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Effects of reservoir squeezing on trace-distance correlations and emergence of the pointer basis
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We investigate theoretically the dynamics of 1-norm geometric quantum correlations and their classical
counterparts in a two-qubit system. Both qubits are initially prepared in Bell-diagonal states and locally coupled
to separated thermal squeezed baths or a common squeezed thermal bath via energy-preserving interactions. We
then unveil the effects of reservoir squeezing on the abrupt changes in the evolution of geometric correlations.
It is found that adequately tuning the squeezing phase can efficiently suppress the dephasing rate and delay the
appearance of sudden transitions in geometric correlations. Further, we show that the squeezing phase of the
bath renders a different avenue to enhance the finite time interval for frozen quantum correlation. On the other
hand, in this context, we show that the squeezing strength of the reservoir exhibits a negative role. In addition,
in the common bath case, we observe the steady-state correlations and decoherence-free subspace, which can be
governed via squeezing parameters. Moreover, the abrupt change from a decaying regime to a constant nonzero
value in classical correlation signals the emergence of a pointer-state basis. We show that the emergence of a
pointer-state basis can be delayed by suitably adjusting the bath squeezing parameters. Remarkably, we find the
optimal value of the squeezing phase, which introduces maximum retardation in the appearance of a pointer-state
basis.
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I. INTRODUCTION

One of the foremost traits of quantum information the-
ory is the existence of quantum correlations between distant
quantum systems. The best-known measure of the genuine
nonclassical correlations is quantum discord (QD), which
was first introduced by Ollivier and Zurek [1]. Notably, this
entropic-based measure can capture quantum correlations not
only in the entangled states but also in mixed separable states
[2,3]. Quantum discord has vital applications in the numerous
fields of quantum optics [4–14]. Nevertheless, from an ana-
lytical viewpoint, the generic dynamics of QD is challenging
due to the complex optimization methods involved; there-
fore, exact expressions are available only for certain states
[15–19]. To overcome this hurdle, a geometric approach has
been exploited to quantify the quantum correlations via var-
ious distance-based formulations, which are typically easier
to evaluate [20–27]. Among them, the trace-norm (Schatten
1-norm) geometric qualifier has gained much attention, as it
characterizes a rigorous and physically motivated measure for
the quantum and classical correlations [26,27].

Despite the quantification of correlations, a central issue
and the key prerequisite for modern quantum technolo-
gies is the understanding of how the quantum and classical
correlations behave in the presence of various sources of
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decoherence. In this framework, it is widely known that
quantum correlations beyond entanglement are more robust
against decoherence and do not exhibit the phenomenon of
sudden death [28–34]. It was demonstrated both theoretically
and experimentally that for a specific class of initial states
undergoing local Markovian dephasing noise, 1-norm geo-
metric quantum discord (GQD-1) manifested some intriguing
phenomena, e.g., freezing and double sudden transitions
[35–37]. Furthermore, the dynamical decoupling (DD) pro-
tocol has been used to enhance the finite time interval over
which GDQ-1 (QD) exhibits constant magnitude and con-
trol the occurrence of the double (single) sudden transitions
phenomenon [38–41]. However, the DD method has some
limitations, e.g., the simultaneous application of DD and non-
Markovianity, deleterious for coherence preservation [42].
Similarly, the efficiency of the DD technique is highly sen-
sitive to the pulse timing [40–42].

Moreover, from the viewpoint of applications, abrupt
changes in the correlations dynamics are used to spotlight cer-
tain remarkable features. For example, the sudden transition
behavior in the GQD-1 has been employed as an alterna-
tive method to precisely indicate the critical point associated
with the phase transition in spin-chain models [37,43,44]. In
contrast, the abrupt change from a decaying regime to a non-
vanishing level in the classical correlation characterizes the
emergence of a pointer-state basis (i.e., quantum-to-classical
transition) [45,46]. However, these phenomena are strongly
dependent on the detailed configuration of the environment
being considered. For instance, due to non-Markovianity,
multiple sudden changes in classical correlation evolution
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have been observed, revealing the emergence of a metastable
pointer-state basis [47–49]. Recently, we reported that the
nonequilibrium nature of the environment can control sudden
transitions in the correlations and suppress the metastable
pointer-state basis [50]. In addition, we also showed that the
nonequilibrium feature of the dephasing environment can be
exploited as an alternative and effective way to extend the
time interval over which both entropic and geometric quantum
correlations remain unchanged [34,50].

In previous studies, the environment (reservoir) was usu-
ally assumed to be initially in the thermal or vacuum state.
However, current technologies allow us to create a nonthermal
state for the open quantum systems; for instance, quantum
coherence or squeezing could also exist in the reservoir and
makes it a nonthermal environment. Interestingly, the utiliza-
tion of nonthermal baths has manifested remarkable results.
For example, a quantum heat engine exploiting the squeezed
thermal reservoir as a working source could surpass the
Carnot limit [51–55]. Furthermore, squeezed thermal and vac-
uum reservoirs play a crucial role in various phenomena such
as entanglement sudden death [56–59], violation of Leggett-
Garg-type inequalities [60], enhancing the lifetime of the cat
state [61], resonance fluorescence [62,63], and several others
[64–72]. Recently, in Ref. [73] the authors studied the entropy
dynamics of the dephasing model, where a single qubit is
coupled with a squeezed thermal bath via a nondemolition
interaction. Remarkably, they reported that the dephasing rate
of the system relies on the squeezing phase of the bath.
This phase dependence cannot be precisely obtained from the
Born-Markovian approximation, which is broadly exploited
in open quantum systems. Moreover, we recently showed that
the abrupt change from classical to quantum decoherence
in a two-qubit system can be efficiently harnessed via bath-
squeezing parameters [74]. These studies have inspired us to
show that the squeezing parameters of the reservoir render
a different avenue to control the phenomena of double sud-
den transitions in GQD-1 and quantum-to-classical transition
(characterized by the emergence of the pointer-state basis).

In our previous work [74] we investigated the dynamics
of quantum correlations (measured by an entropic quanti-
fier) in two qubits, locally coupled to their own squeezed
thermal baths. It was revealed that the quantum correlations
exhibit only a single sudden change from a nonvanishing
constant magnitude to a decaying regime. However, in this
paper we examine the dynamics of quantum and classical
correlations in a two-qubit system measured by trace-norm
geometric quantifiers. Both qubits are initially considered in
Bell-diagonal states and locally coupled to spatially separated
squeezed thermal reservoirs or a common squeezed thermal
reservoir via nondemolition interactions. We then explore
the effects of reservoir squeezing on the abrupt changes in
the evolution of 1-norm geometric correlations. Strikingly,
we find that by properly tuning the squeezing phase of the
reservoir, one can significantly suppress the dephasing rate
that leads to a delay in the appearance of double sudden
transitions in GQD-1. Furthermore, unlike the dynamical de-
coupling protocol, we show that the squeezing phase of the
bath provides a promising tool to efficiently prolong the finite
time interval for the frozen GQD-1, despite the application of
any external operation on the system of interest. On the other

hand, we show that the squeezing strength of the reservoir
displays a negative role in the whole process. Moreover, we
observe the generation of steady-state geometric correlations
and decoherence-free subspace in the common bath scenario.
Interestingly, their emergence can be controlled through the
squeezing parameters of the bath. Controlling the time in-
terval for frozen GQD-1 and decoherence-free subspace via
squeezing parameters can be a useful strategy for overcoming
the challenges of decoherence in quantum computing and
communication.

Nevertheless, the classical correlations between the system
S and quantum apparatus A can be employed to precisely
define the exact time τE for the emergence of the pointer-state
basis [45,75,76]. More specifically, τE is the instant of time
when the classical correlation exhibits an abrupt change from
a decaying regime to a certain nonvanishing stationary value
[36,45,46]. The emergence of the pointer-state basis strongly
depends on the nature of the decoherent environment. For
example, for the Markovian noise models, classical corre-
lation exhibits a single sudden change along the dynamics,
which is associated with the emergence of a stable pointer-
state basis [36,45]. However, in the case of non-Markovian
dynamics, the classical correlation experiences successive
abrupt changes before reaching a permanent constant value,
implying the appearance of the metastable pointer-state basis
[47–49]. Furthermore, we recently demonstrated that the envi-
ronmental nonequilibrium feature delays the emergence of the
pointer-state basis and suppresses the number of metastable
pointer-state basis [50]. Now it is natural to wonder how
the exact pure dephasing process in the squeezed thermal
environments influences the emergence of the pointer-state
basis associated with the abrupt change in geometric classical
correlation. In this paper we show that the emergence of a
pointer-state basis can be delayed by suitably adjusting the
bath squeezing parameters in both local baths and common
bath setups. Remarkably, we find the optimal value of the
squeezing phase of the reservoir, which introduces maxi-
mum retardation in the appearance of a pointer-state basis.
Furthermore, we find that the pointer-state basis emerges
earlier in the common bath case. Our study provides in-
sights to control the phenomenon of the quantum-to-classical
transition.

The paper is arranged as follows. In Sec. II the physi-
cal dephasing model with the exact solution is introduced.
Section III is devoted to the dynamics of 1-norm geometric
quantum and classical correlations in a two-qubit system, lo-
cally subjected to spatially separated squeezed thermal baths
or a common bath. The effects of reservoir squeezing parame-
ters on the phenomena of double sudden transitions in GQD-1
and the emergence of a pointer-state basis are also discussed
here in detail. A summary of our findings is presented in
Sec. IV.

II. DEPHASING MODEL IN THE SQUEEZED RESERVOIR
AND ITS SOLUTION

The pure dephasing model under consideration is com-
posed of a two-qubit system, where each qubit is locally and
independently coupled to a squeezed thermal bath or both
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qubits interact with a common squeezed thermal bath. Below,
these different scenarios are discussed in detail.

A. Two qubits in local baths

We begin with the case when two qubits are coupled to
independent local but identical squeezed thermal baths via
the nondemolition interactions. To solve this model, first we
consider a two-level system (HS = 1

2ω0σ̂z) interacting with
a bosonic reservoir (HR = ∑

k ωkâ†
k âk) [77–80]. The system-

reservoir interaction is characterized by the nondemolition
Hamiltonian

HSR = σ̂z

(∑
k

(λkâk + λ∗
k â†

k )

)
, (1)

where σ̂z = |e〉〈e| − |g〉〈g| such that |e〉 (|g〉) shows the excited
(ground) state of the qubit with transition frequency ω0. Fur-
ther, ωk represents the kth-mode frequency of the bath with
creation (annihilation) operator â†

k (âk) and λk characterizes
the coupling strength between the qubit and each mode of the
bath. It is important to note that in this model [HS, HSR] = 0,
implying that the system energy is always conserved, and the
populations on each level of the qubit remain unchanged with
time.

In order to obtain the exact dynamics of a single-
qubit system, we begin with ρSR(0) = ρS (0) ⊗ ρR(0) and
consider that the reservoir is initially in the squeezed ther-
mal state, i.e., ρR(0) = ∏

k Ŝk (ζk )ρthŜ†
k (ζk ), where ρth =

1
Z e−(1/T )HR , with T the temperature of the thermal state
ρth and Z the normalization constant [73,81]. In addition,
Ŝk (ζk ) = exp[ 1

2 (ζ ∗
k â2

k − ζkâ†2
k )] represents the squeezing op-

erator for the mode âk , with ζk = rkeiθk , where rk and θk

are the squeezing strength and phase, respectively. As the
composite system (qubit plus reservoir) is closed, it therefore
obeys the unitary evolution, i.e., ρSR(t ) = UI (t )ρSR(0)U †

I (t ),
where UI = exp{σz[ηk (t )â†

k − η∗
k (t )âk]} characterizes a uni-

tary operator in the interaction picture with ηk (t ) = λk (1 −
eiωkt )/ωk . Thus, by tracing over the reservoir variables,
one can obtain the reduced density matrix for the dy-
namics of a single-qubit system in the basis {|e〉, |g〉}
as [78]

ρS (t ) =
(

ρee
S (0) ρ

eg
S (0)e−
(t )

ρ
ge
S (0)e−
(t ) ρ

gg
S (0)

)
. (2)

Here 
(t ) characterizes the decay factor which can be defined
as (for detailed calculations see the Appendix)


(t ) = 2
∫ ∞

0

dω

π
I (ω) coth

ω

2T

(
1 − cos ωt

ω2

)
× [cosh 2r − sinh 2r cos(ωt − δθ )]. (3)

In our study, we adopt the Ohmic spectral density, which
takes the form I (ω) = γωe−ω/ωc , widely exploited in the spin-
boson models [73,77–81]. The parameter γ is a dimensionless
dissipative constant, indicating the coupling strength, δθ de-
scribes the phase difference between the squeezing phase
relative to the phase of coupling parameter, and ωc is the cutoff
frequency.

Now we evaluate Eq. (3) for the two different cases of tem-
perature. For example, in the zero-temperature limit (T → 0)
case, we have coth ω

2T → 1. In this scenario, the reservoir
is initially in the squeezed vacuum state. Thus, by solving
the integral given in Eq. (3), we can obtain the analytical
expression for the dephasing factor


(t ) = γ

π
{α1(t ) cosh 2r − sinh 2r[α2(t ) cos δθ

+α3(t ) sin δθ ]}, (4)

with the time-dependent coefficients α1(t ) = ln(1 + τ 2),
α2(t ) = ln(

√
1+4τ 2

1+τ 2 ), and α3(t ) = 2 arctan τ − arctan 2τ ,
where τ = ωct . On the other hand, for the case of the
high-temperature limit, we have coth ω

2T ≈ 2T
ω

, which we
substitute into Eq. (3). Hence, by evaluating the above
integral, it turns out that the dephasing factor still has the
same form as given by Eq. (4); however, the time-dependent
coefficients now become

α1(t ) = 2T

ωc
[2τ arctan τ − ln(1 + τ 2)],

α2(t ) = 2T

ωc

[
2τ (arctan 2τ − arctan τ ) − ln

(√
1 + 4τ 2

1 + τ 2

)]
,

α3(t ) = 2T

ωc

[
(arctan 2τ − 2 arctan τ ) + τ ln

(
1 + 4τ 2

1 + τ 2

)]
.

(5)

We are interested in the dephasing dynamics of a two-
qubit system, where each qubit is locally and independently
coupled to the relevant squeezed thermal bath via the energy-
preserving interaction. Therefore, based on the approach
given in Ref. [82], we can easily evaluate the reduced density
matrix for a bipartite system ρLB(t ) in the standard basis
{|1〉 = |ee〉, |2〉 = |eg〉, |3〉 = |ge〉, |4〉 = |gg〉} as

ρLB(t ) =

⎛
⎜⎜⎜⎜⎝

ρ11(0) ρ12(0)e−
(t ) ρ13(0)e−
(t ) ρ14(0)e−2
(t )

ρ21(0)e−
(t ) ρ22(0) ρ23(0)e−2
(t ) ρ24(0)e−
(t )

ρ31(0)e−
(t ) ρ32(0)e−2
(t ) ρ33(0) ρ34(0)e−
(t )

ρ41(0)e−2
(t ) ρ42(0)e−
(t ) ρ43(0)e−
(t ) ρ44(0)

⎞
⎟⎟⎟⎟⎠. (6)

This equation characterizes the dynamics of a pair of two-
level systems, where LB stands for local baths. Note that

the diagonal elements remain constant for the pure dephasing
case, while all the off-diagonal elements decrease with time
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as ρLB(t ) evolves. We consider both qubits initially prepared
in the Bell-diagonal states, having the form

ρ(0) = 1

4

(
IA ⊗ IB +

3∑
i=1

ciσ
i
A ⊗ σ i

B

)
, (7)

where IA (IB) indicates the identity operator of the subsystem
A (B) and σ i

A (B) are the well-known Pauli operators acting on
the subspace A (B). Further, {ci = ci(0)} denotes the initial
correlation parameters or functions with 0 � |ci| � 1. Re-
markably, it includes the Werner (|c1| = |c2| = |c3| = c) and
Bell (|c1| = |c2| = |c3| = 1) states.

B. Two qubits in a common bath

We now assume that two identical qubits are coupled to
a common squeezed thermal reservoir via energy-preserving
interactions. The total Hamiltonian is given by

H =
2∑

j=1

(
ω0

2
σ̂ j

z +
∑

k

ωkâ†
k âk + σ̂ j

z

∑
k

(λkâk + λ∗
k â†

k )

)
,

(8)

where indices j and k label the qubits and modes of the bath,
respectively. In this case, we again consider that both qubits
have the same coupling strengths λk to the environment. Ex-
ploiting the approach given in Ref. [77], we can calculate the
reduced density matrix for the two qubits in the same standard
basis as

ρCB(t ) =

⎛
⎜⎜⎜⎜⎝

ρ11(0) ρ12(0)e−
(t ) ρ13(0)e−
(t ) ρ14(0)e−4
(t )

ρ21(0)e−
(t ) ρ22(0) ρ23(0) ρ24(0)e−
(t )

ρ31(0)e−
(t ) ρ32(0) ρ33(0) ρ34(0)e−
(t )

ρ41(0)e−4
(t ) ρ42(0)e−
(t ) ρ43(0)e−
(t ) ρ44(0)

⎞
⎟⎟⎟⎟⎠, (9)

where CB stands for common bath and 
(t ) is defined in
Eq. (4). Equation (9) describes the dynamics of two two-level
systems subjected to a common squeezed thermal bath. We
again assume that both qubits are initially in the Bell-diagonal
states given by Eq. (7). It is worth mentioning that in the com-
mon bath scenario, diagonal elements and two off-diagonal
elements ρ32(0) and ρ23(0) remain unchanged, while others
decrease with time as ρCB(t ) evolves.

III. TRACE-DISTANCE QUANTUM AND CLASSICAL
CORRELATIONS IN SQUEEZED THERMAL RESERVOIRS

In this section we first briefly introduce the concept of
trace-norm geometric quantifiers to measure both quantum
and classical correlations in a two-qubit system and recall
certain known results from the literature. For this reason, let us
assume a bipartite system is described by the density operator
ρ and the closest classical-quantum state is characterized by
ρc. The 1-norm geometric measures for quantum QG(ρ) and
classical CG(ρ) correlations between qubits A and B may be
defined via trace distances as [26,27]

QG(ρ) = min
�0

‖ρ − ρc‖1 (10)

and

CG(ρ) = max
�0

‖ρc − π‖1, (11)

respectively. Here ‖M‖1 = Tr[
√

M†M] is the 1-norm, �0 de-
fines a set of classical-quantum states, having the generic form
ρc = ∑

j μ
jχ

j
A ⊗ ρ

j
B, with 0 � μ j � 1 and

∑
j μ

j = 1, and

π is the product of the local marginals of ρ. Further, {χ j
A} is a

set of orthogonal projectors for the subsystem A and ρ
j
B refers

to the reduced density operator of subsystem B. Interestingly,
for the two-qubit X -type states [for example, the state given

by Eq. (7)], the GQD-1 and its classical counterpart exhibit
closed analytical expressions QG(ρ) = int{|c1|, |c2|, |c3|} and
CG(ρ) = max{|c1|, |c2|, |c3|}, respectively, where int stands
for the intermediate result among the absolute values of the
correlation parameters [83–86].

The dephasing process preserves the general form of the
Bell-diagonal states. Therefore, in this situation, the general
patterns of the geometric quantum and classical correlations
at any time can be directly obtained as

QG[ρ(t )] = int{|c1(t )|, |c2(t )|, |c3(t )|} (12)

and

CG[ρ(t )] = max{|c1(t )|, |c2(t )|, |c3(t )|}, (13)

respectively. For the local baths case, the time-dependent
correlation parameters (or functions) c1(t ) = c1e−2
(t ),
c2(t ) = c2e−2
(t ), and c3(t ) = c3 are straightforwardly
computed from Eqs. (6) and (7). However, these
evolved correlation parameters for the common bath take
the forms c1(t ) = 1

2 [c1(1 + e−4
(t ) ) + c2(1 − e−4
(t ) )],
c2(t ) = 1

2 [c1(1 − e−4
(t ) ) + c2(1 + e−4
(t ) )], and c3(t ) = c3,
which can be obtained easily from Eqs. (7) and (9).

It is quite prominent that the dynamical behaviors of the
geometric correlations based on trace distance and the cor-
responding intriguing phenomena are strongly dependent on
the initial value ci = ci(0) and the nature of the environ-
ment being considered through the decay factor 
(t ). For
example, in the local baths scenario, the evolved correlation
functions |c1(t )| and |c2(t )| present the same decay rate,
signaling that they do not cross each other as a function
of time, whereas in the dephasing process |c3(t )| = |c3| re-
mains constant throughout the entire dynamics. When |c1| >

|c2| > |c3| �= 0 (or |c2| > |c1| > |c3| �= 0), only two cross-
ings |c1(t )| = |c3| and |c2(t )| = |c3| are allowed among the
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correlation functions. Remarkably, these crossings cause at
most two nonanalyticities (abrupt changes) in the interme-
diate value of QG[ρ(t )] which correspond to the nontrivial
phenomenon of double sudden transitions. Nevertheless, these
crossings among the correlation functions induce at most a
single nonanalyticity in CG[ρ(t )], associated with the emer-
gence of the pointer-state basis. This reveals that for the
Bell-diagonal states, the double sudden transitions is indeed
a quantum effect, which is unattainable for the classical cor-
relation.

Notably, the aforementioned phenomena hold for the
Markovian noise models [36,37]. However, it was shown
that for the case of non-Markovian random telegraph noise
with both stationary and nonstationary stochastic properties,
one can observe multiple crossings among the correlation
functions [47–50]. Consequently, these crossings give rise
to the occurrence of several successive sudden transitions in
both quantum and classical correlations. In particular, due to
the non-Markovian dynamics, classical correlation exhibits
multiple abrupt changes before reaching a stable constant
value which is associated with the appearance of a metastable
pointer-state basis. These studies imply that dynamical be-
haviors of the correlations in the quantum system and their
relevant unanticipated phenomena rely on the initial state of
the system [ci = ci(0)] and a detailed configuration of the
noisy environment being considered. Therefore, it would be
interesting to ask the following questions. First, what are the
effects of the reservoir squeezing on the phenomena of freez-
ing, double sudden transitions in GQD-1, and the appearance
of the pointer-state basis in the local baths case? Second, how
do the squeezing parameters influence the dynamical behav-
iors of the geometric correlations and their related intriguing
phenomena when both qubits are exposed to a common bath?
We will address these questions below.

A. Effects of the squeezing phase

The main focus of this section is to unveil the effects of the
squeezing phase of a bath on 1-norm geometric correlations
dynamics and intriguing phenomena associated with them. To
this aim, in Fig. 1 we plot the time evolution of 1-norm ge-
ometric quantum correlations and their classical counterparts
in a two-qubit system where each qubit is locally subjected
to a squeezed thermal bath at zero temperature for different
values of δθ . Herein we consider the initial state parameters
c1 = 1, c2 = −0.6, c3 = 0.3, squeezing strength r = 0.5, and
coupling constant γ = 0.5. The inset in each panel of Fig. 1
clearly shows that the components |c1(t )| and |c2(t )| exhibit
the same decay pattern, revealing that they will never cross
each other as a function of timescale τ . However, due to the
dephasing process, the function |c3(t )| stays constant through-
out the entire dynamics. Therefore, the only allowed crossing
are |c1(t )| = |c3(t )| and |c2(t )| = |c3(t )|.

For the given correlation parameters, we initially have
QG[ρLB(t )] = c2(t ) = c2e−2
(t ), implying that GQD-1 ex-
hibits decay in the initial time, as illustrated by the blue dotted
curve in Fig. 1(a). When the phase difference δθ between the
squeezing phase relative to the coupling strength phase is zero,
the first crossing |c2(t )| = |c3(t )| occurs at the critical point
τ = τ ∗

1 = 1.68, as shown by the purple dotted curve in the

(a)

(b)

(c)

FIG. 1. Time evolution of quantum QG[ρLB(t )] (blue curves) and
classical CG[ρLB(t )] (red curves) correlations of two qubits locally
subjected to thermal baths at zero temperature with different values
of the phase difference: (a) δθ = 0, (b) δθ = π

4 , and (c) δθ = π

2 .
In all cases we consider initial correlation parameters c1 = 1, c2 =
−0.6, c3 = 0.3, squeezing strength r = 0.5, and coupling constant
γ = 0.5. The insets in each panel show the dynamics of the corre-
lation parameters for different values of δθ . In each panel the gray
vertical solid line manifests the time instant τE for the emergence of
the pointer-state basis.

inset of Fig. 1(a). At this stage, GQD-1 becomes
QG[ρLB(t )] = c3(t ) = c3 and experiences the first sudden
transition during the temporal evolution, as indicated by the
position of the gray vertical dashed line in Fig. 1(a). The
GQD-1 becomes frozen (unaffected by decoherence) for a
finite time interval, as displayed by the window between the
gray vertical dashed and solid lines in Fig. 1(a). Finally, a sec-
ond crossing |c1(t )| = |c3(t )| appears at the point τ = τ ∗

2 =
2.72, as revealed by the green dotted curve in the inset of
Fig. 1(a). From this point on, QG[ρLB(t )] = c1(t ) = c1e−2
(t ),
signifying that the GQD-1 asymptotically decays to zero
QG[ρLB(∞)] = 0, as shown by the blue dotted curve just after
the gray vertical solid line in Fig. 1(a). On the other hand,
the crossings |c2(t )| = |c3(t )| and |c1(t )| = |c3(t )| cause only
one abrupt change in CG[ρLB(t )], as shown by the red dotted
curves in Fig. 1(a). Indeed, this reveals that the double sudden
transitions phenomenon is genuinely a quantum effect that
cannot be observed for classical correlations.

042432-5



BASIT, ALI, LI, AND XIANLONG PHYSICAL REVIEW A 107, 042432 (2023)

Recently, it was reported that dephasing in a single qubit
could be suppressed by tuning the squeezing phase of the
bath [73]. Therefore, when we induce a phase difference,
for instance, δθ = π

4 , the decay in the correlation functions
decreases, which causes a delay in the appearance of cross-
ings |c2(t )| = |c3(t )| and |c1(t )| = |c3(t )|, as displayed by
the purple (τ ∗

1 = 2.18) and green (τ ∗
2 = 3.76) dashed curves,

respectively, in the inset of Fig. 1(b). Consequently, the oc-
currence of the corresponding double sudden transitions in
QG[ρLB(t )] and single abrupt change in CG[ρLB(t )] are also
retarded, as shown by the position of the gray vertical dashed
and solid lines in Fig. 1(b). Strikingly, in Fig. 1(b), one can
also observe an enhancement in the time interval over which
the GQD-1 exhibits a constant magnitude. Furthermore, we
analyzed these results for the other values of δθ and found
that a maximum delay in the appearance of crossings |c2(t )| =
|c3(t )| and |c1(t )| = |c3(t )| happens only when δθ = π

2 , as
shown by the purple (τ ∗

1 = 2.88) and green (τ ∗
2 = 5.50) solid

curves, respectively, in the inset of Fig. 1(c). As a result, one
can observe a maximum increase in the critical time for the
double sudden transitions in GQD-1; see the positions of the
gray vertical (dashed and solid) lines in Fig. 1(c). Further, this
also introduces maximum enhancement in the time interval
for the frozen GQD-1, as shown by the blue solid curve in
Fig. 1(c). This reveals that the squeezing phase of the bath
renders a different avenue to suppress the dephasing rate
in a two-qubit system and control the critical time for the
occurrence of the double sudden transitions phenomenon in
GQD-1. In addition, this also provides insights to prolong the
time interval for frozen GQD-1.

Now we investigate how the reservoir squeezing phase
influences the dynamical behaviors of geometric correlations
and their corresponding nontrivial phenomena when both
qubits are coupled to a common bath at zero temperature. In
Fig. 2 we assume the same initial state and bath parameters as
in Fig. 1. It is evident from each inset in Fig. 2 that, unlike
the local baths setup, the correlation functions |c1(t )| and
|c2(t )| do not have the same decay pattern in the common bath
scenario. For example, after crossing |c2(t )| = |c3(t )|, one can
observe that |c2(t )| starts a revival from a dark period (zero)
to a stable constant value, i.e., c2(∞)| = |c1+c2|

2 , as displayed
by the purple dotted curve in the inset in Fig. 2(a). However,
c1(t ) asymptotically tends to the same constant level |c1+c2|

2
without any revival after the second crossing |c1(t )| = |c3(t )|,
as illustrated by the green dotted curve in the inset in Fig. 2(a).
Here we can still observe that these two crossings allow at
most two sudden transitions in GQD-1 and one abrupt change
in classical correlations, as shown by the blue and red dotted
curves in Fig. 2(a), respectively. Due to this decay pattern of
the correlation functions, GQD-1 tends to a nonzero steady
state after the second sudden transition in the common bath,
as displayed by the blue dotted curve, sharply after the gray
vertical solid line in Fig. 2(a). Moreover, note that in the
common bath case, for the given initial state, Eq. (9) mani-
fests that there exists a decoherence-free subspace with two
basis |eg〉 and |ge〉. This reveals that the common bath setup
provides a promising avenue to generate steady-state GQD-1
and decoherence-free subspace.

In the common bath scenario, we also observe that by
adequately tuning the phase difference δθ , one can efficiently

(a)

(b)

(c)

FIG. 2. Time evolution of quantum QG[ρCB(t )] (blue curves) and
classical CG[ρCB(t )] (red curves) correlations of two qubits subjected
to a common thermal bath at zero temperature with different values
of the phase difference: (a) δθ = 0, (b) δθ = π

4 , and (c) δθ = π

2 .
In all cases we consider initial correlation parameters c1 = 1, c2 =
−0.6, c3 = 0.3, squeezing strength r = 0.5, and coupling constant
γ = 0.5. The insets in each panel show the dynamics of the corre-
lation parameters for different values of δθ . In each panel the gray
vertical solid line manifests the time instant τE for the emergence of
the pointer-state basis.

harness the occurrence of abrupt changes in the 1-norm ge-
ometric correlations and prolong the time interval for frozen
GQD-1. For instance, comparing Figs. 2(a) and 2(b), we can
clearly see a delay in the appearance of the double sudden
transitions phenomenon in GQD-1 when introducing a phase
difference (e.g., δθ = π

4 ), as indicated by the positions of gray
vertical dashed and solid lines. In addition, we can introduce
maximum retardation in the occurrence of double sudden tran-
sitions in GQD-1 and obtain optimal enhancement in the time
interval for frozen GQD-1 when δθ = π

2 , as shown by the blue
solid curve in Fig. 2(c). Moreover, Fig. 2 reveals that the time
to achieve steady-state GQD-1 can be effectively controlled
by properly adjusting the value of δθ . This implies that our
study renders a promising approach to control the generation
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of steady-state GQD-1 and decoherence-free subspace via
the squeezing phase of the reservoir, which is crucial for
improving the performance and reliability of quantum com-
munication and computation in the presence of decoherence.

Effects of the squeezing phase on the emergence
of the pointer-state basis

The measurement problem is at the heart of fundamental
questions of quantum mechanics and the quantum-classical
transition [87]. One way to deal with the classical limit is
through the decoherence process [75], where a quantum ap-
paratus A measures a system S . The apparatus undergoes the
environmental decoherence that collapses A into a possible
set of classical states known as the pointer-state basis. Con-
sequently, a classical observer can access information about
the system through the pointer-state basis associated with
the apparatus. Recently, it has been reported that the emer-
gence of the pointer-state basis at a finite time is associated
with a specific instant of time τE at which the geometric
(or entropic) classical correlation between A and S becomes
abruptly constant [36,45]. This highlights the significance of
classical correlations in the investigation of the measurement
process, although the composite AS state still has quantum
features, as can be inferred from GQD-1 [36]. Moreover, the
emergence of the pointer-state basis strongly relies on the
detailed configuration of the decoherent environment [45–50].
Therefore, it is crucial to ask how the reservoir squeezing
parameters influence the appearance of the pointer-state basis
in both local baths and a common bath scenario.

To answer the aforementioned question, we consider that
qubit A works as a quantum measurement apparatus A and
qubit B indicates the system S . First, we assume that the joint
system AS is locally subjected to the dephasing noise induced
by the squeezed thermal baths at zero temperature described
by Eq. (6). The geometric classical correlation in AS can
be exploited to define τE , which precisely corresponds to the
critical time at which CG[ρLB(t )] exhibits a sudden transition
from a decaying regime to a constant nonvanishing value. In
Fig. 1 we plot the dynamics of the classical correlations as a
function of τ , with initial state c1 = 1, c2 = −0.6, c3 = 0.3,
squeezing strength r = 0.5, and coupling constant γ = 0.5. In
particular, when δθ = 0, we observe that the sudden transition
in the classical correlation occurs at a critical time τ = τ ∗

2 =
2.72, as displayed by the red dotted curve in Fig. 1(a). This
signals that the pointer-state basis emerges at τE = τ ∗

2 = 2.72,
as shown by the gray vertical solid line in Fig. 1(a). However,
when we incorporate the phase difference, for example, δθ =
π
4 , we notice a delay in the emergence of the pointer-state
basis, i.e., τE = 3.76 (characterized by the abrupt change in
CG[ρLB(t )] towards the constant nonzero level), as shown by
the position of the gray vertical solid line in Fig. 1(b). Fur-
thermore, we investigated the emergence of the pointer-state
basis for the other values of δθ ; however, we obtained that the
maximum retardation in the emergence of pointer-state basis
occurs only when δθ = π

2 , that is, τE = 5.50, as illustrated by
the position of the gray vertical solid line in Fig. 1(c).

Now, in Fig. 2, we investigate the emergence of the pointer-
state basis when the composite system AS interacts with a
common squeezed thermal reservoir at zero temperature with

the same set of parameters as given in Fig. 1. Specifically for
δθ = 0, the pointer-state basis emerges at τE = τ ∗

2 = 2.36,
characterized by the sudden change in the classical correla-
tions, as displayed by the position of the gray vertical solid
line in Fig. 2(a). However, when we induce the phase differ-
ence, for instance, δθ = π

4 and δθ = π
2 , we observe a delay in

the emergence of the pointer-state basis, i.e., τE = τ ∗
2 = 3.20

and τE = τ ∗
2 = 4.52, as shown by the positions of the gray

vertical solid lines in Figs. 2(b) and 2(c), respectively. Thus,
by comparing the Figs. 1 and 2, we observe that the pointer-
state basis emerges earlier in the common bath case than in
the local baths case. In addition, we find that in both setups of
the reservoir, the squeezing phase of the bath provides an ef-
ficient protocol to control the quantum-to-classical transition
phenomenon (characterized by a pointer-state basis) without
applying any operation on the main system. This finding can
have potential implications for quantum technologies, where
the control of the quantum-to-classical transition is critical for
the performance and accuracy of the devices.

B. Effects of squeezing strength

In this section we investigate the impact of the squeezing
strength r on the time evolution of the 1-norm geometric
correlations and corresponding nontrivial phenomena in two
qubits locally subjected to squeezed thermal baths or a com-
mon squeezed thermal bath at zero temperature. For this
purpose, first, we consider the case of the local baths in
Fig. 3 and illustrate the dynamics of quantum and classical
correlations as a function of the timescale τ , setting the same
initial state parameters and coupling constant γ as consid-
ered in Fig. 1, but different values of squeezing strength
r with a fixed phase difference δθ = π

2 . Specifically, when
the squeezing strength is r = 0.1, the first crossing |c2(t )| =
|c3(t )| is observed at a certain point τ = τ ∗

1 = 3.10, while the
second crossing |c1(t )| = |c3(t )| appears at τ = τ ∗

2 = 7.24,
as displayed by the purple and green dotted curves in the
inset of Fig. 3(a), respectively. These crossings among the
correlation parameters induce the corresponding double and
single sudden transitions in the decay rates of QG[ρLB(t )]
and CG[ρLB(t )], as shown by the blue and red dotted curves,
respectively, in Fig. 3(a).

However, when we gradually increase the squeezing
strength, for example, r = 0.6, the correlation functions decay
fast, which shortens the critical time for the occurrence of
first and second crossings, i.e., τ ∗

1 = 2.62 and τ ∗
2 = 4.69, as

shown by the purple and green dashed curves, respectively, in
the inset given in Fig. 3(b). As a consequence, the associated
phenomenon of double sudden transitions in GQD-1 appears
earlier in time, as evidenced by the positions of the gray
vertical (dashed and solid) lines in Fig. 3(b). In addition, the
size of the time interval for which GQD-1 exhibits a constant
magnitude is also reduced, as displayed by the blue dashed
curve in Fig. 3(b). Similarly, if we further increase the squeez-
ing strength, i.e., r = 1, the decay in correlation functions
|c1(t )| and |c2(t )| becomes more profound; see the green and
purple solid curves, respectively, in the inset in Fig. 3(c).
This implies that one can observe a further decrease in the
critical time for the appearance of double sudden transitions
in GQD-1, as displayed by the blue solid curve in Fig. 3(c). It

042432-7



BASIT, ALI, LI, AND XIANLONG PHYSICAL REVIEW A 107, 042432 (2023)

(a)

(b)

(c)

FIG. 3. Time evolution of quantum QG[ρLB(t )] (blue curves) and
classical CG[ρLB(t )] (red curves) correlations of two qubits locally
subjected to thermal baths at zero temperature with different values
of the squeezing strength: (a) r = 0.1, (b) r = 0.6, and (c) r = 1.
In all cases we consider initial correlation parameters c1 = 1, c2 =
−0.6, c3 = 0.3, δθ = π

2 , and coupling constant γ = 0.5. The insets
in each panel show the dynamics of the correlation parameters for
different values of r. In each panel the gray vertical solid line mani-
fests the time instant τE for the emergence of the pointer-state basis.

also reduces the time interval for frozen GQD-1, as shown by
the blue solid curve in Fig. 3(c). These findings reflect that the
squeezing strength has a negative role in delaying the double
sudden transitions in GQD-1 and enhancing the time interval
over which the geometric quantum correlation stays constant.

In Fig. 4 we now assume the same set of parameters as
given in Fig. 3 and reveal the influence of the squeezing
strength r on the dynamics of geometric correlations in two
qubits coupled to a common thermal squeezed bath with
zero temperature. For example, when r = 0.1, the first cross-
ing |c2(t )| = |c3(t )| occurs at τ = τ ∗

1 = 1.14 and the second
crossing |c2(t )| = |c3(t )| at τ = τ ∗

2 = 5.55, as displayed by
the purple and green dotted curves, respectively, in the inset in
Fig. 4(a). Interestingly, in the common bath scenario, we still

(a)

(b)

(c)

FIG. 4. Time evolution of quantum QG[ρCB(t )] (blue curves) and
classical CG[ρCB(t )] (red curves) correlations of two qubits subjected
to a common thermal thermal bath at zero temperature with different
values of the squeezing strength: (a) r = 0.1, (b) r = 0.6, and (c) r =
1. In all cases we consider initial correlation parameters c1 = 1,
c2 = −0.6, c3 = 0.3, δθ = π

2 , and coupling constant γ = 0.5. The
insets in each panel show the dynamics of the correlation parameters
for different values of r. In each panel the gray vertical solid line
manifests the time instant τE for the emergence of the pointer-state
basis.

observe that these crossings induce double sudden transitions
in QG[ρCB(t )] and a single abrupt change in CG[ρCB(t )], as
shown by the blue and red dotted curves, respectively, in
Fig. 4(a). Furthermore, in the common bath setup, we found
that GQD-1 tends to a stable nonvanishing value after the
second sudden transition, as indicated by the blue dotted curve
in Fig. 4(a). Like the local baths case, here we also observe
that increasing the squeezing strength, e.g., r = 0.6 and r = 1,
can reduce the critical time for the crossings among the corre-
lation functions, as shown in the insets of Figs. 4(b) and 4(c),
respectively. Indeed, this results in a reduction in time for the
appearance of the double sudden transitions phenomenon in
GQD-1 and also reduces the length of the time interval for
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frozen GQD-1, as illustrated by the positions of the gray verti-
cal (dashed and solid) lines in Figs. 4(b) and 4(c). In addition,
we found that the time required for achieving the steady-state
GQD-1 decreases by increasing the squeezing strength of the
bath, as shown by the blue [(a) r = 0.1, dotted; (b) r = 0.6,
dashed; and (c) r = 0.1, solid] curves in Fig. 4. This reveals
that the squeezing strength renders a promising approach for
controlling the generation of steady-state GQD-1.

Effects of squeezing strength on the emergence
of the pointer-state basis

We now examine the influence of the squeezing strength r
on the emergence of the pointer-state basis that characterizes
the quantum-to-classical transition. The classical correlations
can be applied as a powerful tool to define well the critical
time at which the pointer-state basis emerges. For this aim, in
Figs. 3 and 4 we closely analyze the dynamical behaviors of
the classical correlation in two qubits locally interacting with
squeezed thermal baths or a single common squeezed thermal
bath at zero temperature. In the case of local baths, when
r = 0.1, we obtain an abrupt change from the initial decay
regime to a constant stationary value in CG[ρLB(t )] at the
critical point τ ∗

2 = 7.24, as displayed by the red dotted curve
in Fig. 3(a). This infers that the pointer-state basis emerges
at τE = τ ∗

2 = 7.24, as shown by the gray vertical solid line in
Fig. 3(a). However, when we slowly increase the value of the
squeezing strength, for example, r = 0.6 and 1, the pointer-
state basis emerges earlier in time, i.e., τE = 4.69 and 2.49, as
illustrated by the positions of the gray vertical solid lines in
Figs. 3(b) and 3(c), respectively. This reflects that increasing
the squeezing strength leads to a decrease of the critical time
for the emergence of the pointer-state basis. In other words,
the phenomenon of the quantum-to-classical transition hap-
pens earlier if we enhance the squeezing strength.

In Fig. 4 we plot the dynamics of the classical correla-
tion to investigate the effect of the squeezing strength on
the emergence of the pointer-state basis in a common bath
scenario. When r = 0.1, the classical correlation displays a
sudden transition at the critical time τ = 5.55, signaling that
the pointer-state basis emerges at τE = τ ∗

2 = 5.55, as shown
by the position of the gray vertical solid line in Fig. 4(a).
Moreover, if we gradually increase the squeezing strength,
for instance, r = 0.6 and 1, the time for the abrupt change
in CG[ρCB(t )] decreases, as shown by the red dashed and solid
curves in Figs. 4(b) and 4(c), respectively. This reveals that the
appearance time for a pointer-state basis also decreases, i.e.,
τE = τ ∗

2 = 3.94 and 2.22, as represented by the position of the
gray vertical solid line in Figs. 4(b) and 4(c), respectively. By
comparing Figs. 3 and 4, we can conclude that the squeezing
strength has the same effects in both the local baths and
common bath cases; however, the pointer-state basis emerges
earlier in the common bath setup. This reflects that one can
observe the phenomenon of quantum-to-classical transition
earlier in the common bath case. Our findings provide insights
into the investigation of the measurement problem in quantum
mechanics.

Nevertheless, we further analyzed the above results for the
squeezed thermal baths at the high-temperature limit. It is
found that the squeezing parameters exhibit the same effects

as obtained for a squeezed vacuum reservoir (T = 0). There-
fore, we omitted the case of a high-temperature limit.

IV. CONCLUSION

We have investigated theoretically the dynamics of 1-norm
geometric quantum correlations and their classical counter-
parts in a two-qubit system. Both qubits are initially prepared
in Bell-diagonal states and locally coupled to spatially sep-
arated squeezed thermal reservoirs or a common squeezed
thermal reservoir via energy-preserving interactions. We have
unveiled the effects of reservoir squeezing on the abrupt
changes in the evolution of geometric correlations. Strikingly,
we have found that by properly tuning the squeezing phase
of the reservoir, we can efficiently suppress the dephasing
rate and retard the appearance of double sudden transitions
in GQD-1 in both environmental setups. Further, we have
shown that the squeezing phase of the bath provides an al-
ternative promising tool for enhancing the finite time interval
over which GQD-1 remains frozen, despite the deleterious
effects of decoherence. On the other hand, in this framework,
we have shown that the squeezing strength of the reservoir
plays a negative role throughout the dynamics. Moreover,
we have observed the generation of steady-state geometric
correlations and decoherence-free subspace in the common
bath scenario. Interestingly, their emergence can be controlled
through the squeezing parameters of the bath. Nevertheless,
we have found that adequately adjusting the squeezing param-
eters can significantly delay the emergence of a pointer-state
basis (quantum-to-classical transition). Remarkably, we have
shown that when δθ = π

2 , maximum retardation in the ap-
pearance of pointer-state basis can be observed. It is worth
mentioning that the above phenomena appear earlier in the
common bath scenario. Our study provides insights into con-
trolling the geometric correlations and their corresponding
nontrivial phenomena, which have vital applications in quan-
tum information and measurement problems.

Finally, we would like to comment on the realization of
our work in present-day experiments. The dephasing spin-
boson model with an Ohmic-like spectrum can be realized
in an ultracold hybrid system consisting of an impurity atom
immersed in the Bose-Einstein condensates (BECs) environ-
ment [88–90]. In this configuration an impurity atom trapped
in a double-well potential forms a qubit system, while the
BECs are often referred to as a bosonic reservoir. The squeez-
ing (Kerr-like nonlinearity) in the BECs (reservoir) can be
induced due to the nonlinear atom-atom interactions inside
the BECs atoms [91]. One can efficiently control squeezing
parameters by adjusting the strength, duration, and phase of
these nonlinear interactions [92–95]. Therefore, we hope that
our results can be experimentally realized in the mentioned
setup.
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APPENDIX

The dynamical behavior of the off-diagonal elements in
Eq. (2) is displayed as

e−2
(t ) = TrR

[
ρR(0) exp

(
2

∑
k

[ηk (t )â†
k − η∗

k (t )âk]

)]
.

(A1)
It is worth mentioning that the expression for e−2
(t ) is just
the characteristic function for the Wigner representation of
ρR(0) (which is a squeezed thermal state of all the modes
of reservoir). Hence the decay factor can be written as
[77–80]


(t ) =
∑

k

1

2
|2ηk (t ) cosh rk + 2η∗

k (t )eiθk sinh rk|2

× coth
ωk

2T
. (A2)

Now substituting ηk (t ) = λk (1 − eiωkt )/ωk into the expression
(A2), the decay factor becomes


(t ) =
∑

k

4|λk|2
ω2

k

(1 − cos ωkt ) coth
ωk

2T

× {cosh 2rk − sinh 2rk cos(ωkt − �θk )}, (A3)

where �θk = θk − 2φk characterizes the phase difference be-
tween the squeezing phase θk corresponding to the coupling
strength phase λk = |λk|eiφk .

For the sake of simplicity, we assume that all the bath
modes have the same squeezing strength, i.e., rk = r, and
consider �θk = δθ . We introduce a coupling spectral density
I (ω) = 2π

∑
k |λk|2δ(ω − ωk ) [78,96] and take the contin-

uum limit of the bath modes; thus we can easily obtain Eq. (3)
from Eq. (A3).
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