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Using the signed Laplacian matrix, and weighted and hybrid graphs, we present additional ways to interpret
graphs as grid states. Hybrid graphs offer the most general interpretation. Existing graphical methods that
characterize entanglement properties of grid states are adapted to these interpretations. These additional classes
of grid states are shown to exhibit rich entanglement properties, including bound entanglement. Further, we
introduce graphical techniques to construct bound-entangled states in a modular fashion. We also extend the grid
states model to hypergraphs. Our work, on one hand, opens up possibilities for constructing additional families
of mixed quantum states in the grid state model. On the other hand, it can serve as an instrument for investigating
entanglement problems from a graph theory perspective.
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I. INTRODUCTION

The realization that quantum entanglement can be used
as a resource [1] has garnered intense interest in the study
and characterization of entanglement. A fundamental prob-
lem, called the separability problem, is to determine whether
a given quantum state is entangled or separable [2]. It has
been proven that determining whether an arbitrary quantum
system is separable is an nondeterministic polynomial-time
hard problem [3,4]. However, it can still be worthwhile to
explore the problem in the context of some particular family
of quantum states instead of general states. In this paper, we
focus on several families of quantum states that can be repre-
sented as combinatorial graphs, and determine entanglement
properties of such states via graph theoretic methods.

Interest in interpreting so-called graph Laplacians as den-
sity matrices can be traced back to the work of Braunstein
et at. [5], where it was shown that the normalized signed
Laplacian matrix of a graph can be interpreted as a density
matrix. This idea was refined by Lockhart et al. in Refs. [6,7]
by imposing a grid structure on graphs, called grid-labeled
graphs. We expand on this concept and provide additional
interpretations of grid-labeled graphs as quantum states, using
various Laplacian matrices.

Our motivation for this work not only stems from the
novelty of such direct correspondence between Laplacian ma-
trices and density matrices, but also from the practical aspects
of a visual language therein for describing quantum states. As
will be presented later, it was shown in Ref. [6] that this visual
language enables one to leverage simple graph manipulation
actions such as removing or adding edges from grid-labeled
graphs to derive entanglement properties of the corresponding
density matrices. This contrast between the simplicity of these
graph manipulation actions and the sophisticated nature of
entanglement is what we investigate. In extending these ideas,
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we introduce a new type of graph—which we call hybrid
graphs—conceived from imposing physical conditions on grid
states. Hybrid graphs combine two different interpretation of
graphs as quantum states, while retaining the useful aspects of
the aforementioned visual language. The presence of bound
entanglement in grid states is another reason we are interested
in this topic, because bound entanglement is a crucial aspect
of entanglement theory [8], and has practical applications in
quantum technologies [9,10]. We not only show the pres-
ence of bound entanglement in the new gird states presented
here, but also demonstrate a deterministic and compositional
method for construction of bound-entangled grid states. For
these reasons, we posit this work as a step towards a more
general graph theoretical description of quantum states.

This paper is structured as follows. In Sec. II we review
grid states from Ref. [6]. In Sec. III we introduce a different
interpretation of grid-labeled graph as quantum states based
on the signless Laplacian, while in Sec. IV we generalize
these ideas using weighted graphs. In Sec. V we combine
the idea from Secs. II and III to construct hybrid graphs and
corresponding grid states. Sections VI and VII concern the
construction of bound-entangled states and grid states based
on hypergraphs, respectively. Section VIII includes our con-
cluding remarks.

II. GRID STATES

We first summarize the concept and properties of quantum
grid states. Grid states, introduced in Ref. [6], are mixed
quantum states described by simple graphs called grid-labeled
graphs. Note that these states are different from grid states in
Ref. [11]. The vertices in a grid-labeled graph are arranged
on a grid and are labeled with Cartesian indices (i, j) row-
wise from top-left to bottom-right. An edge {(i, j), (k, l )}
connecting vertices (i, j) and (k, l ) is interpreted as the state
1/

√
2(|i j〉 − |kl〉), called an edge state. For example, Fig. 1(a)

shows the vertex labeling in a grid-labeled graph with the
|φ−〉 = 1√

2
(|00〉 − |11〉) Bell state. With this convention, the
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FIG. 1. (a) L-graph of the |φ−〉 Bell state. The pairs of integers
indicate vertex indices. (b) A 3 × 3 cross-hatch graph and (c) its
partial transpose.

density matrix ρ(G) of a grid state is defined as the equally
weighted mixture of all projectors onto edge states in the
corresponding grid-labeled graph G.

The (signed) Laplacian matrix of a grid-labeled graph,
with a suitable normalization, is identical to its corresponding
density matrix. In order to see this, remember that the signed
Laplacian matrix L of a graph on n vertices is the n × n matrix
defined as

L = D − A, (1)

where D is the degree matrix and A the adjacency matrix
[12]. The degree matrix D is an n × n diagonal matrix, in
which each diagonal entry Dαα , where 1 � α � n, indicates
the number of edges connecting to vertex vα—called the de-
gree of vertex vα . The adjacency matrix A is an n × n binary
matrix such that if vertices vα and vβ are connected by an
edge, the matrix entry Aαβ is 1, otherwise it is 0 [12].

We call the grid-labeled graphs from Ref. [6] L-graphs.
The degree criterion [5,6] and the graph surgery procedure
[6] characterize entanglement properties of grid states cor-
responding to L-graphs. The degree criterion is a graphical
method that can be used to verify whether the density matrix
of an L-graph is positive under partial transpose. It makes
use of the concept of partial transpose of a graph. The partial
transpose of an L-graph G is another L-graph G� such that
an edge {(i, l ), (k, j)} exists in G� if and only if the edge
{(i, j), (k, l )} exists in G.

Theorem 1. (Degree criterion for L-graphs from Refs.
[5,6]). The density matrix ρ(G) of an L-graph G is positive
under partial transpose if and only if D(G) = D(G� ).

For example, the cross-hatch graph from Ref. [6], shown in
Fig. 1(b), satisfies D(G) = D(G� ). The corresponding density
matrix is therefore positive under partial transpose.

The graph surgery procedure [6] is a graphical method that
allows to verify entanglement using the range criterion [13].
We restate the corollary of the range criterion from Ref. [6] as
it also is the basis for graph surgery procedures presented in
this paper.

Corollary 1 [6]. If a rank r density matrix has less than r
product vectors in its range, then it is entangled.

Graph surgery involves performing a sequence of row and
column surgeries on an L-graph. Row surgery is carried out
by first selecting an isolated vertex, say, (i, j), in the L-graph
and performing the “CUT” step, in which all edges connected
to vertices in row i are removed. This is followed by the
“STITCH” step, which reconnects the path between every pair
of vertices not in row i, if the CUT step severed the path
[6]. In column surgery, the CUT and the STITCH steps are

FIG. 2. (a) An L-graph G. (b and c) Graphs GR
10 and GC

10 pro-
duced, respectively, by row and column surgeries on G with vertex
(1, 0) in orange as the selected isolated vertex. For row surgery, all
edges connected to vertex (1, 1) are removed in the CUT step. As
a result, the vertices (0, 0) and (0, 2) get disconnected, and then get
reconnected in the STITCH step, which produces graph GR

10 in (b).
Likewise, for column surgery, all edges connected to vertex (0, 0)
are removed. This does not disconnect any path between vertices not
in column 0. The STITCH step is therefore not necessary. The graph
GC

10 in (c) is the result.

performed on the vertices in column j. The graph produced
by a row/column surgery is denoted as GR

i j/GC
i j , where the

superscript indicates the type of surgery—R for row surgery
and C for column surgery—and the subscript i j denotes the
isolated vertex chosen for the surgery. In effect, row/column
surgery produces a simpler graph with fewer edges, unless
vertices in the target row/column are all isolated vertices.
Figure 2 shows an example of a row and a column surgery
on an L-graph.

It was shown in Ref. [6] that any product vector in the range
of the density matrix ρ(G) of an L-graph G—and thereby
in the range of L(G)—must also be in the range of either
L(GR

i j ) or L(GC
i j ). Since GR

i j and GC
i j are L-graphs, further

row/column surgeries can be performed on them, and on
the resulting graphs, and so on. Therefore, if iterated graph
surgery on an L-graph G always leads to the empty graph GE ,
then any product vector in the range of L(G) must also be in
the range of L(GE ), which is the zero matrix. This is clearly
a contradiction, which means there are no product vectors in
the range of L(G). And, the corresponding density matrix is
entangled according to Corollary 1.

The degree criterion and the graph surgery procedure trans-
late the Peres-Horodecki (also PPT) criterion [14] and the
range criterion to a series of visual and algorithmic graph
manipulation steps that are simpler than direct application
of the corresponding entanglement criteria. As demonstrated
in Ref. [6], these steps can in turn be used to construct and
affirm the presence of bound entanglement in grid states. Fur-
thermore, genuine multipartite entanglement is also found in
higher-dimensional grid states [6]. Such properties naturally
beg the question of whether more families of quantum states
can be incorporated in the grid-state model and if such states
exhibit similar entanglement properties. In this paper, we in-
vestigate these questions using additional types of Laplacian
matrices. Specifically, we describe new families of quantum
grid sates using the signless and weighted Laplacian matrices.
Upon imposing a physical condition on these Laplacian matri-
ces, we find that defining a new Laplacian matrix allows for an
even more general notion of grid sates, whose density matrices
are mixtures of edge states corresponding to the signed and the
signless Laplacian matrices. We call this Laplacian matrix the
hybrid Laplacian, and corresponding graphs hybrid graphs.
As a proof of concept, we show that the grid-state model can
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be extended to hypergraphs using a custom definition of the
hypergraph Laplacian matrix, and derive a degree criterion.
In all the grid states introduced in this work, excluding those
described by hypergraphs, we show the presence of bound
entanglement and a method to construct bound-entangled grid
states.

We largely follow the nomenclature from Ref. [6]. For
clarity, we occasionally prefix certain terms with the letter
symbols of corresponding Laplacian matrices. For example,
we call the grid-labeled graphs from Ref. [6] L-graphs. Fur-
ther, we make no distinction between Laplacian matrices and
density matrices when normalization is irrelevant. Similarly,
since only bipartite quantum systems are considered in this
paper, the partial transpose of a matrix M is denoted by M�

without loss of generality, as it is only used in relation to PPT
criterion, which does not depend on the transposed subsystem.
We write a graph as G = (V, E ), where V and E are the
vertex and the edge sets. Throughout this paper, we use the
symbol ρ for density matrices and assume that they are always
normalized, while the symbol D always indicates a degree
matrix. Additionally, depending on the context, we may use
both a boldface letter or the bra-ket notation for representing
vectors. For example, for product vectors, the bra-ket notation
is the clearer notation.

With the following observation it is possible to check if the
degree criterion can be adapted to a different interpretation of
grid-labeled graphs.

Observation 1. Let G be a grid-labeled graph on n vertices
and ρ(G) be the corresponding density matrix via any of the
interpretations mentioned previously. If a vector v with all its
components equal to ±1 (henceforth v ∈ {−1, 1}n) exists in
the kernel of ρ(G� ), and if ρ(G) is separable, then D(G) =
D(G� ).

The observation is proven in Appendix A.

III. Q-GRID STATES

In this section, grid-labeled graphs are interpreted with the
signless Laplacian matrix. The signless Laplacian of a graph
G is defined as Q = D + A, where D and A are the degree and
the adjacency matrices of G. Normalized, the signless Lapla-
cian is a proper density matrix. We call the quantum states
described by the normalized signless Laplacian Q-grid states.
The corresponding graphs are called Q-graphs. Graph fea-
tures such as grid structure and vertex labeling are unchanged
for Q-graphs, while the interpretation of edges {(i, j), (k, l )}
changes. A Q-edge state has the form 1/

√
2(|i j〉 + |kl〉). The

density matrix of a Q-grid state represented by a Q-graph
G = (V, E ) is defined as

ρQ(G) = 1

|E |
∑
e∈E

|e〉〈e| = 1

|E |Q(G), (2)

where {|e〉} are the Q-edges states of edges in E . The notion of
partial transpose of L-graphs in Ref. [6] is directly applicable
to Q-graphs because it does not depend on the sign of the
Laplacian matrix.

In the following, we adapt the degree criterion and the
graph surgery procedure to Q-graphs. We use Observation 1 to
identify Q-graphs for which the degree criterion is applicable.
The observation requires that for a Q-graph G on n vertices the

FIG. 3. (a) Graph G1. (b) Graph G2. Graphs G1 and G2 are partial
transposes of each other.

signless Laplacian Q(G� ) of its partial transpose graph must
have a vector v ∈ {−1, 1}n in its kernel. This is only fulfilled
for bipartite graphs (see Lemma 4). Therefore, we require this
condition on the partial transpose of the graph. Remember
that a graph is bipartite if its vertex set can be divided into
two disjoint subsets such that no edge in the graph connects
vertices in the same subset.

Theorem 2 (Degree criterion for Q-graphs). Let G be a Q-
graph. If ρQ(G) is separable and G� is bipartite, then D(G) =
D(G� ).

The proof of Theorem 2 is found in Appendix B. The de-
gree criterion for Q-graphs, like its counterpart for L-graphs,
is necessary and sufficient for 2 × 2 and 2 × 3 systems, due
to the PPT criterion. The bipartite condition for the graph
transpose in the degree criterion for Q-graphs has an important
implication. There exist grid-labeled graphs that, if interpreted
as Q-graphs, are separable, but are entangled if interpreted
as L-graphs. For example, the graphs G1 and G2 in Fig. 3,
if treated as L-graphs, represent entangled states because
D(G1) �= D(G2). If instead both are treated as Q-graphs, G1

still represents an entangled state because G2 is bipartite and
D(G1) �= D(G2). On the other hand, the degree criterion is
not applicable to G2 because its partial transpose G1 is not
bipartite. It is easily verified that the density matrix ρQ(G2) is
separable.

We now extend the graph surgery procedure to Q-graphs.
We call graph surgery on Q-graphs Q-surgery. To understand
Q-surgery, we need the concept of connected components.
A connected component of a graph is a subgraph that has a
path between any two of its vertices, and no paths between
any of its vertices and the remaining vertices of the original
graph. An isolated vertex trivially satisfies the definition and
is considered a connected component. For example, the graph
G1 in Fig. 3 has two connected components and the graph
G2 has one. Like L-surgery, Q-surgery is a sequence of row
and/or column surgeries. For simplicity, Q-surgery is only
defined for bipartite Q-graphs. Row surgery is performed as
follows:

(1) CUT: Select an isolated vertex (i, j) and remove all
edges attached to vertices in row i.

(2) STITCH: If the CUT step splits any connected com-
ponent and vertices in the split constituents, excluding the
ones in row i, all belong to the same partition, reconnect the
constituents with L-edge(s). Otherwise, reconnect the con-
stituents with Q-edge(s).

Note that in the STICH step, if Q-edge(s) are used for
reconnection, each Q-edge must connect vertices in opposing
partitions.

Likewise, column surgery is performed on vertices in col-
umn j. The graph resulting from a row/column surgery on
vertex (i, j) is denoted as GR

i j/GC
i j .
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FIG. 4. Vertices are colored in black and white to show that the
graphs are bipartite. The vertex chosen for graph surgery is indi-
cated in orange. Solid and dashed edges indicate Q- and L-edges,
respectively. (a) Q-graph G. (b) Graph GR

11. The CUT step splits the
connected component with vertices (0, 0), (0, 1), and (1, 0). Since
vertices (0, 0) and (0, 1) are in the same partition, it is not possible
to reconnect them with a Q-edge, so an L-edge is used. (c) Graph
GC

11.

An iteration of row/column surgery on an L-graph always
produces an L-graph. In contrast, the analogous case is not
necessarily true for Q-graphs. Suppose a connected compo-
nent of a Q-graph split in the CUT step is reconnected in the
STITCH step with Q-edge(s), while another split connected
component is reconnected with L-edge(s). The resulting graph
is then not a Q-graph because it has both L- and Q-edges in
it. Nonetheless, it still holds for Q-graphs that any product
vector in the range of the density matrix of the original Q-
graph must be in the range of the density matrix of the graph
produced after an iteration of a row and column surgery. This
is formalized in the following observation.

Observation 2. Let G be a bipartite Q-graph on n vertices
with an isolated vertex (i, j). If a product vector |μν〉 ∈
R[ρQ(G)], where R denotes the range, then

(1) |μν〉 ∈ R[ρQ(GR
i j )] or R[ρL(GR

i j )], or
(2) |μμ〉 ∈ R[ρQ(GC

i j )] or R[ρL(GC
i j )], or

(3) |μν〉 ∈ R[ρ(G′)],
where G′ is a hybrid graph (see Sec. V).
The proof of Observation 2 is found in Appendix B. An ex-

ample of row and column surgeries on a Q-graph is shown in
Fig. 4. With Observation 2, Q-surgery, like L-surgery, can be
used in connection with Corollary 1. Therefore, if Q-surgery
on a Q-graph always produces the empty graph, the associated
density matrix is entangled.

In general, the Q- and L-grid states of the same grid-labeled
graph are not unitarily equivalent. In the following observa-
tion, we identify a condition when that is the case.

Observation 3. Let G be a grid-labeled graph. If G is not
bipartite, then ρL(G) and ρQ(G) are not unitarily equivalent.

A proof of Observation 3 is given in Appendix B.

IV. GRID STATES CORRESPONDING
TO WEIGHTED GRAPHS

Weighted graphs generalize the notion of edges in graphs
and allow nonzero, positive weights to be associated with each
edge in the graph [15]. In this section, the weighted signed and
signless Laplacian matrices are interpreted as quantum states
that correspond to the respective weighted L- and Q-graphs.

Edge states in a weighted L- or Q-graph have the same
form as in their unweighted counterparts. However, the den-
sity matrix is defined as

ρ(Gw ) = 1∑
e we

∑
e∈E

we|e〉〈e|, (3)

where Gw is a weighted grid-labeled graph, {|e〉} are the edge
states of edges in Gw, and {we} are the respective nonzero,
positive edge weights. If the edges denote L-edge states (Q-
edge states), the density matrix is the normalized signed
(signless) Laplacian of the weighted graph. The signed and
the signless Laplacian matrices of weighted graphs are defined
as L = D − A and Q = D + A, respectively. The degree of
a vertex in a weighted graph is the sum of edge weights
of all edges that connect to it, and the degree matrix D is
a diagonal matrix with degrees of vertices as its diagonal
entries. Likewise, the adjacency matrix A also accounts for
edge weights. The matrix entry Aαβ is wαβ if vertices vα and
vβ are connected by an edge weighted wαβ , otherwise it is 0
[15]. Notice that in an unweighted graph all edge weights are
implicitly 1.

The edges in the partial transpose graph G� of a weighted
grid-labeled graph G carry the weights of the correspond-
ing edges in G. The degree criteria and the graph surgery
procedures on unweighted L- and Q-graphs directly apply to
weighted graphs. Lemma 1 justifies this claim.

Lemma 1. If the vertex and the edge sets of two weighted
L-graphs (resp. Q-graphs) are identical, their signed (resp.
signless) Laplacians have identical kernels.

The proof of Lemma 1 is found in Appendix C. With
Lemma 1 and Observation 1, the degree criteria for un-
weighted L- and Q-graphs are also valid for weighted L- and
Q-graphs. Likewise, L- and Q-surgeries also directly apply
to weighted graphs. Since Laplacian matrices are hermitian,
Lemma 1 implies that Laplacians of weighted graphs with
identical vertex and edge sets have identical ranges. This
means if graph surgery on an unweighted L- or Q-graph al-
ways yields the empty graph, it must be that graph surgery
on any other weighted graph with the same vertex and edge
sets must also always yield the empty graph. Therefore, edge
weights are irrelevant for graph surgery and the graph surgery
procedures for unweighted L- and Q-graphs can be used on
weighted L- and Q-graphs. Edge weights alone also do not
determine if the density matrix corresponding to a weighted
L- or Q-graph is entangled or separable.

Moreover, Observation 3 can be applied to weighted Q-
graphs as formalized in the following corollary.

Corollary 2. Let Gw be a weighted grid-labeled graph. If
Gw is not bipartite, then ρL(Gw ) and ρQ(Gw ) are not unitarily
equivalent.

The corollary is proved in Appendix C.

V. GRID STATES WITH HYBRID GRAPHS

In this section, we approach the idea of interpreting graphs
as quantum states from a physical point of view. A density
matrix that is a mixture of both L- and Q-edge states is
not unphysical. Is it then possible to represent such density
matrices using grid-labeled graphs? We answer this question
in the affirmative by introducing the notion of hybrid graphs
and describing analogous degree criteria and graph surgery
procedures for them.

A hybrid graph contains both L- and Q-edges and is written
as G = (V, EL + EQ), where V is the vertex set, and EL and
EQ are the sets of L- and Q-edges, respectively. Its L- and
Q-subgraphs are the graphs Sl = (V, EL ) and Sq = (V, EQ).
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FIG. 5. Three types of hybrid graphs. Vertices are colored in
black and white to show that the graphs are bipartite. (a) An NOI
graph. (b) A COI graph. (c) A GI graph. Solid and dashed edges
indicate Q- and L-edges, respectively.

Hybrid graphs slightly resemble signed graphs [16], where
each edge in a graph is given either a positive or a negative
sign. However, we do not use the Laplacian matrix in Ref. [16]
to derive the density matrix of hybrid graphs. Instead, we
treat hybrid graphs as compositions of L- and Q-graphs and
define the hybrid Laplacian matrix as L(G) = L(Sl ) + Q(Sq).
The normalized hybrid Laplacian is a density matrix that
is the equally weighted mixture of all L- and Q-edge states
in the corresponding graph.

Coexistence of L- and Q-edges limit general results on
entanglement properties, because Observation 1 imposes dif-
ferent conditions on L- and Q-graphs. Considering that,
hybrid graphs are divided into three categories based on their
edge-vertex characteristics:

(1) Non-overlapping incidence (NOI): A hybrid graph
with NOI has a bipartite Q-subgraph and no vertex in it is
connected by both a Q-edge and an L-edge.

(2) Conditionally overlapping incidence (COI): A hybrid
graph with COI has a bipartite Q-subgraph and every L-edge
in it connects vertices that are both in the same partition.

(3) General incidence (GI): Hybrid graphs with GI have
no restrictions on incidences of L- and Q-edges.

We call a hybrid graph with NOI a NOI graph, and likewise
for graphs with COI and GI. An example each of a NOI graph,
a COI graph, and a GI graph is given in Fig. 5. Note that a
NOI graph is a special case of a COI graph, because vertices
connected by L-edges in a NOI graph can all be put in one of
the two vertex partitions.

As before, we adapt the degree criteria and graph surgery
procedures to hybrid graphs. GI graphs are too general for
Observation 1 to be applicable. Therefore, only NOI and COI
graphs are considered.

Theorem 3 (Degree criterion). If the density matrix ρ(G)
of a hybrid graph G is separable and G� is a NOI or a COI
graph, then D(G) = D(G� ).

A proof for Theorem 3 is provided in Appendix D.
Graph surgery on a NOI graph involves both L- and Q-

surgeries. Any connected component in a NOI graph has
either all L-edges or all Q-edges. One can thus perform L- and
Q-surgery independently on the respective connected compo-
nents.

Graph surgery on a COI graph, however, is not as straight-
forward. The nonidentical STITCH steps of L- and Q-surgery
are equally valid for any vertex with simultaneous incidences
of L- and Q-edges. This ambiguity is resolved by a proxy
graph.

A proxy graph of a COI graph is a NOI graph such that
the kernels of their hybrid Laplacians are identical. It is con-
structed with a two-step process: first, by removing L-edges
from all vertices on which both L- and Q-edges are incident;

FIG. 6. Vertices are colored in black and white to show that the
graphs are bipartite. Solid and dashed edges are Q- and L-edges,
respectively. (a) Graph surgery on a COI graph G with vertex (1, 0),
colored orange, as the selected isolated vertex. (b) Graph H , a proxy
graph of G, as described in Sec. V. To derive H from G, two L-
edges {(0, 0), (1, 2)} and {(0, 2), (1, 2)} are removed and a Q-edge
{(1, 1), (1, 2)} is added. (c) Graph HR

10. Vertices (0, 0) and (0, 2)
cannot be connected by a Q-edge because they belong to the same
partition, so an L-edge is used. (d) Graph HC

10.

then, by reconnecting split connected components, if any,
using Q-edges only.

Observation 4. Every COI graph has a proxy graph.
The proof of Observation 4 is found in Appendix D. De-

riving a proxy graph is akin to graph sparsification, which
removes edges from a dense graph while preserving certain
spectral properties of the Laplacian of the original graph [17].
In the case of proxy graphs, only L-edges are removed and
the preserved spectral property is the kernel of the hybrid
Laplacian. Given Observation 4, graph surgeries on a proxy
NOI graph and on the original COI graph are equivalent.
Therefore, graph surgery on a COI graph is performed by first
constructing a proxy NOI graph and performing graph surgery
on it. One iteration each of row and column surgeries on a COI
graph is shown in Fig. 6.

The implication of graph surgery on hybrid graphs is the
same as on L- and Q-graphs: If graph surgery on a hybrid
graph always produces the empty graph, then the correspond-
ing density matrix is entangled.

Hybrid graphs can also have weighted edges. As in the case
of weighted L- and Q-graphs, the degree criteria and the graph
surgery procedures on unweighted hybrid graphs also apply to
weighted hybrid graphs, as justified by the following lemma.

Lemma 2. If the vertex and the edge sets of two weighted
hybrid graphs are identical, their hybrid Laplacians have iden-
tical kernels.

The proof of Lemma 2 is found in Appendix D.

VI. CONSTRUCTION OF BOUND-ENTANGLED STATES

In Refs. [6,7], bound-entangled L-grid sates are con-
structed using the degree criterion to verify a positive partial
transpose of the density matrix, and the graph surgery pro-
cedure to verify entanglement. This method can be used to
construct new families of bound-entangled states with the grid
states presented in this paper.

Observation 5. If a grid-labeled graph G satisfies D(G) =
D(G� ), the corresponding density matrix has a positive partial
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FIG. 7. Examples of composing cross-hatch graphs. Solid and
dashed edges distinguish constituent graphs. The states corre-
sponding to both graphs are bound entangled, irrespective of their
interpretation as weighted or unweighted L- or Q-graphs, or as hybrid
graphs.

transpose, independent of whether the graph is interpreted as
an L-graph, a Q-graph, a weighted graph, or a hybrid graph.

A proof of Observation 5 is provided in Appendix E. Ac-
cording to the observation, the degree criterion verifies that a
grid state is positive under partial transpose, and graph surgery
verifies that it is entangled. Given that, bound-entangled Q-
grid states can be constructed using the degree criterion and
the graph surgery procedure defined in Sec. III if both the
Q-graph and its partial transpose graph are bipartite. The
cross-hatch pattern from Ref. [6] satisfies these conditions.
The pattern is in fact applicable not only to Q-graphs, but also
to weighted and hybrid graphs.

Theorem 4. The density matrix of an m × n cross-hatch
graph with m, n � 3 is bound entangled for all grid states
independent of whether the graph is interpreted as an L-graph,
a Q-graph, a weighted graph, or a hybrid graph.

Theorem 4 is proved in Appendix E. Moreover, the cross-
hatch pattern can be composed. For example, irrespective of
the Laplacian matrix used to interpret the resulting graph, a
smaller cross-hatch graph can be embedded inside a bigger
one as shown in Fig. 7(a) to produce new bound-entangled
states. Likewise, the pattern can be tiled as shown in Fig. 7(b).
Both graphs in Fig. 7 satisfy the degree criterion, because
the constituent graphs in each graph individually satisfy the
degree criterion. Therefore, they represent grid states whose
density matrices are positive under partial transpose.

Graph surgery on both graphs is carried out by first per-
forming graph surgery on one of the constituent graphs and
then on the remaining edges of the other one. In the tiled
composition, the STITCH step adds a diagonal edge, which
can be treated as a part of another cross-hatch graph and
be removed. In addition, the embedded and tiled composi-
tions like in Fig. 7 can also be composed to produce more
bound-entangled states, as long as the compositions satisfy the
respective degree criterion and are reducible to empty graphs
via graph surgery.

VII. GRID STATES CORRESPONDING TO HYPERGRAPHS

With hybrid graphs, we showed that it is possible to gener-
ate density matrices from a mixture of Q- and L-edge states.
By defining a suitable Laplacian matrix, we derived degree
criteria and graph surgery procedures. As a proof of concept,

FIG. 8. Weighted graph model of a hypergraph. (a and b) Two
hyperedges. (c and d) Their respective cliques. (e) Weighted graph
derived from the cliques.

we follow the same approach to extend the grid state model to
hypergraphs.

Hypergraphs generalize graphs and allow edges to contain
more than two vertices [18]. Here, we only consider hyper-
graphs in which all hyperedges contain exactly three vertices.
In the literature, various approaches to extend graph matri-
ces to hypergraphs are found, which range from matrices in
Refs. [18–20] to tensors in Ref. [21]. None of these previous
approaches lead to a density matrix that can be elegantly
represented by a grid-labeled hypergraph. Therefore, we first
extend the notion of edge states and define hyperedge states,
from which we define the density matrix and the hypergraph
Laplacian matrix. As such, the hyperedge state is chosen to be
of the form 1/

√
3(|i j〉 + |kl〉 + |mn〉). The density matrix is

the equal mixture of all hyperedge states in a hypergraph, and
the Laplacian matrix is the unnormalized density matrix. Split
into a diagonal and a nondiagonal matrix, the Laplacian of a
hypergraph H is written as

L(H ) = D(H ) + A(H ), (4)

where the diagonal matrix D(H ) and the nondiagonal ma-
trix A(H ) matrix are the degree and adjacency matrices,
respectively. The diagonal entries of the degree matrix are
the degrees of vertices in the hypergraph. The degree of a
vertex is the number of hyperedges incident on the vertex. The
adjacency matrix is defined as

Aαβ =
{

adj(vα, vβ ), if α �= β,

0, otherwise,
(5)

where adj(vα, vβ ) is the number of hyperedges connecting
vertices vα and vβ .

Weighted graph model for hypergraph

A hypergraph can be modeled with a weighted graph, and
its Laplacian matrix can be connected to the signless Lapla-
cian matrix of the weighted graph.

Consider a hypergraph H with two hyperedges in Figs. 8(a)
and 8(b). Each hyperedge is turned into a clique as in
Figs. 8(c) and 8(d). A clique is a subset of vertices of a
graph such that every vertex in the set is connected to every
other vertex in the set [22]. The cliques are combined into a
weighted graph as in Fig. 8(e) such that the edge weight of
an edge connecting a vertex pair is the cumulative number of
edges in all cliques that connect the vertex pair. In Fig. 8(e),
the weights of black edges are all 1 and the orange edge
is weighted 2. We call the weighted graph derived in this
fashion the graph of a hypergraph. Formally, the graph of a
hypergraph H is a weighted graph G such that any vertex pair
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{vα, vβ} connected by a hyperedge in H is connected in G by
an edge with weight A(H )αβ .

With this construction, the adjacency matrix of a hyper-
graph and of its graph are the same matrix, but the degree
matrices are different. Consider a hypergraph H and its
graph G. The degree of a nonisolated vertex vα in H is
D(H )α <

∑
β A(H )αβ . However, in the graph G the degree

of the same vertex by definition is D(G)α = ∑
β A(G)αβ . The

degree matrices of a hypergraph and its graph thus are offset
by a diagonal nonnegative matrix, which we call the offset
matrix and define as

O(H ) = D(G) − D(H ), (6)

where H is a hypergraph, G its graph, and O(H ) the offset
matrix. With these observations, the hypergraph Laplacian of
a hypergraph H can be written as

L(H ) = Q(G) − O(H ), (7)

where Q(·) indicates the signless Laplacian.
With the weighted graph model, we can derive a degree

criterion for hypergraph grid states.
Theorem 5. Let H be a hypergraph and G be its graph. If

ρ(H ) is separable and G� is bipartite, then D(G) = D(G� ).
For the proof of Theorem 5, see Appendix F. Unlike the

degree criteria for grid-labeled graphs, it is not clear that the
hypergraph degree criterion is sufficient for the positive partial
transpose of the hypergraph density matrix. Suppose H is a
hypergraph and G is its graph, and D(G) = D(G� ). Then,

Q� (G) = D� (G� ) + A� (G)

= D(G� ) + A(G� ) = Q(G� ), (8)

and from Eq. (7)

Q(G) = L(H ) + O(H ).

⇒ Q� (G) = L� (H ) + O� (H ) = L� (H ) + O(H ),
(9)

from which it follows

L� (H ) = Q(G� ) − O(H ). (10)

From Eq. (10), it is not clear if Q(G� ) − O(H ) is always
positive semidefinite. On the other hand, consider a 2 × 2
hypergraph H with a single hyperedge shown in Fig. 8(a).
The graph G of the hypergraph is the graph in Fig. 8(c). It
is easily seen that D(G) �= D(G� ), and also verified using the
PPT criterion that ρ(H ) is entangled.

Graph surgery cannot be extended to hypergraphs via
the weighted graph model. The graph surgery procedure for
weighted Q-graphs requires the graphs to be bipartite. The
graph of a hypergraph, although a weighted Q-graph, is not
bipartite, because cliques are inherently not bipartite.

Even though this interpretation of hypergraph grid states
does not allow graph surgery, it illustrates the flexibility of the
grid-state model. We were not only able to define a hypergraph
Laplacian matrix in an ad hoc manner to suit our purpose,
but also integrate the weighted Laplacian to derive a degree
criterion for hypergraph grid states.

VIII. CONCLUSION AND OUTLOOK

This paper reveals a rich interplay between graphs and
quantum states. Using a variety of interpretations of graphs as
density matrices, we have identified additional families of grid
states beyond the ones originally suggested in Ref. [6] and
shown that their entanglement properties relate to properties
of the corresponding graphs. In particular, we investigated
signless Laplacians and weighted graphs. We introduced the
concept of hybrid graphs, containing two different types
of edges, and derived the entanglement properties of the
corresponding grid states. Additionally, we constructed new
families of bound-entangled states with these new grid states,
using the method from Ref. [6]. We showed that the cross-
hatch pattern is not only bound entangled for the new families
of grid states, but it could also be composed to construct more
bound-entangled states.

Bound entanglement is a subject of key interest in the
study of theory and applications of entanglement. Works such
as Refs. [8,23] indicate that characterization of properties of
bound-entangled states is an important aspect of entangle-
ment theory. In quantum communication, while not as useful
as free entanglement, it has been shown that bound entan-
glement can provide distinct advantages when used as an
auxiliary resource [9]. Likewise, several works in recent years
show bound entanglement as a unique resource for quantum
metrology protocols [10,24]. Our graphical techniques for
construction of bound-entangled states thus share a similar
interest in the subject.

Our work develops the grid state model both on its physical
aspects and its graph theoretical aspects. The generalizations
described here offer more flexibility in terms of relative phases
in edge states and of their weights in density matrices. This,
combined with the visual aspect of the grid state model and
our method for constructing bound entanglement, make the
grid states attractive candidate states for testing separability
criteria and other entanglement properties.

On the flip side, our work makes extensive use of spec-
tral graph theory. We also found additional links between
graph theory and grid states—namely, resemblance between
hybrid graphs and signed graph, and between proxy graph
construction and graph sparsification. Such connections with
the rich field of graph theory could mean more possibilities
for graph theoretic perspectives on entanglement problems.
Further work is planned to explore these relations. For exam-
ple, one could investigate if proxy graphs can be connected
to the concept of local graph isomorphism discussed in
Ref. [7].

We also demonstrated with hypergraph grid states that our
approach for hybrid graphs can be applied in other contexts.
Similar approaches could be used to incorporate more gen-
eral edge states, for example, with the normalized Laplacian
defined in Ref. [25] and with complex Laplacian matrices.

Since genuine multipartite entanglement has been found
in L-grid states [6], for further work, one could investigate
whether the same is the case for the grid states presented
above. Finally, as the graph surgery procedure is not possible
without isolated vertices, it would be desirable to improve
graph surgery or find alternative procedures that do not require
isolated vertices.
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APPENDIX A: ADDITIONAL GRAPH THEORY CONCEPTS

The appendices contain the proofs of results stated in the
main text. The statements are repeated before each proof. In
this section, in addition to the proof of Observation 1, we
present graph concepts used in the proofs.

The unoriented incidence matrix of a graph G = (V, E ) is
the |V | × |E | matrix R such that Ri j = √

w j if edge e j with
weight w j is incident on vertex vi, and Ri j = 0 otherwise. The
oriented incidence matrix B results from negating one of the
two nonzero entries in each column of the matrix R [15]. The
signed and the signless Laplacian matrices satisfy L = BBT

and Q = RRT [12,26].
For the proof of Observation 1, the following lemma is

needed. Hereafter, K (·) denotes the kernel of a matrix.
Lemma 3 [5]. Let M and � be n × n real matrices. Let M

be symmetric and positive semidefinite, and � be nonzero, di-
agonal, and traceless. If a vector v ∈ {−1, 1}n exists in K (M ),
then M + � � 0.

Proof of Lemma 3 Given the nature of matrix �, at least
one of its diagonal entries, say, �ii = δ, is positive and
nonzero. Let v ∈ {−1, 1}n be in K (M ). Let w := v + ax, with
a ∈ R, and x be the ith standard basis vector. Consider the
inner product

I := 〈w, (M + �)w〉
= 〈v, Mv〉 + a〈v, Mx〉 + a〈x, Mv〉 + a2〈x, Mx〉

+ 〈v,�v〉 + a〈v,�x〉 + a〈x,�v〉 + a2〈x,�x〉. (A1)

The scalars 〈 v, Mv 〉, 〈 v, Mx 〉, and 〈 x, Mv 〉 are all 0, because
Mv = 0. And, 〈 x, Mx 〉 = Mii and 〈 x,�x〉 = δ. The remain-
ing terms are

〈 v,�v 〉 =
n∑

j=1

(
v j

)2
� j j = tr(�) = 0 (A2)

and

〈 v,�x 〉 = 〈 x,�v 〉 = ±δ, if vi = ±1. (A3)

Equation (A1) thus reduces to

I = a2(δ + Mii ) ± 2δa, if vi = ±1. (A4)

Notice that all diagonal entries of the matrix M are non-
negative, because M is positive semidefinite. Equation (A4)
therefore always has distinct roots, because Mii + δ > 0.
This implies that there exists a for which I < 0, meaning
M + � � 0. �

We now prove the observation.
Observation 1. Let G be a grid-labeled graph on n vertices

and ρ(G) be the corresponding density matrix via any of the

interpretations mentioned previously. If a vector v with all its
components equal to ±1 (henceforth v ∈ {−1, 1}n) exists in
the kernel of ρ(G� ), and if ρ(G) is separable, then D(G) =
D(G� ).

Proof Observation 3. Let G be a grid-labeled graph on n
vertices, and D(G) and A(G) be the degree and the adjacency
matrices of G, respectively. Let L(G) = D(G) ± A(G) be a
generic Laplacian matrix representative of the Laplacian ma-
trices used in this paper. Let the corresponding density matrix
ρ(G) be the normalized L(G). Then

L� (G) = D� (G) ± A� (G) = D(G) ± A(G� ),

which implies

L� (G) = D(G) + L(G� ) − D(G� )

= L(G� ) + �, (A5)

where the matrix � = D(G) − D(G� ) is traceless and diago-
nal. If � is nonzero, then since L(G� ) � 0, Lemma 3 implies
L(G� ) + � � 0. But ρ(G) is separable and the PPT criterion
requires ρ� (G) � 0, meaning L� (G) � 0. This is a contradic-
tion. Then, it must be that � = D(G) − D(G� ) = 0. �

APPENDIX B: Q-GRID STATES

Proof of results stated in Sec. III are given here. Several
supporting observations are needed for the proof of Lemma 4,
which is then used to prove the degree criterion.

Observation 6 [26]. The least eigenvalue of the signless
Laplacian of a connected graph is equal to 0 if and only if the
graph is bipartite. In this case 0 is a simple eigenvalue.

Next, we deduce a property of the kernel of the signless
Laplacian matrix of connected bipartite graphs.

Observation 7. For any connected bipartite graph G on n
vertices there exists a vector v ∈ {−1, 1}n in K[Q(G)].

Proof of Observation 7. Let the two vertex partitions in G
be P1 and P2. From Observation 6, Q(G) has a nontrivial
kernel because G is bipartite. Suppose a vector v ∈ {−1, 1}n

is constructed as follows: if the kth vertex is in P1 then the
component vk = 1, otherwise vk = −1. Given that the vertices
connected by any edge in G belong to opposite partitions,
from the definition of the incidence matrix R, we see that
R(G)T v = 0. Then Q(G)v = R(G)R(G)T v = 0. �

Finally, with another result from Ref. [26], we derive a
corollary to prove Lemma 4.

Observation 8 ([26]). In any graph, the (algebraic) multi-
plicity of the eigenvalue 0 of the signless Laplacian is equal to
the number of bipartite (connected) components.

Corollary 3. Each connected component in a bipartite
graph G on n vertices corresponds to a basis vector v ∈
{−1, 0, 1}n of K[Q(G)].

Proof of Corollary 3. Observation 3 applies to connected
components, because they are connected subgraphs. If G is
not a connected graph, the vectors from Observation 3 are
extended by setting vector components to 0 for vertices not in
the connected component. Let vk denote the vector associated
in this way to the connected component Ck of G. Then the
set of vectors {vk} is linearly independent, because the vectors
have disjoint support.
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Since Q(G) is diagonalizable, the algebraic and geometric
multiplicities of its eigenvalues are equal [27]. From Observa-
tion 8 and the previous statement, the geometric multiplicity
of the 0 eigenvalue of Q(G) is the number of connected
components in G, which is equal to the cardinality of {vk}.
Suppose |{vk}| = m. Then we have m linearly independent
vectors in the m-dimensional kernel of Q(G). The vectors
therefore span K[Q(G)]. �

The next lemma allows us to use Observation 1 on Q-
graphs.

Lemma 4. A vector v ∈ {−1, 1}n exists in the kernel Q(G)
of a graph G on n vertices if and only if it is bipartite.

Proof of Lemma 4. Let G be a bipartite graph on n vertices.
Let {vk} be vectors derived from connected components, in-
cluding isolated vertices, of G as described in Corollary 3.
Then, because the vectors {vk} have disjoint support, the sum∑

k vk =: v ∈ {−1, 1}n and Q(G)v = 0.

If a vector v ∈ {−1, 1}n is in K[Q(G)], then Q(G)v = 0,
meaning RT v = 0. It then follows from Proposition 2.1 in
Ref. [26] that G is bipartite. �

Finally, we prove the degree criterion for Q-graphs.
Theorem 2 (Degree criterion for Q-graphs). Let G be a Q-

graph. If ρQ(G) is separable and G� is bipartite, then D(G) =
D(G� ).

Proof of Theorem 2. Using Lemma 4, the proof follows
from applying Observation 1 to Q-graphs. �

For the proof of Observation 2, we assign a notion of vec-
tors to vertices in a grid-labeled graph. The vector of a vertex
is the standard basis vector corresponding to its index. In a
grid-labeled graph, the vertices are indexed row-wise from
top-left to bottom-right. Thus, in an m × n grid-labeled graph,
the vertex (0, 0) is the first vertex and is assigned the standard
basis vector e1. The vertex (m − 1, n − 1) is the last vertex
and is assigned the vector em·n. This is convenient because the
state vector of the state |0 0〉 is e1 and of |m − 1, n − 1〉 is emn.
With this convention, we can say vertex (i, j) corresponds to
the state |i j〉.

Observation 2. Let G be a bipartite Q-graph on n vertices
with an isolated vertex (i, j). If a product vector |μν〉 ∈
R[ρQ(G)], where R denotes the range, then

(1) |μν〉 ∈ R[ρQ(GR
i j )] or R[ρL(GR

i j )], or
(2) |μμ〉 ∈ R[ρQ(GC

i j )] or R[ρL(GC
i j )], or

(3) |μν〉 ∈ R[ρ(G′)],
where G′ is a hybrid graph (see Sec. V).

Proof of Observation 2. Given vertex (i, j) is an isolated
vertex and thus a connected component, by Corollary 3,
ρQ(G)|i j〉 = 0. Since ρQ(G) is hermitian, 〈μν|i j〉 = 0,
which implies either 〈i|μ〉 = 0 or 〈 j|ν〉 = 0. We first consider
the case 〈i|μ〉 = 0, from which it follows that the inner prod-
uct 〈μν|i jc〉 = 0 for all c. This means |μν〉 is orthogonal to
states corresponding to all vertices in row i.

Let Ck be a connected component in G and |Ck〉 := vk

be the basis vector from Corollary 3 of K[ρQ(G)]. Then
〈μν|Ck〉 = 0.

Consider the vector |C′
k〉 := |Ck〉 + |L〉, where |L〉 :=∑

c λc|i jc〉 is a linear combination of vectors of all vertices
in row i. A suitable set of scalars {λc} can always be chosen to
make |C′

k〉c = 0 for all c. Using Corollary 3, the vector |C′
k〉

can be interpreted as the vector of a connected component

C′
k that includes all vertices in Ck except the ones in row i.

Vertices in C′
k have the same relative partitioning as in Ck .

Further, 〈μν|C′
k〉 = 0, because 〈μν|L〉 = 0 as 〈μν|i jc〉 = 0

for all c, and 〈μν|Ck〉 = 0.
Let G′ be a grid-labeled graph with the same vertex set

as G. For every connected component Ck in G, let the graph
G′ have the connected component C′

k derived from Ck as
described above. Notice that the isolated vertices {(io, jo)} in
G remain isolated in G′, and that G′ has additional isolated
vertices—the vertices in row i. The graph G′ thus can be
produced via row surgery on G with isolated vertex (i, j). It
can therefore be labeled as GR

i j .
Depending the nature of the vectors {|C′

k〉}, we have three
possibilities:

(1) If the vectors {|C′
k〉} are all in {1, 0}n, then GR

i j is an
L-graph. The kernel of L(GR

i j ) is spanned by the vectors {|C′
k〉},{|io jo〉}, and {|i, jc〉} of its connected components, to all of

which |μν〉 is orthogonal. Thus, |μν〉 is in the range of L(GR
i j )

and also of ρL(GR
i j ). This case is identical to L-surgery.

(2) If the vectors {|C′
k〉} are all in {1, 0,−1}n, then by

Corollary 3 and arguments analogous to above, the vector
|μν〉 is in the range of ρQ(GR

i j ).
(3) Finally, if some vectors in {|C′

k〉} are in {1, 0}n and
others in {1, 0,−1}n, then G′ is a hybrid graph. Graph surgery
on hybrid graphs is presented in Sec. V.

It can be shown with analogous arguments that if instead
〈l| j〉 = 0, then |μν〉 is in the range of ρL(GC

i j ) or of ρQ(GC
i j )

or of the density matrix of an analogous hybrid graph. �
We now show the unitary inequivalence of the L- and the

Q-grid states corresponding to the same nonbipartite grid-
labeled graph.

Observation 3. Let G be a grid-labeled graph. If G is not
bipartite, then ρL(G) and ρQ(G) are not unitarily equivalent.

Proof of Observation 3. Let G be a nonbipartite grid-
labeled graph. The dimension of K[L(G)] is the number of
connected components in G (see Sec. 3.13.5 in Ref. [28]).
From Corollary 3, the dimension of K[Q(G)] is the number of
bipartite connected components in G. At least one connected
component in G is not bipartite. This means the dimensions
of K[L(G)] and of K[Q(G)] are not equal. Then from the
rank-nullity theorem, the ranks of L(G) and of Q(G) are
not equal. Therefore, ρL(G) and ρQ(G) cannot be unitarily
equivalent. �

APPENDIX C: WEIGHTED GRAPHS

This section consists of proof of results stated for weighted
grid-labeled graphs in the main text.

Lemma 1. If the vertex and the edge sets of two weighted
L-graphs (resp. Q-graphs) are identical, their signed (resp.
signless) Laplacians have identical kernels.

Proof of Lemma 1. Let G = (V, E ) be a weighted graph
and edge weights of edges in G be {w1, . . . wm}, where m =
|E |. If Qv = 0, then

[RT v]i = √
wi(vi1 + vi2) = 0, ∀i ∈ {1, . . . , m}, (C1)

because Q = RRT , where R is the unoriented incidence ma-
trix. The vector components {vi1, vi2} correspond to vertices
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connected by edge ei ∈ E . The solutions of Eq. (C1) are
independent of the edge weights. Therefore, any vector v ∈
K[Q(G)] must also be in the kernels {K[Q(G′)]} of all graphs
{G′} with the same edge and vertex sets. The same arguments
apply to the signed Laplacian L(G). �

Corollary 2. Let Gw be a weighted grid-labeled graph. If
Gw is not bipartite, then ρL(Gw ) and ρQ(Gw ) are not unitarily
equivalent.

Proof of Corollary 2. Let Gw = (V, E ) be a nonbipartite
weighted grid-labeled graph and G = (V, E ) be its un-
weighted counterpart. From the proof Observation 3, we know
ρL(G) and ρQ(G) are not unitarily equivalent because their
ranks are not equal. According to Lemma 1, K[ρL(G)] =
K[ρL(Gw )] and K[ρQ(G)] = K[ρQ(Gw )]. This means that the
ranks of ρL(Gw ) and ρQ(Gw ) are not equal. Therefore, the
density matrices cannot be unitarily equivalent. �

APPENDIX D: HYBRID GRAPHS

Here, we prove the results for grid states derived from the
grid-labeled hybrid graphs. To proceed, we need a notion of
incidence matrix. The incidence matrix of a hybrid graph G =
(V, E ) is the |V | × |E | matrix R = [Bl Rq], where Bl and Rq

are the unoriented and the oriented incident matrices of its L-
and Q-subgraphs, respectively. The hybrid Laplacian satisfies
L = RRT .

Like in the case of Q-grid states, we need supporting lem-
mas to prove the degree criterion for NOI and COI graphs.

Lemma 5. Each connected component in a NOI or a COI
graph G on n vertices corresponds to a basis vector v ∈
{−1, 0, 1}n of K[L(G)].

Proof of Lemma 5. The proof follows for adapting the ar-
guments in the proof of Corollary 3 to NOI and COI graphs.

Lemma 6. For any NOI or COI graph G on n vertices there
exists a vector v ∈ {−1, 1}n in the kernel of L(G). �

Proof of Lemma 6. With Lemma 5, arguments analogous
to the ones given in the proof Lemma 4 prove this lemma.

Theorem 3 (Degree criterion). If the density matrix ρ(G)
of a hybrid graph G is separable and G� is a NOI or a COI
graph, then D(G) = D(G� ).

Proof of Theorem 3. Using Lemma 3, the proof follows
from applying Observation 1 to a NOI or a COI graph. �

We now prove the claim that every COI graph has a proxy
graph.

Observation 4. Every COI graph has a proxy graph.
Proof of Observation 4. Let G be a COI graph with two

vertex partitions P1 and P2 determined by its Q-subgraph.
First, note that any connected component that contains a

Q-edge must contain at least one vertex in partition P1, since
Q-edges connect vertices in opposite partitions. Second, by
definition, the pair of vertices connected by any L-edge in G
must both be in the same partition. Using these observations,
we can construct the proxy graph as follows:

(1) For each connected component that contains a Q-edge,
choose two designated vertices—one in partition P1 and the
other in partition P2.

(2) Then, for all vertices in the graph that have both an
L-edge and a Q-edge incident, remove the L-edge.

(3) If a vertex belonging to partition P1 (resp. P2) is iso-
lated from its previous connected component, reconnect it

with a Q-edge to the corresponding designated vertex in par-
tition P2 (resp. P1).

The above steps not only yield a NOI graph, say, G′, but
also guarantee that the relative vertex partitioning of the ver-
tices in G and in G′ remain identical, and that all connected
components in G′ have the same vertices as in their coun-
terpart in G. Therefore, the vectors associated to connected
components in G and to connected components in G′ are
identical. Then, from Lemma 5, it follows that the kernels of
L(G) and of L(G′) are identical. �

Finally, we show that in the case of hybrid graphs as well
the edge weights alone do not affect the kernel of the hybrid
Laplacian.

Lemma 2. If the vertex and the edge sets of two weighted
hybrid graphs are identical, their hybrid Laplacians have iden-
tical kernels.

Proof of Lemma 2. Let G be a weighted hybrid graph and
L be its hybrid Laplacian matrix. Its incidence matrix is
R = [Bl Rq], where Bl and Rq are the signed and the signed
Laplacian matrices of its L- and Q-subgraphs, respectively.
Since L = RRT , by the same arguments as in the proof of
Lemma 1, the solutions to the equation Lv = 0 are indepen-
dent of the edge weights. �

APPENDIX E: CONSTRUCTION OF BOUND-ENTANGLED
STATES

The proofs of two results related to construction of bound-
entangled states are given here.

Observation 12. If a grid-labeled graph G satisfies D(G) =
D(G� ), the corresponding density matrix has a positive partial
transpose, independent of whether the graph is interpreted as
an L-graph, a Q-graph, a weighted graph, or a hybrid graph.

Proof of Observation 12. Normalization is ignored as it
has no effect on the definiteness of a matrix. Let G be a Q-
graph and G� be its partial transpose. Given D(G) = D(G� ),

D(G) = Q(G) − A(G) = D(G� ). (E1)

Thus, Q(G) = D(G� ) + A(G).

⇒ Q� (G) = D� (G� ) + A� (G)

= D(G� ) + A(G� )

= Q(G� ) � 0. (E2)

The same arguments apply to weighted and to hybrid
graphs. �

Theorem 4. The density matrix of an m × n cross-hatch
graph with m, n � 3 is bound entangled for all grid states
independent of whether the graph is interpreted as an L-graph,
a Q-graph, a weighted graph, or a hybrid graph.

Proof of Theorem 4. An m × n cross-hatch L-graph is en-
tangled for all m, n � 3 [7]. Graph surgery procedures on
Q- and L-graphs only differ in the STITCH step, which is
not required for graph surgery on cross-hatch graphs, be-
cause connected components in cross-hatch graphs are either
isolated vertices or single edges. Therefore, the proof for L-
graphs is sufficient for Q-graphs.
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By Lemma 1, weighted cross-hatch L- and Q-graphs are
entangled. Since graph surgery on hybrid graphs is based on
L- and Q-surgeries, hybrid cross-hatch graphs are entangled.
All cross-hatch graphs satisfy the degree criterion. Thus, they
are bound entangled. �

APPENDIX F: HYPERGRAPHS

The degree criterion for hypergraph grid states is proved
below.

Theorem 5. Let H be a hypergraph and G be its graph. If
ρ(H ) is separable and G� is bipartite, then D(G) = D(G� ).

Proof of Theorem 5. Let H be a hypergraph on n vertices
and G be its graph. From Eq. (7)

L(H ) = Q(G) − O(H ),

where O(H ) is the offset matrix. Then

L� (H ) = Q� (G) − O� (H )

= Q(G� ) + � − O(H ), (F1)

where � = D(G) − D(G� ), and the second equality follows
from applying Eq. (A5) to G.

The offset matrix O(H ) is positive semidefinite because it
is a real, diagonal matrix with nonnegative diagonal entries.
And from the PPT criterion, L� (H ) � 0, because H repre-
sents a separable state. This means

L� (H ) + O(H ) = Q(G� ) + � � 0. (F2)

Since G� is bipartite, from Lemmas 4 and 1, there exists
a vector v ∈ {−1, 1}n in K[Q(G� )]. The matrix � is trace-
less and diagonal matrix. Thus, from Lemma 3, the matrix
Q(G� ) + � � 0. This is a contradiction. Therefore, � =
D(G) − D(G� ) = 0. �
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