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The weak-value amplification is extensively considered in precision metrology in order to achieve a higher
sensitivity. Despite the practical benefits in amplifying small physical quantities, its metrological advantage still
arouses a broad debate due to the low postselection probability of success. In this paper, by employing the
quantum Fisher information metric, we show that the precision of estimating an unknown parameter can be
improved by introducing a precoupling process with properly chosen interaction operators. We point out this
result is credible for both real and imaginary weak values. By tracking the meter wave functions, we find this
enhancement of estimation precision comes from a precoupling induced modulation of the meter wave function,
thus the most sensitive regime with respect to the parameter is reached. In addition, the estimation error is
investigated by considering the difference between the theoretical and estimated value. The analysis suggests
that this kind of error can be effectively suppressed by averaging the estimations resulted from different initial
meter states. These results are finally illustrated by an exact numerical simulation where the advantages of our
proposal are displayed by the comparison to the standard weak-value amplification scheme.
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I. INTRODUCTION

The precision measurement of weak physical quantities,
such as the strength of the magnetic field, is essential for
exploring physical effects [1,2]. Following a general scheme,
the quantity can be mapped to the change of system quantum
states and then extracted by a designed state detection and
postprocessing. Through this procedure, one usually expects
to estimate the quantity with smallest possible uncertainty
by utilizing limited quantum resources, to be more specific,
to achieve higher signal-to-noise ratio (SNR) [3–5] or Fisher
information (FI) [6–8].

The concept of weak-value amplification (WVA) [9,10]
proposed by Aharonov, Albert, and Vaidman (AAV) has
attracted broad attention due to its practical potential in detect-
ing tiny effects [11–13]. The WVA scheme involves a weak
coupling between the target system and a meter. Because
of the postselection operation, the average shift rate of the
meter wave packet can go far beyond the maximum eigen-
value of the observable [14,15]. Therefore, when compared to
the conventional measurement (CM), one would say that the
WVA scheme provides an enhanced sensitivity of estimating
ultrasmall parameters. However, this statement has sparked
widespread controversy in some articles [16,17] for the reason
that the WVA with higher FI inevitably comes with a reduced
postselection probability of success. This indicates a large
portion of the output data is discarded, which in turn cancels
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the benefits of the amplification effect. And it is shown that the
failed postselection events also possess a small portion of FI,
which will generally lead to a loss of estimation precision. But
surprisingly, some studies suggest that the WVA technique
may outperform the CM as well if systematic imperfection ex-
ists [18,19]. For example, when the WVA is employed against
the detector saturation, one can achieve a precision six times
higher than that of CM [19]. Also, it has been pointed out that
the technical noise can be suppressed by the WVA technique
in some circumstances [20–25], and even the SNR may be
increased by several orders of magnitude via imaginary weak-
value measurements [23,24]. As an example, in Ref. [25], the
authors suggest that with WVA, the systematic error induced
by the decoherence on the meter can be reduced because the
interaction parameter is amplified while the noise is not.

Although the metrological power of WVA is debated,
considering the amplifying effect in detecting tiny physical
quantities, the attempts aiming to improve its performance are
still significant. For instance, to address the problem of low
postselection probability [26], Pang and Brun [27] pointed
out that by optimizing the initial and postselected states to
maximize either postselection probability or weak value, the
loss of FI can be negligible. And Dressel et al. [28] and
Krafczyk et al. [29] have suggested to recycle the postse-
lection rejected events to avoid information loss. Whereafter,
Strübi and Bruder [30], Martínez-Rincón et al. [31], Qin
and Li [32], and Huang et al. [33] adopted this idea and
then developed the joint weak-value amplification and dual
weak-value amplification techniques, respectively. Addition-
ally, it is found that by adding quantum resources one can
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also improve the estimation precision [4,5,34,35]. On the
one hand, the nonclassical quantum states of meters such
as squeezed states are proven to be more powerful in the
WVA-based metrology than classical states [4,5], which is
consistent with the expectation of quantum resource theory
[36]. Meanwhile, from the aspect of the system, studies in-
dicate that using a N-partite entangled system also provides
such a precision improvement, and has the capacity to achieve
the Heisenberg-limited precision scaling [34,35]. It should be
mentioned that this improvement is in fact resulted from the
N-fold postselection probability increase while the amplifi-
cation factor is preserved. For the above proposals, however,
Kim et al. [37] pointed out the possible challenges in prepar-
ing the nonclassical meter states or macroscopic entangled
quantum states. Then they proposed and demonstrated a novel
WVA scheme based on iterative interactions, by which they
also achieved the Heisenberg-limited precision scaling but no
entanglement state was used.

Recently, Zhang et al. [38] proposed a biased weak-value
amplification (BWVA) technique for measuring small lon-
gitudinal phase change by introducing an extra bias phase.
Because the extra phase initializes the joint system into an
optimal work regime, they concluded that the BWVA can
result in sensitivity outperforming the standard WVA by two
orders of magnitude at the expense of lower signal density.
This scheme is then employed by Yin et al. [39] to achieve
precision improvement of optical metrology in the presence of
saturation effect. Note that the BWVA is actually equivalent to
the WVA scheme working beyond the AAV limit [24], which
leads to limited applications.

In this paper, we propose a general precoupling-assisted
weak-value amplification (PWVA) technique. To make the
model universally valid for various practical circumstances,
we make no assumption about the form of precoupling and
weak-interaction operations. During the formula derivation
process, the linear approximation with respect to the coupling
strength is adopted in order to simplify the results, as most
papers do. We find that due to the extra precoupling which
causes entanglement between system and meter, the state-
dependent wave functions of the meter are modulated, thus
the most sensitive regime with respect to g is reached. Af-
ter the wave-packet interference, the postselection probability
and changing rate of the meter wave packet are optimized.
And as a result, an improved estimate precision is achieved
if the precoupling process is properly designed. Addition-
ally, according to the comparison of estimation error between
PWVA and WVA, an optimized method based on averag-
ing the estimation results derived from different initial states
or weak values is also provided. We note that compared to
WVA, PWVA does not need extra quantum resources such as
squeezing or entanglement with other systems. This actually
indicates wider application in high-resolution experiments.
The remainder of this paper is organized as follows. In Sec. II
we briefly review the WVA-based metrology and show its es-
timation precision with the metric of FI. In Sec. III, a general
PWVA theoretical model is derived. By the FI calculation,
the higher metrological power of PWVA than WVA is shown.
Then a numerical example comparing the PWVA and WVA is
given in Sec. IV. Finally, we conclude in Sec. V.
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FIG. 1. Two WVA schemes aiming to estimate a parameter g by
the interaction between a TLS and meter. (a) The standard WVA. The
meter is detected after interacting with a TLS with strength g and
experiencing a postselection procession (PS). (b) The precoupling-
assisted WVA. Compared to the standard WVA scheme, an additional
precoupling operation is applied after the state initialization.

II. REVIEW OF THE WVA THEORY

The principle of the standard WVA scheme is depicted in
Fig. 1(a) where the two-level system (TLS) and measuring
device (meter) are initially prepared in states |ψi〉 and |φi〉,
respectively. Then they are coupled by an interaction Hamil-
tonian modeled by (h̄ = 1 throughout the paper)

H = gA ⊗ �δ(t − t0), (1)

where A and � are observables of the TLS and meter, and g
characterizes the coupling strength. The δ function indicates
that the interaction is instantaneous at time t0. After this in-
teraction, if the TLS is postselected to state |ψ f 〉, the meter
collapses to (un-normalized)

|φ〉 = 〈ψ f | exp(−igA ⊗ �)|ψi〉|φi〉.

It can be simplified when g � 1:

|φ〉 ≈ 〈ψ f |(I − igA ⊗ �)|ψi〉|φi〉
= 〈ψ f |ψi〉(I − igAw�)|φi〉, (2)

where Aw is the weak value, defined as

Aw = 〈ψ f |A|ψi〉
〈ψ f |ψi〉 . (3)

When 〈ψ f |ψi〉 → 0, Aw can be very large (strongly vio-
lating the bounds of the eigenvalues of A), leading to an
amplifying effect. But this requires a very small overlap be-
tween the states |ψi〉 and |ψ f 〉. When g is very small so that
gAw � 1 holds, the success probability of postselection is
approximately

PS ≈ |〈ψ f |ψi〉|2. (4)

042601-2



OPTIMIZATION OF PARAMETER MEASUREMENT … PHYSICAL REVIEW A 107, 042601 (2023)

Then the normalized meter state after postselection can be
written as

|φp〉 = |φ〉/
√

PS ≈ exp(−igAw�)|φi〉, (5)

a g-dependent pure state.
When repeating N independent WVA operations, the

minimum achievable variance of the estimator g based on
analyzing state |φp〉 is given by the Cramér-Rao bound [6]:
〈(δg)2〉 � 1

NFI
+ 〈δg〉2. The first term on the right side is the

inverse of classical Fisher information (CFI) and scales as
N−1. The second term 〈δg〉2, representing the systematic er-
ror, is independent of N , which implies this term cannot be
suppressed by increasing the repeating number N . Typically,
the CFI is a powerful tool for the parameter estimation about
a parameter g. It is a function of the conditional probability
distribution f (z|g) obtained by measuring the quantum state,
and is defined as FI [ f (z|g)] = PS

∫
dz 1

f (z|g) [∂g f (z|g)]
2

with

PS the postselection probability. It should be mentioned that
the CFI is always positive and is upper bounded by the quan-
tum Fisher information (QFI). The latter can be attained by
optimizing the measurement scheme. In quantum metrology,
the QFI determines the precision limit about the parameter
estimation:

〈(δg)2〉 � 1

NQI
+ 〈δg〉2. (6)

For a pure state, QFI can be expressed as 4PS (〈∂gφp|∂gφp〉 −
|〈φp|∂gφp〉|2) [6,7]. Therefore, combined with Eqs. (4) and
(5), it is clear that the QFI depends on states |ψi〉 as well
as |ψ f 〉. And its achievable maximum reads QS

I = 4Var(�)
with Var(�) the variance of � in the state |φi〉, equaling to the
optimized QFI of the CM scheme. This result confirms that
although the postselected events possess remarkable sensitiv-
ity, WVA offers no metrological advantages over CM due to
the necessarily reduced postselection probability of success.

III. PRECOUPLING WVA THEORY

In this section, a general theoretical model of the PWVA
scheme is introduced. PWVA is a parameter metrology de-
veloped from the WVA method. Their difference lies on the
precoupling operation after the state initialization stage of
both TLS and meter [Fig. 1(b)]. The precoupling process is
realized by an interaction Hamiltonian:

H1 = g1A ⊗ �1δ(t − t1). (7)

Similar to H , g1 represents the coupling strength. A and �1

are operators acting on the TLS and meter, respectively. To
simplify the model, we assume the operator A in H and H1

remains the same, while �1 usually differs from � to en-
sure the flexibility in designing an experimental scheme. As
a result of the precoupling described by a unitary operator
U1 = exp(−ig1A�1), the TLS and meter are entangled. It is
equivalent to updating the initial state of WVA. Therefore, the
quantum state of the combined system before postselection
can be written as

|�〉 = exp{−igA ⊗ �} exp{−ig1A ⊗ �1}|ψi〉|φi〉. (8)

Supposing g, g1 � 1 and g1 � g, expand the equation and
ignore the nonlinear terms of g, then we have

|�〉 ≈ (I − igA ⊗ �)

( ∞∑
k=0

1

k!
(−ig1)kAk ⊗ �k

1

)
|ψi〉|φi〉

=
[ ∞∑

k=0

1

k!
(−ig1)kAk ⊗ �k

1

− g
∞∑

k=0

1

k!
(−i)k−1gk

1Ak+1 ⊗ ��k
1

]
|ψi〉|φi〉. (9)

After this interaction, if the TLS is postselected to state |ψ f 〉,
the meter will collapse to a normalized pure state:∣∣φ(v)

p

〉 ≈ 1√
r (v)

P

|φ(v)〉

= 1√
r (v)

P

[
v∑

k=0

1

k!
(−ig1)k (Ak )w�k

1

− g
v∑

k=0

1

k!
(−i)k−1gk

1(Ak+1)w��k
1

]
|φi〉. (10)

Here, v represents the truncation index of k. (Ak )w =
〈ψ f |Ak|ψi〉/〈ψ f |ψi〉 is defined as the generalized weak value
and Eq. (3) shows a special example when k = 1. r (v)

P =
P(v)/|〈ψ f |ψi〉|2 = 〈φ(v)|φ(v)〉 indicates the relative postselec-
tion probability between PWVA and WVA [Eq. (4)]:

r (v)
P = c(v)

0 + c(v)
1 g + o(g2), (11)

where the coefficients read

c(v)
0 = 1 +

k+l�v∑
k,l=0,k+l>0

1

k!l!
gk+1

1 (Ak )∗w(Al )w
〈
�k+l

1

〉
,

c(v)
1 = 2

k+l�v∑
k,l=0,k+l�0

1

k!l!
gk+1

1 Re
[
ik−l−1(Ak )∗w(Al+1)w

× 〈
�k

1��l
1

〉]
.

For simplicity, we denote 〈φi|O|φi〉 as 〈O〉 for short through-
out the paper where O represents an arbitrary operator in

meter system. Because the QFI of state |φ(v)〉/
√

r (v)
P can be

written as

Q(v)
I = 4P(v)

[〈∂gφ
(v)|∂gφ

(v)〉/r (v)
P − |〈φ|∂gφ〉|2/(r (v)

P

)2]
.

We finally obtain

Q(v)
I = 4|〈ψ f |A|ψi〉|2

r (v)
P

{
Var(�) +

k+l�v∑
k,l=0,k+l>0

1

k!l!
ik−l gk+l

1

× (Ak )∗w(Al )w
[〈�2〉〈�k+l

1

〉 − 〈
�k

1�
〉〈
��l

1

〉]}
. (12)

This expression shows the main result of this paper. One of
its simplified forms can be obtained by setting g1 ≈ g (linear
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region) so that v = 1 can provide a very good approximation
of Eq. (12).

(i) If Aw ∈ R, then r (1)
P ≈ 1, and

Q(1)
I ≈ QS

I + 4|〈ψ f |A|ψi〉|2(−ig1Aw〈�〉〈[�1,�]〉), (13)

where [�1,�] represents the commutation relation
between operators �1 and �. The first term QS

I =
4|〈ψ f |A|ψi〉|2Var(�) provides the QFI of WVA. In this
case, we see that the QFI can be increased only when the
requirement [�1,�] �= 0 is met. This provides us with
criteria to select suitable operators for experimental design.
For example, when � = p, the momentum operator, it is
positive to select the position operator x or number operator n
as �1. The choice �1 = � = p, i.e., applying WVA technique
beyond the AAV limit, however, would be unavailing, so it
should be avoided in practice.

(ii) If Aw/i ∈ R, r (1)
P = 1 + 2Im(Aw )(g〈�〉 + g1〈�1〉),

then r (1)
P ≈ 1 − 2Im(Aw )(g〈�〉 + g1〈�1〉), we obtain

Q(1)
I ≈ QS

I + 4|〈ψ f |A|ψi〉|2[g1Im(Aw )〈�〉(2〈�〉〈�1〉
− 〈{�1,�}〉)], (14)

where {�1,�} is the anticommutation relation of �1 and �.
And the WVA’s QFI reads QS

I = 4|〈ψ f |A|ψi〉|2{Var(�)[1 −
2gIm(Aw )〈�〉]}. Differing from case (i), this scenario
possesses more freedom in QFI optimization. For ex-
ample, supposing that � = �1 = p, then Q(1)

I = QS
I −

4|〈ψ f |A|ψi〉|22g1Im(Aw )Var(p). Therefore the condition
Im(Aw ) < 0 will lead to an improvement of QFI, which is
incompatible with the result obtained in (i). This different
performance of QFI suggests that the parameter setting plays
a crucial role in the PWVA-based metrology. It is worth noting
that the condition � = �1 in PWVA is actually equivalent
to the increase of interaction strength g to g + g1 in WVA, a
special scenario corresponding to the BWVA scheme studied
in Refs. [38,39].

The discussion above shows an impressive metrological
performance of PWVA over WVA. Note that despite the as-
sumption g1 ≈ g, this conclusion is still credible when we
extend the precoupling strength g1 to a more general range
g1 � g. The only expense we have to pay is the increased
complexity for the QFI derivation with a higher v. But why
is precoupling more beneficial to improve the QFI? In the
following, we will explore this by a further consideration
on the definition of CFI. Beginning from the initial state
|φi〉 with probability distribution f (z), after the interaction
and postselection, the shape of the wave packet is largely
distorted, and as a result, its central location is shifted by
�(g). Suppose a general probability distribution h(z) = f [z −
�(g)] + f̃ [z|�(g)] of |φp〉, where f [z − �(g)] illustrates the
part shifted from the initial state f (z), meaning that the shape
of the meter is not changed. The second term f̃ [z|�(g)] shows
the deformation degree and satisfies

∫
dz f̃ [z|�(g)] = 0. In

general, this term appears if the precoupling strength is large
enough or when the WVA technique works beyond the AAV
limit. Then the CFI transforms to

FI [h(z)] = P
∫

dz
{∂g f [z − �(g)] + ∂g f̃ [z|�(g)]}2

f [z − �(g)] + f̃ [z|�(g)]
. (15)

Here, we cannot proceed any further derivation without a
definite expression of h(z). But Eq. (15) still reveals three
possible factors that may contribute to the enhancement of
Fisher information. One is the postselection probability P.
In precision metrology, the information gained about g is
proportional to the number of successful events. For a certain
N , it will be helpful if P is optimized. The other refers to the
shift �(g) or its differential defined as RS = |∂g�(g)|. RS acts
as the shift rate at which the central location of h(z) changes
as g, and a larger RS usually means a higher sensitivity of a
single postselected trial when measuring g. Taking � = p for
example, when the deformation effect f̃ [z|�(g)](z = x or p)
of the wave packet is negligible compared to RS , the wave
packet only experiences a shift from the initial location. De-
fine z′ = z − �(g), then the derivative with respect to g can be
modified by the chain rule ∂g f [z − �(g)] = −∂g�(g)∂z′ f (z′).
As dz′ = dz with the same integral interval under the change
of integration variable, then Eq. (15) reduces to

FI [h(z)] = PR2
S

∫
dz′ [∂z′ f (z′)]2

f (z′)
, (16)

where
∫

dz′[∂z′ f (z′)]2
/ f (z′) implies the metrological power

of initial state |φi〉. And most importantly, the CFI is pro-
portional to the square of RS . Note that Eq. (16) actually
corresponds to the FI of WVA where no deformation effect
occurs. By optimizing P and measurement basis, we will find
the QFI is upper bounded by QS

I = 4Var(�), a quantity deter-
mined by the characteristics of the initial state. For the PWVA
scheme, however, a much larger RS or P can be achieved,
which finally yields a QFI beyond QS

I . One example illustrat-
ing this can be found in Fig. 2, the numerical results for the
case Aw = −20i. In addition, the QFI increase may be also
rooted in the deformation term f̃ [z|�(g)]. On the one hand,
f̃ [z|�(g)] is associated with �(g). The properties of �(g) are
partially characterized by the behavior of f̃ [z|�(g)]. On the
other hand, although RS may approach zero under particular
parameter settings, the sensitive response of f̃ [z|�(g)] to g
still ensures the QFI enhancement. This can be shown by
assuming RS = 0, then

FI [h(z)] = P
∫

dz
[∂g f̃ (z|g)]2

f (z) + f̃ (z|g)
. (17)

This means that a higher deformation rate can lead to a higher
FI. One example illustrating this will be shown in Fig. 2 too,
i.e., the regime enclosed by green dashed rectangles. Finally,
we emphasize that all three indices listed above are somewhat
dependent on each other. One needs to make a compromise
among them for realizing an optimal performance of PWVA.

We next provide a detailed analysis of RS to show its
contribution to QFI. In the PWVA-based metrology, it is
clear that after postselection the average location of the meter
wave packet with respect to an observable M is given by
〈φ(v)|M|φ(v)〉/r (v)

P , which yields

〈M〉(v)
p = d (v)

0 + d (v)
1 g

c(v)
0 + c(v)

1 g
+ o(g2) (18)
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FIG. 2. The metrological advantages of PWVA over WVA. (a), (b) The tracking of the meter wave functions of both WVA and PWVA
schemes. The black and purple dashed vertical lines represent the average location of states before and after postselection operation,
respectively. (c) The QFI as a function of g1 (g = 10−4). This figure is plotted with two independent y axes. The one in red (thick curves)
shows the QFI behavior with the initial state s = 3, λ = 0.75π and the weak value Aw = −20. The blue one (thin curves) corresponds to the
parameters setting s = 3, λ = 0.5π, Aw = −20i. Their results are marked in three types of curves: the exact numerical solutions with solid
curves, v = 1 with the dot-dashed curves, and v = 2 with the dashed curves. The region marked in light orange shows the linear response
of QFI to g1, corresponding to the approximate solutions Eqs. (13) and (14). (d) The relative postselection probability rP of success. (e) The
performance of the relative wave-packet shift rate r as g1 changes. The green dashed boxes identify the regime that should be avoided in PWVA
technique. It should be pointed out that, for comparison, the QFI, rp, and r of the WVA scheme are shown by the gray dot-dashed lines in (c),
(d), and (e), respectively. In figures (d) and (e), the red solid curves and blue dashed curves are resulted from the same parameters as in (c).

with the definitions

d (v)
0 = 〈M〉 +

k+l�v∑
k,l=0,k+l>0

1

k!l!
gk+1

1 (Ak )∗w(Al )w
〈
�k

1M�l
1

〉
,

d (v)
1 = 2

k+l�v∑
k,l=0
k+l�0

1

k!l!
gk+l

1 Re
[
ik−l−1(Ak )∗w(Al+1)w

〈
�k

1M��l
1

〉]
.

Then the meter shift can be obtained by the calculation
�(g) = 〈M〉(v)

p − 〈M〉 and the shift rate RS is also available.
Let us consider the weak precoupling condition g1 ≈ g,

where the spread of the meter wave function is almost un-
changed and the Hamiltonians H and H1 only result in a shift
of the wave packet in the phase space. The direction of this

shift mainly depends on the operators � and �1 and also the
weak value Aw. In the first-order approximation with respect
to g and g1, the relative postselection probability is given by
r (1)

P = c(1)
0 + c(1)

1 g ≈ 2 − c(1)
0 − c(1)

1 g. Then the shift rate R(1)
S

is approximately

R(1)
S ≈ ∣∣2d (1)

1 − c(1)
0 d (1)

1 − c(1)
1 d (1)

0

∣∣. (19)

Taking Aw ∈ R for example, then Eq. (19) can be simplified
to

R(1)
S ≈ ∣∣ − iAw〈[M,�]〉 + g1A2

w(2Re[〈�1M�〉]
− 〈M〉〈{�1,�}〉)

∣∣. (20)

To make a comparison, we introduce RS
S = | − iAw〈[M,�]〉|

as the shift rate of WVA. If M = x,� = p,�1 = x,
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and Aw > 0, then we have RS
S = Aw, while R(1)

S = Aw +
2g1A2

wRe[〈x2 p〉 − 〈x〉〈xp〉]. When the initial state |φi〉 meets
the condition 〈p〉 > 0, a desired result occurs that R(1)

S > RS
S ,

which implies a higher QFI over WVA and is consistent with
the previous discussion in case (i).

A notable point here is that as g1 grows, Eq. (19) is no
longer accurate. The nonlinear terms of g1 start to play a
significant role in the PWVA technique. This expects us to
carefully choose a higher but not too large truncation index v

for the reason that a larger v usually acts as a double-edged
sword. That is, the increase of v may effectively enhance
the measurement precision of g, but meanwhile, it will bring
more complicated calculation. In addition, despite the well-
performed shift rate RS , a larger g1 may lead to deformation of
the wave packet or reduction of the postselection probability
as well. One needs to take all the factors into consideration
when analyzing the reasons why PWVA may outperform the
standard WVA with respect to a metrological purpose.

IV. NUMERICAL EXAMPLE

To illustrate the results derived in Sec. III, we use a nu-
merical computation to show the effect of precoupling in
the PWVA metrology. Without loss of generality, we assume
� �= �1, and the Hamiltonians are H = gσz ⊗ pδ(t − t0) and
H1 = g1σz ⊗ nδ(t − t1), where σz represents an atomic Pauli
operator expressed as σz = |↑〉〈↑| − |↓〉〈↓|. n = a†a is the
number operator with a† (a) the creation (annihilation) op-
erator. Here, we introduce the quadratures Xμ = i(e−iμa† −
eiμa)/

√
2 with μ ∈ [0, 2π ) to give the definition of momen-

tum and position operators: p = X0 = i(a† − a)/
√

2 and x =
Xπ/2 = (a† + a)/

√
2. As one can easily check, the commuta-

tion relation [x, p] = i still holds.
Considering the purpose of the WVA-based precision

metrology, we usually desire |Aw| to be much larger than
the maximum eigenvalue of A. In this case, the largest post-
selection probability of success for a given weak value Aw

was shown to be ≈ Var(A)|ψi〉/|Aw|2 [27], where Var(A)|ψi〉
is the variance of operator A in the initial state |ψi〉 of the
TLS. Therefore, in order to reach the optimal QFI, we assume
that the TLS is initially prepared in a superposition state
|ψi〉 = (|↑〉 + |↓〉)/

√
2. And the postselection state is set to

be a generalized state characterized by |ψ f 〉 = cos( θ
2 )|↑〉 +

exp(iϕ)sin( θ
2 )|↓〉, with the Bloch-vector polar angles θ ∈

[0, π ] and ϕ ∈ [0, 2π ). Depending on |ψi〉 and |ψ f 〉, the weak
value reads as Aw = [1 − tan(θ )e−iϕ]/[1 + tan(θ )e−iϕ].

Suppose the initial state of the meter is |φi〉 = |α〉, a
coherent state with α = seiλ ∈ C. By utilizing the proper-
ties exp(−img1n)|α〉 = |αm〉 = |αe−img1〉 and exp(−igX0) =
D(g/

√
2), where D(α) = exp(αa† − α∗a) is a displacement

operator, the entanglement state of the combined system after
precoupling can be expressed as

|�1〉 = 1√
2

[|e〉∣∣φH1
+1

〉 + |g〉∣∣φH1
−1

〉]
= 1√

2
[|e〉|αe−ig1〉 + |g〉|αeig1〉]. (21)

Due to the interaction H , |�1〉 evolves to

|�〉 = 1√
2

[|e〉∣∣φH1H
+1

〉 + |g〉∣∣φH1H
−1

〉]
,

where |φH1H
m 〉 = exp[−i gs√

2
sin(g1 − mλ)]| mg√

2
+ αm〉 with

m= ± 1. Then the meter’s un-normalized state after
postselection can be written as

|φ〉 = 1√
2

[
cos

(
θ

2

)∣∣φH1H
+1

〉 + e−iφsin

(
θ

2

)∣∣φH1H
−1

〉]
. (22)

Equation (22) indicates that after the postselection, the meter
state is a superposition of |φH1H

+1 〉 and |φH1H
−1 〉 with the postse-

lection probability of success P = 〈φ|φ〉.
In Fig. 2(c), we display a numerical result concerning the

dependence of QFI on the precoupling strength g1. To verify
the conclusion predicted by the approximate solutions, i.e.,
Eqs. (13) and (14), we employ an initial meter state cooper-
ated with a real or pure imaginary weak value to calculate
the QFI. As expected, in the light orange marked area, the
QFI is proportional to g1 (dot-dashed curves, v = 1), which
is consistent with the predicted linear response. But as g1

grows, the model tends to be nonlinear, and Q(1)
I starts to di-

verge from the exact numerical results (solid curves). Instead,
the Q(2)

I (dashed curves) varies approximately parabolically
with g1, leading to a smaller difference. This improvement is
associated with the correction by the second-order terms of
g1 in Q(2)

I . And it is clear that the numerical calculation will
be more accurate when the higher-order terms are included.
We emphasize that except for the results above, the most
remarkable feature in Fig. 2(c) is the greatly increased QFI
of PWVA compared to QS

I ≈ 2, the maximum achievable QFI
of WVA. This enables us to realize a more efficient precision
metrology by using PWVA, which of course depends heavily
on a proper setting of parameters such as |φi〉, g1, and Aw.

Next, the relative postselection probability rp and rela-
tive wave-packet shift rate r = RS/|Aw| are investigated in
Figs. 2(d) and 2(e), respectively. We conclude that under dif-
ferent parameter settings, the contributions from rP or r to the
QFI increase may be significantly different. For example, by
selecting a pure imaginary Aw and observable M = p, a lower
postselection probability is produced, while the wave-packet
shift becomes much more sensitive to the measured parameter
g (blue dashed curves). This means the remarkable QFI here
mainly comes from r. In contrast, there also exist some cases
where the QFI mainly benefits from the increased postselec-
tion probability, such as the scenario Aw ∈ R illustrated by
the red curves. Note that in the interval of g1 enclosed by
the green dashed boxes in Fig. 2(e), r is smaller than 1 and
even approaches zero, implying a smaller shift rate than WVA.
Combined with Figs. 2(c) and 2(d), we conclude that the
metrology advantage of PWVA in this region is mainly rooted
in the deformation effect. Therefore, if one aims to estimate
g based on the central location of |φp〉, when considering the
limited resolution of the detector, we suggest that g1 should
be chosen outside this area and following the criteria: r � 1.
As for QI , of course, the higher the better.

Here,we provide a physical interpretation of the QFI en-
hancement shown in Figs. 2(c)–2(e) by tracking the meter
wave functions. In the WVA scheme [see Fig. 2(a)], because
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FIG. 3. The contours of optimized QFI obtained by scanning Aw

for the initial coherent states |seiλ〉 with s ∈ [0, 5] and λ ∈ [0, 2π ).
In the small black region along the horizontal axis with λ = 0 and
π , we obtain QI < 2. This indicates that the PWVA possesses no
metrological advantages over WVA when the operator � = p. Other
parameters used in the calculation are g = 10−4 and g1 = 0.005.

the interaction H is weak, the state-dependent wave functions
|φH

+1〉 and |φH
−1〉 only slightly differ from the initial state |φi〉.

As a result, except for a small shift, the probability distribution
of the final state |φp〉 is almost unchanged, which results
in limited estimation precision. For our PWVA scheme [see
Fig. 2(b)], however, due to the precoupling operation, |φH1

+1〉
and |φH1

−1〉 are modulated. They are largely deformed from the
initial state |φi〉 and the difference between their imaginary
components becomes quite evident. Therefore, in the posts-
election process, their novel features make the wave-packet
interference [2] more efficient, resulting in impressive per-
formance, such as higher RS and postselection probability. It
should be pointed out that due to the precoupling, the shape of
the meter wave packet is usually largely deformed, especially
when the weak value contains the imaginary component, such
as |φp〉 in Fig. 2(b). This effect may complicate the analysis,
but its contribution to QFI increase should not be overlooked.

We note that the performance of PWVA is sensitive to the
initial state preparation of the meter. Different initial states
may lead to quite different QFI. For example, one can easily
check that, when Aw = −20 and s = 3, QI < QS

I for λ = π/4,
while QI > QS

I for λ = 3π/4. Therefore, it is necessary to
explore whether the advantage of PWVA-based metrology is
robust to the initial-state preparation. For this purpose, we
record the maximum QFI for the initial coherent states |seiλ〉
with s ∈ [0, 5] and λ ∈ [0, 2π ) when we scan |Aw| from 5 to
100 with the step 5, and scan the argument of Aw from 0 to 2π

with the step 0.1. As Fig. 3 shows, the QFI is axisymmetric in
the phase space and PWVA outperforms WVA potentially in
most cases except for initializing the meter to states in the area
marked in black, i.e., 〈p〉 ≈ 0. Note that for these coherent
states an even higher QFI than QS

I can be also achieved by
replacing � = p with other operators, such as x.

Except for QFI, the systematic error plays an important
role in precision metrology as well. Equation (6) suggests

FIG. 4. Relative estimation bias of g. (a) The comparison be-
tween the relative estimation bias εg of PWVA (blue dashed and
green dot-dashed curves) and WVA (red solid curve) methods. To
improve the estimation precision, we optimize the PWVA-based
metrology by (b) increasing the truncation index v with g1 =
0.005, λ = 0.5π , (c) taking the second-order approximation of g
into consideration with λ = 0.5π , and (d) averaging ge derived from
different initial meter states. The red curves in figures (b)–(d) serve
as a comparison. Other parameters used in the calculation are
s = 3, Aw = −20i, and v = 6 [except for (b)].

that the systematic error cannot be reduced by increasing
the measurement number N . When N → ∞, the first term
approaches zero, while the systematic error still remains finite,
limiting the performance of PWVA. Thus it is necessary to
explore the property of this error in PWVA. For simplicity, in
this paper we only consider the estimation bias ge − g, i.e.,
the difference between the theoretical and estimated value of
g. Then the relative estimation bias is defined as

εg = ge − g

g
, (23)

a quantity resulted from the higher-order approximation with
respect to g and g1. In Fig. 4(a), we show εg of both PWVA
and WVA schemes for a range of values of g to consider the
effect of precoupling on estimation precision. Compared to
WVA, the εg of PWVA increases rapidly as g grows, revealing
a larger estimation error. This is consistent with the expected
conclusion derived from Eqs. (2) and (10) that the estima-
tion precision of PWVA is upper bounded by WVA. Here,
we provide three strategies to fight this drawback of PWVA.
An obvious approach is to increase v to the interval where
the smallest |εg| is obtained, as shown in Fig. 4(b). But this
smallest |εg| is limited by WVA, making the accuracy still
insufficient. In addition, taking higher-order approximation of
g into consideration contributes to the estimation precision as
well [Fig. 4(c)]. This method, however, will complicate the
theoretical model and make the data processing less efficient.
The third strategy is inspired by the fact that the εg derived
from states |α〉 and | − α〉 have the ability to cancel each
other to some extent [Fig. 4(a)] without changing QFI (Fig. 3).
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In Fig. 4(d), we display the averaged εg by considering two
initial states with s = 3 and λ = 0.5π, 1.5π . It is clear that
this treatment greatly reduces the estimation error of PWVA,
and therefore shows the potential in precision metrology.

V. CONCLUSION AND DISCUSSION

We have considered the feasibility of the PWVA-based pre-
cision metrology. By introducing a precoupling process before
the WVA scheme, we provide a generalized theoretical model
of PWVA to show its advantages over WVA through the
metric of QFI. However, several papers show that, in the WVA
scheme, formulas of the expectation values and probability
densities can be analytically derived if A with special prop-
erties is used [40–43]. We here make no assumption of the
interaction operators to ensure that the results are compatible
with various practical situations, and a linear approximation
with respect to g is employed to avoid a verbose expression
of QFI. The analysis shows that the PWVA can outperform
the WVA in the sensitivity of parameter estimation only if
the precoupling operator is properly designed. For example,
when the weak value is real, the requirement [�,�1] �= 0
needs to be met. It is worth noting that � = �1 for the case
Aw/i ∈ R also leads to an impressive QFI increase, and this
special scenario has already been studied in Refs. [38,39]. By
tracking the meter wave functions, we find that the mission of
precoupling in PWVA is to optimize the state-dependent wave
functions into a regime that is most sensitive to parameter g.
As a result, the shape of the final normalized meter state after
postselection is usually deformed, not just shifted from the
initial location as in WVA. This difference combined with the

postselection probability finally results in a larger QFI to some
extent.

However, from Eq. (6), we know that except for QFI,
achieving lower systematic error is crucial for parameter esti-
mation as well. Due to the same approximation made about
g, the estimation accuracy of PWVA is upper bounded by
WVA. Then we propose three strategies to fight this short-
coming: increasing the truncation index v, taking higher-order
approximation of g into account, and averaging the estimation
from different initial states. Among them, the third one would
be most efficient and deserves the application in precision
metrology.

In principle, PWVA can be interpreted as a two-parameter
estimation as well if it is used in experiments where the
Hamiltonians in two stages of precoupling and interaction are
both unknown. Also, the PWVA proposal can be used as a
multiparameter estimation with respect to the unknown inter-
action Hamiltonian only, as the case discussed in Ref. [44]. If
the precoupling operation can be properly designed, a desired
higher estimation precision may be achieved.
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