a is a loss channel with
parameter l∗ = 1 − 1

a and the dual of a loss channel with pa-
rameter l is an amplification channel with parameter a∗ = 1

1−l ,
as stated in Theorem 9 of Ref. [28]. As a result, to obtain the
inequality in Proposition 3 it suffices to analyze the circuit in
the diagram

(6.3)

for a∗ = 1
1−l and l∗ = 1 − 1

a and determine the parameters
at which an arbitrary Gaussian input state becomes sepa-
rable. Analysis of this scenario appears in Ref. [27]. The
single-mode Gaussian channels considered in Ref. [27] are
parametrized as �(κ, μ), where the action of �(κ, μ) on
covariance matrices is given by

V �→ κV + μ1, (6.4)

where κ and μ are non-negative real parameters. This
parametrization is general enough to cover any combination
of loss, amplification, and added noise as defined in Sec. II.
In terms of these parameters, Ref. [27] proves the following
condition for entanglement annihilation.

Proposition 7 (from [27]). The channel �(κA, μA) ⊗
�(κB, μB) annihilates entanglement of all two-mode Gaussian
states if and only if κAμB + κBμA � 1

2 (κA + κB).
If the channels take the form of amplification followed by

loss, then this result can be conveniently written according to
the following proposition.

Proposition 8. Consider amplification channels with pa-
rameters a∗

A and a∗
B followed by loss channels with parameters

l∗
A and l∗

B that act independently on an arbitrary two-mode
Gaussian pure state on AB, as shown in the diagram

(6.5)

These channels annihilate entanglement of all two-mode
Gaussian states if and only if

1

a∗
A

+ 1

a∗
B

� 1. (6.6)

Proof. In the notation of Proposition 7, amplification
a∗ followed by loss l∗ is equivalent to �(κ, μ) with
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κ = a∗(1 − l∗) and μ = κ/2 + l∗ − 1/2. Substituting κi and
μi for i ∈ {A, B} into the inequality in Proposition 7 leads to

κAκB � κA(1 − l∗
B) + κB(1 − l∗

A ) (6.7)

and further substitution for κA and κB and cancellation of
(1 − l∗

A )(1 − l∗
B) from both sides leads to

a∗
Aa∗

B � a∗
A + a∗

B (6.8)

and the result follows. �
Now substitution of the dual channel parameters a∗ = 1

1−l

and l∗ = 1 − 1
a into Eq. (6.6) gives the inequality

(1 − lA ) + (1 − lB) � 1, (6.9)

which leads directly to the inequality lA + lB � 1, which is
independent of amplification parameters as asserted by Propo-
sition 3.

VII. CONCLUSION

We have studied two-mode Gaussian measurements that
are made after independent single-mode Gaussian error chan-
nels and showed that, if the error channels are amplification
with parameters aA and aB followed by loss with parame-
ters lA and lB, then all effective Gaussian measurements are
separable if and only if lA + lB � 1. If the error channels are
instead parametrized as loss lA and lB followed by noise nA
and nB, then this condition becomes lA + lB + nA + nB � 1.
The standard CV Bell measurement is a joint Gaussian mea-
surement that remains inseparable for all error channels whose
parameters do not satisfy this inequality. Up to unitary equiv-
alence, all pairs of nontrivial and non-entanglement-breaking
single-mode Gaussian channels that act before the Gaussian
measurement can be reduced to these cases. In particular,
for a given pair of independent single-mode Gaussian error
channels this analysis is sufficient to determine whether or
not entanglement swapping is possible with a joint Gaussian
measurement, even when arbitrary input states are allowed.

Future work can extend this analysis to joint Gaussian
measurements on n > 1 modes of party A and m > 1 modes
of party B, to correlated Gaussian error channels, or to
non-Gaussian bosonic error channels that are experimentally
relevant.
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APPENDIX A: THE INEQUALITY IN PROPOSITION
3 IS TIGHT

Proposition 9. For error channels consisting of amplifi-
cation with parameters aA and aB followed by loss with

parameters lA and lB, all-Gaussian entanglement swapping is
possible if lA + lB < 1 regardless of the amplification param-
eters.

Proof. This follows by combining the arguments in Sec. VI
with the fact that entanglement swapping using two copies of
the infinitely squeezed resource state, given by

∑∞
i |i〉 ⊗ |i〉

in the Fock basis, and conditioning on an outcome of the
swapping measurement associated with an inseparable POVM
element will necessarily result in an inseparable output state.
However, we also provide in this appendix a direct covariance
matrix calculation for all-Gaussian entanglement swapping
with finitely squeezed resource states and a CV Bell measure-
ment that takes place after amplification and loss channels are
applied. We first compute the full four-mode covariance ma-
trix for a pair of two-mode-squeezed states subjected to loss
channels with parameters lA and lB and amplification channels
with parameters aA and aB. Then we compute the resulting
two-mode covariance matrix after a CV Bell measurement is
applied to the modes that experience the amplification and
loss. We use the formula from Ref. [6] to compute the post-
measurement covariance matrix, which has the form

⎛
⎜⎜⎝

nA 0 c 0
0 nA 0 −c
c 0 nB 0
0 −c 0 nB

⎞
⎟⎟⎠ (A1)

for non-negative real parameters nA, nB, and c. In terms of aA,
aB, lA, and lB and the two-mode-squeezing parameter r we
define for convenience κA := aA(1 − lA ), κB := aB(1 − lB),
and η := 1 − lA − lB and find that

nA = 2κA + κB + 2(κA + κB − 2η) cosh 2r + κB cosh 4r

4[κA + κB − 2η + (κA + κB) cosh 2r]
,

nB = 2κB + κA + 2(κA + κB − 2η) cosh 2r + κA cosh 4r

4[κA + κB − 2η + (κA + κB) cosh 2r]
,

c = 2
√

κAκB(cosh r sinh r)2

κA + κB − 2η + (κA + κB) cosh 2r
. (A2)

According to Theorem 2 from Ref. [46], the state is entan-
gled if and only if the inequality

2a2nA + 2
nB

a2
− 4c − a2 − 1

a2
< 0 (A3)

is satisfied, where a2 :=
√

2nB−1
2nA−1 . We note that the entries

of the covariance matrix in Eq. (A1) are (co)variances of
quadratures, while Ref. [46] uses the convention that the anal-
ogous covariance matrix’s entries are twice the (co)variances
of quadratures.

Substituting Eqs. (A2) into Eq. (A3) leads to

−2
1 − lA − lB√

κAκB
< 0 (A4)

in the limit that r goes to infinity. The parameters κA and κB
are non-negative, so this inequality is satisfied when lA + lB <

1 regardless of aA and aB. �
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APPENDIX B: SEPARABLE MEASUREMENTS CANNOT
SWAP OR TELEPORT ENTANGLEMENT

Proposition 10. Consider a joint system of A′, A, B, and
B′ in an initial state ρA′ABB′ that is separable across the
A′A − B′B partition and consider a measurement of the AB
subsystem with an outcome associated with some POVM
element �AB that is a convex combination of positive product
operators across the A − B partition. Assume for simplicity
that the measured system AB is lost after the measure-
ment. The state of the system A′B′ after the measurement is
separable.

Proof. The unnormalized state after the measurement,
denoted by σA′B′ , is

σA′B′ = trAB(ρA′ABB′ idA′B′ ⊗ �AB). (B1)

By assumption, the POVM element �AB can be decom-
posed as

∑
i λiAi ⊗ Bi for positive coefficients λi and positive

operators Ai and Bi. Furthermore, the initial state ρA′ABB′

is assumed separable and can be decomposed according to
ρA′ABB′ = ∑

j γ jρA′A ⊗ ρBB′ for states ρA′A and ρBB′ and pos-
itive coefficients γ j . Substituting into Eq. (B1) leads to

σA′B′ =
∑
i, j

λiγ j[trA(ρA′AidA′ ⊗ Ai )] ⊗ [trB(ρBB′Bi ⊗ idB′ )],

(B2)
which is separable across the A′ − B′ partition. �

Proposition 10 immediately implies that entanglement
swapping with a separable measurement on AB cannot gen-
erate entanglement across the A′ − B′ partition. Similarly, if
the state of A′A is initially entangled and a separable measure-
ment of AB is used to attempt to teleport the state of system A
to the system B′, then Proposition 10 implies that the output
state of A′B′ is unentangled and therefore entanglement with
A′ has not been preserved during teleportation.
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