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Experimental demonstration of quantum contextuality with nine observables
on a single photonic qutrit

Xiao-Xiao Chen , Jian Li, Mairikena Aili, Zhe Meng, Ya-Jing Wang, and An-Ning Zhang *

Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE),
School of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081, People’s Republic of China

(Received 7 February 2023; accepted 10 April 2023; published 25 April 2023)

The violation of contextuality inequalities shows a strong conflict between the noncontextual hidden variable
theory and quantum mechanics. A single qutrit is the simplest indivisible quantum system that can allow a state-
dependent contextuality test with five observables and a state-independent contextuality test with 13 observables.
For any qutrit states, except for the maximally mixed state, one can always find a set of nine observables for which
the corresponding inequality is violated [P. Kurzynski and D. Kaszlikowski, Phys. Rev. A 86, 042125 (2012)].
In this paper, we demonstrate the violation of this inequality using single-photon experiments. Our experiments
not only enrich the tests of quantum contextuality, but also deepen the understanding of the physical nature of
quantum mechanics.
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I. INTRODUCTION

The Kochen-Specker (KS) theorem [1,2] is the core of
the foundation of quantum mechanics, which points out the
conflict between the noncontextual hidden variable (NCHV)
model and quantum theory. This conflict is generally referred
to as quantum contextuality, i.e., the impossibility of assign-
ing context-independent measurement outcomes that are in
agreement with quantum predictions. The KS theorem was
originally designed as a logical impossibility proof for value
assignments and did not involve any statistical argument. This
stimulated the development of a statistical version of the KS
contradiction, so-called contextuality inequalities. This class
of inequalities provides bounds that the NCHV model obey,
similar to the bounds that Bell inequalities [3,4] provide for
the local hidden variable model. Thus under some assump-
tions, contextuality tests can be achieved by the violation of
contextuality inequalities [5,6].

The most basic examples of contextuality tests include
the Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequal-
ity and the Yu-Oh inequality. On the one hand, the KCBS
inequality is the simplest inequality in a three-level sys-
tem that includes only five observables, and it is a class
of state-dependent contextuality tests [7]. Early experimen-
tal verifications of the KCBS inequality using a qutrit, the
simplest system for testing quantum contextuality, were ac-
complished via a single photon [8,9]. Then more experimental
verifications of the KCBS inequality were implemented in
other quantum systems, such as trapped ion systems [10,11],
superconducting systems [12], etc. On the other hand, Yu and
Oh derived a greatly simplified state-independent contextual-
ity test for qutrits, which involves 13 observables [13]. The
experimental verification of the Yu-Oh inequality was also
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first implemented in a single photonic qutrit system [14].
Subsequently, further theoretical optimizations [15,16] and
experimental verifications [17,18] of the Yu-Oh inequality
were implemented. Interestingly, there is another Kurzynski-
Kaszlikowski (KK) inequality [19] that is different from the
KCBS and Yu-Oh inequalities, which can be violated by
almost all states except for the maximally mixed state, thus
allowing a contextuality test on the boundary between state
dependent and state independent. The test of the KK in-
equality requires only nine observables to reveal the quantum
contextuality for all qutrit states of a three-level system except
for the maximally mixed state. Since this test lies on the
boundary of state dependent and state independent, further re-
search on it can help us to understand the relationship between
the two types of contextuality tests to a certain extent. How-
ever, an experimental test of the KK inequality in quantum
systems is lacking.

In this paper, we consider the theoretical scheme in
Ref. [19] and experimentally demonstrate the violation of
the KK inequality on a single photonic qutrit by introducing
sequential measurements. We show that the KK inequality can
be violated by two different qutrit states for the given nine
observables in the theory. Our result agrees with the claim
that given a qutrit state different from the maximally mixed
one, one must correctly choose nine observables, and only
then can the KK inequality be violated. We argue that the
violation of the KK inequality is a third type of contextuality
test distinct from state dependent and state independent, and it
lies on the boundary between them. In other words, our work
provides experimental proof of the contextuality test of the
KK inequality in a photonic quantum system.

II. THEORETICAL SCHEME

Consider a qutrit and a set of nine two-outcome projectors
�i = |vi〉〈vi|, where |vi〉 (i = 1, 2, . . . , 9) are the following
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FIG. 1. The graph G of orthogonality relations among the nine
vectors. The vectors are represented by vertices and the orthogonal
vectors are connected by edges.

three-dimensional unit vectors [19]:

|v1〉 = (1, 0, 0)T , |v2〉 = (0, 1, 0)T ,

|v3〉 = (0, 0, 1)T , |v4〉 = 1√
2
(0, 1,−1)T ,

|v5〉 = 1√
3
(1, 0,−

√
2)T , |v6〉 = 1√

3
(1,

√
2, 0)T ,

|v7〉 = 1
2 (

√
2, 1, 1)T , |v8〉 = 1

2 (
√

2,−1,−1)T ,

|v9〉 = 1
2 (

√
2,−1, 1)T . (1)

The orthogonality relationships among the nine vectors are
presented in Fig. 1. For the nine projectors �i, their eigenval-
ues are 0 or 1. The orthogonality relations among �i follow
from the orthogonality relations of the corresponding vec-
tors |vi〉, and are again summarized in the graph in Fig. 1.
Moreover, the noncontextual bound was shown to be equal
to the independence number C (it is the maximal number of
mutually disjoined vertices in the graph) of the corresponding
orthogonality graph G for the set of projectors �i [20]. There-
fore, the independence number of the graph in Fig. 1 is 3 and
the contextuality inequality derived in the theoretical scheme
reads

9∑

i=1

〈�i〉 � 3. (2)

From the set of projectors �i listed in Fig. 1, one constructs
the corresponding observables Ai = 1 − 2�i whose eigenval-
ues are +1 or −1. The compatibility relations among the
observables Ai follow from the orthogonality relations of the
corresponding projectors �i. Substituting Ai = 1 − 2�i into
inequality (2), we obtain

9∑

i=1

〈Ai〉 � 3. (3)

Considering two compatible observables Ai and Aj , one can
thus write the following contextuality inequality that is an
equivalent form of inequality (2),

∑

(i, j)∈E (G)

〈AiAj〉 + 〈A9〉 � −4. (4)

FIG. 2. Schematic of the sequential measurement device for two
compatible observables 〈AiAj〉.

It is the so-called KK inequality, where E (G) is the edge set
of graph G which describes the compatibility relations of the
nine observables. Inequalities (2) and (3) represent contextu-
ality inequalities in terms of a set of nine single projectors and
observables, respectively, while inequality (4) represents the
contextuality inequality based on a set of two compatibility
observables defined in the graph G. The violation of these
inequalities indicates the contextual nature of a single qutrit
state, although there is no unique set of nine measurements
that tests the contextuality nature of every single qutrit state.
According to theoretical predictions, for any qutrit states,
except for the maximally mixed state, the corresponding in-
equalities can be violated as long as one chooses a set of nine
vectors properly. Thus, taking a given set of nine vectors (1)
as an example, we next experimentally verify the violation of
inequalities (4) and (3) for some qutrit states.

III. EXPERIMENTAL DEMONSTRATION AND RESULTS

We now demonstrate the experimental test of the KK in-
equality using a single photonic qutrit system. In order to
meet the requirements of the experimental test for contextual-
ity, we measure the two compatible observables 〈AiAj〉 using
sequential measurements [17,21,22]. Figure 2 is a schematic
of the sequential measurement device for two compatible
observables of the same photon. MAi and MAj denote the
measurement devices for a single observable Ai and Aj , re-
spectively. An arbitrary single photonic qutrit is prepared as
the input state |ψ〉, and the photon first enters the measure-
ment device MAi of Ai and produces one of two possible
outcomes. Then, the photon enters the measurement device
MAj of Aj and is finally detected in one of the output ports.

In the experiment, we use the polarization and path de-
grees of freedom of a single photon to prepare arbitrary qutrit
states. The single photonic qutrit system always consists of
one photon with two paths. The basis for our qutrit is en-
coded as {|0〉 = |UH〉, |1〉 = |LH〉, |2〉 = |LV 〉}, where U (L)
denotes the upper (lower) path of single photons and |H〉
(|V 〉) denotes their horizontal (vertical) polarizations. Our ex-
perimental setup includes the heralded single-photon source
generation, qutrit state preparation, the observable measure-
ments, and photon detection as illustrated in Fig. 3. As shown
in Fig. 3(a), the photon pairs are generated from the spon-
taneous parametric down-conversion (SPDC) process in a
type-II phase-matched periodically poled potassium titanyl
phosphate (PPKTP) crystal. After the polarizing beam splitter
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FIG. 3. Experimental setup. (a) Heralded single-photon source. A 405-nm continuous-wave (cw) diode laser with 20 mW power pumps a
PPKTP crystal to produce photon pairs with a central wavelength of 810 nm based on SPDC. The H1 and PBS1 are used to regulate optical
power. The two lenses (L1 and L2) are used for focusing and collimating beams. After filtering out the pumped laser with a LP, the photon pairs
are split on PBS2 and are injected into APD0 and the optical network. (b) Qutrit state preparation. After the BD1, the photons are separated
into the upper and lower paths depending on their polarizations, where the |H〉 (|V 〉) polarization photons are in the upper (lower) paths.
H3–H5(0◦) are used to prepare |ψ1〉, and H3(22.5◦), H4(0◦), and H5(45◦) are used to prepare |ψ4〉. (c) The observable measurements. This part
includes three stages: (I) Ai measurement device MAi ; (II) reconstruction of the corresponding eigenstate of Ai; (III) Aj measurement device
MA j . (d) Photon detection. Photons from output ports D1–3 and D4–6 are detected using APD1 and APD2, respectively, whereas the heralding
photons are detected by APD0. APD0, APD1, and APD2 are connected to a TCSPC. H, half-wave plate; PBS, polarizing beam splitter; LP,
long-pass filter; BD, beam displacer; M, mirror; TCSPC, time-correlated single-photon counting.

2 (PBS2), one of the photons is directly detected by the single-
photon avalanche photodiode (APD0) as a trigger, heralding
that the other signal photon we use to test the inequality is
prepared. In Fig. 3(b), the half-wave plate (HWP) H2 and
PBS3 are used to regulate optical power and horizontal po-
larization. A beam displacer 1 (BD1) and H3–H5 are used
to prepare the photonic three-level system in arbitrary desired
qutrit states for testing. To show which qutrit states can violate
inequalities (4) and (3) for a given set of nine vectors, we
first perform theoretical simulations, and the results show that
states |ψ1〉 = |0〉 and |ψ4〉 = 1√

2
(|0〉 + |1〉) can be violated

(see Appendix A for details). So next our experiment shows
the violation of inequalities (4) and (3) by the two qutrit states
above.

As shown in Fig. 3(c), to measure the two compatible
observables 〈AiAj〉, the setup in this part is divided into
four stages. Stage (I) is the device MAi for Ai measurement.
It includes four HWPs (H6–H9) and two BDs (BD2 and
BD3). The angle settings of H6–H9 are chosen to project
the eigenstate corresponding to Ai = −1 onto the |H〉 mode
after BD3, whereas the other eigenstates with Ai = +1 are
projected onto two |V 〉 modes after BD3. Therefore there are
three output ports of device MAi in the experiment. Before
taking the MAj measurement, the eigenstates of Ai = ±1 need
to be reconstructed, namely, stage (II). In the upper part of
stage (II), the Ai = −1 mode is reprepared in its eigenstate
with H10–H12 and BD4, while in the lower part of stage

(II), the Ai = +1 modes are reprepared with H13–H16 and
BD5. Then we take the MAj measurement in stage (III). This
stage consists of two identical Aj measurement devices MAj

and each is connected to the corresponding output port of
Ai = ±1. The upper (lower) device of MAj includes H17–H20
and BD6 (H21–H24 and BD7). The wave-plate angle settings
are similar to device MAi , so there are a total of six output ports
in the experiment. On the other hand, the setup for measuring
a single observable Ai is the same as for measuring AiAj , but it
will be simpler, because for all Ai, the angle settings of H10–
H24 are the same except that the angle settings of H6–H9
are different. The purpose of this is simply to allow single
photons to be detected by some specific detectors without any
interferometers. The above angle settings of H6–H24 in the
experiment setup for all measurements of the two input states
are given in Appendix B.

Photons are detected by APDs that are connected with
time-correlated single-photon counting (TCSPC), as shown
in Fig. 3(d). We only record coincidence counts C0,n (n =
1, . . . , 6) between APD1(2) and the trigger APD0 with a
2 ns coincidence time window, where APD1 and APD2 are
connected with output ports D1–3 and D4–6, respectively. For
each measurement, we record clicks for 1 s, and register
about 40 000 single photons. The probability for more than
one photon pair is less than 10−6 and thus it can be ne-
glected. After correcting the counts by the relative efficiencies
of the different detectors, the coincidence counts are used
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TABLE I. Experimental results of inequalities (4) and (3) for the two different input states being tested. The errors represent the statistical
uncertainty obtained based on the Poissonian distribution assumption. Both of the inequalities are significantly violated by the experimental
results.

Inequalities Inequality (4) Inequality (3)

Input states |ψ1〉 = |0〉 |ψ4〉 = 1√
2
(|0〉 + |1〉) |ψ1〉 = |0〉 |ψ4〉 = 1√

2
(|0〉 + |1〉)

Experimental results −5.0213 ± 0.0162 −5.0491 ± 0.0176 2.4873 ± 0.0113 2.5503 ± 0.0129
Theoretical predictions −5.0002 −4.9570 2.6666 2.6810∑9

i=1(Pi − P′
i )2 0.001 ± 0.0012 0.003 ± 0.0077

to calculate the measured probabilities (see Appendix C for
more experimental details). The measured probabilities are
then used to calculate expectation values 〈AiAj〉 and 〈Ai〉 to
evaluate the experimental results in inequalities (4) and (3).

In Table I, we present the measurement outcomes of these
two inequalities (4) and (3) for two input states. For example,
the experimental results −5.0213 ± 0.0162 and −5.0491 ±
0.0176 violate the contextuality bound of inequality (4) by 63
and 60 standard deviations and fit well with the theoretical
predictions −5.0002 and −4.9570. We measure all 22 expec-
tation values in inequalities (4) and (3) for two input states.
Table II summarizes the experimental values and their theo-
retical predictions for the input state |ψ4〉. See Appendix D
for the measurement results of the other input state. These
results clearly violate the boundary set by the NCHV theory
of inequalities (4) and (3).

IV. DISCUSSION AND CONCLUSION

The compatibility of measurements in contexts is an
important issue in the experimental test of quantum contextu-
ality [21]. Therefore, we also calculate the distance

∑9
i=1(Pi −

P′
i )2, where Pi is the measured probability of the observable Ai

measured in one context and P′
i is the measured probability

of the same observable measured in the other context. In
Table I the results show the distances of both states tested
are sufficiently small (<0.003), indicating that (almost) fully
compatible measurements are achieved in our experiment.

In summary, we experimentally demonstrate a contextual-
ity test of the KK inequalities (4) and (3) for a single photonic
qutrit system. We observe that two single photonic qutrit states

not only violate inequality (4) involving compatible observ-
ables, but also inequality (3) involving single observables,
although for any qutrit states, except for the maximally mixed
state, one can always find a set of nine observables that reveal
its contextuality using the KK inequalities (4) and (3). There
is no unique set of nine measurements to test the contextuality
of every qutrit state at present. In any case, our experiments
realize the KK inequalities (4) and (3) in a photonic quantum
system, which could open avenues for deeper experimental
investigations.

APPENDIX A: THEORETICAL SIMULATIONS
OF THE VIOLATION OF INEQUALITIES (4) AND (3)

As shown in Fig. 4, we perform theoretical simulations.
The solid line represents the lower bound imposed by any
noncontextual hidden variable (NCHV) model, while the dots
represent the quantum mechanics (QM) prediction in the ideal
input states. It is obvious that the maximally mixed state |ρ8〉
saturates both inequalities, that is, it satisfies their NCHV
bounds. For a given set of vectors, having |ψ1〉 and |ψ4〉 can
theoretically violate the two inequalities, as shown by the pink
and dark blue regions in the bottom of Fig. 4.

APPENDIX B: THE ANGLE SETTINGS
OF HWPS FOR 〈Ai〉 AND 〈AiAj〉

The details of the experimental setup for the measurements
〈Ai〉 and 〈AiAj〉 are shown in Table III.

TABLE II. Measured results of the 22 expectation values 〈Ai〉 and 〈AiAj〉 for the input state |ψ4〉 = 1√
2
(|0〉 + |1〉).

Observables Experimental values Theoretical predictions Observables Experimental values Theoretical predictions

〈A1〉 0.0157 ± 0.0024 0 〈A1A4〉 −0.5175 ± 0.0045 −0.5
〈A2〉 −0.0718 ± 0.0017 0 〈A2A3〉 −0.0121 ± 0.0007 0
〈A3〉 0.9792 ± 0.0055 1 〈A2A5〉 −0.3283 ± 0.0031 −0.3333
〈A4〉 0.4939 ± 0.0040 0.5 〈A3A6〉 −0.9262 ± 0.0074 −0.9428
〈A5〉 0.6438 ± 0.0045 0.6667 〈A4A7〉 −0.9467 ± 0.0066 −0.9571
〈A6〉 −0.9390 ± 0.0046 −0.9428 〈A4A8〉 0.4516 ± 0.0053 0.4571
〈A7〉 −0.4504 ± 0.0030 −0.4571 〈A5A7〉 −0.7885 ± 0.0041 −0.7904
〈A8〉 0.9387 ± 0.0056 0.9571 〈A5A9〉 0.5734 ± 0.0034 0.6238
〈A9〉 0.9402 ± 0.0055 0.9571 〈A6A8〉 −0.9444 ± 0.0048 −0.9857
〈A1A2〉 −0.9926 ± 0.0051 −1 〈A6A9〉 −0.9437 ± 0.0048 −0.9857
〈A1A3〉 −0.0634 ± 0.0018 0 〈A7A8〉 −0.5509 ± 0.0041 −0.5
Inequality (4)

∑
(i, j)〈AiAj〉 + 〈A9〉 = −5.0491 ± 0.0176 Inequality (3)

∑
(i, j)〈Ai〉 = 2.5503 ± 0.0129
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FIG. 4. Theoretical simulation for inequalities (4) [shown in (a)] and (3) [shown in (b)] under different input states. These input states are
represented as |ψ1〉 = |0〉, |ψ2〉 = |1〉, |ψ3〉 = |2〉, |ψ4〉 = 1√

2
(|0〉 + |1〉), |ψ5〉 = 1√

2
(|0〉 + |2〉), |ψ6〉 = 1√

2
(|1〉 + |2〉), |ψ7〉 = 1√

3
(|0〉 + |1〉 +

|2〉), and |ρ8〉 = 1
3 (|0〉〈0| + |1〉〈1| + |2〉〈2|).

APPENDIX C: EXPERIMENTAL DETAILS

In the experiment, before evaluating the measured prob-
abilities of each measurement, we first estimate the relative
detector efficiencies of each detector. This is done by making
all the photons in APD1 and APD2 coincide by measuring
with the trigger APD0, and recording the photon coincidence
counts as n1 and n2, where APD1 and APD2 detect photons
from outports D1–3 and D4–6, respectively. The efficiency of

APD1 relative to APD2 is then

η1 = n1

n2
. (C1)

When measuring 〈Ai〉, C0,1–3 correspond to Ai = −1, and
C0,4–6 correspond to Ai = +1. However, when measuring
〈AiAj〉, C0,1 corresponds to the event of Ai = −1 and Aj =
−1; C0,2 and C0,3 correspond to Ai = −1 and Aj = +1;

TABLE III. Some HWPs are not listed in the table because they have the same angles in each measurement. These HWPs are H6(45◦),
H9(0◦), H11(0◦), H17(45◦), H21(45◦), and H24(0◦).

HWP H7 H8 H10 H12 H13 H14 H15 H16 H18 H19 H20 H22 H23

〈A1〉 0◦ 45◦ 0◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦

〈A2〉 0◦ 0◦ 0◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦

〈A3〉 45◦ 0◦ 0◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦

〈A4〉 22.5◦ 0◦ 0◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦

〈A5〉 45◦ 72.4◦ 0◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦

〈A6〉 0◦ 17.6◦ 0◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦

〈A7〉 22.5◦ 22.5◦ 0◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦

〈A8〉 22.5◦ 157.5◦ 0◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦

〈A9〉 157.5◦ 157.5◦ 0◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦ 0◦ 45◦

〈A1A2〉 0◦ 45◦ 0◦ 0◦ 0◦ 45◦ 0◦ 45◦ 0◦ 0◦ 0◦ 0◦ 0◦

〈A1A3〉 0◦ 45◦ 0◦ 0◦ 0◦ 45◦ 0◦ 45◦ 45◦ 0◦ 0◦ 45◦ 0◦

〈A1A4〉 0◦ 45◦ 0◦ 0◦ 0◦ 45◦ 0◦ 45◦ 22.5◦ 0◦ 0◦ 22.5◦ 0◦

〈A2A3〉 0◦ 0◦ 45◦ 45◦ 45◦ 45◦ 0◦ 45◦ 45◦ 0◦ 0◦ 45◦ 0◦

〈A2A5〉 0◦ 0◦ 45◦ 45◦ 45◦ 45◦ 0◦ 45◦ 45◦ 72.4◦ 0◦ 45◦ 72.4◦

〈A3A6〉 45◦ 0◦ 45◦ 0◦ 45◦ 45◦ 0◦ 0◦ 0◦ 17.6◦ 0◦ 0◦ 17.6◦

〈A4A7〉 22.5◦ 0◦ 45◦ 22.5◦ 45◦ 45◦ 0◦ 22.5◦ 22.5◦ 22.5◦ 0◦ 22.5◦ 22.5◦

〈A4A8〉 22.5◦ 0◦ 45◦ 22.5◦ 45◦ 45◦ 0◦ 22.5◦ 22.5◦ 157.5◦ 0◦ 22.5◦ 157.5◦

〈A5A7〉 45◦ 72.4◦ 27.4◦ 0◦ 27.4◦ 135◦ 0◦ 0◦ 22.5◦ 22.5◦ 0◦ 22.5◦ 22.5◦

〈A5A9〉 45◦ 72.4◦ 27.4◦ 0◦ 27.4◦ 135◦ 0◦ 0◦ 157.5◦ 157.5◦ 0◦ 157.5◦ 157.5◦

〈A6A8〉 0◦ 17.6◦ 27.4◦ 45◦ 27.4◦ 135◦ 0◦ 45◦ 22.5◦ 157.5◦ 0◦ 22.5◦ 157.5◦

〈A6A9〉 0◦ 17.6◦ 27.4◦ 45◦ 27.4◦ 135◦ 0◦ 45◦ 157.5◦ 157.5◦ 0◦ 157.5◦ 157.5◦

〈A7A8〉 22.5◦ 22.5◦ 157.5◦ 157.5◦ 157.5◦ 135◦ 0◦ 157.5◦ 22.5◦ 157.5◦ 0◦ 22.5◦ 157.5◦
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TABLE IV. Measured results of the 22 expectation values 〈Ai〉 and 〈AiAj〉 for the input state |ψ1〉 = |0〉.

Observables Experimental values Theoretical predictions Observables Experimental values Theoretical predictions

〈A1〉 −0.9955 ± 0.0036 −1 〈A1A4〉 −0.9952 ± 0.0063 −1
〈A2〉 0.9888 ± 0.0053 1 〈A2A3〉 0.9978 ± 0.0052 1
〈A3〉 0.9844 ± 0.0054 1 〈A2A5〉 0.3194 ± 0.0032 0.3333
〈A4〉 0.9816 ± 0.0052 1 〈A3A6〉 0.3239 ± 0.0035 0.3333
〈A5〉 0.3257 ± 0.0033 0.3333 〈A4A7〉 0.0037 ± 0.0005 0
〈A6〉 0.3305 ± 0.0034 0.3333 〈A4A8〉 −0.0074 ± 0.0006 0
〈A7〉 −0.0386 ± 0.0016 0 〈A5A7〉 −0.6428 ± 0.0039 −0.6667
〈A8〉 −0.0438 ± 0.0016 0 〈A5A9〉 −0.6446 ± 0.0039 −0.6667
〈A9〉 −0.0457 ± 0.0016 0 〈A6A8〉 −0.6779 ± 0.0042 −0.6667
〈A1A2〉 −0.9954 ± 0.0064 −1 〈A6A9〉 −0.6761 ± 0.0042 −0.6667
〈A1A3〉 −0.9932 ± 0.0064 −1 〈A7A8〉 −0.9879 ± 0.0047 −1
Inequality (4)

∑
(i, j)〈AiAj〉 + 〈A9〉 = −5.0213 ± 0.0162 Inequality (3)

∑
(i, j)〈Ai〉 = 2.4873 ± 0.0113

C0,4 corresponds to Ai = +1 and Aj = −1; C0,5 and C0,6

correspond to Ai = +1 and Aj = +1. Then, 〈Ai〉 and 〈AiAj〉
are calculated from

〈Ai〉 = P(Ai = +1) − P(Ai = −1), (C2)

〈AiAj〉 = P(Ai = −1, Aj = −1) − P(Ai = −1, Aj = +1)

− P(Ai = +1, Aj = −1) + P(Ai = +1, Aj = +1).

(C3)

Here, P(Ai = ±1, Aj = ±1) are the measured joint probabil-
ity distributions of the corresponding compatible observables
AiAj and P(Ai = ±1) are the probability distributions of the
measure of the single observable Ai. These probability dis-
tributions can be calculated from the measured coincidence
counts given as

P(Ai = −1) = C′
0,1 + C′

0,2 + C′
0,3

C′
N

,

P(Ai = +1) = C0,4 + C0,5 + C0,6

C′
N

. (C4)

P(Ai = −1, Aj = −1) = C′
0,1

C′
N

,

P(Ai = −1, Aj = +1) = C′
0,1 + C′

0,2

C′
N

,

P(Ai = +1, Aj = −1) = C0,4

C′
N

, (C5)

P(Ai = +1, Aj = +1) = C0,5 + C0,6

C′
N

,

where C′
0,1–3 are the corresponding coincidence counts for

C0,1–3 corrected by their relative photon collection efficiency
η1 and C′

N = ∑3
n=1 C′

0,n + ∑6
n=4 C0,n is the corrected total

coincidence counts.

APPENDIX D: DETAILS OF EXPERIMENTAL RESULTS

The details of the measured results of the 22 expectation
values 〈Ai〉 and 〈AiAj〉 for the input state |ψ1〉 = |0〉 are shown
in Table IV.
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