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Effect of the Dzyaloshinskii-Moriya interaction on quantum speed limit
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We study the effect of the Dzyaloshinskii-Moriya (DM) interaction on the quantum speed limit (QSL) and
orthogonality catastrophe (OC) in XY spin chains. With an initial sudden quench, the general expressions of
fidelity and QSL time are derived in terms of the antisymmetric quasiparticle excitation spectra. The numerical
and analytical studies show that depending on the system parameters, the DM interaction has various influences
on QSL and fidelity. In general, the OC is witnessed and QSL time vanishes in the thermodynamic limit as
the variance of the quenched Hamiltonian in ground states scales with the system size, and the conclusion is
independent of the DM interaction strength. However, it is interesting to note that the QSL can uniquely detect the
critical points and lines induced by the DM interaction. We further analyze the actual evolution speed, a measure
of the criticality, and find its direct correspondence with the OC. We also study an interesting phenomenon
arising from the magnetic field and DM interaction in the presence of classical noise. Notably, we find that the
system dynamic is fault tolerant when the system is subject to a uniform classical noise in the DM interaction
strength.
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I. INTRODUCTION

The dynamical evolution of a system after a sudden quench
is of particular interest in many-body quantum dynamics. One
of the significant phenomena in quantum dynamics is the
orthogonality catastrophe [1–3] (OC), characterized by the
overlap or fidelity between the initial state and the final state.
Its importance lies in the sensitivity of many-body systems to
external perturbations. It allows one to capture typical features
and reveal the physical mechanisms in complicated systems.

Other quantities such as the work distribution [4–6] and
quantum speed limit [7–9] (QSL) are also useful in exploring
the dynamical properties of many-body systems. In particular,
the QSL captures the intrinsic time scaling of a quantum
system evolving from an initial state to a target state. It is
crucial in various aspects of quantum physics, such as quan-
tum computation [10,11], quantum optimal control [12–14],
and quantum metrology [15]. Over the decades, the correla-
tions between the QSL and physical phenomena have been
explored, for instance, the interpretation of the geometric
measure of entanglement for pure states as the necessary
minimal time to separate a given quantum state unitarily [16],
potential speedup in a non-Markovian environment [17], a
witness of quantum phase transition with QSL [18], and a full
characterization of OC by QSL [2,19].

*sbin610@bit.edu.cn

The antisymmetric interaction, Dzyaloshinskii-Moriya
(DM) interaction [20,21], often exists in many low-
dimensional magnetic materials [22,23] and may induce
intriguing phenomena. Interest in the study of the effect of
multisite interspin interactions has been rising in the past two
decades. Examples include the nonequilibrium steady states
with currents [24,25], the adsorption-desorption processes of
stochastic kinetics [26], and the Hubbard model higher or-
ders of strong coupling [27]. Moreover, the XY spin chain
[28] provides an excellent foundation to analyze the effect of
DM interaction. Phase diagrams of the Ising model and XXZ
model with DM show interesting regions [29]. The dynamical
properties of these models were studied in detail [22,30].
Ground-state properties of the spin chain with DM interac-
tion are shown via correlation functions and entanglement
[29,31,32]. The effect of the DM interaction on nonequilib-
rium thermodynamics in the XY model was analyzed [6]. In
addition, the occurrence of dynamical quantum phase transi-
tions (DQPTs) is also affected by the DM interaction [33].

In this paper, we theoretically investigate the effects of
the DM interaction on QSL and OC for the XY spin chain
model and pay specific attention to the relation between them.
Likewise, we examine the evolution speed which can also
characterize the OC. Furthermore, since the occurrence of
noise is everywhere without exaggeration, we consider the
magnetic field and DM interaction strength with random clas-
sical noise.

The paper is organized as follows. In Sec. II, we describe
the XY spin chain system with the DM interaction, and analyze
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the ground-state properties with asymmetrical quasiparticle
excitation spectrums. In Sec. III, the theoretic expressions of
the QSL time and the fidelity are presented. We then numeri-
cally analyze the effects the DM interaction has on QSL and
OC. In Sec. IV, we address the behaviors of the evolution
speed and relate it to the OC. In Sec. V, we show the influence
of the random classical noise. Section VI concludes.

II. MODELS

The Hamiltonian of the general anisotropic XY spin chain
with DM interaction in the transverse field is given by
[6,32,34]

H0 = −
N∑

n=1

(
1 + γ

2
σ x

n σ x
n+1 + 1 − γ

2
σ y

n σ
y
n+1 + h0σ

z
n

)

−
N∑

n=1

D
(
σ x

n σ
y
n+1 − σ y

n σ x
n+1

)
, (1)

where σ
x,y,z
n are Pauli spin matrices of the nth site, γ is the

anisotropy parameter, and h0 and D denote the strength of
the external transverse magnetic field and the DM interaction
along the z direction, respectively.

The Hamiltonian (1) can be diagonalized by first employ-
ing the standard Jordan-Wigner transformation to map the
spins to spinless fermions to

H0 = −
N∑

j=1

[
(1 + 2iD) f †

j f j+1 + (1 − 2iD) f †
j+1 f j

+ γ ( f †
j f †

j+1 + f j f j+1) + h0(2 f †
j f j − 1)

]
. (2)

Then we use the Fourier transformation [ck =
1/

√
N

∑N
j=1 f je−ik j , c†

k = 1/
√

N
∑N

j=1 f †
j eik j , k = 2πm/N

with m = −(N − 1)/2, . . . , (N − 1)/2 for an odd N] to
convert the Hamiltonian (2) to momentum space and
Bogoliubov transformation ηk = ukck + ivkc†

−k to diagonalize
the Hamiltonian as [28]

H0 =
∑

k

εk

(
η

†
kηk − 1

2

)

=
∑
k>0

[
εk

(
η

†
kηk − 1

2

)
+ ε−k

(
η

†
−kη−k − 1

2

)]

=
∑
k>0

H0
k . (3)

Here, k are the waves vectors, and ηk and η
†
k are the cor-

responding transformed fermion annihilation and creation
operators. The associated εk are the quasiparticle excita-
tion spectra. Different from general symmetric and positive
spectra, in our model with the DM interaction, it can be
antisymmetric and negative, and written as [5,6]

εk = −4D sin k + 2
√

(h0 + cos k)2 + γ 2 sin2 k. (4)

Figure 1 depicts three typical examples of the quasienergy
spectra. In light of the properties of the spectra, εk stay pos-
itive for all values of other parameters when 0 < D � γ /2
[35]; see the black solid line in Fig. 1. In this scenario,

FIG. 1. Three typical quasiparticle energy spectra. The black
solid, red dashed and blue dotted lines correspond to D = 0.2,
γ = 0.5, h0 = 0.5, and D = 0.5, γ = 0.5, h0 = 0.5, and D = 0.5,
γ = 0.5, h0 = 1.5. The black dotted line corresponds to εk = 0.

the ground state of our model is essentially the vacuum of
the Bogoliubov quasiparticles. The ground state is therefore
independent of D, as a consequence of the Bogoliubov trans-
formation not relying on the DM interaction strength. For
another case, i.e., the blue dotted line in Fig. 1, where h2

0 >

1 + 4D2 − γ 2 though D > γ/2, the excitation spectrum stays
positive for all k since the magnetic intensity is dominate. On
the other hand, the red dashed line in Fig. 1, for D > γ/2 and
h2

0 < 1 + 4D2 − γ 2, shows that εk become negative in some
ranges of the momentum space. The ground state is now no
longer the vacuum of quasiparticles and depends on the value
D for the negative energy in k space which have to be filled to
generate the ground state. In other words, the ground state |G〉
of the Hamiltonian corresponds to all states in which εk < 0
and ε−k < 0 are filled and those with εk � 0 and ε−k � 0 are
not occupied. The ground state |G〉 thus can be written as [36]

|G〉 = ⊗k>0|G〉k, |G〉k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|0k0−k〉, εk, ε−k � 0

|0k1−k〉, εk � 0, ε−k < 0

|1k0−k〉, εk < 0, ε−k � 0

|1k1−k〉.εk, ε−k < 0

(5)

As usual, |G〉k = |nkn−k〉, nk (n−k ) = 0 or 1 correspond
to the eigenvalues of the fermion number operators n̂k =
η

†
kηk (n̂−k = η

†
−kη−k ).

III. OC AND QSL

We consider a quantum quench, where the system Hamil-
tonian H0 changes to H̃ with h0 replaced by h f (δ =
h f − h0). For simplicity, we choose the units where h̄ =
1. The initial state is prepared in the ground state |G〉 =
⊗k>0|nkn−k〉. The ground state of the postquench Hamilto-
nian H̃ can be similarly given by |G̃〉 = ⊗k>0|ñk ñ−k〉, where
the sign ∼ labels the postquench Hamiltonian and ñk (ñ−k )
are η̃

†
k η̃k (η̃†

−k η̃−k ) accordingly. ηk and η̃k are related by
the Bogoliubov transformation [5,34,37], η̃k = cos(αk )ηk −
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i sin(αk )η†
−k . The relations between eigenstates of H0 and H̃

are therefore given by [6,36]

|0k0−k〉 = cos αk|0̃k 0̃−k〉 + i sin αk|1̃k 1̃−k〉,
|1k0−k〉 = |1̃k 0̃−k〉,
|0k1−k〉 = |0̃k 1̃−k〉,
|1k1−k〉 = i sin αk|0̃k 0̃−k〉 + cos αk|1̃k 1̃−k〉, (6)

where αk = θ̃k − θk , and θk and θ̃k are the Bogoliubov angles
defined by uk =cos θk , vk =sin θk and ũk =cos θ̃k , ṽk =sin θ̃k .
In our model, the angles θk =1/2 arctan[γ sin k/(h0 + cos k)],
θ̃k =1/2 arctan[γ sin k/(h f + cos k)] [34] and they are inde-
pendent of D.

The fidelity F (t ), a vital quantity in the OC, is defined
as a dynamical overlap between the initial state and final
state evolving from pre- and postquench Hamiltonians. This
is closely related to the Loschmidt echo [38–40] (LE) and
formulated as

F (t ) = |〈G|eiH̃t e−iH0t |G〉|2,
F (t ) = ⊗k>0|Fk (t )|2. (7)

Then, using Eqs. (3), (5), and (6), one obtains [36]

Fk (t ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos2 αk + sin2 αke−it (ε̃k+ε̃−k ), εk, ε−k � 0

e−it (ε̃k+ε̃−k ), εk � 0, ε−k < 0

e−it (ε̃k+ε̃−k ), εk < 0, ε−k � 0

sin2 αk + cos2 αke−it (ε̃k+ε̃−k ). εk, ε−k < 0
(8)

The QSL time is directly connected with the fidelity by
[2,8,19]

τ � τQSL = arccos
√

F (t )

�Hf
. (9)

The variance of the postquench Hamiltonian �Hf , re-
garded as the maximal rate of quantum evolution vQSL, is

given by �Hf =
√∑

k>0 �H2
k, f [8,19], where

�H2
k, f =

{
sin2 2αk

(
ε̃k+ε̃−k

2

)2
, εk · ε−k � 0

0. εk · ε−k � 0
(10)

Now we begin to show the effects of the DM interaction
on the QSL and OC. Figure 2 depicts the QSL time τQSL

and the fidelity F as functions of t for different strengths
of the DM interaction. It clearly shows that when D � γ /2,
both τQSL and F are insensitive to D [35,41] because the
ground state of the initial Hamiltonian is independent of D.
However, for D > γ/2, a slight change of the DM interaction
strength would lead to different behaviors. The QSL time and
the fidelity then show oscillations over time. The numerical
results also imply that the larger the DM strength is, the higher
oscillation frequency the QSL time and fidelity are. In addi-
tion, the decay of the fidelity is suppressed with D, while QSL
time oscillates around a smaller value in long-time evolution.
To summarize, when D is large and the oscillation frequency
increases and decay amplitude decreases, the DM interaction
dominates the system. This is because some momentum space

FIG. 2. (a) QSL time τQSL and (b) fidelity F as functions of time
t for different values of D. The parameters are N = 801, h0 = 1, γ =
1, and δ = 0.05.

modes in Fk (t ) in Eq. (8), determined by system parameters,
do not contribute and remain unity, and �H2

k, f in Eq. (10) for
a range of εk · ε−k � 0 are zeros.

The dependence on initial magnetic intensity, as shown in
Fig. 3, is of interest. There are two notable features. First, it
shows a parallel insensitivity to D for D < γ/2, regardless of
the magnetic intensity. And a particular transformation from
peaked τQSL to a sharp valley at h0 = 1 can be observed,
while the fidelity behaves the opposite. Moreover, this is a
significant indication of a quantum phase transition, i.e., a
transition from a ferromagnetic phase to chiral phase induced
by DM interaction [41]. Second, when h0 � 1, we show that
the turning points marked by circles exhibit interesting behav-
iors, as in Fig. 4. A good agreement between the numerical
and theoretic results can be clearly seen. It is interesting to
note that the QSL time can signal the critical points and lines
of the quantum phase transitions.

Next, we shed light on the influence of the DM interaction
for anisotropy parameters γ ∈ (0, 1). In Fig. 5, τQSL shows
an enhanced decay for γ ∈ (0, 2D) in comparison with the
cases without the DM interaction (black solid line), while
F decrease in this scenario. The critical points γ = 2D are
clearly seen, while for D > 0.5, the chiral phase region ex-
pands and all the γ ∈ (0, 1) at h0 = 1 are in this region. Thus,
a slight quench difference δ = 0.05 causes trivial dynamics
and we can see that F keeps close to unity and τQSL is small
for γ ∈ (0, 1). Further, we examine the QSL time and the
fidelity versus D, with different initial conditions for h0 and
γ . Figure 6(b) shows that the large enough DM interaction
can suppress the decay of fidelity, while the QSL time is more
complicated to some extent. To illustrate, when D < γ/2,
both τQSL and F are not sensitive to the DM interaction.
On the other hand, when h0 > 1, τQSL and F are not in-
fluenced by the DM interaction until it reaches the critical

Dc = 1
2

√
h2

0 + γ 2 − 1. This may be attributed to the pre- and
postquench systems with a small quench difference δ being in
the paramagnetic phase, where the magnetic intensity dom-
inates. When the DM interaction is out of the critical Dc,
τQSL is determined by the trade-off between the fidelity and
the variance of the postquench Hamiltonian. It can be clearly
seen that from a comparison between the black solid and
red dashed lines in Figs. 6(b) and 6(c), although they show
the same behaviors in variance, a difference in h0 makes a
big change in the τQSL. Similar behaviors of the τQSL, which
is determined by the competition between the variance and
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FIG. 3. Dependence on h0 for an increase of D with other parameters: N = 801, γ = 0.8, t = 1, and δ = 0.05. (a) τQSL, (b) F , and (c) �Hf .

the fidelity, are witnessed; if we keep the same h0 = 1, γ

varies from 0.8 to 0.4. Therefore, τQSL behaves in a more
complicated way as for the different h0 and γ parameters.

Finally, we plot the QSL time and fidelity as functions of
the system size under different DM interactions, depicted in
Fig. 7. For smaller D, the fidelity vanishes when the system
size increases and can be a witness of the OC. When D =
0.75, the fidelity does not decay to zero with the system size,
even in a magnitude of 105. It means more spins are required
for the fidelity to vanish, and larger DM interaction can greatly
suppress the decay of the fidelity. Also, we have done the
curve fitting of the fidelity decay and it is exponential e−N/t1 ,
where t1 is the fitting exponent. The exponents extracted from
our data are 2056.2, 9454.9, and 233 327 for DM strength
D = 0.51, D = 0.55, and D = 0.75, respectively, while for
D = 0 and D = 0.5, they have the same exponent, 936.78.
Meanwhile, the QSL time decays with N for all DM interac-
tion strengths. The variance, as shown in Fig. 7(c), scales with
N , but is a decrease function of D when D > γ/2. In this case,
the larger D is, the slower τQSL decays with system size. As
a last remark, the complexity of the QSL time, as mentioned
before, can be seen as a result of the trade-off between the
variance and the fidelity.

FIG. 4. The location of turning points in the D−h0 plane with
the same configurations as in Fig. 3. The black dashed line denotes
the critical point hc = 1 for D < γ/2 and the critical line hc =√

1 + 4D2 − γ 2 for D > γ/2. The green dashed line corresponds to
D = γ /2.

IV. PRACTICAL EVOLUTION SPEED

In this section, we will study the effect of the DM inter-
action on the evolution speed of the impurity qubit since it is
closely related to the OC [42]. The speed of the corresponding
evolution is termed by resorting to Riemannian metric g de-
fined on the space of the quantum state [8,43,44]. By adopting
the quantum Fisher information metric [45], we can define
the speed of the quantum evolution at time t by deriving the
distance between neighboring states,

v(t ) = ds

dt
=

√
g(t ) (11)

and

g(t ) = −2
d2

dt2
F (ρ(0), ρ(t )), (12)

where F (ρ(0), ρ(t )) = (Tr{[√ρ(0)ρ(t )
√

ρ(0)]
1
2 })2 is the

Uhlmann fidelity between the initial state ρ(0) and final state
ρ(t ) of the impurity.

The impurity qubit interacts with the XY spin chain bath
through HI = − δ

2 |e〉〈e| ∑N
n=1 σ z

n . We initialize the single qubit
in a superposition state |ψ〉 = cg|g〉 + ce|e〉, where cg

2 +
ce

2 = 1. The spin chain state is prepared in the ground state
|G〉 and assume the impurity qubit is not correlated with the
spin chain bath. The dynamic of the impurity qubit is a typical
decoherence process characterized by the decoherence fac-
tor f (t ) = ⊗k>0Fk (t ), where its norm is the aforementioned
fidelity. Let us assume cg = cos θ

2 , ce = eiφ sin θ
2 ; then the

Bloch vector of the two-level qubit system is given by

�n(0) = {sin θ cos φ, sin θ sin φ, cos θ}, (13)

FIG. 5. (a) τQSL and (b) F as functions of γ . Different DM
interaction values are investigated. Here, we fix evolution time t = 1,
magnetic intensity h0 = 1, system size N = 801, and quench differ-
ence δ = 0.05.

042427-4



EFFECT OF THE DZYALOSHINSKII-MORIYA … PHYSICAL REVIEW A 107, 042427 (2023)

FIG. 6. (a) τQSL, (b) F , and (c) �Hf vs D with different choices of magnetic intensity and anisotropy parameters. Other parameters:
N = 801, τ = 1, and δ = 0.05.

where θ ∈ [0, π ] and φ ∈ [0, 2π ]. The fidelity between ρ(0)
and ρ(t ) can be obtained by

F (ρ(0), ρ(t ))

= 1
2 {1 + �n(0) · �n(t )+

√
[1 − �n(0) · �n(0)][1 − �n(t ) · �n(t )]},

(14)

where the Bloch vector �n(t ) accounts for the decoherence
factor of the evolved state ρ(t ). Therefore, the evolution speed
can be obtained via the above general formula of a two-level
quantum system as [45,46]

v(t ) =
√

|−Re[ f̈ (t ) sin2 θ ]|, (15)

where we assume θ = π
2 , φ can be any values in the range

[0, 2π ]. We relate it to the OC and calculate the time-averaged
evolution speed,

Vaverage = 1

tD

∫ tD

0
v(t )dt, (16)

where tD is the driving time. We now look into the quan-
tum speed limit Vqsl of the qubit to show its relation to
the evolution speed. Using the Bures angle, L(ρ(0), ρ(t )) =
arccos

√〈ψ |ρ(t )|ψ〉 between the initial pure state ρ(0) =
|ψ〉〈ψ | and final evolved state ρ(t ). The dynamic evolution
of the qubit density matrix ρ(t ) is known. Then, after some
simple algebra, the exact form of the Vqsl can be written as

Vqsl = 1

tD

∫ tD

0
|∂t f (t )|dt . (17)

This quantum speed limit Vqsl of the qubit is characterized by
the Margoius-Levitin (ML)-type bound which is based on the
operator norm.

In Fig. 8, we plot them as a function of the initial magnetic
field. It is easy to find that the two quantities exhibit similar
behaviors, while they are calculated from different physical
concepts. Alternatively, there exists a sudden change at h0 = 1
when the DM interaction D � γ /2; see the insets for a clearer
description of the discontinuity, indicating a quantum phase
transition. In addition, when D > γ/2, the critical points of
system hc =

√
1 + 4D2 − γ 2 appear. Therefore, it is interest-

ing that the actual evolution speed and the quantum speed
limit can also reveal the criticality of the system.

To comprehend the relation between the evolution speed
and OC, Fig. 9 shows the time-averaged evolution speed and
the quantum speed limit as a function of N . The inset is the
case of D = 0, which grows slowly with N . It shows that they
both grow linearly with size, which is the same as the variance
�Hf , and hence we can also conclude that the evolution speed
can characterize the OC.

V. NOISE EFFECT

Now we consider the magnetic intensity with random clas-
sical noise α from various sources, for example, disturbances
in Earth’s magnetic field. When the system initially is in the
ground state |G〉 of the Hamiltonian H0, the evolving density
matrix ρ(t ) can be expressed as

ρ(t ) =
∑

α e−iHα
f t |G〉〈G|eiHα

f t

tr
( ∑

α e−iHα
f t |G〉〈G|eiHα

f t) , (18)

where Hα
f is the quenched Hamiltonian with noise. The fi-

delity follows the standard definition for mixed states,

F (t ) = 〈ψ (t )|ρ(t )|ψ (t )〉, (19)

FIG. 7. (a) τQSL and (b) F as functions of N at different DM interaction values. The other parameters are set as h0 = 1, γ = 1, t = 1, and
δ = 0.05.
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FIG. 8. (a) The time-averaged evolution speed vaverage and (b) the
quantum speed limit Vqsl as a function of magnetic intensity h0 for
different values of D. Related parameters are N = 801, tD = 1, γ =
0.8, and δ = 0.05.

where |ψ (t )〉 = e−iH0t |G〉, and the Hamiltonian H0 is exactly
the initial unperturbed Hamiltonian. By introducing the evolv-
ing density matrix (18) into Eq. (19), we get

F (t ) =
∑

α〈G|eiH0t e−iHα
f t |G〉〈G|eiHα

f t e−iH0t |G〉
tr
(∑

α e−iHα
f t |G〉〈G|eiHα

f t) , (20)

where the denominator can be straightforwardly calculated.
The minimum time for the initial state to evolve to the final

state is defined as the QSL time. It can be obtained by seeing
noises acting as many quantum channels and using the bound
derived in Ref. [47]. Note that the initial state is taken as a
pure state and tr{ρ2

0 } = 1. Then, after simple derivations, the
QSL time with noise can be written as

τQSL � 2(arccos F )2

π2

1∑
α ||Kαρ0K̇†

α ||
, (21)

where X = t−1
∫ t

0 Xdt , ||A|| =
√

tr(A†A) is the
Hilbert-Schmidt norm of the operator A, and Kα =
1/

√
M exp[−i(Hα

f − 〈G|Hα
f |G〉)t]. Hence we get

∑
α

||Kαρ0K̇†
α || = 1

M

∑
α

�Hα
f , (22)

where �Hα
f is the variance of the quenched Hamiltonian with

noise and M is the specific number of magnetic noise α.
Noise could happen in all dynamical processes, for exam-

ple, modeled with a DM strength disturbed by noise β. Then
the time-evolving density matrix ρ(t ) can be written as

ρ(t ) =
∑

β e−iHβ

f t |G〉〈G|eiHβ

f t

tr
(∑

β e−iHβ

f t |G〉〈G|eiHβ

f t) . (23)

FIG. 9. (a) Vaverage and (b) Vqsl vs N for different DM strengths,
Other parameters: h0 = 1, δ = 0.05, γ = 0.8, and tD = 1.

FIG. 10. (a) τQSL and (b) F vs t for different DM strengths, with
the noise α ∈ (−0.1h0, 0.1h0). (c) τQSL and (d) F vs t for different
DM strengths, with the noise α ∈ (−0.5h0, 0.5h0). Other parameters:
h0 = 1, hf = 1.05, γ = 1, M = 500, and N = 801.

The fidelity becomes

F (t ) =
∑

β〈G|eiH0t e−iHβ

f t |G〉〈G|eiHβ

f t e−iH0t |G〉
tr
(∑

β e−iHβ

f t |G〉〈G|eiHβ

f t) , (24)

where Hβ

f is the quenched Hamiltonian with DM noise β.
Following the same procedure in tackling the magnetic noise,
and according to the Eqs. (4), (7), and (8), the DM noise
term does not affect the fidelity since αk and ε̃k + ε̃−k are
independent of β. In other words, the QSL time and fidelity
are fault tolerant against noise due to the DM strength.

In what follows, the system dynamics under the effects of
magnetic noise α are numerically shown in Fig. 10, where we
illustrate for noise in the intervals, i.e., α ∈ (−0.1h0, 0.1h0)
and α ∈ (−0.5h0, 0.5h0), and other system parameters are the
same as the case without noise in Fig. 2. In contrast to the
noiseless case, the first observation is that a minor difference
is witnessed between D = 0 and D = 0.5, which is induced
by the randomness of the noise. While it is believed that as
the number of noise M → ∞, both coalesce to one due to
the averaging effect. Another discrepancy is that the QSL
times stay or oscillate around a smaller value in the noise
case, which means that the intrinsic minimum decreases with
noise. Furthermore, the fidelity, under the effects of noise,
display different behaviors for D � γ /2 and D > γ/2, i.e.,
the fidelity with D � γ /2 is suppressed, and with D > γ/2, it
is enhanced.

For an investigation of the OC phenomenon, we exam-
ine the dynamic behaviors of the QSL and fidelity with the
DM strength set as D = 0.51, and different system sizes
N = {801, 5001, 10 001, 20 001}, in Fig. 11. The imposed
noise is in the regimes mentioned above. It is clearly seen that
the fidelity decays more sharply as N increases and the stable
value after a short time decays smaller. This is also witnessed
by a lower oscillation center of the QSL time presenting a

042427-6
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FIG. 11. (a) τQSL and (b) F vs t for N =
{801, 5001, 10 001, 20 001}, with the noise α ∈ (−0.1h0, 0.1h0 ).
(c) τQSL and (d) F vs t , with the noise α ∈ (−0.5h0, 0.5h0 ). Other
parameters: h0 = 1, hf = 1.05, γ = 1, M = 500, and D = 0.51.

signature of the OC, and the effect of noise naturally arises if
comparing it with the noiseless case. In addition, the system
dynamic with noise in a broader variation range is greatly
enhanced.

VI. CONCLUSIONS

In this work, we have analyzed the effects of the DM
interaction on QSL and the fidelity as a vital quantity in the
OC. Our results show that the QSL time and fidelity are
insensitive to the DM interaction when D � γ /2 for arbi-

trary h0 and D < 1
2

√
h2

0 + γ 2 − 1 for h0 > 1. The former case
originates from the initial ground state being the vacuum of
Bogoliubov quasiparticles independent of the DM interaction
when D � γ /2. And in the latter case in which h0 > 1 and

D < 1
2

√
h2

0 + γ 2 − 1, the pre- and postquenches are in the
same paramagnetic phase where the magnetic field dominates
and εk is positive for all k modes. Hence the DM interaction
does not have influence on the QSL time and fidelity. The
impacts of the DM interaction emerge when D is beyond the
critical points, and it has a complicated influence on the QSL
time due to a trade-off between the fidelity and variance of
the postquench Hamiltonian in the initial ground states. The
QSL time will vanish in the thermodynamic limit as a scaling
with system size. We see that the DM interaction plays the
role of suppressing the decay of the fidelity, and the larger the
DM interaction strength is, the more spins are needed for the
witness of the OC. It is also interesting to note that the QSL
time is a useful tool to indicate the quantum phase transition
and identify the critical points and lines induced by the DM
interaction.

We also examined the behaviors of the actual evolution
speed of the impurity qubit. It shows that the evolution speed
scales as N , which can be seen as a characterization of the OC.
And we have revealed a similar behavior that the actual speed
and the quantum speed limit of the qubit share. As such, it is
worth noting that the formalism of the actual evolution speed
provides a valuable framework to explore the properties of
the given dynamics as the QSL does. In addition, we have
explored the role of noise in the dynamics of the quantum
many-body system. The QSL time under the magnetic noise
effect is suppressed, while the fidelity show considerably dif-
ferent behaviors for the two regions D � γ /2 and D > γ/2.
Interestingly, we find that the QSL time and fidelity are fault
tolerant against the DM noise.
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