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Semidefinite-programming-based optimization of quantum random access codes over noisy channels

Rafael A. da Silva * and Breno Marques †

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC-UFABC, Santo André 09210-580, Brazil

(Received 23 March 2023; accepted 5 April 2023; published 28 April 2023)

There are many approaches when it comes to exploring the potential of the random access code (RAC)
communication protocol. Given its versatility, the RAC is particularly useful when the communication between
parties is restricted. In previous works, it has been proven that 2(d ) → 1 quantum random access codes (QRAC),
in the absence of noise, outperform their classical counterpart (the 2(d ) → 1 CRAC) for any dimension d .
Here, building upon these works, we showed that noisy channels can significantly decrease the performance
of 2(d ) → 1 QRAC. In order to mitigate noise-driven efficiency losses, we employed the see-saw optimization
algorithm with semidefinite programming (SDP) to find the best quantum encoding and decoding strategies for
the QRAC given a known quantum channel.
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I. INTRODUCTION

In quantum communication one uses quantum resources
such as superposition and entanglement to enhance informa-
tion transmission beyond classical limitations [1]. An example
of this is the quantum random access code (QRAC), first in-
troduced by Wiesner in 1983 [2] and rediscovered by Ambaini
et al. [3], in which the use of quantum strategies for encoding
and decoding Alice’s messages improves Bob’s probability of
correctly accessing the information he is interested in when
compared to classical strategies. In general, a QRAC involves
a party, Alice, who must encode an n-dit long string into
m < n qudits and send to Bob, who is only interested in a
random subset of the string. He must be able to retrieve this
information with average probability of success Pd > Pchance,
where Pchance represents his average probability if he would
randomly guess the information. This family of QRACs can

be symbolically represented as n(d ) Pd−→ m.
The many approaches that have been explored in the

different RACs such as prepare-measure QRAC [4,5],
entanglement-assisted random access code (RAC) [6], se-
quential QRAC [7], and QRAC with share randomness [8],
and the fact that many of these works were published only
recently show that this protocol is still an important research
topic in quantum information, even decades after it was first
proposed. Another fact that shows the relevance of the QRAC
is its many important applications in quantum information
in general, e.g., in quantum dimension tests [9], quantum
random number generation [10,11], quantum key distribution
[12], self-testing [7,13], nonclassicality tests [14], nonlocal-
ity tests [6,15], causality tests [16], quantum automata [17],
connection between mutually unbiased and RAC [18], mea-
surement incompatibility [19], and prepare-measure protocols
[20].

Tavakoli et al. showed in Ref. [4] that, in the noiseless

regime, the 2(d ) Pd−→ 1 QRAC outperforms its classical
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counterpart (the CRAC) for any dimension d in terms of
average probability of success. However, most systems used
in the implementation of quantum communication protocols
are, in both experimental and application contexts, hardly
ideal. Therefore, one may not be able to completely neglect
the influence of quantum noise on those systems and, conse-
quently, on the protocol itself. In fact, accounting for quantum
noise is essential for assessing possible limitations on the
implementation the protocol or even its viability altogether.
Quantum communication over noisy channels has been
addressed in previous works for protocols such as quantum
key distribution [21], quantum steganography [22], and
quantum teleportation [23,24]. However, with regard to the
QRACs, especially for high-dimensional generalizations such

as 2(d ) Pd−→ 1, this matter has not been treated comprehensively.
To address this issue, we investigate, via simulations, how
Bob’s average probability of success Pd evolves with time,
for a given dimension d , when the communication happens
over one of the following Markovian channels: the dit flip,
d-phase flip, dephasing, depolarizing, and amplitude damping
channels. The simulations show that the action of these
channels can reduce the efficiency of the QRACs to the point
that their classical counterparts are able to perform better. We
then attempted to mitigate this loss in performance by opti-
mizing the protocol using semidefinite programming (SDP),
a subfield of convex optimization that has been extensively
applied for a wide range of purposes in quantum information
[25–28]. It is especially well suited for our problem because
our figure of merit, the quantum average probability of
success, depends linearly on both the encoding states (density
matrices) and decoding measurement operators, which
are likewise positive semidefinite. Therefore, the task of
maximizing this probability of success can be cast as an SDP.

In Sec. II we review the classical and quantum 2(d ) Pd−→ 1
random access code protocol. In Sec. III we presented a
basic overview of the theory of the open quantum system
and how it relates to the concept of noisy quantum channels,
and we introduce the noisy quantum channels covered in this
work. In Sec. IV we applied the concepts laid out in the
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FIG. 1. Schematics of a 2(d ) Pd−→ 1 CRAC protocol.

previous section to analyze the behavior and performance of
the QRACs under those channels, and, whenever possible,
we find encoding and decoding strategies, based on SDP, for
mitigating noise-driven efficiency loss.

II. REVIEW OF RANDOM ACCESS CODE

A. Classical random access code

In the classical version of the 2(d ) Pd−→ 1 RAC, Alice en-
codes a string x = x0x1 in one classical d-level state (see
Fig. 1). The best classical strategy [4] consists of Alice always
sending Bob the value of the same dit—for instance, x0. If Bob
is interested in x0, he recovers it with probability 1, but if he
is interested in x1, he is forced to guess its value, and has a
probability of 1/d of succeeding. This strategy has an average
probability of success of

PC = 1

2

(
1 + 1

d

)
. (1)

B. Quantum random access code

In the quantum version of the 2(d ) Pd−→ 1 RAC, however,
Alice encodes x = x0x1 in a single d-level quantum state (see
Fig. 2) [4]. This state can be constructed in terms of two mu-
tually unbiased bases (MUB). In the present work we chose
the computational basis, Be = {|el〉}d−1

l=0 (|el〉 = |l〉), and the
Fourier basis, B f = {| fl〉}d−1

l=0 (| fl〉 = (1/
√

d )
∑n=d−1

n=0 ωln|n〉),
where ω = exp 2π i/d , for constructing the encoding states∣∣ψx0x1

〉 = 1√
2 + (2/

√
d )

(∣∣ex0

〉 + ∣∣ fx1

〉)
. (2)

FIG. 2. Schematics of a 2(d ) Pd−→ 1 QRAC protocol over a noise-
less channel.

FIG. 3. We show here an example of the four encoding states
(d = 2) plotted in the Bloch sphere. Notice that these states are
symmetrically distributed in the sphere and that the projections on
the z axis (computational basis) and on the x axis (Fourier basis)
have the same modulus.

Whenever Bob is interested in x0 (x1), he performs a mea-
surement in the basis Be (B f ), and the average probability of
success for this strategy is given by

PQ = 1

2d2

d−1∑
k=0

d−1∑
l=0

Tr
{
ρx0x1

(
Mx0

k + Mx1
l

)}

= 1

2

(
1 + 1√

d

)
, (3)

where ρx0x1 = |ψx0x1〉〈ψx0x1 |, Mx0
k = |ek〉〈ek|, and Mx1

l =
| fl〉〈 fl |. It is worth noting that the probability for any of the
possible outcomes is equal to the average PQ, regardless of
the value of Alice’s string x = x0x1 or which substring Bob
is interested in. This happens because the magnitudes of
the projections of |ψx0x1〉 onto Be and B f basis are all equal
to PQ (see Fig. 3, where this can be illustrated for d = 2
using the Bloch sphere). As we will see in Secs. III and
IV, this symmetry can be broken when the communication
occurs over noisy quantum channels, and this fact should
be considered when seeking new strategies to mitigate the
resulting efficiency loss.

By comparing Eqs. (1) and (3), it is straightforward to show
that, under the noiseless regime, the quantum probability of
success is always greater than the classical one, i.e.,

PQ/PC > 1 ∀ d. (4)

The ratio presented above will be used from now on as the
figure of merit when comparing the performance of QRAC
and CRAC.

III. NOISY QUANTUM CHANNELS

In the implementation of quantum protocols, quantum
noise is often a limiting, or even prohibiting, factor when
it comes to how efficiently we can perform a given task.
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FIG. 4. Representation on the Bloch sphere of the dit flip channel
for the qubit. This map conserves the probabilities of measurements
in the Fourier basis but decreases the probabilities for measurements
in the computational basis.

Understanding how a noisy quantum channel can affect a
given protocol is essential for predicting noise-related effi-
ciency loss. This knowledge is also essential when seeking
strategies for mitigating the performance decrements without
increasing the protocol complexity, e.g., without relying on
quantum error correction protocols.

Quantum noise can be understood in the light of the
theory of open quantum systems [29,30], which shows that
this phenomenon arises from the interaction between the
encoding quantum system and the environment. Further-
more, this theory characterizes noisy quantum channels, and
quantum channels in general, as completely positive and
trace-preserving (CPTP) maps [31] which can be mathemati-
cally represented in the Kraus’ formalism as

N (ρ) =
∑

ν

KνρK†
ν , (5)

where Kν are the so-called Kraus operators, which satisfy∑
ν KνK†

ν = I .
The quantum channels under consideration in this work are

presented here and, as an example, the accessible states for
these channels are represented in the Bloch sphere (which is
only possible for d = 2).

A. Dit flip channel

This channel is the d-dimensional generalization of the
bit flip channel whose action flips a qudit |μ〉 (Fig. 4), with
equal probability, to one of the states |μ ⊕ 1〉, |μ ⊕ 2〉, …,
|μ ⊕ d − 1〉, where “⊕” symbolizes sum modulo d , i.e.,
μ ⊕ ν ≡ (μ + ν) mod d . Since the dit flip channel belongs
to the family of discrete Weyl’s channels (DWC) [24,32], it is
possible to use the Weyl’s operators

Wνμ =
d−1∑
k=0

ωkν |k〉〈k ⊕ μ|, ω = exp{2π i/d} (6)

FIG. 5. Representation on the Bloch sphere of the phase flip
channel for the qubit. This map conserves the probabilities of mea-
surements in the computational basis but decreases the probabilities
for measurements in the Fourier basis.

to write its set of Kraus operators as

Kν =
⎧⎨
⎩

√
1 − pW0ν, ν = 0√

p
d−1W0ν, 1 � ν � d − 1.

(7)

B. d-Phase flip channel

The d-phase flip (phase flip, for convenience) channel is
the generalization of the qubit phase flip channel (Fig. 5). It
acts on a qudit |μ〉 flipping its phase with equal probability, in
one of the following ways ω|μ〉, ω2|μ〉, …, ωd−1|μ〉, with ω =
exp 2π i/d . The Kraus operators for this channel are given as

Kμ =
⎧⎨
⎩

√
1 − pWμ0, μ = 0√

p
d−1Wμ0, 1 � μ � d − 1.

(8)

C. Depolarizing channel

The depolarizing channel is important in experimental con-
texts, where it is used to analyze experimental setups in which
the quantum state may be lost or when working with nonideal
detectors. For qudits this channel can be described as follows:
ρS has probability p of being replaced with a completely
mixed state I/d , otherwise it remains unchanged. The corre-
sponding map is

ρS (t ) = pI

d
+ (1 − p)ρS (0), (9)

where p = 1 − e−�t , and � is the system-environment cou-
pling constant. One interesting aspect of this channel is its
symmetry (which can be visualized in Fig. 6 for d = 2). As
a consequence, the probabilities of success for measurements
in either Be or B f decrease with time at the same rate.
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FIG. 6. Representation on the Bloch sphere of a depolarizing
channel for the qubit. At t = t0 the states, which are pure, lie on the
surface of the sphere. As time passes and the states become mixed
under the influence of noise, they now lie inside the old Bloch sphere.
At a long enough time any initial state will evolve to a completely
mix state represented by a single point at the center of the old Bloch
sphere.

D. Dephasing channel

The dephasing channel describes a decoherence process in
which quantum information is lost without loss of energy. The
evolution of a qudit under this channel can be described by the
equation

ρ̇S = �[2a†aρSa†a − {(a†a)2, ρS}], (10)

where � is the dephasing system-environment coupling con-
stant, and a and a† are the annihilation and creation operators,
respectively. By solving (10) one will find that the elements of
the initial density matrix ρS (0) will evolve as

〈n|ρS (t )|m〉 = (1 − p)(n−m)2〈n|ρS (0)|m〉. (11)

The evolution of a qudit under this channel happens in such
a manner that the probabilities for measurements in the basis
Be remain constant with time while for measurements in the
basis B f they decrease (see Fig. 7 for d = 2).

E. Amplitude damping channel

The amplitude damping channel is a model used to de-
scribe processes such as a quantum system losing energy to its
environment, a phenomenon known as spontaneous emission
[33]. In this case, it drives the system to its fundamental state
|0〉 (see Fig. 8 for d = 2), and, as consequence, the probabil-
ities for measurements in both bases Be and B f will decrease
with time. This dynamics can be expressed with the Kraus
operators

Kν =
{

|ν〉〈ν| + √
1 − p

∑d−1
k=1 |k〉〈k|, for ν = 0

√
p|0〉〈ν|, for 1 � ν � d − 1.

(12)

FIG. 7. Representation on the Bloch sphere of the dephasing
channel for the qubit. This map “shrinks” the Bloch sphere in both
the x and y direction while the poles remain unchanged. Again, this
means that the probabilities of measurements in the computational
basis are constant with time, but vary for measurements in the Fourier
basis.

IV. THE QRAC OVER NOISY CHANNELS

In the noiseless regime, the 2(d ) Pd−→ 1 QRAC always out-
performs its classical counterpart (Sec. II). As expected, we
will show that this is not the case when the communication is
performed over noisy quantum channels. We investigate the
influence of quantum noise by considering a three-step com-
munication process composed of encoding (state preparation),
transmission, and decoding (measurement). The transmission

FIG. 8. Representation on the Bloch sphere of the amplitude-
damping channel for a qubit. This map shrinks the Bloch sphere in
the two directions of the equatorial plane, and also moves the center
of the resultant ellipsoid towards the north pole, i.e., the fundamental
state for spontaneous emission.
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FIG. 9. Schematics of a quantum RAC protocol through a noisy
channel.

step is the only one we considered to be affected by quantum
noise.

A. Scenario one: No optimization

Suppose that Alice prepares her encoding state ρx0x1 and
the quantum state is sent over a noisy channel. Bob performs
a measurement in either basis Be or B f as before (see Fig. 9
for an illustration). Thus, his average probability of success is
given by

PQ(t ) = 1

2d2

d−1∑
k=0

d−1∑
l=0

Tr
{
ρx0x1 (t )

(
Mx0

k + Mx1
l

)}
, (13)

where ρx0x1 (t ) is the quantum state received. The ratio

PQ(t )/PC

can be used to evaluate how the QRAC performance changes
as a function of time in comparison to the CRAC. An im-
portant parameter is the time tc for which PQ(tc)/PC = 1,
which marks the point in time after which the QRAC loses its
advantage over the CRAC. We display this point (as �tc for

convenience) for different values of d for 2(d ) Pd−→ 1 QRACs
and for each noisy channel in Table I.

At first glance, the results compiled in Table I seem to
suggest that reaching the critical point tc is inevitable. In fact,
this is actually true when, despite the presence of quantum
noise, we keep our encoding and decoding strategy fixed and
based on the bases Be and B f . Our main goal in this work is
finding flexible encoding and decoding strategies that are fine
tuned for each noisy quantum channel in order to minimize
performance losses. In the following section we discuss how
we applied this strategy.

TABLE I. Here we display the values of �tc, where tc is such that
PQ(tc )/PC = 1, at different dimensions d and for each noisy quantum
channel.

Channel d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

Dit flip 0.35 0.44 0.47 0.48 0.47 0.46
d-Phase flip 0.34 0.45 0.46 0.48 0.46 0.46
Dephasing 0.88 0.48 0.28 0.18 0.12 0.09
Amplitude damping 0.47 0.32 0.24 0.18 0.15 0.12
Depolarizing 0.35 0.31 0.29 0.27 0.25 0.24

FIG. 10. Schematics of the optimized noisy QRAC protocol.

B. Scenario two: SDP-based optimization

The best strategy can be found for a QRAC when we
take into account that PQ(t ) does not depend only on the
type of noise but also depends on whether or not the en-
coding states and decoding measurements are well adjusted
to mitigate the noise channel effects. Therefore, choosing a
good encoding requires anticipating the transformations that
the channel may realize on the input states, and, whenever
possible, optimize for the states that are least affected by
them. Likewise, the decoding measurements should also re-
flect these channel-induced transformations. This paradigm is
illustrated in Fig. 10.

The optimal encoding and decoding are determined by
maximizing PQ(t ). We formulated this optimization problem
in terms of two interdependent SDP subproblems:⎧⎪⎨

⎪⎩
max PQ(t )

s.t. : Tr
{
ρ ′

x0x1
(t )

} = 1,

ρ ′
x0x1

(t ) � 0,

(14)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max PQ(t )

s.t. :
∑d−1

k=0 M ′x0
k (t ) = ∑d−1

l=0 M ′x1
l (t ) = I,

M ′x0
k (t ) � 0,

M ′x1
l (t ) � 0,

(15)

where PQ(t ) is given by Eq. (13), the symbol � 0 stands for
positive semidefinite, and s.t. means subject to, which states
the constraints used in the optimization. In order to obtain
the optimal solutions for both the encoding states and de-
coding measurements, the optimization was conducted using
the see-saw method [34]. For every time t , in our first itera-
tion we considered the MUB-based decoding measurements
M ′x0

k (t ) = |ek〉〈ek| and M ′x1
l (t ) = | fl〉〈 fl | as our starting point.

They were used for finding the initial solution for the states
ρ ′

x0x1
(t ), by solving the SDP described in Eq. (14). Next, we

fixed the initial solution for the states ρ ′
x0x1

(t ) as the constants
of our problem, and they were then used for finding the initial
solution for the decoding measurements M ′x0

k (t ) and M ′x1
l (t ),

by solving the SDP described in Eq. (15). In the next iterations
this process continued in a similar fashion, except that M ′x0

k (t )
and M ′x1

l (t ) (at the starting point) were not based on the MUB
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Be and B f anymore but were instead updated to be equal
to the ones from the solution of the SDP in Eq. (15) from
the last iteration. This process was repeated until the value
of PQ(t ) ceased to improve above a chosen threshold. We
ran this algorithm inPYTHON 3.9 utilizing theQUTIP library for
quantum mechanics operations andPICOS PYTHON API for the
SDP optimization usingCVXOPT as our solver.

It is worth mentioning that we tried other ways of initializ-
ing the algorithm at the first iteration that do not involve the
computational and Fourier bases. In one of our attempts, we
ran the algorithms several times using a random pair of MUB
and the results were indistinguishable from the one using
simply the bases Be and B f . We also ran several experiments
employing random bases that were not MUB and again there
were no changes in the final results.

In Fig. 11(a) we display the values of the parameter p for
which PQ(p)/PC = 1 as a function of the dimension for each
of the five noisy channels when the QRAC is not optimized.
Similarly, in Fig. 11(b) we display the data for the optimized
version of the QRAC. The closer to unity this parameter is,
the better the performance of the QRAC is in comparison
to the CRAC. In fact, p = 1 here means that the QRAC
always performs at least as well as the CRAC. Therefore, a
comparison of these two graphs reveals that optimization can
help to recover the supremacy, which was lost due to noise,
of QRAC over its classical counterpart when the noisy chan-
nels in question are the dit flip, d-phase flip, and dephasing
channels. However, for the amplitude damping and dephasing
channels no improvements were found. In Fig. 11(c) we show,
for each one of the five channels, how much larger the values
of p in Fig. 11(b) are compared to those in Fig. 11(a), as a
function of the dimension, which expresses the relative gain
achieved by the optimization. Notice, for instance, that the
relative gain tends to be the greatest for the dephasing channel
case, especially for higher dimensions.

In graphs (a) and (b) of Figs. 12–14 the continuous lines
represent the evolution of the ratio PQ/PC as a function of
�t when the QRAC is not optimal, while the dashed lines
represent the optimized case for the dit flip, phase flip, and
dephasing channels, respectively. A comparison of the dashed
and continuous lines shows that the optimization substantially
improved the values of PQ/PC overall. It provided an ad-
vantage even for lower values of �t , and, for greater values,
it guaranteed that the performance of the QRAC is greater
or equal to that of the CRAC. Particularly, for the dit flip
and phase flip channel, it is worth noting that for d = 2 and
t → ∞ (p = 1), the value of PQ/PC for the optimal QRAC
approaches the value it had for t = 0 (or the noiseless QRAC),
something that does not happen when the QRAC is not opti-
mized. This happens because at this limit the action of the dit
flip and phase flip channels completely flips the state, and the
optimal decoding measurements are the ones that take this fact
into account (for a visual insight see Fig. 16). Therefore, keep-
ing the measurements fixed in this situation is detrimental to
the performance of the protocol. Moreover, the optimization
makes the QRAC more robust to high-dimensional dephasing
noise, which tends to be greater the higher the dimension.
In graphs (c) of Figs. 12–14 we display how many times
the value of the optimal PQ/PC ratio is greater than the
nonoptimal one as a function of �t , which represents the gain

FIG. 11. (a) Values of the parameter p for which PQ(p)/PC = 1
as a function of the dimension for each of the five noisy channels
when the QRAC is not optimized. (b) The same as (a), but for the
optimized QRAC. To construct these graphs, for each dimension
2 � d � 7, we ran the optimization algorithm for every 0 � p � 1,
and then looked at the evolution of average probability of success
PQ(p) (i.e., as a function of the parameter p) and selected the value
of p that satisfies PQ(p) = PC . The closer to unity this parameter
is, the better the performance of the QRAC is in comparison to the
CRAC. In fact, p = 1 here means that the QRAC always performs at
least as well as the CRAC. Notice that in (a) we have p < 1 for all
five channels regardless of the dimension d . However, in (b) the lines
representing the dephasing, dit flip, and d-phase flip channels have
p = 1 [in contrast to p < 1 in (a)], which means the optimization, in
this case, guarantees a performance as least as good as the classical
one, as opposed to the QRAC eventually losing its advantage over the
CRAC as (a) implies. Note that the lines representing the amplitude
damping and depolarizing channels in (b) are identical to those
in (a), because no improvement was achieved using this particular
optimization method. (c) Visualization, for each of the five channels,
of how much larger the values of p in (b) are compared to those in
(a), as a function of the dimension, which expresses the relative gain
achieved by the optimization.
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FIG. 12. (a and b) The 2(d ) → 1 QRAC, for each dimension
2 � d � 7, over the dit flip channel. The continuous lines show the
PQ(�t )/PC ratio (i.e., as a function of the time parameter �t) when
no optimization was applied to the protocol, and the dashed lines
represent this ratio when we applied SDP-based optimization to the
QRAC. The dashed lines in (a) and (b) are the result of executing
the algorithm for every time t . To build the continuous lines no
optimization was applied, and the decoding and encoding were fixed
for every time t and based on the MUB Be and Bf . (c) To construct
this graph, we consider the ratio of the values of PQ/PC for the
optimized QRAC to the values PQ/PC for nonoptimized QRAC and
plot it as a function of �t . This ratio expresses the relative gain
achieved by the optimization. For instance, the relative gain in this
case is the greatest for d = 2 and decreases with the dimension.

from optimization, which increases with �t . For the dephasing
channel, it increases with the dimension, but for the dit flip
and phase flip channels, it varies less with d and has the
highest value for d = 2. Figures 16 and 15 are visual repre-

FIG. 13. (a and b) The 2(d ) → 1 QRAC, for each dimension
2 � d � 7, over the d-phase flip channel. The continuous lines show
the PQ(�t )/PC ratio (i.e., as a function of the time parameter �t)
when no optimization was applied to the protocol, and the dashed
lines represent this ratio when we applied SDP-based optimization
to the QRAC. The dashed lines in (a) and (b) are the result of
executing the algorithm for every time t . To build the continuous
lines no optimization was applied, and the decoding and encoding
were fixed for every time t and based on the MUB Be and Bf . (c) To
construct this graph, we consider the ratio of the values of PQ/PC for
the optimized QRAC to the values PQ/PC for nonoptimized QRAC
and plot it as a function of �t . This ratio expresses the relative gain
achieved by the optimization. For instance, the relative gain in this
case is the greatest for d = 2.

sentations of the optimal encodings and how they evolve with
parameter p.

As we discussed in Sec. II, the optimal noiseless QRAC
strategy is based on MUB: the information is encoded in the
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FIG. 14. (a and b) The 2(d ) → 1 QRAC, for each dimension
2 � d � 7, over the dephasing channel. The continuous lines show
the PQ(�t )/PC ratio (i.e., as a function of the time parameter �t)
when no optimization was applied to the protocol, and the dashed
lines represent this ratio when we applied SDP-based optimization
to the QRAC. The dashed lines in (a) and (b) are the result of
executing the algorithm for every time t . To build the continuous
lines no optimization was applied, and the decoding and encoding
were fixed for every time t and based on the MUB Be and Bf . (c) To
construct this graph, we consider the ratio of the values of PQ/PC for
the optimized QRAC to the values PQ/PC for nonoptimized QRAC
and plot it as a function of �t . This ratio expresses the relative gain
achieved by the optimization. For instance, the relative gain in this
case is the greatest for d = 7.

superposition of states coming from two MUB, and it is de-
coded by measuring in either one of those bases, depending on
which letter Bob is interested in. However, when optimizing
the strategy in the presence of a noisy quantum channel, the
resulting encoding and decoding are not based exclusively

FIG. 15. Here we display on the Bloch sphere the optimal en-
coding states for the dephasing channel (for d = 2) and for different
values of the parameter p. Notice that the new optimal encoding is
not fixed anymore or strictly based on MUB. Instead, it changes with
the parameter p as a way to compensate for the action of channel.
However, the larger the value of p, the more ineffectively we can
counteract this action. Ultimately, when p = 1, our encoding states
lie on the z axis, which allows Alice to encode only one of the bits,
forcing Bob to guess the other, just as in classical RAC. Therefore,
in the worst case the optimization produces results that are at least as
good as the classical ones.

on MUB anymore. For instance, the optimal decoding mea-
surements for the dit flip and d-phase flip channels are based
on MUB for all time t , however the encoding states are not
necessarily based on a superposition of two MUB. For the
dephasing, the encoding and the decoding change, but the
computational bases is preserved as one of the measurement
bases. Therefore, indiscriminately relying on MUB in such a
scenario can lead to suboptimal encoding and decoding strate-
gies. In this work we focused on the QRAC protocol, however
these findings might be true for other prepare-measure proto-
cols.

Given the success of the optimization for the dit flip,
d-phase flip, and dephasing channels, a natural question is
why it failed for the depolarizing and amplitude damping
channels. First, it should be emphasised that our approach
only works when better encoding states and better decoding
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FIG. 16. Here we display on the Bloch sphere the optimal encod-
ing states for dit flip channel (for d = 2) and for different values of
the parameter p. Similarly to the dephasing case, the optimal encod-
ing here is not always based on MUB. As p increases, the encoding
states approach the x axis, and for p = 0.5 they lie on exactly on it.
This marks the point where the encoding is the least efficient and
is equivalent to classical encoding. However, for p > 0.5, we are
actually able to find increasingly more efficient encoding states, and
in the limit of p → 1, the optimal states are again based on MUB.
Notice, for instance, that the encoding states for p = 1 are a mirror
image of those for p = 0. This means that, for p = 1, the channel
output states will identical to those for p = 0. So we can decode
Alice’s string using the same decoding measurements in both cases.
However, if we had not flipped the input states (no optimization)
and used the same decoding strategy, it would result in a poor
performance, as the graphs of Fig. 12 suggest. This is an example of
how employing a dynamical rather than a fixed encoding/decoding
strategy can help improve performance when certain characteristics
of the channel can be used in our favor.

measurements exist. The depolarizing channel transforms the
qudit symmetrically (this can intuitively be seen in Fig. 6 for
d = 2), and as consequence, the probabilities of measurement
outcomes will decrease symmetrically with time t for any
decoding basis and for any encoding state. Therefore, the
encoding and decoding using Be and B f already lead to the
best PQ(t ) one can possibly achieve for this channel. The
amplitude damping channel, however, drives the qudit to the
fundamental state, which makes the probability of success for
decoding some values of x0 or x1 increasingly small as time
passes, given that the possibility to communicate through this
channel vanishes in time. Despite this, however, the fact that
we fail to optimize the QRAC under the amplitude damping
channel for finite t using the approach presented in this work
does not necessarily imply it cannot be accomplished. There-
fore, this matter should be the subject of further investigation.

V. CONCLUSION

In this work we reviewed the concept of the 2(d ) → 1
random access code in both its classical and quantum ver-
sions and presented the generalized quantum maps to describe
well-known noisy channels for any discrete dimension d . We
built upon this work by incorporating the theory of open
quantum systems to understand how the most common noisy
channels affect the performance of QRAC, and we showed
how the SDP-based see-saw method can be used to optimize
the protocol even in the presence of noise-induced losses.
The method presented here can be useful for many other
quantum communication protocols when it is desirable to
improve their effectiveness without the need of extra quantum
resources. This work opens new possibilities to investigate
similar methods in the context of quantum communication
and quantum computation protocols when the type of noisy
channel is known. Even though we focused on single-qudit
encoding in this work, we suspect that this method can also be
used with more than a single quantum system or in different
types of quantum information protocols that are not strictly
prepare-measure protocols. Lastly, although the present work
was meant to follow an SDP-based approach, we strongly
believe that an analytical model would be very insightful and
should be the subject of further investigation.
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