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Delocalized and dynamical catalytic randomness and information flow
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We generalize the theory of catalytic quantum randomness to distributed and dynamical settings. First, we
expand the theory of catalytic quantum randomness by calculating the amount of (Rényi) entropy catalytically
extractable from a distributed or dynamical randomness source. We show that no entropy can be catalytically
extracted when one cannot implement local projective measurement on randomness source without altering
its state. As an application, we prove that quantum operation cannot be hidden in correlation between two
parties without using randomness, which is the dynamical generalization of the no-hiding theorem. Moreover, the
formalism of distributed catalysis is applied to develop a formal definition of semantic quantum information and
it follows that utilizing semantic information is equivalent to catalysis using a catalyst already correlated with the
transforming system. By doing so, we unify the utilization of semantic and nonsemantic quantum information
and conclude that one can always extract more information from an incompletely depleted classical randomness
source, but it is not possible for quantum randomness sources.

DOI: 10.1103/PhysRevA.107.042430

I. INTRODUCTION

Flow of information is a key criterion that decides which
processes are allowed and which are not in physical theories.
For example, there are ostensibly faster-than-light phenom-
ena such as phase velocity (or even group velocity [1]) of
electromagnetic wave, expansion velocity of far galaxies due
to Hubble’s law [2] and collapse of wave function shared
between spacelike regions, but they are not forbidden by
relativity because it is widely considered that those phenom-
ena are not accompanied by faster-than-light propagation of
information [3]. Moreover, oftentimes it is said that nothing
can escape black holes, but black holes evaporate by emitting
Hawking radiation. A common justification of this is that
Hawking radiation does not convey information of objects
fallen into the black hole. These examples suggest that infor-
mation flow is not only as real as flow of matter as Landauer
said “information is physical,” but also has enough indepen-
dency that warrants focus for its own.

However, what is information, exactly? How is it different
from other materialistic entities? Can information propagate
from its source to a target without visiting any other regions
like a particle, or must it spread to multiple regions like wave?
Although we intuitively have a vague idea about what infor-
mation is, answering this question in a universally satisfactory
way is highly difficult considering the sheer vastness of in-
formation science. The advent of quantum information theory
burdens the already complicated field of information science
with more mystery, and makes us ask the same questions for
quantum information.

Quantum information is frequently identified with quan-
tum state and displacement of a quantum state is interpreted
as an information flow, but this approach is unsatisfactory
since it is not quantum state per se, but the variance of
quantum state by some information source is what carries

information. This observation asks for a dynamical approach
to information flow, namely, that identifies information flow
with a quantum channel with nonzero capacity, which has
been taken in studies on localizable and causal quantum
operations [4].

While largely successful, the picture of information as a
varying quantum state and the resultant measurement out-
come change treats quantum systems merely as a medium
for communication of classical information and overlooks the
nature of “quantum information” itself. Treating pure quan-
tum states informative is contradictory with the perspective
of the Shannon information theory [5], where information
is identified with randomness. Especially, considering state-
dependent restrictions on causality in recent proposals for
black hole information paradox such as the Hayden-Preskill
protocol [6], the necessity for investigating (semi)causality
in the (partially) static setting is growing lately. Interpret-
ing randomness as information provides a picture that can
satisfactorily describe information localized in a region of
space-time and its propagation, as one can assign entropy to
each region from their quantum state.

These two perspectives on information are complementary
to each other: Randomness of quantum state represents the
internal information, or information inside a quantum sys-
tem, and the current state of a quantum system represents
the external information, or information one has about the
system. The latter is often too implicit and heavily depends
on the context, hence, it is hard to locate and quantify. On the
contrary, advantage of internal information is that it is easy
to locate and track its presence and propagation. Therefore,
to model the directional (quantum) information flow from a
source to a unique target, we employ the theory of catalytic
quantum randomness and generalize it further to a broader
class of randomness sources such as correlated and dynamical
sources.
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The resource theory, a framework in which a certain phys-
ical aspect is abstracted as a resource to analyze the property
in question systematically, has been immensely successful
in quantum physics and quantum information science. A re-
source theory identifies resourceful objects (states, operations,
etc.) by defining what is considered free, meaning that it is
easy to perform or prepare, and treating everything that is not
free as resourceful. There are many examples of properties for
which resource theoretical approach was successful; entangle-
ment [7], coherence [8], non-Gaussianity [9], and many more.
These generic resource theories have one thing in common.
They are either convex or admit convexification. Note that
a resource theory is convex when the set of free objects is
convex.

The convexity condition is considered natural in many
cases; in many recent works [10–12] on unified approach
to resource theory with resource-independent methods, it is
assumed that the free set is convex. A common justification
is that simply forgetting information, a common method of
physically implementing convex sum, cannot generate useful
resources. However, this assumption is by no means always
justified. Indeed, there are nonconvex resource theories such
as that of correlation. Statistically mixing two states without
correlation can generate correlation and, especially, since the
convex hull of the set of all states without correlation is the
whole quantum state set, the theory does not allow convexifi-
cation to form a meaningful resource theory.

More extremely, there are resource theories that are what
we could say to be concave. In these resource theories, the
set of resourceful objects, not the free objects, is convex (see
Appendix, Sec. A 11, for related discussions). In this situa-
tion, forgetting information has not only a potential to create
resources, but also can never eliminate resources.

The premise that destruction of information is resourceful
is natural in both fundamental and practical contexts. Funda-
mentally, the time evolution of a closed quantum system is
given by unitary operations which are invertible, thus, it is of-
ten said that no quantum information is genuinely destructible
(following the usual “state = information” definition). This is
the very reason behind the long-lasting controversy on what
will happen eventually to quantum information fallen into
black holes [13]. Practically, in some cryptographic settings
where mutually distrustful participants are interacting, it is
impossible for one participant to persuade other participants
that some information was deleted from one’s data storage
without some special assumptions. (It is ridiculous to say
“Hey, I just flipped a coin and I forgot the outcome. Let us
bet on which side the coin was” over text message.) This is
why one needs a special protocol for coin flipping by tele-
phone [14] and more generally cryptographic primitives such
as bit commitment and oblivious transfer.

Randomness represents both presence and absence of in-
formation depending on perspective. The more random an
information source is, the less information one already has
about the source, equivalently, the more information the
source can yield. Hence, in a sense, forgetting information
could create randomness. Thus, an archetype of such resource
theory is the resource theory of randomness (RTR) [15–19]
based on the theory of catalytic quantum randomness of
Boes et al. [20]. In the RTR, pure states are considered

free and unitary operations are free operations, but none of
them have convex structure. Moreover, there is no universally
resource-destroying map [21] since every locally randomness-
decreasing map should increase randomness globally [19]. On
the other hand, the set of mixed states and the set of unital
maps, which are considered resourceful in the RTR, are both
convex.

Previously, in the RTR, only static and local quantum states
with nonzero entropy were considered as randomness sources,
but in real life dynamical or global randomness sources are
commonplace. Most symbolically, secret key randomly gener-
ated and shared by multiple agents is an example of distributed
randomness source, and the simple action of rolling dice
itself is a dynamical source of randomness. In this work,
we extend the limit of the RTR to encompass utilization of
distributed and dynamical randomness sources by employing
the Choi-Jamiołkowski isomorphism [22,23] and the language
of dynamical resource theory [24].

II. PRELIMINARIES

A. Notations

Without loss of generality, we sometimes identify the
Hilbert space HX corresponding to a quantum system X with
the system itself and use the same symbol X to denote both.
For any system X , X ′ is a copy of X with the same dimension,
i.e., |X | = |X ′|. When there are many systems other than a
system X , then all the systems other than X are denoted by X̄ .
However, the trivial Hilbert space will be identified with the
field of complex numbers and will be denoted by C. We will
denote the dimension of X by |X |. The identity operator on
system X is denoted by 1X and the maximally mixed state is
denoted by πX = |X |−11X . For any Hermitian matrix σ , λi(σ )
denotes its ith largest eigenvalue including degeneracy, i.e., it
is possible that λi(σ ) = λi+1(σ ). For any Hilbert spaces X and
Y , X � Y denotes that X is a subspace of Y . The space of all
bounded operators acting on system X is denoted by B(X ),
the real space of all Hermitian matrices on system X by H(X ).
The set of all unitary operators in B(X ) is denoted by U(X ).
For any matrix M, MT is its transpose with respect to some
fixed basis, and for any M ∈ B(X ⊗ Y ), the partial transpose
on system X is denoted by MTX . For any M ∈ B(X ), we let
AdM ∈ L(X ) be

AdM (K ) := MKM†.

The space of all linear maps from B(X ) to B(Y ) is denoted
by L(X,Y ) = B(B(X ),B(Y )) and we will use the short-
hand notation L(X ) := L(X, X ). The set of all quantum states
on system X by S(X ) and the set of all quantum channels
(completely positive and trace-preserving linear maps) from
system X to Y by C(X,Y ) with C(X ) := C(X, X ). Similarly,
we denote the set of all quantum subchannels (completely
positive trace nonincreasing linear maps) by C̃(X,Y ) and
C̃(X ) := C̃(X, X ). We denote the identity map on system X
by idX . Let T : M �→ MT be the transpose map, and † :
M �→ M† be the adjoint map. For any N ∈ L(X,Y ), we de-
fine its adjoint N †(G) so that 〈N †(G), H〉 = 〈G,N (H )〉 for
every G ∈ B(Y ) and H ∈ B(X ). We define the transpose
N T (H ) := (N †(H∗))∗, where G∗ is the complex conjugation
of G.

042430-2



DELOCALIZED AND DYNAMICAL CATALYTIC … PHYSICAL REVIEW A 107, 042430 (2023)

JN
XX ′ is the Choi matrix of N ∈ L(X ) defined as JN

XX ′ :=
NX (φ+

XX ′ ) where φ+
XX ′ = |φ+〉〈φ+|XX ′ is a maximally entan-

gled state with |φ+〉XX ′ = |X |−1/2 ∑
i |ii〉XX ′ . The mapping J :

L(X ) → B(X ⊗ X ′) defined as J (M) := JM
XX ′ itself is called

the Choi-Jamiołkowski isomorphism [22,23]. We call a linear
map from L(X ) to L(Y ) a supermap from X to Y and denote
the space of supermaps from X to Y by SL(X,Y ) and let
SL(X ) := SL(X, X ). Supermaps preserving quantum chan-
nels even when they only act on a part of multipartite quantum
channels are called superchannel [24–30] and the set of all
superchannels from X to Y is denoted by SC(X,Y ) and we
let SC(X ) := SC(X, X ). We say a superchannel V ∈ SC(X )
is superunitary if there are U0 and U1 in U(X ) such that
V (N ) = AdU1 ◦ N ◦ AdU0 for all N ∈ L(X ) [31].

The supertrace [32] is the superchannel counterpart of
the trace operation modeling the loss of dynamical quantum
information, denoted by Tr. The supertrace is defined in such
a way that the following diagram is commutative:

(1)

Here, we slightly abused the notations by identifying isomor-
phic trivial Hilbert spaces C∗ ≈ C ≈ L(C) ≈ B(C ⊗ C) and
letting J : L(C) → B(C ⊗ C) be identified with idC. Explic-
itly,

Tr[M] := Tr
[
JM

XX ′
] = Tr[M(πX )] (2)

for all M ∈ L(X ). From (2), it is evident why the supertrace
corresponds to the loss of information of quantum channels as
it is operationally equivalent to the loss of input state (as the
input state is assumed to be maximally mixed) and the loss
of output state (as the output state is traced out). Similarly
to partial trace, TrX is a shorthand expression of TrX ⊗ idX̄ ,
where idY := idL(Y ). Note that the supertrace lacks a few tra-
cial properties such as cyclicity, i.e., Tr[A ◦ B] �= Tr[B ◦ A]
in general, however, it generalizes the operational aspect of
trace as the discarding action. For example, for every quantum
channel N is normalized in supertrace, i.e., Tr[N ] = 1.

In a similar way, we define the “Choi map” J[�] ∈ L(X ⊗
X ′,Y ⊗ Y ′) of supermap � ∈ SL(X,Y ) in such a way that
the following diagram is commutative:

(3)

Throughout the paper, the direct sum symbol ⊕ for oper-
ators has two meanings: If Ai are already in the same space
and mutually orthogonal, then

⊕
i Ai emphasizes such fact

and it means simply
∑

i Ai. If Bi are not necessarily mutu-
ally orthogonal, or even repeated for different i, then

⊕
i Bi

embeds the operators into a larger Hilbert space and makes
them mutually orthogonal. One possible implementation is⊕

i Bi := ∑
i |i〉〈i| ⊗ Bi.

B. Superselection rule and C∗ algebra

It is customary to model a quantum state of system X with
a density matrix ρ in B(X ), but it is not necessary to assume
that a quantum system has access to all of the full matrix
algebra B(X ). In general, a quantum system can be mod-
eled with a C∗ algebra [33,34], and a finite-dimensional C∗
algebra is isomorphic to a direct sum of full matrix algebras
by the Artin-Wedderburn theorem [35,36]. In other words,
for every finite-dimensional C∗ algebra C, there exist finite-
dimensional Hilbert spaces Xi such that C ≈ ⊕n

i=1 B(Xi ) as
a ring. Considering multiplicity, if C is a subalgebra of a
matrix algebra, there is an explicit decomposition of the form
C = ⊕n

i=1 B(Xi ) ⊗ 1di where 1di is the identity operator on
Cdi with the multiplicity di of B(Xi ) [37].

In fact, it is equivalent to saying that the system X is
under superselection rules which means that there exist sub-
spaces {Xi} of X called the superselection sectors such that
S(X ) ⊆ ⊕

i B(Xi ). Therefore, one can interpret that, at least
for finite-dimensional cases, a C∗ algebra C ≈ ⊕n

i=1 B(Xi )
represents a classical-quantum hybrid system in which a clas-
sical information i is not allowed to be in superposition.

Remember that ρAB is called a classical-quantum (C-Q)
state when ρAB can be embedded into the tensor product of
C∗ algebras C ⊗ D where C is classical, i.e., there is a basis
{|i〉A} of A such that ρAB has the form

ρAB =
∑

i

pi|i〉〈i|A ⊗ ρ i
B, (4)

for some probability distribution {pi} and quantum states ρ i
B ∈

S(B). When the roles of A and B are switched, we call it Q-C,
and if ρAB is neither C-Q nor Q-C, then it is called Q-Q. As
a generalization, we will call ρAB partially classical-quantum
(PC-Q) if ρAB can be embedded into the tensor product of C∗
algebras C ⊗ D where C is partially classical, i.e., there exists
a projective measurement {�i}n

i=1 with n > 1 on A (�i� j =
δi j�i and

∑
i �i = 1A) that leaves ρAB unperturbed. In other

words,

ρAB =
∑

i

(�i ⊗ 1B)ρAB(�i ⊗ 1B). (5)

If (5) holds, we also say that ρAB is generalized block diagonal
with respect to A = ⊕

i Ai where Ai = supp(�i) [38]. If the
roles of A and B are reversed, we will call it Q-PC. If a
bipartite state is both PC-Q and Q-PC, then it is called PC-PC.
On the other hand, if a system is not partially classical, we will
say that it is totally quantum (TQ), so that a bipartite system
that is not PC-Q is now called TQ-Q. One can similarly define
Q-TQ, PC-TQ, TQ-TQ states, etc.

III. RESOURCE THEORY OF RANDOMNESS

A. Catalytic randomness and information flow

Information can be localized and displaced, and takes an
important role in physical theory, sometimes even more im-
portant than ostensible material entities. Hence, it is natural to
treat information as a physical entity that a system can possess
and to identify its properties.

How is information different from other physical entities?
First of all, for information to be physically relevant, it should
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FIG. 1. A book is a randomness (equivalently an information)
source, but not every usage of it is pure randomness utilization.
For example, it is hard to say that burning a book utilizes only the
randomness of the book, as it leaves evidently detectable physical
traces on it. Intuitively, it is clear that any usage of a book that neces-
sitates non-negligible physical alternation of the book is not a pure
information utilization. Therefore, we claim that (pure) randomness
utilization must not leave any locally detectable statistical change on
the randomness source.

leave detectable effects on its receiver, however, not every
detectable change is made by information. If someone breaks
your window by throwing a rock to notify you, is it infor-
mation in the rock that broke the window? It is natural to
conclude that information exchange merely accompanied the
event and it is the kinetic energy of the rock that broke the
window. Like this example, in general, exchange of informa-
tion is mixed up with other physical effects.

What would a “pure” information source that does not
yield any physical resources other than information look like?
For this to be possible, no detectable change of physical re-
source in the source should be allowed, therefore, its state
should stay unchanged. It means that no detectable change
can be caused by the other system it is interacting with,
equivalently, there is no information flow from it into the
source. We could say that this kind of interaction has di-
rectional information flow in which information only flows
from a distinguished information source to its user and not the
other way around. This is the process we may call a purely
information utilizing process and we claim that it must satisfy
the following mutually related criteria (see Fig. 1).

(1) Random: The state of an information source must be
random to be informative.

(2) Correlating: After use of an information source, it
forms correlation with its user, altering their global state.

(3) Directional: Information flows from an information
source to its user exclusively, not the other way around.

Information stored in a system, not information we have
about the system, is the randomness of the system, just as
how probability distribution of a random variable and its
entropy represent the information within the variable in the
Shannon information theory [5]. Moreover, information usage
is entropy extraction process, not in the sense that the process
reduces the entropy of a source and displaces it to the target
system, but in the sense that correlation between a source and
its user is built in the process and the amount of correlation
formed can be interpreted as the amount of randomness ex-
tracted from the source [19].

Directionality criterion can be applied both on fundamental
and various practical levels. A person may not be able to read a
book leaving absolutely no traces (e.g., not perturbing molec-
ular arrays of the book at all), but if the trace is “practically”
(whatever that means in a given context) undetectable so that
its statistical state is left unchanged, then we consider that

the person only used the information content of the book on
that practicality level. This fact allows us to circumvent the
question of fundamental nature of randomness in light of de-
terministic time evolution of classical and quantum mechanics
in closed systems, as there are events that appear random on
practical level regardless of the underlying law of nature.

For example, even when one interacts with a cylinder filled
with gas without altering any thermodynamic parameters such
as temperature and volume, another person who memorized
all the configurations of molecules of the gas is able to detect
the change. However, to that person, the gas was not random
from the beginning. For a person to whom only the macro-
scopic quantities of the gas were known, the gas can still
appear intact. If a randomness source behaves the same way
in every statistical aspect after an interaction, we consider it
unaffected.

Hence, in a purely information, i.e., randomness, utilizing
process, the information carrier simply enters the interaction
and leaves it while staying in the same quantum state. Never-
theless, the information carrier could cause changes of other
systems. This fits the definition of catalysis and the carrier
can be considered a catalyst. This is one of the main rea-
sons why the study on catalysis of randomness is motivated.
Nonetheless, we intuitively know that information itself can
be “depleted” for individual users [19]. For example, a novel
is no longer interesting once a reader finishes reading it and re-
members all the plot despite the fact that the book is physically
unchanged. This can be explained by the correlation built be-
tween the carrier and the user, which is a purely informational
quantity. On the other hand, the memory of the reader initially
prepared in a pure state becomes random after forming corre-
lation with other systems. Hence, correlation forming can be
interpreted as randomness extraction. These two observations
motivate the study of a theory that sounds contradictory on the
surface level, the resource theory of catalytic randomness.

In this work, we will investigate the properties of quantum
information flow by studying catalytic quantum randomness.
One may claim that this type of “noninvasiveness” is a char-
acteristic of classical randomness and should not be required
from quantum randomness because of the inherent perturb-
ing nature of quantum measurement. However, such a claim
comes from confusing quantum information with quantum
state. The latter contains every physical description of a quan-
tum system, be it informational or not, and we are trying
to characterize the former in this work. Indeed, one cannot
interact nontrivially with a quantum system in a pure state
without perturbing it, but a system with zero entropy has no
information to provide in the first place. Therefore, a quantum
information source must be in a mixed state, and we know
that we can extract information, measured by entropy, without
perturbing the mixed state [15,17–20].

Note that we do not concern ourselves with the mechanism
of randomness generation. Just as resource theory of entan-
glement cares more about manipulation of already existing
entanglement rather than studying the protocol of entangle-
ment establishment (which is different from entanglement
distillation), resource theory of randomness is more about
utilization of preexisting randomness sources regardless of
their generation mechanism. Hence, “quantum randomness
(source)” in this work is not related to what is conventionally
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referred to as quantum randomness, which usually means a
classical random variable generated by measuring a quantum
system, stored in classical memory. Quantum randomness in
this work means the randomness of quantum systems enjoying
its quantum coherence, represented by mixed quantum states.
This is the reason why one need not answer the question
of what is the true origin of randomness before using the
resource theory of randomness, as users with different criteria
for randomness can still use the same theory.

B. Catalytic randomness

In this section, we summarize and review the results of the
correlational resource theory of catalytic randomness [19,20].
Suppose that A is allowed to borrow a system B called catalyst
in the quantum state σB to implement a quantum channel N .
A is allowed to interact with B but should return the system
B in its original state σB after every interaction. This can be
summarized as the following two conditions. When a bipartite
unitary U on systems A and B is used to implement a quantum
channel ρ �→ N (ρ) with a catalyst σ for arbitrary possible
input state ρ, i.e.,

TrBAdU (ρA ⊗ σB) = N (ρ), ∀ ρ ∈ S(A). (6)

The catalyst σ should retain its original randomness, i.e.,
spectrum, after the interaction regardless of the input state ρ,
i.e.,

TrAAdU (ρA ⊗ σB) = σB, ∀ ρ ∈ S(A). (7)

The conditions above require the catalyst to be insensitive
to dynamically changing state of the target system. The dy-
namical definition (7) can be reexpressed in the Heisenberg
picture and in the static setting; we can require the catalyst to
be insensitive to the change of action on the target system.

Theorem 1. Condition (7) is equivalent to any of the fol-
lowing.

(i) For some state ρA ∈ S(A) and for every superchan-
nel � ∈ SC(A), the transformed bipartite quantum channel
(�A ⊗ idB)(AdU ) fixes the marginal state σB, i.e.,

TrA[(�A ⊗ idB)(AdU )(ρA ⊗ σB)] = σB. (8)

(ii) When ρA ∈ S(A) is given, for any ancillary system R,
a unitary operator U ∈ V(RA) and the state given as τRA =
AdV (|0〉〈0|R ⊗ ρA), the following holds:

TrA[idR ⊗ AdU (τRA ⊗ σB)] = τR ⊗ σ
(V )
B . (9)

Here, the marginal state σ
(V )
B may depend on V .

Especially the definition (i) aligning with the interven-
tionist view on causation [39], the perspective according to
which if a manipulation of system implies a change of another
system then the former is the cause and the latter is the effect,
will prove to be useful in defining one-way information flow
where two correlated systems interact later. A more detailed
discussion on the condition given in terms of superchannels
can be found in Sec. III E.

We can see that one-way constraint on information flow
is picture invariant, i.e., independent of the interpretation of
randomness. Condition (i) requires that system B is indiffer-
ent to the change of dynamical process on A. Condition (ii)
requires that no internal information of A, held by R, is leaked

to B. Therefore, we can use whichever picture that suits the
given situation to simplify expressions and, unless specified
otherwise, we will consider catalysis of randomness in the
form of (6) and (7).

The possible dependence of σ
(V )
B on the process V hints

that condition (ii) only prohibits leakage of internal infor-
mation. However, there is actually no external information
leakage because if there are two unitary operators V1 and V2

that lead to different σ
(V )
B , then by preparing an additional

ancillary qubit prepared in |+〉 state making it control which
operator among Vi is applied on RA, one can contradict condi-
tion (ii). Moreover, by Stinespring dilation, one can easily see
that unitary operation AdV in condition (ii) can be replaced
by any quantum channel. These observations combined yield
condition (iii) in the next proposition, and also a completely
static characterization, condition (iv). Considering the Choi-
Jamiołkowski isomorphism, condition (iv) being equivalent to
(i) is evident.

Proposition 1. Conditions in Theorem 1 are equivalent to
the following conditions.

(iii) When ρA ∈ S(A) is given, for any quantum channel
N ∈ C(A, RA) with τRA := N (σA), we have

TrA[idR ⊗ AdU (τRA ⊗ σB)] = τR ⊗ σB. (10)

(iv) For any quantum ρRA state whose marginal state ρA is
full rank, we have

TrA[idR ⊗ AdU (ρRA ⊗ σB)] = ρR ⊗ σB. (11)

The approach of condition (iii) that treats the initial setup,
the subsequent interaction and the partial trace out as a su-
perchannel that maps interjected quantum channel into an
outcome state is akin to the approach of Modi [40] for
dynamics of non-Markovian open quantum systems. The re-
quirement of full rankedness of ρA in condition (iv) is rather
technical than physical, as the set of full-rank states is dense
in the set of all states. However, precisely one prepares a
quantum state, there could be an infinitesimal noise in the
process that renders the prepared state full rank.

Although the catalyst changes by some unitary operator
V , any unitary operator can be reverted by a deterministic
agent and it is intuitive that randomness of quantum state
only depends on its spectrum, so we accept this definition.
We will call the bipartite interaction described in (6) and (7) a
catalysis or a catalysis process and a quantum channel that
can be implemented by catalysis a catalytic quantum map
or channel. For example, the quantum channel N in (6) is
catalytic. We will call the bipartite unitary operator used for
catalysis a catalysis unitary operator.

We will say that U is compatible with σ (and vice versa)
if (7) holds. If (7) holds with the right-hand side replaced with
V σBV † with some unitary operator V on B, then they are said
to be compatible up to local unitary. Using an incompatible
catalyst for a given catalysis unitary operator will lead to
change of the catalyst after the interaction. For the sake of con-
venience, we will often use the definition of the compatibility
for the cases where σB is an unnormalized Hermitian operator,
too. Similar randomness-utilizing processes were considered
in previous works, under the name noisy operations [41–43]
or thermal operations. However, most studies were focused
on the implementation of the transition between two fixed
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quantum states and the existence of a feasible catalyst for
that task. Here, we are more interested in the implementation
of quantum channel, independently of potential input state,
with a given catalyst. However, later we will see that this
characterization is also relevant to state transitions, too. In the
following theorem, we review the characterization of catalytic
unitary operators and compatibility.

Theorem 2 ([19]). A bipartite unitary operator U acting on
system AB is catalytic if and only if U TB is also unitary. Also, a
catalytic unitary operator U is compatible with σB if and only
if [U,1A ⊗ σB] = 0.

Unlike in resource theories with resource-destroying maps,
in the RTR, convertibility between randomness sources is not
a very interesting problem since they are either too trivial or
too restrictive. Any two quantum states are freely intercon-
vertible if and only if they share the spectrum. If we expand to
conversions under catalytic maps, then the problem becomes
trivial again since between any two quantum states ρ � σ ,
there exists a random unitary operation F , which is also cat-
alytic, such that F (ρ) = σ [44]. Therefore, focusing on how
much and what kind of randomness is required to implement
certain tasks is much more important than merely asking if the
conversion exists.

Now we turn to the problem of quantifying the amount
of resource one can extract from a source. The amount of
information extracted can be quantified with the mutual in-
formation

I (A : B) = S(A) + S(B) − S(AB)

between A and B. However, under the catalysis constraints,
the local state of B is invariant and the entropy of global state
is invariant, i.e., S(AB) = S(ρA) + S(σB), hence the mutual
information after catalysis is equal to the entropy change of
system A, i.e., �I (A : B) = S(N (ρA)) − S(ρA). Therefore, we
will count the entropy increase as the amount of extracted
resource during catalysis of quantum randomness. This inter-
pretation is consistent with the view that treats randomness as
noise. Generalizing this, we interpret that randomness gained
through catalytic maps is from the influx of information.
Thus, although there is no simple generalization of mutual
information for Rényi entropies, we will also use the Rényi
entropies to measure the extracted information from a ran-
domness source.

It was shown in Refs. [18,19] that nondegeneracy of
eigenvalues of a mixed state restricts catalysis of quantum
randomness. Accordingly, the catalytic Rényi entropy S�

α (σ )
of order α � 0 of an arbitrary quantum state σ ∈ S(X ) can
be calculated from its spectral decomposition. By spectral
decomposition, we mean σ = ∑

i λi�i with eigenvalues λi of
σ . Here, we require �i� j = δi j�i,

∑
i λiri = 1, and the in-

jective mapping i �→ λi � 0. If there are superselection rules
imposed on X , i.e., S(X ) ⊆ ⊕

i B(Xi) for some mutually
orthogonal subspaces Xi of X , then we require instead that
supp(�i ) � Xf (i) for some unique subspace of B, Xf (i) and
that i �→ (λi, Xf (i) ) is injective. We denote the rank of each
block by ri := Tr[�i]. Let the spectral decomposition satisfy-
ing these requirements be called the catalytic decomposition
of a quantum state and we call each supp(�i ) a catalysis sector
of σ (see Fig. 2).

FIG. 2. Catalytic decomposition of a density matrix. A superse-
lection rule forbids between subspaces called superselection sectors,
and each density matrix has an eigenspace for each distinct eigen-
value. The intersection of a superselection sector and an eigenspace
is called a catalysis sector and it plays an important role in calculating
the catalytic entropies.

In this sense, a catalyst compatible with a catalytic unitary
operator could be considered a partially classical quantum
system only whose classical information (the weight of each
catalysis sector) is known.

For any σ with the catalytic decomposition σ = ∑
i λi�i,

define a density matrix c(σ ) given as

c(σ ) =
⊕

i

λi

ri
1r2

i
, (12)

where 1r2
i

= diag(1, . . . , 1) is the identity matrix of size r2
i .

It was shown in Ref. [19] that any mixed state catalytically
transformed from a pure state by using randomness source σ

majorizes c(σ ) and catalytic transformation into c(σ ) from a
pure state is also achievable. In other words, c(σ ) is the most
random state that can be catalytically created with σ from a
pure state. Let us call c(σ ) the randomness-exhausting output
(REO) of σ . Since every Rényi entropy is Schur-concave,
and the maximum (global) entropy production of a quantum
channel is achieved with a pure state input [19], Sα (c(σ )) is
the the maximum Rényi entropy catalytically extractable from
randomness source σ , and we call it the catalytic Rényi en-
tropy S�

α (σ ) of σ . S�
α (σ ) has the following explicit expression

in terms of the catalytic decomposition of σ :

S�
α (σ ) := 1

1 − α
log2

[∑
i

λα
i r2−α

i

]
. (13)

The important extreme cases are the catalytic von Neumann
entropy limα→1 S�

α (σ ) = S�(σ ) := −∑
i λiri log2(λi/ri ),

the min-catalytic entropy limα→∞ S�
α (σ ) = S�

min (σ ) :=
− log2[maxi λi/ri], and the max-catalytic entropy
limα→0+ S�

α (σ ) = S�
max (σ ) := log2[

∑
i r2

i ]. The catalytic
entropies are important because of the following operational
meaning.

Theorem 3 ([19]). The maximum amount of catalytically
extractable Rényi entropy of order α � 0 from a randomness
source σ is its catalytic Rényi entropy defined as S�

α (σ ).
Although it is known that, for a given quantum chan-

nel, more entropy is produced on a purification than on a
mixed state, it could be still cumbersome to find an input
state that yields the maximum entropy production for a given
channel. However, if our intention is to check if the channel
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produces entropy at all, then the following proposition says
that inputting a maximally entangled state is enough. See
Appendix for proof.

Proposition 2. A catalytic map cannot generate random-
ness with any input state if and only if it cannot produce
randomness by acting on a part of a maximally entangled
state.

C. Distributed catalytic randomness

In the last section, we only considered randomness sources
that are in isolation from other systems. In this section, we
generalize catalysis of randomness to correlated randomness
sources. The necessity of such a generalization naturally
arises when multiple parties share correlated data to imple-
ment some distributed information processing task. There are
abundant examples of correlated randomness source. Multi-
ple copies of the same book are all correlated and altering
one copy can be physically detected when the copies are
compared. People also share secret keys to encrypt another
shared data by using it. Oftentimes, one does not only use the
information of the system they are directly in contact with,
but also utilize its relation with the outer world. One may also
only have access to small part of large system but still want to
restrict the information flow into the whole system.

Correlated information sources are also generic in the
quantum setting, too. Treating systems correlated with a given
information source not explicitly could cause huge confusion,
as it was exemplified in the controversy around Mølmer’s
conjecture [45]. A way to resolve the confusion is explicitly
to take account of the correlation, especially the entanglement,
between laser light and the laser device. A detailed discussion
can be found in the Appendix.

The detailed setting of distributed catalysis of randomness
is as follows. Instead of one party, let there be two parties,
Alice and Bob, separated in different laboratories. They start
with an initial bipartite state ρASBS , and they are provided with
a bipartite state σAC BC as a randomness source that they should
return unchanged. Here, S stands for system and C stands for
catalyst. Alice can only control ASAC and Bob can only con-
trol BCBS . They try to transform their initial state into some
other state N (ρASBS ) without altering the randomness source.
We allow no communication between them in this process
because communication establishes new shared randomness
sources between them. Allowing classical communication and
local operations without forming correlation between system
and catalyst leads to catalysis of entanglement. We refer the
readers to Refs. [46–48] for more information.

In the quantum setting, Alice will apply unitary operator
UA to ASAC , and Bob will apply UB to BSBC . Just like the
original catalysis scenario, they are required to preserve σAC BC

after the interaction, regardless of their initial state ρASBS . This
requirement can be summarized as

TrAC BC [AdUA⊗UB (ρASBS ⊗ σAC BC )] = N (ρASBS ), (14)

with some quantum channel N ∈ C(ASBS ) and

TrASBS [AdUA⊗UB (ρASBS ⊗ σAC BC )] = σAC BC (15)

for all ρASBS ∈ S(AS ⊗ BS ) (see Fig. 3). We will call this type
of catalysis a distributed catalysis of randomness and when

FIG. 3. Distributed catalysis of quantum randomness. Alice and
Bob, separated in different laboratories, utilize the bipartite state
σAC BC as a catalyst to transform ρASBS into ρ ′

AS BS
= N (ρASBS ). On the

right side, ASBS and ACBC could be correlated (depicted as a colored
box between them) but the marginal state of ACBC stays in the initial
state σAC BC .

it is needed to emphasize it, we call σAC BC in this situation
the distributed randomness source. We say that the catalysis
unitary operator pair (UA,UB) is compatible with σAC BC if (15)
holds, and vice versa, and we say that they are compatible up
to local unitary when there exists some VX ∈ U(XC ) for X =
A, B such that (15) holds with the right-hand side substituted
with AdVA⊗VB (σAC BC ). If we need to emphasize, we will call
the special case VX = 1XS for X = A, B the canonical case.
When we focus on the action of each local party, we say that
U ∈ U(ASAC ) is compatible with σAC BC on BS when (U,1BSBC )
is compatible with σAC BC .

We can observe that distributed catalysis can be considered
a special case of catalysis of randomness. Thus, Theorem 2
applies here too, hence, UA ⊗ UB must be catalytic, implying
that UA and UB must be catalytic unitary operators themselves.
Also, for σAC BC to be compatible with UA ⊗ UB, it must be
that [UA ⊗ UB,1ASBS ⊗ σAC BC ] = 0. In local catalysis of ran-
domness, a randomness source cannot yield randomness if
and only if it is a pure state. Does the same result hold in
distributed catalysis too?

Now, we observe that, in distributed catalysis, each party
can only interact locally with their shared randomness source
without altering the global state of it. Considering that no
communication between them is allowed, we could guess that
each of them must leave the correlated source intact, indepen-
dent of each other’s action. What is the condition for this to
be possible? It was recently proved that if a subsystem is not
even partially classical, meaning that no nontrivial projective
measurement can be implemented on its local system, then the
quantum state shared with it is sensitive to changes caused by
unital quantum channels [49].

Lemma 1 ([49]). For any quantum state ρAB, (NA ⊗
idB)(ρAB) �= ρAB for any unital channel NA �= idA if and only
if ρAB is a TQ-Q state.

It is because quantum correlation can detect local random-
izing disturbance and it hinders the catalytic utilization of the
randomness source. From these observations, we can identify
the bipartite states that cannot yield randomness and show that
there are quantum states that are not pure but unable to provide
any randomness catalytically.

Theorem 4. No randomness can be catalytically extracted
from a bipartite quantum state if and only if it is TQ-TQ.

The reason why catalysis sectors were identified in local
catalysis of randomness was that they are the maximum sub-
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space within which nontrivial unital channels can be applied
in an unconstrained fashion without affecting the state of
randomness source (see Fig. 2). The same idea can be applied
in distributed catalysis of randomness, and we should identify
the maximum subspaces within which local parties can apply
unital channels without any constraint and the danger of alter-
ing the state of the given randomness source.

At this point, we introduce the concept of essential de-
composition, which provides the canonical decomposition of
a partially classical system into classically distinguishable
sectors (subspaces of the Hilbert space of each local system)
for a PC-Q state. In other words, when we say a PC-Q state
is “partially classical,” we mean that there is a local projective
measurement that does not perturb the state, and the essential
decomposition identifies what is the maximally informative
measurement of such kind.

Definition 1. Let ρAB ∈ S(AB) be a bipartite quantum
state. A decomposition A = ⊕

i AP
i ⊗ AQ

i is the essential de-
composition of A for ρAB, if, for some quantum states ρAP

i
and

ρAQ
i B, respectively, on AP

i and AQ
i B,

ρAB =
∑

i

piπAP
i
⊗ ρAQ

i B, (16)

for some probability distribution pi and TQ-Q states ρAQ
i B

such that any unital channel N ∈ UC(A) that fixes ρAB pre-
serves every subspace Ai and each N |i factorizes into N |Ai =
N |AP

i
⊗ idAQ

i
where each N |AP

i
is unital.

We let Ai := AP
i ⊗ AQ

i and call them the classical sectors
of A. We will also call AP

i the local part of it and AQ
i the

(quantumly) correlated part. We will call the corresponding
decomposition of ρAB = ∑

i piρAP
i
⊗ ρAQ

i B the essential de-
composition of ρAB on A. One could observe that the essential
decomposition is related with the structure of entropy nonin-
creasing state under unital channels [50,51].

The essential decomposition captures the intuitive idea of
“classical sectors” of PC-Q states as the following theorem
shows. It says that any “randomizing transformation” acting
on the local part of a PC-Q state, represented by unital maps,
that preserves the whole state must respect the classical struc-
ture of the partially classical system. Additionally, it says that
the unital map can act nontrivially only when there is no
correlation in each classical sector.

Theorem 5. The essential decomposition exists and is
unique for each quantum state.

See Appendix, Sec. A 5, for a deeper analysis of essential
decomposition. Now we introduce a bipartite generalization
of catalytic decomposition that we will call the distributed
catalytic decomposition through the essential decomposition.

Definition 2. Let ρAB be a bipartite quantum state with
the essential decompositions of A = ⊕

i AP
i ⊗ AQ

i and B =⊕
j BP

j ⊗ BQ
j . The distributed catalytic decomposition (DCD)

of a bipartite quantum state ρAB ∈ S(AB) is the decomposi-
tion of the following form:

ρAB =
⊕

i, j

piq jπAP
i
⊗ ρAQ

i BQ
j
⊗ πBP

j
. (17)

Since the essential decompositions are unique for A and B,
respectively, the DCD is also unique for ρAB. This definition is

slightly more complicated than the definition of the catalytic
decomposition for single-partite systems, but it is required to
identify the basic building blocks of a distributed random-
ness source. Most notably, each component in the DCD is
still compatible with any catalysis unitary operators of the
original catalysts, just as every component in the catalytic
decomposition of single-partite catalysts is compatible with
any catalysis unitary operator compatible with the catalyst be-
fore the decomposition. (See Appendix for more information.)
This observation leads us to the following definition of the
distributed catalytic Rényi entropy.

The DCD of a bipartite quantum state suggests that only the
“classical parts” ρAP

i BP
j

of the state are available for catalysis,
while the “quantum parts” ρAQ

i BQ
j

are inaccessible. However,

an interesting observation one could make is that not every
ρAQ

i BQ
j

has to be TQ-TQ. It is because the sensitiveness of

the quantum parts does not from their individual form but
from their collective behavior. Because of their sensitiveness,
effectively one can ignore the quantum part of ρAB when
assessing its catalytic power.

Definition 3. For the DCD of ρAB given in (17), the dis-
tributed catalytic Rényi entropy S��

α (ρAB) of ρAB is defined as
follows:

S��
α (ρAB) := Sα (d(ρAB)). (18)

Here, d(ρAB) := ⊕
i, j piq jπ

⊗2
AP

i
⊗ π⊗2

BP
j

is the declocalized

randomness-exhausting output (DREO) of ρAB.
Just like the catalytic entropies, the distributed catalytic

entropies also have the same kind of operational meaning.
Proof of the following result can be found in the Appendix,
Sec. A 6.

Proposition 3. The maximum Rényi entropy that can be
catalytically extracted from a distributed randomness source
σAC BC is its distributed catalytic Rényi entropy.

Hence, we successfully quantified the amount of catalyt-
ically extractable randomness in the distributed setting. This
analysis of static but distributed randomness sources can be
directly applied to dynamical randomness sources through the
Choi-Jamiołkowski isomorphism in the next section.

Note that if there is no correlation in the distributed ran-
domness source, i.e., σAC BC = σAC ⊗ σBC , then the distributed
catalysis simply reduces to two independent local catalyses
with S��

α (σAC ⊗ σBC ) = S�
α (σAC ) + S�

α (σBC ).
We remark that multipartite generalization of distributed

catalysis or randomness is straightforward. Each party in dis-
tributed catalysis behaves locally and there are no collective
maneuvers needed. Hence, the distributed catalytic decompo-
sition is simply the collection of the essential decomposition
of each party, so for an N-partite quantum state ρ12...N , with
each party X = 1, 2, . . . , N , one can partition the N parties
into X : X̄ and find the essential decomposition. The rest of
the procedures, e.g., calculating the catalytic entropies and im-
plementing the catalysis, are immediate once the distributed
catalytic decomposition is found.

D. Dynamical catalytic randomness

So far, we have only considered static randomness sources,
whose classical examples include random number tables and
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FIG. 4. Dynamical catalysis of quantum randomness. Input and
output systems of the target quantum channel N and the catalyst
channel R unitarily interact. The resultant bipartite channel on SC
might correlate two systems, but the catalyst channel R stays in its
original form when one ignores the system S.

secret keys. In a more realistic situation, however, dynamical
sources of randomness are common. For example, when a
group of people are playing a tabletop board game, they do not
usually play the game with a random number table prepared in
advance; they roll a dice to generate randomness on the spot.
For example, a record of the result of a previously (|X |-faced)
dice roll can be modeled by a static state, i.e., the maximally
mixed state πX , but the action of rolling a dice can be modeled
by the depolarizing map R ∈ C(X ),

R(ρ) = πX Tr[ρ], (19)

for any initial state ρ of the dice with classical system X . Even
in this case, we claim that catalysis of randomness utilization
is still required. In other words, if you have no idea for which
game it is used and only observe the dice rolling, then the
channel you used as a randomness source must retain its
original form. This “information nonleaking” property is very
important for characterizing pure randomness utilization [19],
and we require that a randomness source must not remember
for which operation it was used and must retain its proba-
bilistic properties regardless of the result of the implemented
operation. This requirement can be formulated as follows.

When one tries to catalytically transform a quantum chan-
nel N into �(N ) by using a quantum channel R as a
randomness source, we assume that only applying bipartite
unitary operators to input and output systems of N and R
is allowed as no randomness producing operation is allowed
other than R.

We will model the complete loss of information about a dy-
namical quantum process with the supertrace, denoted by Tr,
which represents completely losing information on input and
output systems of a given process, i.e., Tr(N ) := Tr[N (πX )]
(see Sec. II A).

In this work, we will mainly focus on the case where the
target channel N and the randomness source channel R act at
the same time. In other words, they act on their respective sys-
tems in parallel. Formally, we say a superchannel � ∈ SL(S)
is catalytic when there is a bipartite superunitary operation
 ∈ L(SC) and a channel R ∈ C(C) such that

TrC(N ⊗ R) = �(N ) (20)

and

TrS(N ⊗ R) = Tr[N ]R (21)

for all N ∈ C̃(S) (see Fig. 4). (See Appendix, Sec. A 1, for a
discussion on the set of N .) We will call the whole process a

(dynamical) catalysis and say that R is used as a randomness
source (channel) or a catalyst. If a superunitary operation 

can be used to implement a catalytic superchannel, then it
is called a catalysis superunitary operation, or it is said to
be catalytic. A randomness source channel R and a catalysis
superunitary operation  is said to be compatible with each
other when (20) and (21) hold for some superchannel � and
every N ∈ C(S).

Since a superunitary  can be decomposed into the actions
of preunitary U0 and postunitary U1 [24,25], i.e., (N ) =
AdU1 ◦ N ◦ AdU0 , therefore (20) and (21) can be expressed as
TrC[AdU1 ◦ N ⊗ R ◦ AdU0 ] = �(N ) and TrS[AdU1 ◦ N ⊗
R ◦ AdU0 ] = R. By considering the Choi matrices, we get the
following expressions:

TrCC′
[
AdU1⊗U T

0

(
JN

SS′ ⊗ JR
CC′

)] = J�(N )
SS′ (22)

and

TrSS′
[
AdU1⊗U T

0

(
JN

SS′ ⊗ JR
CC′

)] = JR
CC′ (23)

for all N ∈ C̃(S). Note that every ρXX ′ ∈ S(X ⊗ X ′), there
exists a M ∈ C̃(X ) such that JM

XX ′ ∝ ρXX ′ , and vice versa.
It follows that (22) and (23) are equivalent to the following
requirements, in turn:

TrCC′
[
AdU1⊗U T

0

(
ρSS′ ⊗ JR

CC′
)] = J[�](ρSS′ ) (24)

and

TrSS′
[
AdU1⊗U T

0

(
ρSS′ ⊗ JR

CC′
)] = JR

CC′ (25)

for every ρSS′ ∈ S(S ⊗ S′). Here, U1 acts on SC and U T
0 acts

on S′C′. Now, we can observe that (20) and (21) are only a
special case of (14) and (15) after some change of notations,
thus, we can conclude that  is catalytic if and only if U TS

0 ⊗
U TC′

1 is catalytic. It is equivalent to saying both U0 and U1 are
catalytic themselves.

Theorem 6. A superunitary operation  : N �→ AdU1 ◦
N ◦ AdU0 is catalytic if and only if both U0 and U1 are cat-
alytic. Also,  is compatible with R if and only if U0 ⊗ U T

1 is
compatible with JR

CC′ , i.e.,[
U1 ⊗ U T

0 ,1SS′ ⊗ JR
CC′

] = 0. (26)

The vanishing commutator condition (26) follows from
Theorem 2. When E (ρ) = πCTr[ρ] is the depolarizing map
on C, its Choi matrix is JE

CC′ = πC ⊗ πC′ , therefore, [U1 ⊗
U T

0 ,1SS′ ⊗ JE
CC′] = 0 for any U0 and U1. It implies that, sim-

ilarly to that every catalysis unitary operator is compatible
with the maximally mixed state, every catalysis superunitary
operation is compatible with the depolarizing map. In other
words, a fair (quantum) dice roll can always provide random-
ness without leaking information.

There could be many possible measures of randomness
extracted from randomness source, but from the formal
similarity of static and dynamical catalysis, we will use
Sα (J�(N )

SS′ ) − Sα (JN
SS′ ), for every α � 0, as a measure of ex-

tracted randomness. When α = 1, Sα (JN
SS′ ) is called the map

entropy Smap(N ) of channel N [50,52]. Theorem 6 imme-
diately yields an upper bound to the amount of randomness
catalytically extractable from a randomness source channel
R ∈ C(C), namely, Sα (J�(N )

SS′ ) − Sα (JN
SS′ ) � S�

α (JR
CC′ ), where
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JR
CC′ is interpreted to be an element of B(CB ⊗ C′) without

any superselection rule. However, unitary operators of the
form U1 ⊗ U T

0 are not of the most general form of 4-partite
unitary operator that can act on SS′CC′, it is not evident
if S�

α (JR
CC′ ) is the maximally extractable Rényi entropy ex-

tractable from R, counted with the increase of the Rényi
entropy of the Choi matrix.

However, from its equivalence with distributed catalysis
of randomness, we can simply use the distributed catalytic
entropies to measure the maximally extractable randomness
of arbitrary channel.

Definition 4. The catalytic Rényi entropy S�
α (C) of a quan-

tum channel R ∈ C(C) is

S�
α (R) = S��

α

(
JR

CC′
)
. (27)

The framework of dynamical quantum randomness encom-
passes the static and local quantum randomness too. Any
static randomness source modeled as a quantum stat σC can
be described as preparation channel P (α) = ασ in C(C,C),
whose Choi matrix is simply J P

CC = σ , hence, S�
α (P ) =

S��
α (J P

CC ) = S�
α (σ ).

We, now, leave a remark on a more general case of catal-
ysis of dynamical quantum randomness. In general, a target
channel and a randomness source channel need not be applied
simultaneously, and one preceding another is obviously pos-
sible. For example, if we assume that the randomness source
is applied after the target channel, then we should modify the
catalysis conditions as follows. For all N ∈ C̃(S),

TrC U3 ◦ RC ◦ U2 ◦ NS ◦ U1 = �(N ) (28)

and

TrS U3 ◦ RC ◦ U2 ◦ NS ◦ U1 = Tr[N ]R, (29)

with some superchannel � ∈ SC(S) and some unitary opera-
tions Ui ∈ U(SC) for i = 1, 2, 3. One can see that the unitary
operation U2 in the middle hinders transforming this process
into a distributed catalysis process. Although we can show that
U1 must be a catalytic unitary operation by tracing out both
sides of (29), still many other parts of this process are left for
further inquiry. Hence, we leave the complete characterization
of dynamical catalysis of this type as an open question for
the moment. Nonetheless, when there is no randomness in the
randomness source R, i.e., if R is a unitary process, then one
can rump U2 ◦ RB ◦ U1 into a single unitary operation, hence
it reduces to the dynamical catalysis discussed before, with
trivial randomness source, idB. This fact will be used when
we prove the no-stealth theorem in a later section.

E. Correlated catalytic randomness and semantic information

So far, we have only considered catalysts that are initially
prepared in a state independent of the target system that is
going to be catalytically transformed [see (6), (14), and (20)].
From the perspective of randomness as information, it is not
the most generic case of information utilization since many in-
formation sources provide useful information about the object
one is going to interact with. In other words, most of the useful
information is semantic. Therefore, it is natural to ask what
happens if we lift this “Markovian” assumption and consider

FIG. 5. Semantic information utilization demonstrated in Lan-
dauer’s erasure principle. The information carrier C, depicted as a
piece of paper, provides the information about the state of the gas
molecule G. However, in the course of the interaction, no information
flows from G to C. Here, the fact that two systems C and G start as
correlated systems is important for semantic information utilization.

catalysts that are correlated with the target system from the
beginning.

In previous sections, we have observed that randomness
captures the probabilistic aspect of information that is in-
dependent of its semantics. However, the everyday notion
of information heavily depends on the semantic properties
of information, hence, one might find that the discussion of
previous sections misses a large portion of discussion on in-
formation. Indeed, the semantic side and the quantitative side
of information are notorious for being hard to unify. Never-
theless, in this section, we venture into the realm of semantic
information and attempt to spell out the formalism of semantic
information in our framework of catalytic randomness.

Floridi [53] defines semantic information as well-formed,
meaningful, and truthful data. As Shannon’s approach to
information, which we take in the quantum setting, is prob-
abilistic rather than propositional, we will focus on the
“meaningful” part. This definition immediately assumes the
existence of a reference system that is related with the carrier
of semantic information, as data cannot be meaningful when
it is isolated from the outer world. For example, we consider
a recipe for some dish meaningful because the recipe is cor-
related with the properties of the ingredients, which appear
random in the Bayesian sense to those who are a novice
at cooking. Another example is maps: a map is meaningful
compared to any other picture because it corresponds to the
geography of the real world.

Therefore, we will try to be value neutral when it comes
to deciding what counts as meaningful and claim that the
existence of correlation between information carrier and the
object you are going to interact with, the target system, is
the key characteristic of semantic information in the context
of our formalism. The situation is similar with distributed
catalysis of randomness, but there is an important difference
that interaction between information source and target system
is allowed and the correlation between the two systems need
not be preserved because the target system is now allowed to
be altered. Recall that only the state of information source is
required to be preserved in our definition of (pure) information
utilization.

One of the most typical examples can be found in Lan-
dauer’s erasure principle (see Fig. 5). Suppose that a gas
molecule G in a piston can be either of two states of being
in the left half of the piston |l〉G or being in the right half |r〉G.
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Let the molecule be in the maximally mixed state,

σG = 1
2 |l〉〈l|G + 1

2 |r〉〈r|G. (30)

A common precondition of Landauer’s erasure principle is the
acquisition of information about the position of the molecule.
Acquisition of information requires the existence of an infor-
mation carrier that gets correlated with its reference, hence,
we spell it out as C, i.e., σG is the marginal state of

σCG = 1
2 |“l”〉〈“l”|C ⊗ |l〉〈l|G + 1

2 |“r”〉〈“r”|C ⊗ |r〉〈r|G. (31)

The states |“l”〉C and |“r”〉C are orthogonal to each other and
contain the classical information about the state of G. By
conditioning on the state of C, we can initialize the molecule
G by applying a reversible process, so that the final state of
CG is (

1
2 |“l”〉〈“l”|C + 1

2 |“r”〉〈“r”|C
) ⊗ |r〉〈r|G. (32)

As one can see, we only used the system C as an information
source so the state of C is left unaltered but that of G is
changed. Observe that the end result is all the entropy being
concentrated in C, which corresponds to the entropy produc-
tion according to Landauer’s erasure principle.

Our way of modeling semantic information requires two
systems: the information source that only provides informa-
tion and the target system that can be physically affected.
If we admit this asymmetry between them, then we need a
mathematical characterization of their difference. This dis-
tinction is important as Korzybski said “A map is not the
territory” [54]. In the case of (31), information carrier C is
not the gas molecule G itself.

As we have seen in Theorem 1, we could expect that
there exist different characterizations of semantic informa-
tion in each picture, dynamical (Heisenberg) and static
(Schrödinger). To construct the dynamical characterization,
let us go back to the example of Landauer’s erasure principle.
When we used the information source, our initial intention
was initializing the position of the gas molecule. However,
we could always change our mind and do whatever we want
with the information we acquired from the source other than
initializing the gas molecule into the right half of the cylinder.
We claim that this alternation of plan, strictly happening to the
action on the target system, must not affect the information
source. This requirement, which is a generalization of the
interventionist definition of information utilization, condition
(i) of Theorem 1, can be expressed concretely as follows.
(S:A∼C in what follows stand for ‘Semantic information :
A∼C’.).

Definition 5 (S:A). We say that a bipartite unitary opera-
tion U = AdU with U ∈ U(AB) utilizes (semantic) informa-
tion of B in a bipartite state σAB when for any superchannel
� ∈ SC(A), U� := (�A ⊗ idB)(U ) does not affect B, i.e.,
there exists ηB ∈ S(B) such that for all � ∈ SC(A),

TrA[U�(σAB)] = ηB. (33)

We remark that such ηB in (33) must be unitarily similar
to σB (see Appendix). For the static characterization, imagine
that we redistribute the information of system A to a larger
joint system RA by applying some channel NA→RA. Because
of the correlation formed between R and A, when static in-
formation of A is leaked to B by the interaction between

A and B, there will be a change in the correlation between
R and B. Based on this speculation, we can formulate the
following definition in the same spirit with condition (iii) of
Proposition 1.

Definition 6 (S:B). We say that a bipartite unitary opera-
tion U = AdU with U ∈ U(AB) utilizes (semantic) informa-
tion of B in a bipartite state σAB when for any state τRAB =
(NA→RA ⊗ idB)(σAB) with a quantum channel NA→RA, we
have

TrA[(idR ⊗ U )(τRAB)] = (idR ⊗ AdV )(τRB), (34)

with some V ∈ U(B).
Alternatively, since we have already developed the def-

inition of using only information of a local system in a
multipartite quantum state, one may rather import the def-
inition of distributed catalysis of randomness and claim the
following.

Definition 7 (S:C). We say that a bipartite unitary opera-
tion U = AdU with U ∈ U(AB) utilizes (semantic) informa-
tion of B in a bipartite state σAB when U is compatible with
σAB on B up to local unitary as a distributed catalyst.

The main result of this section is that these seemingly
different definitions of semantic information are equivalent. In
other words, utilization of semantic information is fundamen-
tally not different from distributed catalysis of randomness.
Hence, “using only information of system B in correlated sys-
tems ABC . . . ” can be universally discussed without paying
attention to which is allowed to be altered and which system
is used as an information source other than B. This can be
concretely expressed as follows.

Theorem 7. Definitions (S:A), (S:B), and (S:C) are equiv-
alent.

The proof is in the Appendix. This result unifies many
notions of information usage introduced so far as it will be
demonstrated afterwards. So, we will simply drop “semantic”
when we refer to this type of information usage. First of all,
we can observe that nonsemantic (quantum) information is a
special case of semantic information by considering uncorre-
lated σAB = σA ⊗ σB.

Without loss of generality, unless we explicitly state “up
to local unitary,” we will only consider the “canonical” cases;
we assume that no nontrivial unitary operation is applied on B
after the interaction for the sake of simplicity.

One can observe that this characterization of semantic
information utilization is actually equivalent to catalysis of
partially depleted randomness source, the characterization of
which was an open problem raised in Ref. [19]. It is be-
cause now we consider randomness sources that are initially
correlated with the target system, and we concluded that ran-
domness sources are consumed by forming correlation with its
user. It is in contrast with the previous sections where random-
ness sources were assumed to be initially in a product state
with the target system. Therefore, we can consider utilization
of semantic information is also in the formalism of catalytic
quantum randomness.

We already know that a bipartite state σAB that is Q-TQ
cannot yield catalytic randomness on B. Hence, we get the
following corollary which shows that utilization of seman-
tic quantum information is impossible when you cannot use
nonsemantic quantum information when you are required not
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to disturb the information source, just as it is in the classical
setting.

Corollary 1. If σAB is Q-TQ, then no nonproduct bipartite
unitary operation can utilize only semantic information of B
in σAB.

An important example of quantum state that is Q-TQ is
pure states with full Schmidt rank. Hence, as pure states were
not useful for distributed catalysis of randomness, they also
do not allow utilization of pure semantic information. Note
that the requirement of full Schmidt rank can be circumvented
by limiting the local Hilbert spaces to the support of each
marginal state, as they are the only physically relevant Hilbert
spaces.

One may wonder, since utilization of information of B in
σAB allows for information flow from A to AB and from AB
to B, if it is possible to circumvent the restriction of one-way
information flow by breaking the process in two steps so that
one has net flow of information from A to B. Indeed, even if
M and N are catalytic unitary operators compatible with σB,
the same need not hold for their composition NM.

However, such circumvention is impossible after all; one
lesson we learned from the observations of previous sec-
tions is that one should be explicit about reference systems
when one treats information from the internal information
perspective. First of all, if system A starts from the max-
imally mixed state uncorrelated with any other systems,
then the action of arbitrary catalytic unitary compatible with
the state of B does not change the state of joint system
AB. This is mainly because, without a method to track in-
formation that was originally stored in A, the ostensible
information exchange between A and B yields no detectable
difference.

Especially, if we start from an initial state ρRA ⊗ σB where
R is a reference system of A and apply a catalytic unitary MAB,
then the information source B gets correlated with RA in the
tripartite state σRAB := (idR ⊗ AdM )(ρRA ⊗ σB). Any unitary
that utilizes the information of B in σRAB must be compatible
with it on B, so, due to the following corollary of Theorem 7,
the marginal state on RB does not change after the second step;
it stays in the product state σRB = σR ⊗ σB, which means that
no information in A has been transferred to B.

Corollary 2. If 1R ⊗ UAB with U ∈ U(AB) utilizes only
semantic information of B in σRAB, then we have

TrA[AdUAB ◦ LA(σRAB)] = TrA[LA(σRAB)] (35)

for any L ∈ L(A). Especially, when L = idA, we get

TrA[AdUAB (σRAB)] = σRB. (36)

Even after this observation, we should remark that Defi-
nitions (S:A–C) do not guarantee that there is no influx of
information into the randomness source at all. Information
that was encoded in the correlation between the source and
the target system can be concentrated into the source.

For example, in Landauer’s erasure principle example we
discussed [(30)-(32)], if we call the purifying system of (31)
R, then I (R : C) increases from 1 bit to 2 bits in the course
of interaction between C and G, although we interpreted that
no physical property other than information of C was used in
the interaction. This is not because information flowed from
G to C, but because the quantum entanglement of CG with R

was concentrated into C after the interaction, albeit it was not
accompanied by information flow from G to C.

We can interpret Definition (S:B) as that we characterize
usage of (pure) semantic information of B in σAB as an inter-
action in which no information in AB that is also present in A
flows to B. Corollary 3 easily follows from Definition (S:B).
The proof is given in the Appendix.

Corollary 3. If a bipartite unitary operation U = AdU with
U ∈ U(AB) utilizes (semantic) information of B in a bipartite
state σAB, then, for any extension σRAB of σAB such that I (R :
A) = I (R : AB), we have

TrA[(idR ⊗ U )(σRAB)] = σRB. (37)

As it was briefly discussed in Ref. [19], a randomness
source correlated with a target system can absorb random-
ness as demonstrated in the example of Landauer’s erasure
principle initializing a gas molecule. This is impossible with
uncorrelated randomness sources since they can only increase
the amount of randomness in the target system. Now, with the
complete characterization of information usage in correlated
quantum system, we can quantify the amount of randomness
that a given source can absorb or yield.

Theorem 8. The least disordered state on A that can
be made from σAB using B as an information source is∑

j (
∑

i piλ j (σ i
A))| j〉〈 j|A where σAB = ∑

i piσ
i
AB is the essen-

tial decomposition of σAB on B.
The proof can be found in the Appendix. Theorem 8 shows

that quantum correlation hinders catalytic randomness ab-
sorption. Only classical correlation between A and B, which
provides deterministic protocol to align eigenbases of con-
ditional states of A, can reduce the amount of randomness
in A without leaking any information of it to B. Why is it
so? Classical information can be copied and deleted, unlike
quantum information, so reduction of randomness in A can
happen without any change in B when it is conditioned on
classical data in B.

It is important that the results of this section do not imply
that pure entangled states allow no utilization of semantic
information of any form whatsoever. We expect that there is
a multitude of information flow in generic quantum interac-
tions, but they are often too complicated and complex in both
directions or, sometimes, in ambiguous directions. Therefore,
to understand the nature of (quantum) information flow, we
only focused on directional information flow, which also has
characterization as pure information usage. It is only that
utilization of semantic information in pure multipartite states
necessitates physical manipulation of information carrier.

We remark that our usage of the term semantic information
may not completely match with others’: we used the term
to refer to information contained in a system that is corre-
lated with another system the agent is going to interact with.
This correlation differs from correlation among subsystems
of an information source considered in distributed catalysis
of randomness. Our definition of semantic information is
not propositional, hence cannot be true or false on its own.
Hence, our semantic information does not satisfy the criteria
of Floridi [53]. One might think that our semantic information
is closer to what Floridi calls environmental information.

Nevertheless, well-formedness can be expressed in terms
of syntax, i.e., correlation between subsystems of information
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source like that between a sentence and the language, and
semantic information given as multipartite state is meaningful
as it is informative about the world outside of information
source and as truthful as the given state describes the physical
reality. This type of probabilistic and correlational definition
was necessary for the generalization to quantum semantic
information. In summary, our “semantic information” does
not refer to the essence of information that is exclusively
semantic but refers to information that could contain semantic
content.

F. Superselection rules in distributed and dynamical catalyses

The essential decomposition for bipartite states already
identifies the partition of the Hilbert spaces that should be
essentially classically distinguishable, but there could be ad-
ditional classical structure imposed by the superselection rule
of each system. This consideration was made in identifying
catalysis sector for static and local catalysis of randomness in
Sec. III B.

Note that the superselection sectors cannot intersect non-
trivially with the correlated parts of essential decompositions
as the quantum state in each subspace cannot be a PC-Q
state, hence no superselection rule can be nontrivially imposed
on it. Physically, superselection rules only limit the quantum
advantage that can be taken from the local parts by partition-
ing a large uniform quantum state into the tensor product of
smaller ones and forbidding nonclassical interaction between
them. Since the catalytic entropies of quantum channels are
defined through the distributed catalytic entropies of their cor-
responding Choi matrices, this new definition equally affects
the definition of the dynamical catalytic entropies.

Definition of superselection rule provides a rather compli-
cated way of treating randomness sources under superselec-
tion rules, but we show that actually it can be unified within
the formalism of distributed catalysis of randomness. When
{Qi} are projectors onto superselection sectors of A, then any
given catalysis ρAB can be replaced with an extension ρEAAB

given as

ρEAAB =
∑

i

|i〉〈i|EA ⊗ (AdQi ⊗ idB)(ρAB), (38)

when it is treated as a distributed randomness source. It can
be interpreted that the classical observable i of A which is
forbidden to be in superposition should be treated as a piece
of classical data correlated with the quantum state being used
as a catalyst. Thus, introduction of distributed catalysis of
randomness nullifies the necessity of introducing C∗ algebra
formalism to discuss catalysts under superselection rules.

G. The no-stealth theorem

We consider the following dynamical generalization of
the no-hiding theorem [55] or, equivalently, the no-masking
theorem [56]. Consider that we want to hide a dynamical
process N ∈ C̃(A) from two parties A and B by applying
a global superunitary operation  ∈ SC(AB). (Alternatively
one could consider an arbitrary multipartite channel N . See
Appendix, Sec. A 1.) By hiding, we mean that both of the
marginal processes are constant regardless of the process N

FIG. 6. Suppose that input and output systems of a given quan-
tum operation are reversibly distributed to two systems. Is it possible
to hide the identity of the operation from the respective systems?
In other words, is it possible to implement quantum operations
stealthily? The no-stealth theorem says that it is impossible.

(see Fig. 6), i.e.,

TrB[(NA ⊗ idB)] = Tr[N ]E (39)

and

TrA[(NA ⊗ idB)] = Tr[N ]F (40)

for some channels E ∈ C(A) and F ∈ C(B) and for all N ∈
C̃(A). As discussed in Sec. III D, the duality between dis-
tributed and dynamical settings immediately yields that it is
equivalent to the problem of hiding a bipartite state ρAA′ , i.e.,
with some unitary operators U0 ∈ U(AB) and U1 ∈ U(A′B′),
we want

TrBB′ [AdU0⊗U1 (ρAA′ ⊗ φ+
BB′ )] = ηAA′ (41)

and

TrAA′ [AdU0⊗U1 (ρAA′ ⊗ φ+
BB′ )] = ζBB′ (42)

for some quantum states ηAA′ and ζBB′ . These types of
processes were called randomness-utilizing processes in
Ref. [18], and it was shown there that every dimension pre-
serving randomness utilizing process must be a catalysis.
Hence, we can set ζBB′ = φ+

BB′ , which is a pure state. Also,
because the distributed catalytic entropy of φ+

BB′ is zero, ηAA′

cannot have larger entropy than the input state ρAA′ , which
can be chosen as a pure state, hence ηAA′ must be pure as well.
This immediately yields a contradiction since whenever ρAA′

is mixed, then the transformation ρAA′ �→ ηAA′ decreases the
entropy, which is impossible with a catalytic map. Remember
that every catalytic map is unital, so it cannot decrease the
entropy of the input state.

It follows that the original task of hiding arbitrary quantum
process N ∈ C̃(A) by unitarily distributing it to two parties
is also impossible. In short, a quantum process cannot be
stealthy on a system with reversible time evolution. Neverthe-
less, by using the resource theory of randomness for quantum
processes developed in Sec. III D, it is indeed possible to hide
quantum processes when there is a randomness source with
enough randomness.
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H. Randomness amplification

Suppose that there is a sequence of (classical or quantum)
systems (An)∞n=0, and the initial system is prepared in some
state ρ0. At step n, similarly with a Markov chain, only two
adjacent systems An and An+1 can unitarily interact with the
constraint that information must not flow from An+1 to An.
This means that catalysis of randomness should happen with
system An being the catalyst. Let ρn be the state of An after
the interaction with An−1. We will call this type of sequence a
randomness chain.

Assume that A0 is the only initial randomness source,
i.e., every An with n � 1 is prepared in a pure state. One
observation we can make is that, when every system An is
classical, the amount of randomness never increases with
increasing n. This is because S�

α (ρn) = Sα (ρn) for classical
systems but Sα (ρn+1) � S�

α (ρn) by Theorem 3. On the other
hand, if every system An is quantum, then the amount of
randomness can increase exponentially over n. This is because
S�

α (ρn) � Sα (ρn) and even S�
α (ρn) = 2Sα (ρn) is achievable. In

other words, randomness amplification is possible only in the
chain of quantum systems.

Interpretations of this observation could vary. One could
conclude that in classical chain, when information backflow
is not allowed, then the total amount of information measured
by its randomness can only decay over successive transmis-
sion between systems. It is fundamentally because classical
systems cannot generate new randomness without shifting
information to other systems. However, in quantum systems,
correlation can be formed within a single system without
requiring any randomness, in contrast to classical systems.
Therefore, by using preexisting randomness, one can destroy
the correlation and create even larger randomness. As a re-
sult, quantum randomness that was initially minuscule can be
amplified to the macroscopic randomness after the long chain
of quantum systems, but no information has flowed backward
through the chain.

Because of the generalization developed in this work, we
can see that the same phenomenon could also happen to
a chain of quantum processes. Analogously, we can con-
sider a sequence of quantum channels (Nn)∞n=0 where Nn ∈
C(An) and there exists a catalytic superchannel �n such
that �n(M) = Tr[n(M ⊗ Nn)] with some catalysis supe-
runitary operation n ∈ SL(An+1An) compatible with the
catalyst Nn for every n � 0 so that �n(ϒn) = Nn+1 for some
superunitary operation ϒn ∈ U(An). It means that all the ran-
domness of Nn+1 is catalytically extracted from Nn, hence
there is no detectable effect left on the action of Nn alone
by the randomness extraction. We will call this a randomness
chain of quantum channels. For example, a depolarizing noise
on a 1000-qubit quantum system can be realized from a depo-
larizing noise on a qubit system after about 10 steps along
a randomness chain because of the exponential growth of
randomness. Along with chaos, this type of quantum random-
ness amplification might be one of the mechanisms realizing
macroscopic disorder with microscopic initial disorder. An
interesting observation is that a chain of completely dephasing
channels cannot see this kind of randomness amplification
because there are no local parts in the DCD that could yield
quantum advantage of randomness extraction (see Sec. III I).

I. Examples

First, any pure state shared between two parties is useless
as a randomness source. Especially, the maximally entan-
gled state, corresponding to the identity channel through the
Choi-Jamiołkowski isomorphism, cannot yield any informa-
tion without being perturbed. One can see that the mixture of
TQ-Q with the maximally mixed state is still a TQ-Q state as
the maximally mixed state does not affect the commutator in
Definition 1. It immediately follows that every Werner state is
a TQ-Q state.

On the contrary, every classical-classical (C-C) state can
yield all of its entropy through catalysis. Suppose that a quan-
tum state σ cc

AB is a C-C state:

σ cc
AB =

∑
i, j

p(i, j)|i〉〈i| ⊗ | j〉〈 j|, (43)

with the superselection rules that forbid any superposition
between basis elements (i.e., {|i〉}) for both systems. For σ cc

AB,
there is no quantumly correlated part in its DCD, therefore,
the distributed catalytic entropies and the ordinary entropies
are the same, i.e., S��

α (σ cc
AB) = Sα (σ cc

AB) = Sα ({p(i, j)}i, j ) for
all α � 0.

This fact could be directly translated to classical-to-
classical channels. Suppose that B(B) is the C∗ algebra of
|B|-dimensional diagonal matrices and Rc ∈ C(B) is a classi-
cal channel:

Rc(ρ) =
|B|∑

i, j=1

p( j|i)〈i|ρ|i〉| j〉〈 j| (44)

for some conditional probability distribution p( j|i).
Then its Choi matrix is a C-C state, i.e., JRc

CC′ =
|B|−1 ∑

i, j p( j|i)| j〉〈 j|B ⊗ |i〉〈i|B′ and JRc
CC′ , thus S�

α (Rc) =
Sα (JRc

CC′ ) = Sα ({|B|−1 p( j|i)}i, j ) for all α � 0.
The procedure of finding the essential decomposition of an

arbitrary bipartite state σAB is simple. First, find the spectral
decomposition of σAB, and group them into classes that are
mutually orthogonal on A. If one finds the classes that resist
further grouping, then the decomposition is unique.

Next, suppose that systems have coarser superselection
rules compared to completely classical systems. Let A =⊕

i Ai and B = ⊕
j B j be the superselection sectors of two

systems with �A
i := 1Ai and �B

j = 1Bj . Consider any classi-
cally correlated state of the form

σ
pc

AB =
∑
i, j

p(i, j)πAi ⊗ πBj . (45)

Hence, we have S��
α (σ pc

AB) = S�
α (σ pc

AB) and S��(σ pc
AB) =

S(σ pc
AB) + ∑

i, j p(i, j) log2(|Ai||Bj |) when α = 1. This means
that there are no constraints imposed by the distributed setting
when there is no correlated part in the DCD.

The channel counterpart is the following type of measure-
and-prepare channel from A to B with the superselection rules
A = ⊕

i Ai and B = ⊕
j B j ,

Rmp(ρ) =
∑
i, j

p( j|i)Tr
[
�A

i ρ
]

πBj , (46)
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FIG. 7. Comparison of three types of catalysis of quantum randomness. Randomness represented by dice enters the interaction and leaves it
locally unchanged but correlated with the system. On the other hand, distributed catalysis and dynamical catalysis of randomness are intimately
related; rotating one diagram by 90◦ makes it very similar to the other one.

for any conditional probability distribution p( j|i). The Choi
matrix of this channel has the following spectral decomposi-
tion:

J
Rmp

BA =
∑
i, j

p( j|i)aiπBj ⊗ πAi , (47)

where ai := |Ai|/|A|. A special case is the completely de-
polarizing channel with no superselection rules and trivial
measurement, i.e.,

Rcp(ρ) = πBTr[ρ]. (48)

The catalytic entropy of this channel, which functions as
the completely randomizing quantum channel, is S�

α (Rcp) =
2 log2 |A| + 2 log2 |B|. However, if both systems A and B
are classical, then the same channel Rcp now models
“dice rolling” and the catalytic entropy becomes the half;
S�

α (Rcp) = log2 |A| + log2 |B|.
Conversely, let us consider the pinching channel Rd with

respect to a complete set of orthonormal projectors {�i} on B
such that

∑
i �i = idB, i.e.,

Rd (ρ) =
∑

i

�iρ�i. (49)

In this case, the Choi matrix of the randomness source is

JRd
CC′ =

∑
i

bi|�i〉〈�i|, (50)

where bi := |Bi|/|B|, |�i〉 = |Bi|−1/2(Bi ⊗ 1B′
i
)
∑

j | j j〉CC′

with Bi = supp(�i ). Every subspace Bi has no local part in
a product form, so no nontrivial action can be applied on
them. Hence, S�

α (Rd ) = S��
α (JRd

CC′ ) = Sα ({bi}) � S�
α (JRd

CC′ ) for
all α � 0. It means that even if there are multiple bi with
the same value, i.e., even if JRd

CC′ has degeneracy, the quantum
correlation between two systems hinders the utilization of that
correlation without leaving traces.

IV. CONCLUSIONS

Why is it important to understand what it means to use
information and information only? With the success of quan-
tum information theory, there has been a trend of calling the
advantage of using quantum systems compared to using clas-
sical systems for implementing the same task the advantage
of “quantum information,” even when it is accompanied by

destruction or deterioration of quantum systems. But after
a moment’s thought, not every quantum property is purely
informational, and there is a necessity of distinguishing the
power of information and that of other physical properties.
In this work, following the gist of Shannon [5], we analyzed
randomness as information in the quantum setting.

We generalized the resource theory of catalytic quantum
randomness to distributed and dynamical randomness sources
(see Fig. 7). The distributed and dynamical catalytic entropies
were introduced to measure the catalytically extractable ran-
domness within multipartite quantum states. In contrast to
static catalysis of randomness, not every mixed state can yield
catalytic randomness in the distributed setting for nonclassi-
cally correlated quantum states are sensitive to the effect of
catalytic maps. As an application, we proved a no-go theo-
rem that is a generalization of the no-hiding theorem [55],
the no-stealth theorem, that forbids unitarily hiding quantum
processes by distributing it to two distributed parties.

We also attempted to analyze semantic information in the
context of catalytic quantum randomness, by focusing on
the correspondence between information’s meaning and cor-
relation with other systems. By doing so, we showed that
nonsemantic information, randomness, is a special case of
semantic information and revealed that the usability of se-
mantic information is exactly same with that of nonsemantic
information.

As we have completed the characterization of maximum
entropy extractable with exact catalysis, natural next steps
include generalization to approximate catalysis and the con-
verse problem. By converse problem, we mean characterizing
randomness sources that can realize a given catalytic map.

Characterizing tasks that can be done without altering ran-
domness sources is important for understanding the nature of
randomness in physics in comparison to other concepts, but
in practice, one can always use randomness in combination
with other physical properties, hence, it would be interesting
to study the relation of the randomness cost and other costs of
implementing quantum processes.
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APPENDIX: MATHEMATICAL RESULTS

1. Issues of CP map input

In contrast to static catalysis, which requires the invariance
of the state of randomness source for every normalized input
state, we required dynamical catalysis the invariance of the
randomness source channel for every CP trace nonincreasing
map in (21). However, in contrast to that, every subnormalized
quantum state can be made into a normalized one by simply
multiplying by some positive number, but not every CP map
can be made into a quantum channel (CPTP map) in the same
way. Hence, one might suspect that requiring condition (21)
for every N ∈ C̃(A) is too severe. In this section, we justify
this condition. Alternatively, we could require the following
condition:

TrA[(idE0→E1 ⊗ )(N ⊗ R)] = TrA[N ] ⊗ R (A1)

for every N ∈ C(AE0, AE1), where idE0→E1 (L) = idE1 ◦ L ◦
idE0 for every L ∈ L(E0, E1). The differences are that now N
is a multipartite channel, and that output channels TrA[N ] ∈
C(E0, E1) and R ∈ C(B) are required to be uncorrelated.

This is a well-motivated requirement since superchannels
can be applied to a part of multipartite channels, and the
requirement of information nonleakage through  can be re-
interpreted as the requirement of no formation of correlation
between the systems that did not interact directly through
 ∈ SC(AB). We remark that any CP trace nonincreasing
map can be a subchannel of another channel. It means that
for any N0 ∈ C̃(A), there exists some N1 ∈ C̃(A) such that
N0 + N1 ∈ C(A). Also, for some U ∈ U(AE0) and a positive
operator-valued measure (POVM) {M0, M1} with M0 + M1 =
1E0 on E0 and

Ni(ρ) = TrE0 [(1A ⊗ Mi )AdU (ρ ⊗ |0〉〈0|E0 )] (A2)

for every ρ ∈ B(A) and i = 0, 1. Naturally, we can define the
corresponding channel N ∈ C(A, AE1) given as

N (ρ) := N0 ⊗ |0〉〈0|E1 + N1 ⊗ |1〉〈1|E1 . (A3)

With this expression, (A1) requires that

TrA[(idE0→E1 ⊗ )(N ⊗ R)] = σE1 ⊗ R, (A4)

with σE1 = Tr[N0]|0〉〈0|E1 + Tr[N1]|1〉〈1|E1 . However, we
can observe that

〈i|E1N |i〉E1 = Ni (A5)

for i = 0, 1; therefore, by contracting |i〉〈i|E1 with both sides
of (A4), using 〈i|E1σE1 |i〉E1 = Tr[Ni], we get

TrA(Ni ⊗ R) = Tr[Ni]R. (A6)

Since N0 was chosen arbitrarily in C̃(A), we can see that (A1)
implies condition (21).

Conversely, let L‡ := † ◦ L ◦ † for any linear map L. We
can see that any linear map L can be decomposed into the
Hermitian-preserving part LR := (L + L‡)/2 and the anti-
Hermitian-preserving part LI := −i(L − L‡)/2 so that L =
LR + iLI . Again, any Hermitian-preserving linear map H can
be expressed as the difference of two CP maps P and L so that
H = P − N . (It follows from the spectral decomposition of
its Choi matrix.) Hence, if (21) holds for every N ∈ C̃(A), by
the linearity, it also holds for every L ∈ L(A), so (A1) follows.
Therefore, (21) and (A1) are equivalent.

2. Proof of Proposition 2

Proof. Let C ∈ C(X ) be a catalytic map. The entropy in-
crease of a quantum state σX by N cannot be larger than
that of its purification |�〉XX ′ (TrX ′ |�〉〈�|XX ′ = σX ) [19].
Therefore, the largest entropy production happens on a pure
bipartite state, and let |�〉XX ′ be a pure state that achieves the
maximum entropy production by N . Note that every pure bi-
partite state s related with a maximally entangled state |�〉XX ′

by the action of a local matrix, i.e., there exists M ∈ B(X )
such that |�〉XX ′ = (1X ⊗ MX ′ )|�〉XX ′ . Note that N cannot
generate any randomness if NX (|�〉〈�|)XX ′ is pure, i.e., rank
1. Since NX (|�〉〈�|XX ′ ) = (idX ⊗ AdM )(NX (|�〉〈�|XX ′ )), if
NX (|�〉〈�|XX ′ ) is pure, then it follows that N cannot generate
randomness. Conversely, if N cannot generate randomness,
then by definition N (|�〉〈�|XX ′ ) is pure. �

3. Discussion on Mølmer’s conjecture

Mølmer’s conjecture [45] insists that the quantum state of
laser light should not be represented by a pure coherent state

|α〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉, (A7)

but the mixed state

1

2π

∫ 2π

0
||α|eiθ 〉〈|α|eiθ |dθ = e−|α|2

∞∑
n=0

|α|2n

n!
|n〉〈n|, (A8)

because of the loss of phase information caused by inacces-
sibility of laser device. Choosing to use the pure coherent
state representation without considering correlated systems
amounts to committing the preferred ensemble fallacy [57,58].
When it is stated that “a random pure state |φ〉A is prepared,”
oftentimes it is assumed, very implicitly, that there exists a
fixed preparation protocol that produces |φ〉A. This protocol
can be classically identified with a careful inspection, and be
represented by an orthonormal basis {|“φ”〉P} that is orthog-
onal between each different state, even when |φ〉A itself is
not orthogonal to each other, i.e., 〈“φ”||“ψ”〉 = 0 whenever
φ �= ψ . In this case, the global quantum state of system AC is∑

φ

p(φ)|φ〉〈φ|A ⊗ |“φ”〉〈“φ”|C, (A9)
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with some probability distribution p(φ). (One can replace the
sum with an integral when the probability distribution is not
discrete.) If one runs the same preparation protocol n times,
then it becomes∑

φ

p(φ)|φ〉〈φ|⊗n
A ⊗ |“φ”〉〈“φ”|C . (A10)

Or, systems AC can even be entangled:∑
φ

√
p(φ)|φ〉A ⊗ |“φ”〉C . (A11)

Whether to treat the whole system AC or system A alone
as the information source depends on one’s choice and on
a given situation. For example, if it is implicitly assumed
that there exists a referee who remembers the identity of the
random state |φ〉A and if you treat the relation between the
state and the referee as a part of information you utilize, then
the whole system AC should be considered an information
source. However, if system A is in isolation from any context
other than the distribution p(φ), then it is natural to treat only
system A as an information source.

4. Proof of Theorem 4

Proof. The assumption that no randomness can be catalyt-
ically extracted from σAC BC means that any catalytic unitary
operators compatible with σAC BC are a product unitary oper-
ator. Therefore, any action applied to σAC BC after catalysis is
also of the form of product unitary operations, i.e., σAC BC �→
AdVA⊗VB (σAC BC ) with some VA ∈ U(AC ) and VB ∈ U(BC ). As
a special case, assume that UA = 1ASAC . It implies that VA =
1AC . Note that, in this case, VB should be also proportional
to the identity operator. It is because, if VB �∝ 1BC , then the
random unitary operation given as 1

2 (idBC + AdVB ) on BC that
is not a unitary operation also fixes σAC BC . This contradicts the
previous result that any action on σAC BC should be a unitary
operation. It is equivalent to saying that whatever catalytic
map is applied to system BC , if it fixes σAC BC , then it should
the identity operation. This property is called sensitivity to
catalytic maps according to the definition given in Ref. [49].
As the set of catalytic map is contained in the set of unital
maps, and contains the set of random unitary operations, by
the results of Ref. [49], it follows that it is equivalent to that
σAC BC is not a Q-PC state. The same argument can be applied
when the roles of AC and BC are switched, thus σAC BC is neither
a PC-Q state.

Conversely, assume that σAC BC is TQ-TQ. Let UA ∈
U(ASAC ) and UB ∈ U(BSBC ) be arbitrary catalytic unitary op-
erators and NA := TrAS ◦ AdUA ∈ UC(AC ) and NB := TrBS ◦
AdUB ∈ UC(BC ) be induced catalytic maps on AC and BC ,
respectively. For σAC BC to be compatible with UA and UB,
NA ⊗ NB must fix σAC BC . However, since catalytic maps can
never decrease the von Neumann entropy, it means that both
NA and NB fix the von Neumann entropy of σAC BC . By The-
orem 2.1 of Ref. [50], it is equivalent to that both N †

A ◦ NA

and N †
B ◦ NB fix σAC BC . Since σAC BC is TQ-TQ, it is sensitive

to unital channels on both sides [49], hence, it follows that
N †

A ◦ NA = idAC and N †
B ◦ NB = idBC . It is equivalent to that

both NA and NB are unitary operations, therefore, UA and UB

are product unitary operators. It follows that no randomness
can be extracted from σAC BC . �

5. Other results on essential decomposition

Here, we provide a proof of Theorem 5. The structure
result formally resembles Theorem 6 of Ref. [59], but the
methodology is slightly simpler as we only use the structure
theorem of C∗ algebra and no other functional analytic results.

Proof. Let CA(ρAB) be the centralizer of ρAB on A, i.e.,

CA(ρAB) := {M ∈ B(A) : [MA ⊗ 1B, ρAB] = 0}. (A12)

It is easy to check that CA(ρAB) is closed under addition,
scalar multiplication, and matrix multiplication and adjoint
operation. Therefore, CA(ρAB) is a finite-dimensional C∗ al-
gebra, hence, A has the decomposition A = ⊕

i AP
i ⊗ AQ

i (we
let Ai := AP

i ⊗ AQ
i ) so that ρAB has the decomposition of the

following form [35,36]:

CA(ρAB) =
⊕

i

B
(
AP

i

) ⊗ 1AQ
i
. (A13)

It implies that, for all i, 1AP
i
⊗ 1AQ

i
, which is a projector, is

in CA(ρAB), hence, ρAB is block diagonal with respect to the
direct sum A = ⊕

i Ai, i.e.,

ρAB =
∑

i

piρAiB. (A14)

Now, we focus on each summand ρAiB. Since it commutes
with every element in B(AP

i ) ⊗ 1AQ
i
, it has the form of ρAiB =

πAP
i
⊗ ρAQ

i B, where πAP
i

is the maximally mixed state on AP
i .

To show it explicitly, one can average over the action of every
unitary operator (“twirl”) on ρAiB. Now, ρAQ

i B must be TQ-Q

because no projector on AQ
i other than 1AQ

i
commutes with it.

A unital channel fixes a quantum state if and only if all of its
Kraus operators commute with the quantum state. Therefore,
for any unital channel N on A fixes ρAB if and only if its Kraus
operators are in CA(ρAB). It implies that N preserves all the
subspaces Ai, and its limitation on Ai N |Ai has Kraus operators
in B(AP

i ) ⊗ 1AQ
i
. Again, it means that N |Ai factorizes into

NAP
i
⊗ idAQ

i
.

The uniqueness of the decomposition is immediate from
the uniqueness of the decomposition (A13), which determines
and is determined by the essential decomposition of ρAB. By
summing up the terms with a common ρAQ

i B factor, we get the
essential decomposition of ρAB. �

Lemma 2. A unital channel N ∈ UC(A) does not increase
the entropy of a quantum state ρAB with the essential de-
composition ρAB = ∑

i piρAP
i
⊗ ρAQ

i B if and only if N can be
decomposed into N = AdV ◦ M with some unitary operator
V ∈ U(A) and a unital channel M that preserves every sub-
space Ai and M|AP

i ⊗AQ
i

factorizes into M|AP
i ⊗AQ

i
= M|AP

i
⊗

idAQ
i

while M|AP
i

is unital on AP
i .

Proof. The existence of the decomposition N = AdV ⊗ M
with M being a unital channel that fixes ρAB is shown in
Ref. [50] [Theorem 2.1 (iii)]. By Theorem 5, the decomposi-
tion is unique, thus, M is decomposed into the form above.�

Corollary 4. Let a distributed catalysis unitary operator
pair (UA,UB) be compatible with a distributed randomness

042430-17



SEOK HYUNG LIE AND HYUNSEOK JEONG PHYSICAL REVIEW A 107, 042430 (2023)

source σAC BC with the DCD

σAC BC =
⊕

i j

piq jρAP
Ci

⊗ ρAQ
CiB

Q
C j

⊗ ρBP
C j

, (A15)

and the essential decompositions AC = ⊕
i AP

Ci ⊗ AQ
Ci and

BC = ⊕
j BP

C j ⊗ BQ
C j . It follows that there exist WX ∈ U(XC )

for X = A, B such that UX = (1XS ⊗ WX )(
⊕

k UXk ⊗ 1X Q
Ck

)

where UXk ∈ U(XSX P
Ck ).

Proof. Consider the maximally mixed initial state πAS ⊗
πBS for the catalysis and let NX ∈ UC(XC ) given as NX :=
TrXS [AdUX ] be the induced catalytic map on XC acting on
the distributed catalyst σAC BC for X = A, B. Since (UA,UB)
and σAC BC are compatible with each other, we have (NA ⊗
NB)(σAC BC ) = σAC BC . It follows that both of NX do not in-
crease the entropy of σAC BC . By Corollary 2, NX can be
decomposed into AdW X ◦ MX where MX preserves each
subspace X P

k ⊗ X Q
k and the limitation onto each subspace is

further decomposed into M|X P
i ⊗X Q

i
= M|X P

i
⊗ idX Q

i
. It im-

plies the dilation of MX , the action of UX on XSXC with the
maximally mixed state on XS has the same form of decompo-
sition, which is the wanted result. �

6. Proof of Proposition 3

Proof. By Corollary 4, every component in the DCD of a
distributed catalyst is compatible up to a local unitary with the
given pair of catalysis unitary operators by itself. Let C be the
catalytic map implemented by the catalysis unitary operators
UA and UB by using σAC BC as the catalyst. In other words,
C(ρ) := TrAC BC [(AdUA ⊗ AdUB )(ρASBS ⊗ σAC BC )]. Now we let
Ci j be given as Ci j (ρ) := TrAC BC [(AdUAi

⊗ AdUB j
)(ρASBS ⊗

πAP
i
⊗ πBP

j
), which is a catalytic map by itself, then we have

C = ∑
i j piq jCi j . For arbitrary pure initial state ρASBS (recall

that the maximum entropy production is made with a pure
state input), we have the following:

C(ρ) =
∑

i j

piq jCi j (ρ) �
⊕

i j

piq jCi j (ρ)

�
⊕

i j

piq jπ
⊗2
AP

i
⊗ π⊗2

BP
j
. (A16)

The first majorization relation follows from the fact that a
convex sum of quantum states always majorizes the direct sum
of the same summands [60]. The last majorization relation
follows from the fact that a direct sum of quantum states
majorizes another when its individual summand majorizes
that of the other and that each Ci j (ρ) majorizes π⊗2

AP
i

⊗ π⊗2
BP

j
.

It is because for each pair (i, j), πAP
i
⊗ πBP

j
functions as two

separated catalytic randomness sources, hence, any output for
a pure input state should majorize its REO, π⊗2

AP
i

⊗ π⊗2
BP

j
[19].

Since every Rényi entropy of order α � 0 is Schur-concave,
the desired upper bound of extractable Rényi entropy follows.

Now we show that one can actually attain this bound.
First of all, with the maximally mixed catalyst πX P

i
, one can

catalytically transform a pure state into a mixed state unitarily
similar to π⊗2

X P
i

[19,20]. Let each catalysis unitary operator

UXi implement such transformation. Therefore, by preparing a
“counter” system EX initialized in |0〉EX for each party X and

letting UXi to map |0〉EX to |i〉EX (for example, applying the
generalized Pauli operator X = ∑

n |n ⊕ 1〉〈n ⊕ 1|n i times),
we can transform a product pure state into the output state
unitarily similar to

⊕
i j piq jπ

⊗2
AP

i
⊗ π⊗2

BP
j

. �

7. Proof of Theorem 7

Let us first show that utilization of semantic information is
a special case of randomness utilization.

Lemma 3. If U ∈ U(AB) and σAB ∈ S(AB) are given as in
Definition 5, then U is a catalysis unitary operator compatible
with σB as a catalyst up to local unitary.

Proof. As any superchannel can be decomposed into pre-
processing and postprocessing channels, (33) is equivalent to

TrA[U ◦ (NA ⊗ idB)(σAB)] = ηB (A17)

for any channel N ∈ C(A). Here, N is the partial trace of the
arbitrarily chosen preprocessing channel of �A→B in (33). By
letting N be a state preparation channel, i.e., N (ρ) = τATrρ
for every τ ∈ S(A), we get that

TrA[U (τA ⊗ σB)] = ηB (A18)

for any τ ∈ S(A). By the result of Ref. [18], there exists
a unitary operator V such that ηB = AdV (σB), thus by the
definition given in (7), U is a catalysis unitary operator and
it is compatible with σB up to local unitary. �

As a side note, this lemma provides a proof of the first part
of Theorem 1. That is, if σAB is uncorrelated, i.e., σAB = σA ⊗
σB, then every catalytic unitary operation compatible with σB

as a catalyst utilizes only information of B in σAB. It is because
if σAB = σA ⊗ σB, then (A17) becomes equivalent to

TrA[U (ρA ⊗ σB)] = σB (A19)

for every ρ ∈ S(A) as the set {N (σA) |N ∈ C(A)} is same
with S(A). Since it is equivalent to (7), we get the desired
result.

[(S:B) ⇒ (S:A)] It immediately follows from the fact that
any superchannel can be decomposed into preprocesses and
postprocesses. Note that the output of the transformed channel
on A is immediately discarded, and the postprocess is irrele-
vant. The process NA→RA can be considered the preprocess of
the superchannel � in (S:A).

[(S:C) ⇔ (S:B)] Without loss of generality, we consider
the canonical case (without local unitary transformation on
catalysts), if U ∈ U(AB) is compatible with σAB on B, we have

TrA′ ◦ AdUA′B (σAB) = TrA′ ⊗ σAB. (A20)

A simple change of system labels yields that for every L ∈
L(A) (by considering it as linear map that maps from A to A′),
we have

TrA ◦ AdUAB ◦ LA(σAB) = TrA ◦ LA(σAB). (A21)

By inserting arbitrary quantum map N ∈ C(A, RA) into the
position of LA, we have the desired result

TrA ◦ AdUAB ◦ NA→RA(σAB) = TrA ◦ NA→RA(σAB). (A22)

By choosing NA→RA = |ψ〉〈ψ |A ⊗ idA→R for each state |ψ〉 on
A, one can also show the converse.

[(S:A) ⇒ (S:C)] We will use the following lemma.
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Lemma 4. For any constant superchannel � that maps
channels in C(A, B) to channels in C(C, D), meaning that
�(N ) is the same for every N ∈ C(A, B), there exists a quan-
tum channel P ∈ C(C, AD) such that

�(L) = (TrB ◦ LA→B ⊗ idD) ◦ PC→AD (A23)

for any L ∈ L(A, B).
Proof. A basis of L(A, B) is {Ei j := YjTr[X †

i · ]}, where
{Xi} and {Yj} are orthonormal bases of B(A) and B(B), re-
spectively, that consist of traceless Hermitian operators except
for X0 = |A|−1/21A and Y0 = |B|−1/21B. Hence, every L ∈
L(A, B) has the expression of the form

L =
∑

i j

Ei jTr[Y †
j L(Xi )]. (A24)

Note that the span of C(A, B) coincides with the span of {Ei j}
excluding Ei0 with i > 0. If we let Fi j := �(Ei j ) ∈ L(C, D),
we get the expression

�(L) =
∑

i j

Fi jTr[Y †
j L(Xi )]. (A25)

By the condition that � is constant for quantum channels
in C(A, B), there exists some channel C ∈ C(C, D) such that
�(N ) = C for all N ∈ C(A, B) and

�(L) = CTr[L(πA)] +
∑
i>0

Fi0Tr[L(Xi )]. (A26)

Now, we let P ∈ L(C, AD) defined as

P := πA ⊗ C +
∑
i>0

Xi ⊗ Fi0. (A27)

From (A26), we can see that if Q ∈ C(C, AE ) and R ∈
C(BE , D) are preprocessing and postprocessing channels of
� so that �(L) = R ◦ (L ⊗ idE ) ◦ Q for every L ∈ L(A),
then PC→AD = (RA′E→D ⊗ idA)(τA′ ⊗ QC→AE ) for some τ ∈
S(A′). Therefore, as a composition of quantum channels, P is
obviously a quantum channel. Moreover, by comparing (A26)
and (A27), we get the desired result

�(L) = (TrB ◦ LA→B ⊗ idD) ◦ PC→AD. (A28)

�
Indeed, as we can observe that the left-hand side of (A17)

is a constant superchannel when N is considered an input, we
can apply Lemma 4. Therefore, there exists a quantum state
(which is a special type of quantum channel) τAB such that

TrA[U ◦ (LA ⊗ idB)(σAB)] = TrA[(LA ⊗ idB)(τAB)] (A29)

for every L ∈ L(A). Equivalently, inputting a part of the swap-
ping gate on AA′, we get

TrA′ [ (UA′B ⊗ idA)(ρA′ ⊗ σAB)] = τAB (A30)

for all ρA′ ∈ S(A′). In other words, the mapping ρA′ �→ τAB

is constant. If one interprets (A30) as that UA′B ⊗ 1A utilizes
σAB as a randomness source, by the result of Ref. [18], τAB

must have the same spectrum, thus also the same entropy, with
σAB. Then, by Corollary 2, there exists a unitary operator V ∈
U(B) such that τAB = idA ⊗ AdV (σAB). This proves the desired
result.

8. Proof of Corollary 3

Let U := AdU . We will use the following lemma.
Lemma 5 ([59]). If a tripartite state ρRAB satisfies I (R :

A) = I (R : AB), then the Hilbert space of A has a direct sum
structure of the form of A = ⊕

i Ai,K ⊗ Ai,L and ρRAB can be
decomposed into

ρRAB =
⊕

i

piρRAi,K ⊗ ρAi,LB, (A31)

where for each i, ρRAi,K ∈ R ⊗ Ai,K and ρRAi,LB ∈ Ai,L ⊗ B.
Additionally, it is equivalent to that I (A : B) = I (RA : B).

By Lemma 5, ρRAB has the form of (A31). Therefore, its
marginal state on AB must have a form of

ρAB =
⊕

i

piρAi,K ⊗ ρAi,LB. (A32)

Since each subspace Ai,K ⊗ Ai,L is orthogonal to each other,
we can construct quantum channels Ni ∈ C(Ai,K , RAi,K ) such
that Ni(ρAi,K ) = ρRAi,K . Therefore, there exists a quantum map
N := ⊕

i Ni ⊗ idAi,L ∈ C(A, RA) that maps ρAB into ρRAB.

9. Proof of Theorem 8

Proof. The essential decomposition of σAB on B has the
form

σAB =
∑

i

piσABQ
i

⊗ πBP
i
. (A33)

Now we let σ i
A := TrBQ

i
σABQ

i
. The marginal state of A after a

general information utilization of B has the form∑
i

pi�i
(
σ i

A

)
, (A34)

where �i are some catalytic maps on A using πBQ
i

as the cata-

lyst. We claim that the probability distribution [
∑

i piλ j (σ i
A)] j

majorizes (λ j[
∑

i pi(σ i
A)]) j :

∑
1� j�k

λ j

(∑
i

pi�i
(
σ i

A

)) = max
P

Tr

[
P

∑
i

pi�i
(
σ i

A

)]

= max
P

Tr

[ ∑
i

piP�i
(
σ i

A

)]

�
∑

i

pi max
P

Tr
[
P�i

(
σ i

A

)]
.

(A35)

In the first equality, the maximization is over rank-k pro-
jectors P and we used Fan’s Lemma [61]. Applying Fan’s
Lemma [61] for each maximization in the last term again, we
get

∑
1� j�k

λ j

(∑
i

pi�i
(
σ i

A

))
�

∑
i

pi

∑
1� j�k

λ j
(
�i

(
σ i

A

))
. (A36)

Remember that every catalytic map is unital. From the relation
between unital maps and majorization, we have �i(σ i

A) ≺ σ i
A

for all i, hence
∑

1� j�k λ j (�i(σ i
A)) � ∑

1� j�k λ j (σ i
A) for all i
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and k. Therefore, it follows that∑
1� j�k

λ j

(∑
i

pi�i
(
σ i

A

))
�

∑
i

pi

∑
1� j�k

λ j
(
σ i

A

)
(A37)

for all k. By choosing each �i as a unitary operation that trans-
forms σ i

A into
∑

j λ j (σ i
A)| j〉〈 j| for some common basis {|i〉},

the catalytic transformation of σA into
∑

j[
∑

i piλ j (σ i
A)]| j〉〈 j|

is achievable. �

10. Physicality of information

In the seminal paper [62], Landauer argued that informa-
tion is physical by reciting the observations that there is no
nontrivial minimal energy dissipation accompanying infor-
mation processing tasks such as computation, copying, and
communication. These evidences imply that deletion of in-
formation is the only source of nontrivial energy cost, which
supports the view that a certain amount of energy corresponds
to a certain amount of energy, independent of how it is pro-
cessed, in favor of the interpretation that information is a
physical entity as matter is equivalent to energy through the
mass-energy equivalence.

Certainly, Landauer’s argument irrefutably shows that the
presence of information in our physical universe is necessarily
physical as Landauer said “Information is not an abstract
entity but exists only through a physical representation” [63].
However, the problem with this almost tautological usage of
the term “physical” is that it makes every physically per-
ceivable abstract concept physical. For example, money can
only exist through physical notes and coins or digitalized cur-
rencies in physical computers, and law must be recorded on
some physical representation and can only be enforced with
physical methods by a government, which is also an abstract
concept that exists only through a physical manifestation. We
can even say that every abstract concept that involves informa-
tion exchanges is physical if information is physical. If every
concept relevant to a physical agent counts as physical, then
this notion of physicality might not be very useful as there
would be virtually no nonphysical concept.

A more operational criterion for the physicality of concepts
would be asking if usage or action with or involving the
concept requires detectable change to physical representation
of the concept that is unavoidable, even in an approximate
sense. Perhaps, the term material might be more appropri-
ate to describe such a property since there are concepts of
physical nature that are not material by themselves. For ex-
ample, “solidness” is represented by a hammer used to drive
a nail into the wall, but the hammer, in the practical sense,
is not detectably altered after the process. Clearly, solidness
is a property of physical nature but not a matterlike concept;
solidness did not depart from the hammer to the wall like
a particle. Likewise, every catalyst in chemistry and quan-
tum resource theory is also not a physical representation of
material concept, albeit they might play a physical role in
the respective catalysis process. As a matter of fact, since
the terms “physicalism” and “materialism” are often used
interchangeably [64], we will not introduce another term and
call the property simply “physicality.” This is the perspective
we take in this work about information, and the argument of
Landauer ironically supports the claim that information is not

physical in our sense, as Landauer argued that energy cost
of information processing other than deletion can be made
arbitrarily small.

Our notion of physicality could be relative, as what is ex-
pected from an operational concept. Naturally, physicality of
information now depends not only on the information storage,
but also on the method of utilizing it. For example, software,
in contrast to hardware, is usually considered nonphysical
because installation, execution, and deletion of software leave
no apparent physical trace on the hardware it is running on.
However, of course, it is true not only that software accom-
panies physical traces on hardware detectable with careful
inspection, but also one can physically interact with software
through input and output devices, hence, software is as physi-
cal as hardware for its user equipped with proper devices.

We defined information as something that can spread from
its source without altering it, hence, it is required to be
nonphysical by definition. Is this notion of information also
relative? We first examine it for classical information. Let
us consider the classical version of catalytic randomness.
Consider interaction between systems 1 and 2, where (i, j)
represents the situation where system 1 is in the state i and sys-
tem 2 is in the state j. We want to formulate a classical version
of (6) and (7). Invertible classical operation is permutation,
thus, we let f : (i, j) �→ ( f1(i, j), f2(i, j)) be a permutation
of states of the joint system of 1 and 2, where system 1 is
a target system and system 2 is a catalyst. When the initial
probability distribution of system 2 is (p j ), then the condition
for f to be catalytic permutation compatible with (pj ) is

∑
j′: j= f2(i, j′ )

p j′ = p j (A38)

for all i and j. Similarly to catalytic quantum randomness,
f2(i, · ) must preserve every nondegenerate probability dis-
tribution, and can permutate every degeneracy block of (pj )
(the set of j with the same probability pj). As a special case,
for the completely uniform distribution π2, every permutation
f such that f2(i, · ) is a permutation for every i is catalytic
permutation compatible with π2. This fact may come off as
weird to some readers because permuting the outcomes of
an information source may seem to leak information to the
source. However, if the source is not correlated with any other
information sources you have, then there is no way to tell if
the permutation has taken place: You cannot tell if someone
flipped the unknown outcome of a random coin toss.

Even if permutation of degenerate states of catalyst is al-
lowed in pure information utilization, some readers might still
wonder why would one want to do that. Indeed, reading a mes-
sage and scrambling the letters of the message sound weird
and look unnecessary when the purpose is simply extracting
as much information as possible. In generic cases, however,
this permutation is accidental rather than intentional. One can
consider each state in each degeneracy block a microscopic
state and each degeneracy block of (pi ) a macroscopic state.
Turning a page of a book will disturb the molecules in the
paper even when it is done extremely carefully. But, if it can be
done in a macroscopically undetectable fashion, then the ac-
tion only permutes the microscopic states belonging to a same
macroscopic state. That is, a book whose pages are turned
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carefully still contains the same content while its molecular
configuration might have changed. Thus, it still counts as pure
information utilization on this macroscopicity level.

The intuition that the permutation is invasive is not wrong,
nonetheless, as manipulating a part of a correlated information
source can indeed leak information. If you tossed a coin and
wrote the outcome on a piece of paper, then the coin and the
paper are correlated. In this case, if someone flips the coin,
then you can detect it by referring to the paper. Actually, this
is exactly how classical secret sharing works: encoding in-
formation into correlation and correlation only. Nevertheless,
if you cannot access the paper, then interactions that might
flip the coin can still count as pure information utilization.
This shows that physicality of classical information is also
relative because the choice of the system that you will treat
as information source affects the physicality.

Nonetheless, a question on the possibility of universally
nonphysical classical information still remains: Is it possible
to utilize information of a classical system regardless of its
relation with the outer world? Indeed, every permutation f
that fixes every j, i.e., f2(i, j) = j for all i is compatible with
every extension of system 2, i.e., a combination of system 2
and any system 3 that is arbitrarily correlated with system 2.
Such a permutation corresponds to simply “reading” j and
implementing a permutation on system 1 conditioned on j.
One can easily see that this action never changes the joint
probability distribution of systems 2 and 3. This is the notion
of classical information we are familiar with: information that
can be freely read and distributed and does not necessitate a
nontrivial minimum amount of physical effect on information
carriers.

Does the same conclusion hold for quantum information?
In our definition [see (7)], utilizing only information in quan-
tum state σB means leaking no information to it. In other
words, we defined utilization of quantum information to be
nonphysical as well. However, just like classical information
sources, a quantum information source could be correlated
with other systems, i.e., σB could be a marginal state of its
extension σAB. We can easily observe that interacting with
a part of correlated information source exactly corresponds
to distributed catalysis of randomness and Theorem 4 says
that TQ-TQ bipartite states cannot yield randomness through
distributed catalysis. But, since every mixed state σB has a
TQ-TQ extension σAB, namely, its purification. Hence, ev-
ery utilization of quantum information can be detected by
someone with enough amount of side information; there is
no universally nonphysical quantum information, contrary to
classical information. This observation can be summarized as
follows.

Theorem 9. For any catalysis unitary UA ∈ U(ASAC ) com-
patible with σAC , there exists an extension σAC BC of σAC such
that (UA,UB) is not compatible with σAC BC for any UB ∈
U(BSBC ).

One of the goals of establishing the framework of catalysis
of quantum randomness is to distinguish “quantum state”
and “quantum information,” two terms that are often mixed
up in quantum information community. This distinction is
needed since quantum state describes every physically acces-
sible properties of a quantum system, be it informational or
not. Thus, accepting this distinction, the no-cloning theorem

FIG. 8. Comparison of convex and concave resource theories. In
a convex resource theory, a statistical mixture of two free objects is
still free, and the action of free operation can only draw a resourceful
object closer to the set of free objects. However, in a “concave”
resource theory, any statistical mixture of two resourceful objects
is resourceful, and there is no universal “resource destroying oper-
ation.” However, there are resourceful operations that never make a
resourceful object free.

only forbids cloning of quantum state, not quantum infor-
mation. In fact, the task of “cloning quantum information”
must be carefully redefined. Nonetheless, the fact that there
is no universally nonphysical quantum information hints that
the gist of the no-cloning theorem still lives on for quantum
information. The fact that cloning and distribution of classical
state can be freely done strongly suggests that classical infor-
mation is a nonphysical entity operationally independent of
its physical representation, and vice versa. In contrast to this,
quantum information is firmly bound to its physical represen-
tation, which can be interpreted to be strongly related to the
fact quantum state is unclonable.

We may summarize the results of this section with a slogan
“quantum information is physical from a broader perspective”
to emphasize the difference between classical and quantum
information. In our formalism, pure information utilization
is required to be nonphysical for a given information source
in the first place, hence, the slogan should be interpreted
as that for every pure quantum information utilization there
exists an agent who perceives it not as a purely informational
interaction, whereas the same may not hold for classical infor-
mation. After all, as we pointed out, physicality of information
depends on its definition and perspective of user.

11. Concave resource theories

As it was briefly outlined in the Introduction, we define
concave resource theory as a theory that consists of the state
of resourceful states R (“the resourceful set”) and the set of
resourceful operations, operations that preserve R, OR (see
Fig. 8). Here, the resourceful set R is required to be convex,
i.e., if ρ, σ ∈ R, then λρ + (1 − λ)σ ∈ R for any 0 � λ � 1.
Any state that is not resourceful is called free. In contrast to
the fact that usually the distance to the concave set of free
states is used as a measure of resource, it is natural to measure
how deep inside a state is placed in the resourceful set in a
concave resource theory. The most typical concave resource
theory would be that of entropies, whose resource measures
are Schur-concave entropic quantities.
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As entropic measures like the von Neumann entropy are
already a well-studied topic, one might consider concave re-
source theories are more or less trivial. However, there could
be still other types of resource theories of randomness and the
theory of catalytic quantum randomness is one of them. Albeit
it is a concave resource theory, catalytic entropies are not con-
cave functions. For example, slightly mixing the maximally
mixed state with a nondegenerate state significantly decreases
its catalytic entropy because it destroys the degeneracy of it.

Nevertheless, we could anticipate that superunitary oper-
ations must be a part of free operations of generic concave
resource theories. Our definition of superunitary operation
does not have one of the most distinct characteristics of
the physical implementation of superchannels: the effect of
memory system. This is because discarding subsystem is no
longer a free operation in resource theory of randomness.
There is only one exception and that is discarding a quantum
system that is not allowed to change its marginal state because
discarding such a system will not lead to any leakage of infor-
mation, and that fits our definition of utilizing randomness and
randomness only.

The resource theory of randomness (RTR), as a concave
resource theory, has many implications that go against our in-
tuition built from conventional convex resource theories. The

resource in the RTR is randomness, which is not inherently
a quantum property, hence not every object with large quan-
tumness is superior compared to its classical counterpart. For
example, a maximally entangled state shared by two parties,
which is a very useful resource in entanglement theory, is
completely useless in distributed catalysis of randomness. In
general, whenever there is quantum correlation in a bipartite
quantum state, there exist correlated parts the DCD, and it
hinders catalytic extraction of randomness (see Sec. III I). It
is because states with quantum correlation are sensitive to the
action of local unital channels [49].

One should not understand it as that every quantumness
is an obstacle in randomness extraction. For example, local
coherence is helpful for maximizing extractable randomness
of local parts. This is the very reason why there are dimension-
doubling effects in catalytic quantum randomness. However,
again, it does not mean that coherence already present in the
state helps catalysis of quantum randomness. When we say
that local coherence boosts catalytic quantum randomness, it
means that exploiting coherent quantum operation boosts the
efficiency of catalytic randomness extraction. The ambivalent
roles of quantumness as presented here motivate the further
study of quantum randomness to reveal its true nature and the
extent of its power.
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