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Scattering solution of an interacting Hamiltonian for the electronic control
of molecular spin qubits
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We theoretically study how a scattered electron can entangle molecular spin qubits (MSQs). This requires
solving the inelastic transport of a single electron through a scattering region described by a tight-binding
interacting Hamiltonian. We accomplish this using a Green’s-function solution. We can model realistic physical
implementations of MSQs by parametrizing the tight-binding Hamiltonian with first-principles descriptions of
magnetic anisotropy and exchange interactions. We find that, for two-MSQ systems with inversion symmetry,
projective measurement of the spin degree of freedom of the scattered electron offers probabilistic control of the
degree of entanglement between the MSQs.
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I. INTRODUCTION

Any platform for quantum information processing (QIP)
must support entanglement between qubits to achieve quan-
tum speedup [1–3]. Molecular spin qubits (MSQs) formed
from a two-level subspace of the electron spin degrees of
freedom of a molecular system [4] are a promising platform
for QIP because they can be chemically tailored to achieve
desired behavior [5,6] and appear well suited for deploying at
scale [7]. Although MSQs can be entangled via a Heisenberg-
like exchange interaction [8,9], controlling the degree of
entanglement experimentally by switching the interaction on
and off presents a distinct challenge [7]. It would therefore be
beneficial to engineer an alternative method to control of the
degree of entanglement between MSQs.

A promising method from the solid-state qubit community
is to use an ancillary electron to mediate the entanglement. In
one proposal, a localized ancillary electron has an exchange
interaction with two qubits for a certain time interval before
being removed [10–12]. Control of the time interval then
allows the experimenter to control the degree of entanglement
between the qubits [10–12] without needing to switch the
Heisenberg-like exchange on and off. However, managing
the precise time intervals involved remains experimentally
challenging [10].

Alternatively, a delocalized ancillary electron (DAE),
sourced by a metallic reservoir, can scatter from two qubits
to entangle them [10]. This allows the degrees of freedom
of the DAE itself to control the degree of entanglement be-
tween the qubits, e.g., via projective measurement [13–15],
replacing the need for precise time intervals [10,16]. In order
to differentiate the proposal of using a localized ancillary
electron versus a delocalized ancillary electron to mediate
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entanglement, we refer to the latter as the “scattering pro-
posal.” In the scattering proposal, schemes for generating Bell
states [14,15] and implementing two-qubit gates [17,18] have
been theoretically demonstrated. However, because the mag-
netic anisotropy and Heisenberg-like exchange interactions
present in MSQs enable inelastic scattering, addressing MSQs
within the scattering proposal presents a distinct theoretical
challenge. It therefore remains unclear whether a DAE could
entangle MSQs.

Upon developing theoretical tools to overcome this chal-
lenge, in this paper we demonstrate that a DAE can mediate
entanglement within the scalable, tunable platform offered by
MSQs. In Sec. II, we outline our Green’s-function solution
for scattering from a tight-binding interacting Hamiltonian.
In Sec. III we demonstrate a scheme by which a projective
measurement of the DAE controls the degree of entanglement
between two MSQs. We enumerate the conditions necessary
for this scheme and show that the incoming kinetic energy
of the DAE provides a convenient degree of freedom for
optimizing its probability of success. Applying our scheme to
a realistic physical implementation of two MSQs, we explore
the molecular characteristics best suited for controlling the de-
gree of entanglement before discussing several real molecular
systems which could be used to realize this proposal.

II. METHOD

We now formulate a Green’s-function solution to the prob-
lem of a DAE scattering from two spin-s particles with which
it can interact. It is prevalent in the literature [14–18] to
solve these types of problems with a wave-function matching
approach in continuous space following Ref. [19]. This is
only feasible with analytically solvable scattering potentials.
In contrast, the tight-binding approach of Ref. [20] can be
connected to first-principles calculations done with atomic
orbital basis sets and can be implemented numerically in
order to handle arbitrarily complicated systems. We adopt this
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FIG. 1. Setup of the one-dimensional scattering problem as an
infinite tight-binding chain with nearest-neighbor hopping.

approach in order to consider realistic physical implementa-
tions of MSQs.

Our scattering setup, sketched in Fig. 1, consists of a single
DAE in a one-dimensional wire discretized into sites j ∈ Z
separated by lattice spacing a. These sites form a complete
spatial basis | j〉. The wire could be realized by a single
wall carbon nanotube (SWCNT) [21] or a silicon nanowire
[22] exhibiting ballistic transport. The left (right) lead is a
noninteracting region of the wire consisting of identical sites
j � 0 ( j > N) where the DAE wave function is a plane wave.
The scattering region consists of sites j = 1, . . . , N where the
DAE wave function is no longer a plane wave due to interac-
tions with other particles and external potentials. Although the
wire is infinite for our purposes, in practice it would eventually
contact a metallic system on either side, as in SWCNT spin
valve devices [23,24].

Our setup is described by the infinite-dimensional tight-
binding Hamiltonian

Ĥ =
∞∑

j=−∞
(ε j | j〉〈 j| − t| j〉〈 j − 1| − t| j − 1〉〈 j|). (1)

Here boldfaced operators such as ε j act on three-particle spin
states |σ 〉, while operators with hats act on both |σ 〉 and
spatial states | j〉. Specifically, each ε j is an operator in spin
space describing the spin physics and on-site energy of site
j. Because the sites in the leads are all identical, ε j = ε0 for
j � 0 or j > N .

We will now put Eq. (1) in a finite-dimensional form by
taking advantage of the periodicity of the leads. Consider the
semi-infinite, periodic Hamiltonian

Ĥ (M ) =
M∑

j=−∞
(ε0| j〉〈 j| − t| j〉〈 j − 1| − t| j − 1〉〈 j|). (2)

Clearly Ĥ (0) describes the left lead. We can associate with
Ĥ (M ) a Green’s function ĝ(M ) = (EÎ − Ĥ (M ) )−1 and a surface
Green’s function [25,26]

g(M )
M,M = 〈M|(EÎ − Ĥ (M ) )−1|M〉. (3)

Because Ĥ (M+1) can be constructed by adding a single site
to Ĥ (M ), its Green’s function ĝ(M+1) satisfies(

EÎ − Ĥ (M ) t̂†

t̂ EI − ε0

)
ĝ(M+1) =

(
Î 0
0 I

)
(4)

where t̂ = t|M + 1〉〈M|. Solving Eq. (4), we obtain [20](
EI − ε0 − tg(M )

M,Mt
)
g(M+1)

M+1,M+1 = I. (5)

At the same time, the periodicity of Ĥ (M ) means that Ĥ (M ) =
Ĥ (M+1). As a result, g(M )

M,M and g(M+1)
M+1,M+1 represent the same

quantity, the surface Green’s function of a semi-infinite lead.

In particular, the surface Green’s function of the left lead
g(0)

00 ≡ gL obeys the self-consistency condition [20]

(EI − ε0 − tgLt)gL = I, (6)

which in general can be solved iteratively [27,28].
We now choose as our basis the eigenstates of the sys-

tem when the DAE is not interacting with any particles in
the scattering region. In this basis, ε0 is diagonal. Ignoring
spin-orbit effects, the nearest-neighbor hopping will be spin
independent, so t = tI. As a result, we can solve for the
diagonal elements of Eq. (6) [20]:

gLσσ = 1

−t

⎡
⎣E − ε0σσ

−2t
±

√(
E − ε0σσ

−2t

)2

− 1

⎤
⎦. (7)

The sign of the square root is chosen so that the sign of
Im(gLσσ ) is negative, corresponding to the retarded surface
Green’s function.

We now introduce the lead self-energies �L = tgLt = �R

which are equal due to the inversion symmetry of the leads.
Substituting Eq. (7), we obtain

�Lσσ = −t

⎡
⎣E − ε0σσ

−2t
±

√(
E − ε0σσ

−2t

)2

− 1

⎤
⎦. (8)

The left lead self-energy, being retarded, encodes an outgoing
state, the reflected state. Likewise, the retarded right lead self-
energy encodes the transmitted state.

Using the definition of the self-energy, Eq. (6) becomes

gL = [EI − (ε0 + �L )]−1, (9)

which shows that from the point of view of the Green’s
function, the physics of the entire left lead can be compactly
represented by an energy dependent potential �L at its the sur-
face. An analogous expression holds for the right lead. Thus
without loss of generality, the entire system can be described
by an effective Hamiltonian [20]

Ĥ ′ =
N+1∑
j=1

(ε j | j〉〈 j| − t| j〉〈 j − 1| − t| j − 1〉〈 j|)

+ (ε0 + �L )|0〉〈0| + �R|N + 1〉〈N + 1|, (10)

so we have succeeded in making Eq. (1) finite dimensional.
The corresponding retarded Green’s function has elements
[20]

Ĝ j j′σσ ′ = (EÎ − Ĥ ′)−1
j j′σσ ′ . (11)

Equation (11) formally solves the scattering problem because
the scattering region wave-function coefficients

|ψ〉 =
N+1∑
j=0

ψ j | j〉 =
N+1∑
j=0

∑
σ

ψ jσ | j〉|σ 〉 (12)

can be generated by a convolution [20]

ψ jσ =
N+1∑
j′=0

∑
σ ′

Gj j′σσ ′Qj′σ ′ . (13)

In Eq. (13), the retarded Green’s function encodes the re-
flected and transmitted states via the retarded self-energies.
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The source vector Q j = ∑
σ Qjσ |σ 〉 encodes the incoming

state, which we now discuss in more detail.
The incoming state is defined by both the three-particle

spin state |σ 〉 = |i〉 and the spatial wave function of the DAE
as it impinges on site j = 0. The spatial wave function is a
plane wave with wave number +ki where + (−) indicates a
right (left) moving state. We therefore denote the incoming
state as | + ki, i〉.

The total energy of the system, E , is always conserved. In
general, E = ε0σσ + Kσ where ε0σσ is the potential energy of
the three-particle spin state |σ 〉 and Kσ is the kinetic energy
of the DAE plane wave with wave number kσ , given by the
tight-binding dispersion relation

Kσ = 2t − 2t cos(kσ a). (14)

In practice, the experimenter chooses the incoming kinetic
energy Ki by setting the chemical potential of the metallic
reservoir that sources the DAE. Without loss of generality, we
can set ε0ii = 0, so Ki = E = ε0σσ + 2t − 2t cos(kσ a). This
equality determines the wave number and velocity of all in-
coming and outgoing spin states:

kσ = 1

a
cos−1

(
Ki − ε0σσ − 2t

−2t

)
, (15)

vσ = 1

h̄

d

dkσ

Kσ = 2ta

h̄
sin(kσ a). (16)

Note that inelastic scattering occurs when the interactions
in the scattering region connect states with different wave
numbers. These wave numbers and velocities are well defined
in the leads because we work in a basis that diagonalizes ε0;
this is the physical reason for choosing such a basis. However,
they are not well defined in the scattering region.

Using Eq. (13), we can match the scattering region wave
function to the plane waves in the lead. The incoming state is
a plane wave:

| + ki, i〉 =
0∑

j=−∞

∑
σ

Aσ eikσ ja| j〉|σ 〉 . (17)

Here Aσ = Aδσ i, so A specifies the incoming particle am-
plitude and δσ i specifies the incoming spin state. We now
introduce the source vector, derived in Eq. (A6):

Qjσ ≡ ih̄

a
Aσvσ δ j0 (18)

where δ j0 specifies that the incoming particle impinges on the
scattering region from site j = 0. The outgoing states, also
plane waves, are given by

| − kσ , σ 〉 =
0∑

j=−∞

∑
σ

Bσ e−ikσ ja| j〉|σ 〉, (19)

| + kσ , σ 〉 =
∞∑

j=N+1

∑
σ

Cσ eikσ ja| j〉|σ 〉. (20)

Here |σ 〉 can be any outgoing spin state, and Bσ and Cσ

specify the reflected and transmitted particle amplitude, re-
spectively, in that state.

Since the incoming spin state is always fixed via Ai =
δσ i, once t and Ki = E are chosen, we can find the wave
number, velocity, and source vector of the incoming particle

using Eqs. (15), (16), and (18), respectively. Then once the
spin operators ε j are specified, we can calculate Ĝ through
Eqs. (8), (10), and (11). Ĝ solves the scattering problem be-
cause the wave-function coefficients from Eq. (13) determine
the outgoing states given in Eqs. (19) and (20). We regard Ki/t
as an independent variable, so it simply remains to specify
ε j to achieve this solution. In Appendix A, we show how
Eq. (13) generates spin-resolved transmission and reflection
coefficients Tσ [Eq. (A11)] and Rσ [Eq. (A13)]. In Appendix B
we apply this solution to a simple example system and demon-
strate some of its unique capabilities.

III. RESULTS

We now apply our solution to a system of a DAE scattering
from two spin-s particles. These particles are due to localized
electrons in the molecular system forming a composite spin
with 2s + 1 levels. The generators of rotations are Sx

l , Sy
l , and

Sz
l where l = e denotes the DAE and l = 1, 2 denotes the spin-

s particles. We write these compactly as the vector

Sl = Sx
l x̂ + Sy

l ŷ + Sz
l ẑ. (21)

We specify the spin state of the lth particle in terms of the
eigenstates |ml〉l of Sz

l , so that three-particle spin states are
written |me〉e|m1〉1|m2〉2. We also define the combined spin
operator S12 = S1 + S2 and use s12 (m12) for the quantum
number corresponding to its magnitude (ẑ component). Like-
wise, we define the total spin operator ST = Se + S1 + S2 and
use sT (mT ) for the quantum number corresponding to its
magnitude (ẑ component).

Using an external magnetic field, we can initialize the two
spin-s particles in the state |s〉1|s〉2. We can also source the
DAE from the metallic reservoir in a chosen spin state using a
ferromagnetic contact [15]. Thus we can always initialize the
system in the spin state

|i〉 ≡
∣∣∣∣ − 1

2

〉
e

|s〉1|s〉2. (22)

Note that the DAE is distinguished from the two spin-s parti-
cles because it is an electron, while the two spin-s particles
are distinguished from each other by their different spatial
locations. As a result, product states such as |i〉 do not have to
be antisymmetrized. We consider only Hamiltonians that are
symmetric about the ẑ axis in spin space, so mT is conserved.
Subsequently, |i〉, | 1

2 〉e|s − 1〉1|s〉2, and | 1
2 〉e|s〉1|s − 1〉2 are

the only accessible three-particle spin states. Inspecting these
states, we see that conservation of mT restricts the lth spin-
s particle to the two-level subspace {|s〉l , |s − 1〉l}. We can
therefore encode a MSQ in this subspace following Ref. [15].
From the accessible three-particle spin states, we can form
two new states in which these MSQs are in a Bell state:

|±〉 ≡
∣∣∣∣1

2

〉
e

1√
2

(|s〉1|s − 1〉2 ± |s − 1〉1|s〉2). (23)

Note that |i〉, |+〉, and |−〉 are all eigenstates of S2
12, with s12 =

2s, 2s, and 2s − 1, respectively. Therefore processes which
conserve s12 allow |+〉 to be generated from |i〉.

As sketched in Fig. 2, we have in mind a scattering geome-
try wherein the DAE can traverse the system without hopping
onto the MSQs. Due to the charge of the electrons forming
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Scattering region

Left lead Right lead

21

FIG. 2. Physical picture of a conduction electron traversing a
scattering region of size N = 2 which models a molecular magnetic
system. Blue lines represent nonzero hopping matrix elements. The
molecular magnetic system hosts two metal atoms (pink spheres)
with electronic spin s (black arrows), which are coupled to each other
and to the tight-binding sites by ligands (purple spheres).

the MSQs, the Coulombic cost of such hopping will be large.
Instead, we treat the hopping onto the MSQs perturbatively
using a Schrieffer-Wolff transformation [29] to recover an
effectively one-dimensional geometry. Due to this treatment
(discussed in more detail in Appendix B and Ref. [30]) the
Coulomb interaction between charges occupying the same site
becomes an exchange interaction between spins occupying
adjacent sites. Therefore in our setup, the first MSQ interacts
with site j = 1 and the second interacts with site j = N .
This setup allows us to focus purely on the spin-dependent
transport effects rather than electronic transport effects such
as the Coulomb blockade (see the supplementary information
of Ref. [31]). Physically, this setup could be achieved by
laterally coupling a molecular magnetic system to a SWCNT
(see Fig. 1 of Ref. [23]).

To implement this model, we specify the ε j operators
[which determine the Hamiltonian via Eq. (10)] as

ε j = J

h̄2 Se · (S1δ1 j + S2δN j ). (24)

These operators specify a contact interaction in the sense that
the DAE only interacts with each MSQ on a single site. The
dot product of spin operators has the same form as the Kondo
interaction between conduction electrons and a magnetic im-
purity in a metal [29]. We consider single electron scattering,
so there is no Fermi surface and therefore no Kondo physics
present in our treatment. However, this Kondo-like form has
been applied to single electron scattering [10,14–17,19], so
we likewise use this form to maintain continuity with previous
works. In the following, we consider the effects of scattering
from the Kondo-like interaction of Eq. (24) for systems of two
simplified MSQs, then two realistic MSQs with appropriate
physical symmetries.

A. Two spin-1/2 MSQs

We first consider the simplest possible implementation
of two MSQs: two spin-1/2 particles which do not interact
with each other. Each could be realized by a single electron
localized to a molecular orbital with strong d or f charac-
ter. Analogous mesoscopic solid-state systems with magnetic
impurities have also been studied in the scattering proposal
[10,14–17,19]. The only spin physics present in this system is
the Kondo-like interaction between the DAE and the MSQs

0.0

0.5

1.0

T
σ

(a)

10−6 10−410−5

Ki/t

0.0

0.5

1.0

p2
(θ̃

)

(b) 0

π/8

π/4
π

FIG. 3. (a) Transmission coefficients (black circles) Ti, (blue tri-
angles) T+, and (green squares) T− × 105. The tiny value of T− shows
that the transmission approximately conserves s12. (b) Probability
of success [Eq. (37)] at different values of θ̃ , labeled on the right.
Black circles show the probability of success averaged over θ̃ , given
by Eq. (38). Tight-binding parameters are N = 2, t = 100 meV, and
J = −0.5 meV.

[Eq. (24)]. For this interaction, [ε0, S2
12] = 0. As a result,

we work in the eigenbasis of S2
12, |σ 〉 ∈ {|+〉, |−〉, |i〉}, and

calculate the corresponding transmission coefficients T+, T−,
and Ti using Eq. (A11). Note that in this basis, ε0σσ is the
same for all σ , so the plane-wave wave numbers and velocities
given in Eqs. (15) and (16) are spin independent.

In general, each Tσ depends on the DAE’s incoming kinetic
energy Ki, as well as the quantities J and N appearing in
Eq. (24). More precisely, t sets the energy scale, so N , J/t ,
and Ki/t are the dimensionless parameters which determine
Tσ . We first examine the effects of N . Although N > 1 is
required to keep the two spin-s particles distinguishable, it
is useful to first note that if N = 1 in Eq. (24), we would
have [ε j, S2

12] = 0 and so s12 would be conserved during the
scattering process. As noted earlier, this situation is of inter-
est because |i〉, in which the MSQs are unentangled, can be
scattered into |+〉, in which the MSQs are in a Bell state.
We expect that in the limit of small separation, i.e., N = 2,
s12 will still be approximately conserved. In Fig. 3(a), we
show that for a specific N = 2 system, T− never exceeds
10−6. For the remainder of this paper we fix N = 2 with the
expectation that s12 will be approximately conserved. This is
confirmed by the small values of T− in each case.

With N = 2 fixed, we examine the effects of J/t . In
Ref. [19], the problem of scattering from Eq. (24) is solved
in the continuum case for N = 1 (i.e., for a single composite
spin). This solution, discussed in more detail in Appendix B,
approximately maps onto our system in the limit kia 	 1 and
N = 2, in which case we expect T+ ≈ Tf ,c [Eq. (B3)]. Tf ,c

depends on J/t only through the dimensionless parameter
(J/tkia)2. Therefore when T+ ≈ Tf ,c, the sign of J/t has no
effect, while its magnitude affects the value of kia at which T+
peaks but not the height of the peak. We thus do not investigate
different J/t values but focus on J = −0.5 meV as measured
for molecules laterally coupled to SWCNTs [23].
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FIG. 4. Depiction of the logical state |χ〉 in the Bloch sphere
formalism. The north pole is completely unentangled, while the south
pole is maximally entangled, so specifying |χ〉 controls the degree of
entanglement.

Restricting ourselves to N = 2 and J = −0.5 meV for the
rest of this paper, Ki/t is the only free dimensionless param-
eter affecting Tσ for spin-1/2 MSQs. Furthermore, because
s12 is conserved only Ti and T+ are nonzero. The simplest
application of this scenario is to generate |+〉, in which the
MSQs are in a Bell state, by projective measurement of the
DAE onto spin state | 1

2 〉e with probability T+. Similar Bell
state generation processes were proposed in Refs. [14,15]. Our
results, shown in Fig. 3(a), demonstrate that Ki/t provides a
convenient degree of freedom for maximizing the Bell state
generation probability T+ (blue triangles). We observe a peak
of T+ = 0.22, consistent with the results of Refs. [14,15].

Beyond Bell state generation, when s12 is conserved, the
spin degree of the freedom of the DAE controls the degree
of entanglement between MSQs. By control of the degree of
entanglement we mean that in the logical basis

|0〉 ≡|s〉1|s〉2, (25)

|1〉 ≡ 1√
2

(|s〉1|s − 1〉2 + |s − 1〉1|s〉2) (26)

we can rotate from |0〉 to any desired superposition of |0〉 and
|1〉 (see Ref. [12]). This rotation controls the degree of entan-
glement because |0〉 is an unentangled state, easily initialized
by application of an external magnetic field along the ẑ axis,
while |1〉 is maximally entangled. These form the antipodal
points of a Bloch sphere as shown in Fig. 4. As we will show,
the DAE’s spin degree of freedom exactly specifies the desired
superposition and thus controls the degree of entanglement.

Assuming s12 is conserved, the transmitted state, given by
Eq. (20), is

|T 〉 =
∞∑

j=N+1

(
Cie

iki ja| j〉|i〉 + C+eik+ ja| j〉|+〉). (27)

Now we perform a projective measurement [13] of the DAE
spin along the axis n̂ = (1, θ, φ) as it is transmitted into the
right lead, i.e., at site j = N + 1. This has two effects on |T 〉.
First, it eliminates the j dependence of the phase between spin
states |i〉 and |+〉 by projecting the spatial degree of freedom
of the DAE onto |N + 1〉:

〈N + 1|T 〉 = eikia(N+1)Ci|i〉 + eik+a(N+1)C+|+〉
= √

Ti

∣∣ − 1
2

〉
e|0〉 + √

T+eiφ+
∣∣ 1

2

〉
e|1〉. (28)

Here we substituted |Cσ | = √
Tσ and dropped the overall

phase exp (ikia(N + 1) + arg(Ci )), but allowed for a complex
phase between the two spin states:

exp(iφ+) = exp (i(k+ − ki )a(N + 1) + arg(C+) − arg(Ci )).

(29)

Second, it projects the spin degree of freedom of the DAE onto
one of the eigenstates of Se · n̂, namely [32],

|⇑〉e = cos

(
θ

2

)∣∣∣∣1

2

〉
e

+ sin

(
θ

2

)
eiφ

∣∣∣∣ − 1

2

〉
e

, (30)

|⇓〉e = − sin

(
θ

2

)∣∣∣∣1

2

〉
e

+ cos

(
θ

2

)
eiφ

∣∣∣∣ − 1

2

〉
e

. (31)

Specifically, measuring Se · n̂ = −h̄/2 yields

|χ〉 ≡ e〈⇓|〈 j = N + 1|T 〉

= cos

(
θ

2

)
e−iφ

√
Ti|0〉 − sin

(
θ

2

)
eiφ+

√
T+|1〉. (32)

Finally, by introducing the logical space angles

tan

(
θ̃

2

)
=

√
T+
Ti

tan

(
θ

2

)
, (33)

φ̃ = φ + φ+ + π, (34)

we can manipulate Eq. (32) to obtain

|χ〉 = p(θ̃ )

[
cos

(
θ̃

2

)
|0〉 + sin

(
θ̃

2

)
eiφ̃ |1〉

]
. (35)

The prefactor introduced here is

p(θ̃ ) =
√

TiT+
T+ cos2

(
θ̃
2

) + Ti sin2
(

θ̃
2

) , (36)

while the quantity in square brackets is a unit vector on the
Bloch sphere [1]. Then for Ti, T+ = 0, n̂ specifies |χ〉 because
we can choose any θ̃ ∈ [0, π ] by appropriate choice of θ

and any φ̃ ∈ [0, 2π ] by appropriate choice of φ. However, to
successfully specify |χ〉, the projective measurement of the
DAE’s spatial degree of freedom must return j = N + 1, re-
quiring transmission to occur, and the projective measurement
of the DAE’s spin degree of freedom must return −h̄/2. The
combined probability of success for this operation is

p2(θ̃ ) = TiT+
T+ cos2

(
θ̃
2

) + Ti sin2
(

θ̃
2

) . (37)

Like all projective measurement methods for generating
entanglement, this method produces maximum localizable en-
tanglement [33], but only probabilistically [13].

We plot the probability of success p2(θ̃ ) for representative
values of θ̃ in Fig. 3(b). Note that only p2(0̃) achieves prob-
ability 1, while p2(π ) = T+ corresponding to the Bell state
generation process discussed previously. The main application
of this paper is to control the degree of entanglement by
specifying any desired θ̃ , so a useful figure of merit is obtained
by averaging p2(θ̃ ) over θ̃ :

p2 = 1

π

∫ π

0

TiT+ d θ̃

T+ cos2
(

θ̃
2

) + Ti sin2
(

θ̃
2

) = √
TiT+. (38)
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In Fig. 3(b), we show how p2 varies with Ki/t . This
quantity is again convenient for maximizing p2. We observe
max(p2) = 0.30 which we can analyze in light of our previous
assumption that for kia 	 1 and N = 2, T+ ≈ Tf ,c [Eq. (B3)]
and Ti ≈ Tn f ,c [Eq. (B4)]. Inserting these into Eq. (38), the
predicted maximum is p2 = 0.32, so the observed maximum
is reasonable.

B. Two molecular magnetic MSQs

We now consider a more complicated implementation of
two MSQs: a molecular magnetic system hosting two metal
atoms. Each atom’s valence electrons form a composite spin-s
particle, where for generality s is left unspecified. As in the
previous section, these particles have a Kondo-like interaction
with the DAE given by Eq. (24). In addition, these particles
have uniaxial magnetic anisotropy and a Heisenberg-like ex-
change interaction with each other. In specifying the form of
these interactions, we recall that only Hamiltonians which are
symmetric about the ẑ axis in spin space can encode a MSQ
in the subspace {|s〉l , |s − 1〉l}. The most general form of ε j

with this symmetry, to second order in the spin operators, is

ε j = 1

h̄2

[
JSe · (S1δ1 j + S2δN j ) + D1

(
Sz

1

)2 + D2
(
Sz

1

)2

+ Jx
12

(
Sx

1Sx
2 + Sy

1Sy
2

) + Jz
12Sz

1Sz
2

]
. (39)

Equation (39) is block diagonalized by mT , and we concen-
trate on the mT = 2s − 1/2 block. In this block, we choose as
our basis the eigenbasis of S2

12, namely, |σ 〉 ∈ {|+〉, |−〉, |i〉}.
In this basis,

ε j = [
2s2D + (s2 − s)Jz

12

]
I

+
⎛
⎝(1 − 2s)D + sJx

12

(
s − 1

2

)
�D 0(

s − 1
2

)
�D (1 − 2s)D − sJx

12 0
0 0 sJz

12

⎞
⎠

+ J

2

⎛
⎜⎝s − 1

2
1
2

√
s

1
2 s − 1

2 −√
s√

s −√
s −s

⎞
⎟⎠δ j1

+ J

2

⎛
⎜⎝s − 1

2 − 1
2

√
s

− 1
2 s − 1

2

√
s√

s
√

s −s

⎞
⎟⎠δ jN , (40)

where D = (D1 + D2)/2 and �D = D1 − D2. The parame-
ters D1, D2, Jx

12, and Jz
12 in Eq. (39) can be fit with density

functional theory (DFT) to build a model of a molecular sys-
tem containing spins with a shared axis of uniaxial magnetic
anisotropy; see for example Ref. [34].

Since the two particles have the same s, the system has
inversion symmetry if D1 = D2. For the rest of this section, we
impose inversion symmetry. This is necessary to diagonalize
ε0 so that s12 is a good quantum number. Then because the
last line of Eq. (40) approximately conserves s12 when N = 2,
|i〉 only scatters into itself or |+〉 as before. However, these
two states are no longer degenerate; instead, they are split in
energy by

�E ≡ ε0++ − ε0ii = (1 − 2s)D + s
(
Jx

12 − Jz
12

)
. (41)

0.0

0.1

0.2

T
+

(a)

10−6 10−210−5 10−4 10−3

Ki/t

0.0

0.1

0.2

0.3

p2

(b)

FIG. 5. Dependence of (a) T+ (T− is omitted because it never ex-
ceeds 10−4) and (b) p2 on Ki/t and �E/t when s = 1. Tight-binding
parameters are N = 2, t = 100 meV, J = −0.5 meV, and Jx

12 =
Jz

12 = 1.0 meV. By choice of D we set (black circles) �E/t = 0.0,
(blue triangles) �E/t = −0.001, (green squares) �E/t = −0.002,
(red diamonds) �E/t = −0.003, and (cyan stars) �E/t = −0.004.

Inspecting Eq. (40) when �D = 0, we see that aside from
J/t , which we have already discussed, the only dimensionless
parameters that affect the transmission coefficients are Ki/t ,
�E/t , and s. Recalling that the figure of merit for our scheme
by which the DAE controls the degree of entanglement is p2,
we now explore how each of these affects p2.

In the s = 1/2 case (Fig. 3) we saw that p2 increases
with increasing Ki/t , reaches a maximum, then decreases.
This is also the case for the molecular magnetic system when
�E/t � 0 as shown in Fig. 5. When �E/t < 0, the behavior
is very different because transmission into the |+〉 state is
energetically forbidden when Ki < �E , as shown in Fig. 6.

0.0

0.1

0.2

T
+

(a)

10−6 10−210−5 10−4 10−3

Ki/t

0.0

0.1

0.2

0.3

p2

(b)

FIG. 6. Dependence of (a) T+ (T− is omitted because it never
exceeds 10−4) and (b) p2 on Ki/t and �E/t when s = 1. Tight-
binding parameters are N = 2, t = 100 meV, J = −0.5 meV, and
Jx

12 = Jz
12 = 1.0 meV. By choice of D we set (black circles) �E/t =

0.0, (blue triangles) �E/t = 0.001, (green squares) �E/t = 0.002,
(red diamonds) �E/t = 0.003, and (cyan stars) �E/t = 0.004.
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FIG. 7. Maxima of (a) T+ and (b) p2 over 199 values of
log10(Ki/t ) evenly spaced on the interval [−6, −2] for spin-s par-
ticles at different �E/t . Black circles show s = 1/2, for which
only �E/t = 0.0 is possible, with tight-binding parameters N =
2, t = 100 meV, and J = −0.5 meV. Blue triangles show s = 1,
(green squares) s = 3/2, (red diamonds) s = 4, (cyan stars) s = 9/2,
and (gray pluses) s = 6, with tight-binding parameters N = 2, t =
100 meV, J = −0.5 meV, Jx

12 = Jz
12 = 1.0 meV, and D variable.

However, regardless of the sign of �E/t , p2 has a single
maximum over the domain of Ki/t which we denote max(p2).
We can always tune Ki/t to achieve max(p2). The same is true
for T+, which quantifies the Bell state generation probability.

In Fig. 7, we explore the dependence of max(p2) and
max(T+) on �E/t and s in order to determine the molecular
characteristics most suitable for our scheme by which the
DAE controls the degree of entanglement and for generating
Bell states. We plot the s = 1/2 result max(p2) = 0.30 (black
circles) for reference. We then plot data for s = 1, 3/2, 4,
9/2, and 6. Note that max(T+) and max(p2) tend to decrease
with increasing s. This is consistent with previous results, e.g.,
Fig. 2 of Ref [15]. Also, as s increases towards the classical
limit, the dependence of max(T+) and max(p2) on s decreases.

IV. DISCUSSION AND CONCLUSION

We showed that molecular magnetic systems hosting two
metal atoms with a shared axis of symmetry in spin space
are suitable for encoding two MSQs. Using a simple model
of two MSQs, we demonstrated that when scattering from
the MSQs conserves s12, it is possible to maximally entangle
them using a DAE. Moreover, we were able to control the
degree of entanglement between the MSQs via a projective
measurement of the spin degree of freedom of the DAE.
Although the control scheme we presented is probabilistic, the
experimenter immediately sees whether it has succeeded, and
we can quantify the probability of success with p2 [Eq. (38)].

To motivate discussion about the feasibility of imple-
menting our control scheme in real molecular magnetic
systems, we next turned to a more realistic model of two
MSQs. This model included the uniaxial magnetic anisotropy
and Heisenberg-like exchange effects typical of molecular

0.0
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m
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+
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ΔE/t
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m
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FIG. 8. Maxima of (a) T+ and (b) p2 for real molecular magnetic
systems. Tight-binding parameters are N = 2, t = 100 meV, and J =
−0.5 meV throughout. Green square shows a MnPc with s = 3/2,
D = −0.99 meV, and Jx

12 = Jz
12 = −0.77 meV [35]. Red diamond

shows a Mn(III) dimer with s = 4, D = −0.08 meV, and Jx
12 = Jz

12 =
−0.53 meV [36]. Cyan star shows a Mn4 dimer, with s = 9/2, D =
−0.06 meV, and Jx

12 = Jz
12 = 0.009 meV [37]. Gray plus shows an

Mn3 dimer, with s = 6, D = −0.03 meV, and Jx
12 = Jy

12 = −0.006
meV [34].

magnetic systems, but control of the degree of entanglement
was still possible. We explored the dependence of p2 on s,
the spin of the MSQs, and �E , the energy splitting. Figure 7
shows that, in the N = 2, t = 100 meV, and J = −0.5 meV
scenario we examined, systems with s � 3/2 and |�E | 	
1 meV are best suited for our control scheme. More generally,
systems with |�E/J| 	 1 are desirable. If such systems can-
not be found, they could be engineered thanks to the chemical
tunability of molecular QIP platforms. DFT has shown that
charge doping [38] or the addition of symmetry-breaking lig-
ands [39] can lower the magnitude of the magnetic anisotropy
of single molecule magnets (SMMs), which would in turn
decrease |�E | according to Eq. (41). Alternatively, one can
use external experimental parameters to tune �E , e.g., with
applied magnetic fields or through the dependence of Jx

12 on
external pressure [34].

With this in mind, we now discuss several candidate molec-
ular magnetic systems for implementing our scheme by which
the DAE controls the degree of entanglement. We first recall
that the setup we have in mind involves a molecular system
laterally coupled to a conducting region which is long and
narrow along the ẑ axis (e.g., a SWCNT as in Fig. 1 of
Ref. [23]) with the MSQs spatially separated along the ẑ axis
as shown in Fig. 2. A dimer of two identical SMMs held
together by a linker naturally fits this setup because it can be
placed onto the SWCNT with the intermolecular axis parallel
to the ẑ axis. Some examples are an s = 4 Mn(III) dimer [36],
an s = 9/2 Mn4 dimer [37], and an s = 6 Mn3 dimer [34]. All
have the requisite symmetries of Eq. (39) with D1 = D2 and
|�E | of order 0.1 meV as desired. However, as shown in Fig. 8
their max(p2) values remain well below the s = 1/2 result due
to their large s values. Our results suggest that much improved

042423-7



BUNKER, HOFFMAN, YU, ZHANG, AND CHENG PHYSICAL REVIEW A 107, 042423 (2023)

p2 could be achieved by a SMM dimer with s � 3/2; however,
no such complexes have come to our attention.

Metal-phthalocyanines (MPc’s) in which organic ligands
surround a central metal ion [35] are another real molecular
system that offers a potential realization of our scheme. MPc’s
are already of interest for QIP applications [31,40]. Isolated
MPc’s are typically planar and could be placed side by side
atop the SWCNT to achieve our desired setup. Choice of the
metal ion allows us to select a lower spin; for example MnPc
has s = 3/2 [35] while VOPc has s = 1/2 [40]. While the
former is hampered by an unusually large energy splitting
of �E = −1.98 meV, the latter has no energy splitting by
virtue of being s = 1/2 and thus appears especially promising
for our scheme by which the DAE controls the degree of
entanglement.

Although we were able to take advantage of the fact that
the Hamiltonian describing the interaction between the DAE
and two spin-s particles conserves mT to encode a MSQ in the
two-level subspace of the (2s + 1)-dimensional eigenspace of
Sz

l , there are limitations to this encoding. Specifically, all four
two-MSQ basis states should be accessible in order for the
MSQs to be fully functional, but conservation of mT causes
|s − 1〉1|s − 1〉2 to be inaccessible. In principle, full function-
ality can still be achieved if each qubit can be manipulated
individually, e.g., with microwaves [41]. However, such ma-
nipulation would also have to incorporate conservation laws
in some way to stay in the two-level subspace of the larger
Hilbert space, which poses an additional challenge.
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APPENDIX A: DERIVATIONS

1. Source vector

The role of Ĝ [Eq. (11)] is to connect the incoming state
[Eq. (17)] to the outgoing states [Eqs. (19) and (20)]. Although
the incoming and outgoing states are boundary conditions in
the mathematical sense, it is important to note that only the
incoming state is chosen by the experimenter. The outgoing
states are determined by the incoming state and the scattering
potential. The source vector [Eq. (18)] encodes the incoming
state, while the outgoing states are encoded by Ĝ itself.

The eigenstates in the left lead are plane waves specified by
Aσ and Bσ , the incoming and reflected particle amplitudes in
state |σ 〉. By working in the basis that diagonalizes ε0, we
ensure these plane waves have well-defined wave numbers
and velocities given by Eqs. (15) and (16). As a result, the

wave function in the left lead takes the general form

|ψ〉 =
0∑

j=−∞

∑
σ

(
Aσ eikσ ja + Bσ e−ikσ ja

)| j〉|σ 〉. (A1)

We could obtain a boundary condition at site j = 0 directly
from Eq. (A1), but it would not properly distinguish the
incoming state from the reflected state. Instead, we can use
the Schrödinger equation to define a source vector as follows.

Applying Eq. (1) to Eq. (12) yields the Schrödinger equa-
tion at j = 1:

(EI − ε0)ψ0 + tψ1 + tψ−1 = 0 (A2)

where E is the total energy of the system. Assuming that the
hopping is spin independent, t is diagonal. Since we already
diagonalized ε0, Eq. (A2) simplifies to

(E − ε0σσ )ψ0σ + t (ψ1σ + ψ−1σ ) = 0. (A3)

From Eq. (A1), we have ψ−1σ = Aσ e−ikσ a + Bσ eikσ a and
ψ0σ = Aσ + Bσ . With these substitutions, Eq. (A3) can be
written as

Eψ0σ−(
ε0σσψ0σ − tψ1σ − teikσ aψ0σ

) = Aσ t
(
eikσ a − e−ikσ a

)
.

(A4)

Following Ref. [42], Eq. (A4) can be rewritten by defining
on the left-hand side a retarded self-energy

�Lσσ = − teikσ a (A5)

= − t

⎡
⎣E − ε0σσ

−2t
+

√(
E − ε0σσ

−2t

)2

− 1

⎤
⎦,

and on the right-hand side, using Eq. (16), a source vector

Q0σ = Aσ t
(
eikσ a − e−ikσ a

)
= 2iAσ t sin(kσ a) = ih̄

a
Aσvσ . (A6)

Equations (A5) and (A6) recover Eqs. (8) and (18), respec-
tively. Substituting them yields the Schrödinger equation with
an effective Hamiltonian and a source term,

Eψ0σ −[(ε0σσ − �Lσσ )ψ0σ − tψ1σ ] = Q0σ , (A7)

so that as usual the Green’s function, which solves the
Schrödinger equation with an identity source, can be convo-
luted with the source term to solve Eq. (A7).

2. Transmission and reflection coefficients

Enforcing continuity of Eq. (12) with Eqs. (17) and (19) at
j = 0 and with Eq. (20) at j = N + 1 leads to the boundary
conditions

ψ0,σ = Aσ + Bσ , (A8)

ψN+1,σ = Cσ eikσ (N+1)a. (A9)

We can match the coefficients of each spin state individually
because j = 0 and N + 1 are in the leads, where there are no
interactions to couple different spin states.

The transmission (reflection) coefficients can now be cal-
culated from the ratio of transmitted (reflected) flux to
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incoming flux. The incoming flux is
∑

σ ′ Aσ ′Aσ ′vσ ′ while
the transmitted flux in spin state |σ 〉 is |Cσ |2vσ . Inserting
Eqs. (13), (18), and (A9), we have

Tσ = |Cσ |2vσ∑
σ ′ Aσ ′Aσ ′vσ ′

=
∣∣ ih̄

a

∑
σ ′′ GN+1,0,σ,σ ′′Aσ ′′vσ ′′

∣∣2
vσ∑

σ ′ Aσ ′Aσ ′vσ ′
(A10)

= h̄2

a2
|GN+1,0,σ,i|2vσvi. (A11)

Note that Eq. (A10) is general while Eq. (A11) is for the
case of a single incoming spin state, Aσ = Aδσ i. Similarly, the
reflected flux in spin state |σ 〉 is |Bσ |2vσ , so using Eqs. (13),
(18), and (A8), we have

Rσ = |Bσ |2vσ∑
σ ′ Aσ ′Aσ ′vσ ′

=
∣∣ ih̄

a

∑
σ ′ G0,0,σ,σ ′′Aσ ′′vσ ′′ − Aσ

∣∣2
vσ∑

σ ′ Aσ ′Aσ ′vσ ′
(A12)

=
∣∣∣∣ ih̄

a
G0,0,σ,ivi − δσ i

∣∣∣∣
2
vσ

vi
. (A13)

Again, Eq. (A13) is for a single incoming spin state.

APPENDIX B: SPIN-DEPENDENT SCATTERING

As a simple example of a spin-dependent scattering prob-
lem, consider the DAE impinging on a scattering region
containing a single spin-s particle. When the DAE is in the
scattering region, its spin can interact with the spin of the
spin-s particle. Reference [19] treats this problem for the case
s = 1/2 using the continuum Hamiltonian Hc = Ki,c + εc.
Here the subscript c specifies the continuum case, Ki,c is
the incoming kinetic energy of the DAE, and the continuum
scattering potential is

εc = Jac

h̄2 Se · S1δ(x). (B1)

Note that the interaction strength J has units of energy and
ac is a length scale that will equal the site spacing in the
tight-binding case. The incoming kinetic energy of the DAE is
given not by the tight-binding dispersion [Eq. (14)] but rather
the continuum dispersion

Ki,c = h̄2k2
i

2me
= tck2

i a2
c (B2)

where ki is its incoming wave number, me is its mass, and
tc ≡ h̄2/2mea2

c is an energy scale that will equal the hopping
amplitude in the tight-binding case. Reference [19] finds that
the transmission coefficient for the spin-flip scattering process
|↓〉e|↑〉1 → |↑〉e|↓〉1 is

Tf ,c = J2
0

1 + 5
2 J2

0 + 9
16 J4

0

(B3)

where the dimensionless parameter J0 ≡ √
2sJ/4tckiac. Like-

wise, the transmission coefficient for a no-spin-flip scattering

process |↓〉e|↑〉1 → |↓〉e|↑〉1 is

Tnf,c = 1 + 1
4 J2

0

1 + 5
2 J2

0 + 9
16 J4

0

. (B4)

We now show that the tight-binding Green’s-function solu-
tion we developed in Sec. II replicates the continuum solution,
i.e., Eqs. (B3) and (B4). We then focus on two special cases
that were not addressed by the continuum solution, but that
our tight-binding solution can handle: inelastic scattering and
an interaction with spatial degrees of freedom.

1. Replication of the continuum solution
for a contact interaction

We now consider a tight-binding system with site spac-
ing a = ac and hopping amplitude t = tc. The first task for
replicating the continuum solution is to approximate the con-
tinuum dispersion, Eq. (B2). For kia 	 1, our tight-binding
dispersion, Eq. (14), can be written

Ki = 2t − 2t
[
1 − 1

2 k2
i a2 + O

(
k4

i a4)]
= tk2

i a2 + O
(
k4

i a4
)
. (B5)

In other words, our tight-binding dispersion is a good ap-
proximation of the continuum dispersion in the case kia 	 1.
Our baseline expectation is that our results will be a good
approximation for kia � 0.1 corresponding to Ki/t � 0.01.

The second task for replicating the continuum solution is
to approximate the continuum scattering potential, Eq. (B1).
This potential specifies a contact interaction in the sense that
the DAE only interacts with the spin-1/2 particle when they
are at the same point in space. We will approximate this
scattering potential by specifying the ε j operators ε j [which
determine the Hamiltonian according to Eq. (10)] as

ε j = J

h̄2 Se · S1δ j1. (B6)

When comparing Eq. (B6) to Eq. (B1), the question to con-
sider is whether the discrete spatial interval a approximates
the single continuous point x = 0. If the DAE’s incoming
wavelength 2π/ki is much larger than the spatial interval a,
than the DAE should not be sensitive to whether the space
is discretized or not. This amounts to kia 	 2π which is
included in the limit kia 	 1 already adopted to replicate the
continuum dispersion. We conclude that in the case kia 	 1
our tight-binding transmission coefficients, calculated using
Eq. (A11), should replicate Eqs. (B3) and (B4). To verify this
using Eq. (B6), it is convenient to introduce the identity

Se · S1 = Sz
eSz

1 + 1
2 (S+

e S−
1 + S−

e S+
1 )

where the raising and lowering operators S±
l act on the

eigenbasis of a spin-1/2 particle according to S+
l |↑〉l = 0,

S+
l |↓〉l = h̄|↑〉l , S−

l |↑〉l = h̄|↓〉l , and S−
l |↓〉l = 0. As a result,

we can write out the action of Eq. (B6) in the two-particle spin
space:

ε j = J

4
δ j1

⎛
⎜⎜⎝

1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

⎞
⎟⎟⎠

|↑〉e|↑〉1

|↑〉e|↓〉1

|↓〉e|↑〉1

|↓〉e|↓〉1

. (B7)
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FIG. 9. (a) Spin-flip transmission probability from our tight-
binding result and (b) its relative error. (b) No spin-flip transmission
probability from our tight-binding result and (d) its relative error.
Tight-binding parameters are N = 1 and t = 1.0 while the inter-
action strength J is given by (black circles) J/t = −0.005, (blue
triangles) J/t = −0.05, (green squares) J/t = −0.5, and (red dia-
monds) J/t = −5.0.

Using Eq. (B7), our tight-binding solution yields transmis-
sion coefficients that replicate the continuum results when
Ki/t 	 1, as shown in Fig. 9. The relative error on our results
is less than 0.01 below the Ki/t = 0.01 threshold, as seen
in Figs. 9(b) and 9(d). Note that increasing the value of J
impacts neither this threshold nor the amplitude of the Tf

peaks. However, J does increase both the kinetic energy at
which those peaks occur and the Ki/t value at which Tn f → 1.

2. Inelastic scattering

Our system of interest involves spin degrees of freedom
which may absorb energy during the scattering. As a result,
the incoming and outgoing wave numbers [Eq. (15)] are spin
dependent, so inelastic scattering is possible. In this simple
example system, inelastic scattering can be accomplished by
a Zeeman term on the spin-1/2 particle. This corresponds to
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FIG. 10. (a) Spin-flip transmission probability from (solid) our
tight-binding result and (dashed) the continuum result Tf ,c. (b) No
spin-flip transmission probability from (solid) our tight-binding
result and (dashed) the continuum result Tn f ,c. Tight-binding pa-
rameters are N = 1, t = 1.0, and �/t = 0.001 while the interaction
strength J is given by (black circles) J/t = −0.005, (blue triangles)
J/t = −0.05, (green squares) J/t = −0.5, and (red diamonds) J/t =
−5.0.

adding to Eq. (B7) the Zeeman operator

�

h̄

(
Sz

1 + 1

2

)
= �

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠

|↑〉e|↑〉1

|↑〉e|↓〉1

|↓〉e|↑〉1

|↓〉e|↓〉1

. (B8)

As shown in Fig. 10, the result is that Tf is forbidden when
Ki < �, suddenly turns on at Ki = �, and returns to the � =
0 continuum result when � 	 Ki 	 t , before finally starting
to diverge from the continuum result again when Ki → t .

3. Physical origin of the Kondo-like interaction

Our solution specifies the reflection and transmission co-
efficients [Eqs. (A11) and (A13)] in terms of the retarded
Green’s function [Eq. (11)]. As formulated, the σ indices
encode many-body spin degrees of freedom. However, these
indices could be used to represent many-body quantum num-
bers besides spin, so our approach is generally applicable to
interacting Hamiltonians. As an example, consider the Ander-
son model, which describes the Coulomb interaction between
a conduction band electron and an electron in a localized or-
bital [29]. The Anderson model describes the physical origin
of the Kondo-like interaction we have used throughout be-
cause a Schrieffer-Wolff transformation of this model allows
the electrons to interact via their spins rather than their charges
[29].

Consider a scattering region of size N = 2 containing two
sites j = 1, 2 with hopping th between them. A single electron
occupying site j has energy ε j and two electrons occupying
site j experience Coulomb repulsion Uj . For a system of two
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FIG. 11. (a) Spin-flip transmission probability from (solid) our
tight-binding result and (dashed) the continuum result Tf ,c. (b) No
spin-flip transmission probability from (solid) our tight-binding
result and (dashed) the continuum result Tn f ,c. Tight-binding pa-
rameters are N = 1, t = th = 1.0, U1 = 0.0, U2 = 100.0. Using the
prefactor of Eq. (B10) we set (black circles) ε = 156.2, J/t =
−0.005; (blue triangles) ε = 30.6, J/t = −0.05; (green squares)
ε = 3.9, J/t = −0.5; and (red diamonds) ε = −0.4, J/t = −5.0.

antiparallel electrons, the Anderson Hamiltonian is [30]

HA = εÎ +

⎛
⎜⎜⎝

U1 − ε −th th 0
−th 0 0 −th
th 0 0 th
0 −th th U2 + ε

⎞
⎟⎟⎠

|↑↓〉1| 〉2

|↑〉1|↓〉2

|↓〉1|↑〉2

| 〉1|↑↓〉2

, (B9)

where ε ≡ ε2 − ε1. Care must be taken before inserting
Eq. (B9) directly into the Hamiltonian [Eq. (10)] because
the “spin” basis |σ 〉 = {|↑↓〉1|〉2, |↑〉1|↓〉2, |↓〉2|↑〉2, |〉1|↑↓〉2}
also contains spatial degrees of freedom in the doubly occu-
pied states. We plainly cannot “transmit” the state |↑↓〉1|〉2.

The first way around this is to interpret the system as a
one-dimensional chain of sites j = . . . , 0, 1, 3, . . . where the
site j = 1 is coupled to an off-chain site j = 2 which together
form the scattering region. Both electrons can move freely in
the scattering region, but only one electron can continue into
the leads. Mathematically, this corresponds to modifying the
hopping matrix t = tI in Eq. (10) to t = diag(0, t, t, 0).

Alternatively, we can ignore the double occupancy states,
which are higher in energy, instead focusing on the

lower-energy subspace {|↑〉1|↓〉2, |↓〉2|↑〉2}. Mathematically,
this is accomplished by a Schrieffer-Wolff transformation
[29], an expansion to second order in the small quantities
th/|U1 − ε| and th/|U2 + ε| [30]. The resulting Schrieffer-
Wolff Hamiltonian is [30]

HSW =
[ −t2

h (U1 + U2)

(U1 − ε)(U2 + ε)

](
1 −1

−1 1

)|↑〉1|↓〉2

|↓〉1|↑〉2

=
[

2t2
h (U1 + U2)

(U1 − ε)(U2 + ε)

](
1

h̄2 S1 · S2 − 1

4
I
)

. (B10)

This is the Kondo-like exchange interaction studied through-
out this paper. The quantity in square brackets gives the
interaction strength J . Note that, for U1 = U2 = 0, J = 0,
revealing that the interaction is rooted in the Coulomb repul-
sion between the two electrons. Contrary to the geometrical
interpretation of Eq. (B9), in Eq. (B10) the spatial degrees of
freedom of the off-chain site j = 2 have been combined with
the spin degrees of freedom of the on-chain site j = 1, i.e., the
system has an effectively one-dimensional geometry.

Our solution allows us to implement either the exact
Anderson Hamiltonian by setting ε j = (HA + J

4 I)δ1 j or the
perturbative Schrieffer-Wolff Hamiltonian by setting ε j =
(HSW + J

4 I)δ1 j , removing the constant energy shift in both
cases to isolate the dot product of spin operators. We took
the latter approach throughout this paper, and benchmarked
it in Fig. 9. In Fig. 11 we benchmark the former approach at
different values of J/t . We specify J/t by setting ε, and this
determines the small quantities th/|U1 − ε| and th/|U2 + ε|.
One of these quantities always increases with increasing J ,
hurting the validity of the Schrieffer-Wolff transformation.
Indeed, in Fig. 11 we see that the breakdown in the agreement
at larger Ki/t is made worse when J/t is larger.

Although the solution to the spin-dependent scattering
problem that we have just demonstrated incorporates first-
principles descriptions of molecular magnetic systems and
accounts for the spatial degrees of freedom of the delocalized
electron, it is not a complete description. First, it would be
interesting to incorporate the full orbital degrees of freedom
in addition to the spin degrees of freedom. As demonstrated
in this Appendix, our solution is capable of this task. Second,
while we have considered only a single delocalized electron,
a full treatment of the leads must recognize the presence of
an entire conduction band, leading to Kondo effects. This
is beyond the scope of our solution, requiring a many-body
description.
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