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Optimized numerical gradient and Hessian estimation for variational quantum algorithms
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Sampling noisy intermediate-scale quantum devices is a fundamental step that converts coherent quantum-
circuit outputs to measurement data for running variational quantum algorithms that utilize gradient and Hessian
methods in cost-function optimization tasks. This step, however, introduces estimation errors in the resulting
gradient or Hessian computations. To minimize these errors, we discuss tunable numerical estimators, which
are the finite difference (including their generalized versions) and scaled parameter-shift estimators [introduced
in Phys. Rev. A 103, 012405 (2021)], and propose operational circuit-averaged methods to optimize them. We
show that these optimized numerical estimators offer estimation errors that drop exponentially with the number
of circuit qubits for a given sampling-copy number, revealing a direct compatibility with the barren-plateau
phenomenon. In particular, there exists a critical sampling-copy number below which an optimized difference
estimator gives a smaller average estimation error in contrast to the standard (analytical) parameter-shift
estimator, which exactly computes gradient and Hessian components. Moreover, this critical number grows
exponentially with the circuit-qubit number. Finally, by forsaking analyticity, we demonstrate that the scaled
parameter-shift estimators beat the standard unscaled ones in estimation accuracy under any situation, with
comparable performances to those of the difference estimators within significant copy-number ranges, and are
the best ones if larger copy numbers are affordable.
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I. INTRODUCTION

With the inception of quantum information theory [1],
quantum computers and devices [2–4] that function accord-
ing to the laws of quantum mechanics have been envisioned
to be the new-age tools for performing computations and
other information processing tasks. The subsequent identifi-
cation of universal gate sets [5–9] motivated many innovative
proposals for quantum-computation and cryptographic al-
gorithms [10–16]. Despite the theoretical progress, there
exist practical challenges that hinder the actual implemen-
tation of truly operational quantum devices. These include
maintaining the fidelities of qubit sources, unitary gates
and measurements [17–19], and coping with the large gate
complexity needed to construct general-purpose quantum
circuits [20].

The state of the art in quantum computing technolo-
gies revolves around devices that manipulate less than 1000
qubits using noisy unitary gates and measurements—the noisy
intermediate-scale quantum (NISQ) devices [21]. These de-
vices motivated the development of several kinds of NISQ
algorithms [22–30], of which the class of variational quantum
algorithms (VQAs) [31–35] that perform computations in a
hybrid manner using both classical and NISQ devices, most
commonly discussed in the context of variational quantum
eigensolvers designed for quantum-chemistry [36–38] and
combinatorial problems [39,40], are of relatively broad inter-
est. In the field of quantum machine learning, VQAs running
on circuits that also possess classical-data encodings have also
been extensively studied. These include algorithms for classi-
fication tasks, nonlinear activation-function implementations,
and multivariate function learning tasks [41–47].

Cost-function optimization with VQAs typically requires
the statistical sampling of NISQ devices to estimate the gra-
dient and Hessian of the quantum-circuit model function,
which are necessary in, for example, steepest gradient-
descent [48–51] and quantum natural gradient-descent meth-
ods [52–56]. Sampling NISQ devices inherently comes with
errors originating from statistical fluctuation in the quantum-
circuit measurements, which is especially relevant to NISQ
devices as currently achievable noise levels forbid arbitrar-
ily large error-mitigated measurement-data collection within
reasonable algorithm run times. While the severity of this
problem has indeed been raised [34,57] and asymptotic er-
ror bounds for sampling the Fisher information in quantum
natural gradient methods were derived [58], more precise
error expressions in estimating multiparameter gradients and
Hessians on NISQ devices are necessary for developing novel
methods that are statistically optimized for VQA executions.

In this paper, we examine the estimation accuracies of
known methods used to estimate circuit-function gradients
and Hessians, namely the (generalized) finite-difference strat-
egy and (scaled) parameter-shift rule [59–61]. All of these
methods are numerical except for the unscaled parameter-shift
rule, which is analytical: the former approximates gradients
and Hessians with a nonzero approximation error, and the
latter exactly computes them. We present operational analyt-
ical expressions for the averaged estimation errors associated
with these two kinds of strategies. All expressions are cir-
cuit averaged in contrast to those reported in Ref. [61],
for instance, which permits the introduction of operationally
tunable numerical estimators possessing parameters that can
be optimally tuned to minimize NISQ estimation errors.
These optimal estimators are designed for a broad class of
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hardware-efficient quantum circuits that approximate two-
design unitary operators, such as the multilayered ansatz
comprising single-qubit and controlled-NOT (CNOT) gates, for
which these estimators minimize estimation errors in the ini-
tial stages of cost minimization.

A key observation is that for a given sampling-copy num-
ber, the minimized average estimation errors of all numerical
estimators scale commensurately with the average gradient-
and Hessian-component magnitudes, which in turn drop expo-
nentially with the number of circuit qubits. Without increasing
measurement resources, these desirable scaling behaviors pre-
vent the optimally tuned estimators from effectively making
random guesses about the estimated components even in the
presence of the barren-plateau phenomenon [62–65]. Owing
to this characteristic, we show that these optimal numerical
estimators can outperform those produced by the analytical
parameter-shift rule, which does not possess such a char-
acteristic. One striking consequence is that all regimes of
sampling-copy numbers in which the optimal (generalized)
finite-difference strategies beat the analytical strategy grow
exponentially with the circuit-qubit number.

Last, but not the least, we demonstrate that when one
forgoes analyticity and, instead, employ the scaled parameter-
shift rule [61], which is yet another numerical strategy, we
find that its estimation accuracy is comparable to those of the
numerical difference strategies in orders of magnitude for a
certain range of sampling-copy numbers. Beyond this range,
the scaled parameter-shift rule exhibits the most favorable
estimation accuracy. This further confirms that numerical es-
timation schemes are better suited for improving gradient and
Hessian estimation accuracies as one scales up NISQ devices.

II. BACKGROUND: VARIATIONAL QUANTUM
ALGORITHMS

An especially important and widely studied computation
task is function minimization. In various interdisciplinary ap-
plications that are related to quantum mechanics and quantum
information, the cost function C = C[〈Hj〉] to be minimized
is a (real) functional of expectation values of an (Hermitian)
operator set {Hj}. The expectation 〈Hj〉 = tr{ρHj} is itself a
function of a variable state ρ that is optimized in order to attain
the minimum value of C. An immediate problem with the
minimization task is the difficulty in evaluating expectation
values of operators describing large physical systems, such as
multiqubit systems considered in Fig. 1(a), using a classical
computer.

In the NISQ era when fully quantum algorithms are out of
reach, VQAs are the next viable class of quantum-classical
hybrid algorithms for efficient cost-function minimization
[see Fig. 1(b)]. It makes use of a quantum device, a uni-
tary circuit for instance, to efficiently collect sampled data
of expectation values. These data are then transferred to a
classical computer that performs an iterative update on the
current quantum-circuit parameters using a prechosen opti-
mization scheme, which are then used to tune the quantum
device for another round of sampling. The action of quantum-
circuit tuning is also widely termed quantum-circuit training,
borrowing terminologies from machine learning. The entire
iterative VQA terminates after the cost function C is mini-
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FIG. 1. (a) Classical computation of 〈O〉 on an AMD Ryzen 9
5900HX CPU. For every n, the computation time is averaged over
1000 expectation-value calculations from randomly chosen n-qubit
Hermitian operators O and pure states. Owing to memory limitations,
a combination of actual computation-time data for observables up
to n = 14 followed by a fitted extrapolation to n = 50 shows that
the average computation time with randomly generated pure states
grows exponentially with n. (b) Schematic of a VQA for minimizing
a cost function C = C[ fQ], which is generally a functional of another
parametrized function fQ = fQ(θ; x). Data collected from sampling
a NISQ circuit that models fQ using a series of parametrized
training [Wl (θl )] and classically encoded [Vl (x)] modules are fed to
a classical machine, where the model function fQ and its gradient
∂μ,l fQ (and Hessian ∂μ,l∂μ′,l ′ fQ if necessary) are estimated for car-
rying out a prechosen optimization scheme in an iterative fashion.
Here, the pair (μ, l ) labels the μth trainable circuit parameter θμl

located in the lth trainable module Wl . In each step, the updated
circuit parameters using the estimated quantities are used to tune the
training modules Wl (θl ) in the NISQ circuit for subsequent sampling
and classical optimization.

mized. An arbitrary quantum circuit of the NISQ device used
to run the VQA is a sequence of training [Wl (θl )] and classi-
cally encoded [Vl (x)] unitary operators, where θl are trainable
parameters and x are nontrainable ones.

The unitary operator Uθ;x ≡ ∏1
l=L Vl (x)Wl (θl ) of a finite

depth L represents the most general quantum-circuit model
for all VQA applications; here, θ and x are shorthand for the
respective complete sets of parameters. If the fixed initial pure
product state |0〉〈0| = (|0〉〈0|)⊗n is prepared, the relevant cost
function C = C[ fQ(θ; x)] is then defined in terms of the circuit
model function

fQ(θ; x) = 〈0|U †
θ;xOUθ;x|0〉 (1)

and measurement observable O. As specific examples of
VQAs, in variational quantum eigensolver (VQE) prob-
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FIG. 2. Examples of hardware-efficient setups for trainable uni-
tary operators Wl (with two repeated units) and those of fixed
encodings Vl , shown here for a four-qubit system with θl =
(θ1l θ2l . . . θ24l )� and x = (x1 . . . x4)�. Each single-qubit green
block in Wl represents a rotation operator defined by an angle three-
tuple φ. For instance, R(φ = (θ1l , θ2l , θ3l )) = RZ (θ1l )RY (θ2l )RZ (θ3l ).
The operator Vl may also take similar structures, where x is encoded
into entanglement-free unitary operators characterized by their re-
spective generators Hkl along with CNOT gates.

lems [36–38] and quantum approximate optimization algo-
rithms (QAOA) [39,40], only trainable operators Wl (θl ) are
used to minimize the linear cost function C = 〈0|U †

θ
HUθ|0〉,

where O = H is a Hamilton operator that either describes the
dynamics of a physical system, or corresponds to a combina-
torial problem. In quantum machine learning tasks [41–47],
a VQA is employed, for instance, to train the quantum
circuit defined by Uθ;x to learn a particular multivariate
function mapping f (x) for different classical-data encoding
parameters x. Given m of these parameters {x j}m

j=1, the
quality of the learning procedure is defined by more sophis-
ticated cost functions such as the mean-squared error C =∑m

j=1[ fQ(θ; x j ) − f (x j )]2/m.
Gradient-based (and Hessian-based) optimization routines

in VQAs would then rely on the computation accuracies
of fQ, ∂μ,l fQ and ∂μ,l∂μ′,l ′ fQ, with all arguments dropped
from hereon for notational simplicity unless otherwise nec-
essary. The estimations of gradient ∂μ,l fQ and Hessian
components ∂μ,l∂μ′,l ′ fQ require the specifications of actual
physical ansatz structures that make up the Wl and Vl oper-
ators. A very common type of parametrized quantum-circuit
multiqubit Ansätze encode training parameters θ on single-
qubit rotation unitary operators that are easy to manipulate.
They consist of alternating layers of single-qubit rotation and
CNOT gates [1,66–68], examples of which are illustrated in
Fig. 2. In general, we may further decompose any single-qubit
rotation gate R(φ) defined by the trivariate angular param-
eter φ = (φ1 φ2 φ3)�, R(φ) = RZ (φ1)RY (φ2)RZ (φ3), into a
sequence of rotations about the Y and Z axes, so that each
basic Pauli rotation gate Rj (φ j ) = e−iφ jσ j/2 is attributed to
the relevant single-qubit Pauli operator σ j of the jth axis.

To set the stage for analyzing gradient and Hessian es-
timations, we will consider the following hardware-efficient
scenario:

(1) We focus on Pauli-encoded parametrized quantum cir-
cuits (PEPQCs). Such a circuit comprises an arbitrary chain
of trainable (Wl ) and nontrainable (Vl ) encoding modules as
shown in Fig. 1, where all trainable parameters θ in Wl are
encoded onto Pauli rotation operators that constitute single-
qubit rotation gates, and CNOT gates will be used to generate
entanglement between all qubits (as in Fig. 2). These circuits
are widely employed in common VQAs (such as quantum
eigensolvers and quantum machine learning) and other quan-
tum tasks [66–71].

(2) The structures of Vl that house the nontrainable param-
eters x can be arbitrary.

(3) With no loss of generality, the measurement observ-
able is some traceless Hermitian operator O = ∑

k hkOk/‖h‖
written in terms of the multiqubit Pauli basis operators Ok .
Any Hermitian operator is then O displaced by a multiple of
the identity up to normalization. We will assume that each
Ok is sampled independently for the same set of PEPQC
parameters.

We note that the set of Wls, of circuit depths polynomial in
the number of qubits n, consisting of randomized single-qubit
rotation and CNOT gates, are also approximately two-design
circuits [72]; that is, the operator moments 〈Wl〉 and 〈W ⊗2

l 〉
are approximately those from the Haar measure [73] over the
U(2n) group.

III. FIGURE OF MERIT: MEAN-SQUARED ERROR

Throughout the paper, separate notations for averages of
different kinds are adopted to avoid confusion when several
kinds appear at the same time. Averages over (unitary) op-
erator spaces are denoted by the angled parentheses 〈 · · · 〉,
which, for instance, could mean averages according to the
Haar measure. Numerical or vectorial averages over NISQ-
sampling distributions will be denoted by E[ · · · ]. Those over
the nontrainable parameters x are denoted by · · · .

To explicitly quantify errors for estimating the
model function fQ, its gradient (∂μ,l fQ) and Hessian
components (∂μ,l∂μ′,l ′ fQ) in any gradient- or Hessian-based
methods, we will examine the mean-squared error (MSE)

D(Y ) = 〈E[(Ŷ − Y )2]〉, (2)

where Ŷ is some generic estimator of the true component Y ,
which can refer to either the quantum-circuit function, its
gradient or Hessian component, obtained from sampling the
NISQ device. As we will soon realize, estimators of the latter
two can be computed from direct sampling of quantum-circuit
functions [defined in Eq. (1)] evaluated at various translated
circuit parameters.

For VQAs running on (d = 2n)-dimensional circuits,
measurements of the circuit observable O = ∑

k hkOk/‖h‖
are performed independently with respect to the individual
Pauli components Ok (see, for instance, Ref. [36]). Using
the spectral decomposition of the Pauli observable Ok =∑d−1

l=0 |okl〉okl〈okl |, sampling the individual function compo-
nents

fQ,k (θ; x) =
d−1∑
l=0

okl |〈okl |Uθ;x|0〉|2 ≡
d−1∑
l=0

okl pkl (θ; x) (3)
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of fQ = ∑
k hk fQ,k/‖h‖ is equivalent to sampling the circuit

probabilities
∑d−1

l=0 pkl (θ; x) = 1, where the eigenvalues okl =
±1. Since Ŷ − Y = ∑

k hk (Ŷk − Yk )/‖h‖, it can be deduced
easily, as a result of independence sampling with the Oks, that
D(Y ) = ∑

k h2
k D(Yk )/‖h‖2 if the estimators Ŷks are unbiased

(E[Ŷk] = Yk).
A usual physical circumstance when sampling a circuit

function defined by the measurement observable Ok is when
detectors measuring the probabilities pkl (θ; x) register clicks
at different detection sites l one at a time in a randomized
sequence, where each click is statistically independent from
the rest, so that a total of N clicks are registered. The result-
ing sampling distribution is multinomial, where the relative
frequencies νkl (θ; x) = nkl (θ; x)/N → pkl (θ; x) correspond-
ing to the number of clicks nkl (θ; x) registered at the lth
detector, with N = ∑d−1

l=0 nkl (θ; x). Thus, the average accu-
racy in estimating fQ using the unbiased estimator

f̂Q =
∑

k

hk

‖h‖ f̂Q,k =
∑

k

hk

‖h‖
d−1∑
l=0

okl νkl (4)

is quantified by the MSE.
We caution the reader that the MSEs involve circuit aver-

ages of gradient and Hessian components that are generally
nontrivial to evaluate. As the present discussion hinges on
the two-design approximative PEPQC ansatz, explicit MSE
expressions are only available when trainable circuits are
sufficiently deep for two-design modules to exist. It could
very well be that a gradient operation separates a two-design
module into two subcircuits, each of which may or may not
be deep enough to be a two-design. In most cases, only MSE
upper bounds are calculable. While explicit details on how
circuit averaging is carried out are supplied in Appendix A 3,
we simply state that throughout the main text, unless other-
wise stated, all analytical MSE expressions will refer to the
so-called two-design sandwich (TDS) condition (Case I in
Fig. 7), where every gradient operation is sandwiched between
two two-design trainable modules. Upper-bound expressions
for all other cases are obtained from Table I in Appendix B,
and also Appendix C.

IV. RESULTS: SAMPLING ERRORS IN GRADIENT AND
HESSIAN ESTIMATIONS

A. Finite (generalized) difference gradient and Hessian methods

The well-known finite-difference (FD) numerical strat-
egy [75,76] approximates the gradient components ∂μ,l fQ,k

for each observable basis operator Ok according to

[∂FD]εμ,l fQ,k = fQ,k (θμl + ε/2; x) − fQ,k (θμl − ε/2; x)

ε

= sinc(ε/2) ∂μl fQ,k (5)

by sampling the two quantum-circuit functions fQ,k (θμl +
ε/2; x) and fQ,k (θμl − ε/2; x), each with trainable parame-
ters displaced by equal magnitudes of ε/2 for some ε > 0.
The second equality originates from the usage of Eq. (A7).
This particular form approximates ∂μ,l fQ,k up to O(ε2)
since sinc(ε/2) ∼= 1 − ε2/24 for a small ε. As a conse-
quence of Eq. (A7) as well, the Hessian approximator for
∂μ,l∂μ′,l ′ fQ,k , defined by applying a second operation [∂FD]εμ′,l ′

on [∂FD]εμ,l fQ,k in (5), reads

[∂FD]εμ,l [∂FD]εμ′,l ′ fQ,k

= [sinc(ε/2)]2∂μ,l∂μ′,l ′ fQ,k

= fQ
(
θμl + ε

2 , θμ′l ′ + ε
2 ; x

) − fQ
(
θμl + ε

2 , θμ′l ′ − ε
2 ; x

)
ε2

− fQ
(
θμl − ε

2 , θμ′l ′ + ε
2 ; x

) − fQ
(
θμl − ε

2 , θμ′l ′ − ε
2 ; x

)
ε2

.

(6)

The corresponding function estimators that enter ̂[∂FD]ε
μ,l fQ,k

and ̂[∂FD]ε
μ,l [∂FD]ε

μ′,l ′ fQ,k take the form stated in Eq. (4). Thus,
three independent function expectation values are measured
for estimating each diagonal (μ = μ′ and l = l ′) Hessian
approximator component, and four independent function ex-
pectation values are measured for each off-diagonal (μ �= μ′
and/or l �= l ′) component.

The nonzero-ε gradient and Hessian approximators of
the FD strategy, collectively denoted by Ŷk,ε = ̂[∂FD]ε

μ,l fQ,k,

̂[∂FD]ε
μ,l [∂FD]ε

μ′,l ′ fQ,k , incur errors from both finite-copy sam-
pling and nonzero-ε approximation. The corresponding MSE
is hence decomposable into these two error types:

D(Y ) = 〈E[(Ŷk,ε − Yk )2]〉
= 〈E[(Ŷk,ε − Yk,ε )2]〉︸ ︷︷ ︸

finite-copy error

+〈(Yk,ε − Yk )2〉︸ ︷︷ ︸
approx. error

≡ 	2
copy(Yk,ε ) + 	2

ε (Yk ), (7)

where 	2
ε=0(Yk ) = 0, since Yk,ε=0 = Yk = ∂μ,l fQ,k,

∂μ,l∂μ′,l ′ fQ,k according to the definitions in (5) and (6).
The finite-copy error 	2

copy for the gradient and Hessian FD
estimators can be directly calculated using (C3) and (C4)
as it only involves linear combinations of squared circuit
functions. The nonzero-ε approximation error 	2

ε , on the

other hand, requires the evaluation of 〈(∂μ,l fQ,k )
2〉 and

〈(∂μ,l∂μ′,l ′ fQ,k )
2〉 over random circuit parameters.

With that said, by defining the total number of
copies NT distributed equally to all sampled quantum-circuit
functions for one FD approximator per circuit-observable
basis operator (that is, NT = 2N for ̂[∂FD]ε

μ,l fQ,k , and NT =
3N and 4N , respectively, for the diagonal and off-diagonal

̂[∂FD]ε
μ,l [∂FD]ε

μ′,l ′ fQ,k components), we list the MSE formulas
for estimating gradient and Hessian components using the
FD strategy that is applicable to any PEPQC under the TDS
condition:

DFD(∂ fQ) =

finite-copy error︷ ︸︸ ︷
4d

NT(d + 1)ε2
+

approx. error︷ ︸︸ ︷
d2[1 − sinc(ε/2)]2

2(d + 1)(d2 − 1)
,

DFD(∂∂ fQ) = 18d

NT(d + 1)ε4
+ d2{1 − [sinc(ε/2)]2}2

2(d + 1)(d2 − 1)
,

(diagonal Hessian components)

DFD(∂∂ ′ fQ) = 16d

NT(d + 1)ε4
+ d4{1 − [sinc(ε/2)]2}2

4(d + 1)(d2 − 1)2
.

(off-diagonal Hessian components) (8)
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For optimal estimation of each kind of components using
either (5) or (6), the value of ε is therefore chosen such that it
minimizes the corresponding operational DFD in (8).

We may also consider a type of generalized differ-
ence (GD) estimation strategy [77] where the corresponding
nonzero-ε gradient and Hessian approximators,

[∂GD]J,ε
μ,l fQ,k ≡

J∑
j=1

c j[∂FD] jε
μ,l fQ,k, (9)

[∂∂ ′
GD]J,ε

μ,l;μ′,l ′ fQ,k ≡
J∑

j=1

c j[∂FD] jε
μ,l [∂FD] jε

μ′,l ′ fQ,k, (10)

are weighted sums of FD approximators of integer multiples
of the step size ε, which become the true gradient and Hessian
components when ε = 0 under the normalization constraint∑J

j=1 c j = c�1 = 1 for the coefficient column c, where 1 is
the J-dimensional column of ones. This strategy estimates
each GDgrad, diagonal and off-diagonal GDHess component
by, respectively, sampling 2J , 2J + 1, and 4J function expec-
tation values, consistent with the number of measurements
needed when J = 1. The forms of their MSE expressions
under the TDS condition are rather technical and are instead
given in Appendix A 4.

B. Parameter-shift rule

Both the FD and GD numerical strategies can in general be
applied to approximate gradients and Hessians of any function
that is not restricted to those originating from PEPQCs. A
common criticism against these strategies is that the FD and
GD approximators require extremely small ε to achieve good
approximation qualities. For PEPQCs, using the identity in
Eq. (A7), it is indeed easy to verify that, for any s � 0,

∂μ,l fQ = [∂PS]μ,l fQ = fQ(θμl + s; x) − fQ(θμl − s; x)

2 sin s
, (11)

∂μ,l∂μ′,l ′ fQ

= [∂PS]μ,l [∂PS]μ′,l ′ fQ

= fQ(θμl + s, θμ′l ′ + s; x) − fQ(θμl + s, θμ′l ′ − s; x)

4(sin s)2

− fQ(θμl − s, θμ′l ′ + s; x) − fQ(θμl − s, θμ′l ′ − s; x)

4(sin s)2
.

(12)

That there exist exact gradient and Hessian expressions for
PEPQCs via simple training-parameter translations prompted
the term parameter-shift rule (PS) [59–61]. The corresponding
MSEs are therefore just finite-copy errors given by

DPS(∂ fQ) = d

NT(d + 1)(sin s)2
� d

NT(d + 1)
,

DPS(∂∂ fQ) = 9d

8NT(d + 1)(sin s)4
� 9d

8NT(d + 1)
,

(diagonal Hessian components)

DPS(∂∂ ′ fQ) = d

NT(d + 1)(sin s)4
� d

NT(d + 1)
.

(off-diagonal Hessian components) (13)

These MSEs are minimized when s = π/2, which is the stan-
dard shift value that we will consider for these analytical
estimators.

The analytical PS strategy is now widely accepted as the
go-to approach for estimating gradient and Hessian compo-
nents. An attractive feature is the absence of approximation
errors (	2

ε = 0), unlike FD or GD methods. Because of this, it
is a belief that FD, for instance, which requires small ε values,
would necessitate a large NT in order to achieve comparable
estimation errors. On the contrary, in Secs. V and VI, we
show that there exist exponentially growing sampling regimes
where optimally tuned FD and GD strategies can achieve very
small estimation errors and outperform even the standard PS
method.

C. Scaled parameter-shift rule

The standard PS, along with the entire class of parameter-
shift rules, form the analytical strategy that exactly computes
gradients and Hessians for PEPQCs and some other types of
quantum-circuit ansatz. For any particular shift value s, there
is no other free parameter characterizing the PS estimators.

In Ref. [61], the scaled parameter-shift (SPS) estimators
were introduced. These estimators are essentially scaled ver-
sions of the PS estimators, where [∂SPS]μ,l fQ = λ[∂PS]μ,l fQ

and [∂SPS]μ,l [∂SPS]μ′,l ′ fQ = λ[∂PS]μ,l [∂PS]μ′,l ′ fQ are character-
ized by an additional prefactor λ that ranges from zero to
one. For arbitrary shift values of s and prefactor magni-
tudes, one can similarly arrive at the following TDS accuracy
expressions:

DSPS(∂ fQ) =

finite-copy error︷ ︸︸ ︷
dλ2

NT(d + 1)(sin s)2
+

approx. error︷ ︸︸ ︷
d2(1 − λ)2

2(d + 1)(d2 − 1)
,

DSPS(∂∂ fQ) = 9dλ2

8NT(d + 1)(sin s)4
+ d2(1 − λ)2

2(d + 1)(d2 − 1)
,

(diagonal Hessian components)

DSPS(∂∂ ′ fQ) = dλ2

NT(d + 1)(sin s)4
+ d4(1 − λ)2

4(d + 1)(d2 − 1)2
.

(off-diagonal Hessian components)

(14)

It is clear that s = π/2 will optimize all SPS MSEs.
We will see that λ can be easily optimized to further en-
hance estimation accuracies. Notice that the introduction of
these prefactors immediately results in the loss of analyticity,
since these SPS estimators, for all λ < 1, no longer exactly
compute the correct gradient and Hessian components, and
therefore carry approximation errors just like the FD and GD
estimators. The expressions for general cases are found in
Appendix C 5.

V. RESULTS: OPTIMALLY TUNED NUMERICAL
ESTIMATORS

A. Optimal FD estimators

From the results in (8), (A10), (A11), and (13), the first
visual observation is that these formulas are functions of
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only NT, the number of qubits n of the circuit, and ε. The
second observation is that the MSEs are oscillatory functions
of ε by virtue of the unitary encoding. The third observation
has to do with the choice of ε. If one picks very small ε values,
then the finite-copy error 	2

copy dominates as O(1/poly ε). If
one, instead, picks larger ε values, then the approximation
error 	2

ε eventually catches up. The optimal ε = εopt =
εopt (d, NT) minimizes the combination MSE = 	2

copy + 	2
ε .

Computing εopt through minimizing DFD over ε requires
the solutions of transcendental equations that do not generally
admit analytical forms. Numerical optimization methods are
therefore in order. Nevertheless, if [1 − sinc(ε/2)]2 ≈ ε4/576
and {1 − [sinc(ε/2)]2}2 ≈ ε4/144 for small right-hand sides,
we may obtain analytical approximations of both εopt and
DFD,opt for optimal FD gradient and Hessian estimation by
approximating 	2

ε to the smallest order O(ε4). Minimizing the
resulting leading-order expansions of all DFD therefore gives

εopt
∼=

(
2304

d2 − 1

NT d

) 1
6

(∂ fQ estimation) ;

εopt
∼=

(
5184

d2 − 1

NT d

) 1
8

(∂∂ fQ estimation) ;

εopt
∼=

[
9216

(d2 − 1)2

NT d3

] 1
8

(∂∂ ′ fQ estimation). (15)

The corresponding approximately optimal MSEs are

DFD,opt (∂ fQ) ∼=
(

3

32

)1/3 d 4/3

(d + 1)(d2 − 1)1/3N2/3
T

,

DFD,opt (∂∂ fQ) ∼= d 3/2

2 (d + 1)(d2 − 1)1/2N1/2
T

,

DFD,opt (∂∂ ′ fQ) ∼= d 5/2

3 (d + 1)(d2 − 1)N1/2
T

. (16)

We note that the formulas in (15) and (16) become accurate so
long as NT is sufficiently larger than d [that is, NT  O(2n)].
These formulas can therefore give us a fairly satisfactory
description of the estimation errors.

Perhaps the most striking feature of all DFD,opts (be it
approximated in the NT  d regime or not) is the fact that
they decrease exponentially with the number of qubits n. This
is desirable since it is shown in Appendices B 2–B 4 (sum-
marized in Table I) that 〈(∂ fQ)2〉, 〈(∂∂ fQ)2〉 and 〈(∂∂ ′ fQ)2〉
are all at most O(1/d ), which are manifestations of the
so-called barren-plateau phenomenon [62–65]. Hence, this
feature confirms that optimally tuned FD estimators are nat-
ural for gradient and Hessian estimations.

Ordinarily, things become more difficult to estimate as
n increases, so this feature is interestingly counterintuitive.
To understand this behavior, we first note that the aver-
age fQ landscape rapidly flattens with increasing number of
qubits (owing to the barren-plateau phenomenon). For very
large n, the barren-plateau phenomenon is hence the bottle-
neck of VQAs. Next, using Table I, the optimized FD and PS

gradient estimators, for instance, can be shown to have the
following average squared magnitudes in the limit of large d:

opt. FD :
〈
E
[
∂̂ fQ

2]〉 → [sinc(εopt/2)]2 1

2d
+ 4

NTε2
opt

, (17)

PS :
〈
E
[
∂̂ fQ

2]〉 → 1

2d
+ 1

NT
→ 1

NT
. (18)

Since from numerical evidence, εopt grows exponentially for
sufficiently large n (refer to the later Sec. VII for a con-
cise summary discussion), the average FD estimator squared
magnitude drops exponentially in n commensurately with the
true components, so that these estimators themselves also ap-
proach zero for sufficiently large n. As a result, the difference
between the estimator and true component converges to zero
as n increases. On the other hand, in the large-d limit, (18)
implies that the average PS estimator squared magnitude, and
thus the corresponding MSEPS is constant for the same NT.

As a reminder, εopts obtained from minimizing the MSEs
in (8) apply when the TDS condition holds (see Sec. IV A).
More generally, similar analyses for FD gradient and Hessian
estimation that are not under the TDS condition are presented
in Appendix C 3. We will take the TDS-based formulas in (8)
as representatives useful for obtaining optimal FD estimators.

We additionally note that the N−2/3
T and N−1/2

T scaling
behaviors in the first and second equations of (16) were
also reported in Ref. [61]. The expressions presented there
are large-N forms that are not averaged over quantum cir-
cuits, and therefore make no reference to average behaviors
in d or n.

B. Optimal GD estimators

Optimizing each GD estimator requires the optimization of
both c and ε. For any ε, it is easy to carry out the minimization
of the MSEs in (A10) over normalized c, as every GD MSE
takes the form DGD = c�M c. Upon the standard usage of a
Lagrange multiplier (see Appendix C 4), it is straightforward
to arrive at

min
c| c�1=1

DGD = (1�M−11)−1, (19)

where copt = M−11/(1�M−11) and M is any of the relevant
matrices in (A11). It is clear that the right-hand side of
Eq. (19) reduces to the MSE expressions for FD when J = 1.

For J > 1, there appears to be neither exact nor even
approximate analytical forms for εopt, although numerical
minimization of DGDs over ε to obtain the optimal DGD,opt

is efficient so long as J is not too large. Despite the lack of
analytical formulas, it is still possible to acquire upper bounds
of DGD,opt as NT and d grows. For this purpose, we

first make use of the Cauchy-Schwarz inequality (1�1)2 �
1�M11�M−11 to arrive at the bound

DGD,opt = min
ε>0

min
c| c�1=1

DGD

= min
ε>0

(1�M−11)−1 � 1

J2
min
ε>0

1�M1. (20)

The inequality is saturated when J = 1. Next, under the TDS
condition and NT  d (or small εopt), we can obtain the fol-
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FIG. 3. Graphs of DGD,opt (after analytically minimizing over c in accordance with (19), followed by numerical minimization over ε)
for (a) gradient and (b), (c) Hessian components under the TDS condition defined in Sec. IV A, presented for 1 � J � 8, even number of
qubits n, and NT = 2000. It turns out that for estimating gradient and off-diagonal Hessian components, J = 2 appears to be optimal for n � 6,
beyond which J = 1 gives the smallest DGD,opt. For estimating diagonal Hessian components, J = 3 seems to be the optimal choice, although
the differences in estimation errors quickly vanish for large J and n values.

lowing explicit upper bounds:

DGD,opt (∂ fQ) � 1

4

[
d4(J + 1)2(2J + 1)2

6 N2
TJ2(d + 1)3(d2 − 1)

]1/3

H2/3
J,2 ,

DGD,opt (∂∂ fQ) � J + 1

36 J

(
2dJ + d

d + 1

)3/2
√

2H2
J,2+HJ,4

NT(d − 1)
,

DGD,opt (∂∂ ′ fQ) � (J + 1)(2J + 1)

18(d + 1)(d2 − 1)

(
d5HJ,4

NTJ

)1/2

, (21)

where H j,k = ∑ j
m=1 m−k is the generalized harmonic number.

It is obvious that all right-hand sides reduce to the expressions
in (8) when J = 1. Based on these crude upper bounds, one
can already deduce the fundamental trend: DGD,opt decreases
with increasing d and NT, which comes as no surprise on
hindsight since the GD strategy is a generalization of the FD
strategy, and naturally preserves the exponential-decay-in-n
characteristic.

For any d and NT, resorting to numerical optimization
for deciding on the optimal value of J is inevitable. For a
prechosen NT, number of qubits n employed by the quantum
circuit and the type of components (gradient or Hessian) to be
estimated, the optimal value of J is the one that minimizes the
numerical minimum DGD,opt. As examples, Fig. 3 illustrates
the graphs of the respective DGD,opts for NT = 2000 using
various n values. In these cases, there exist optimal values
of J below a certain critical n. Beyond this critical value, J =
1 is sufficient as larger J values generally do not significantly
vary DGD,opt.

C. Optimal SPS estimators

The minimization of (14) with respect to λ, unlike the FD
and GD strategies, can be carried out exactly for any d and NT

since this simply amounts to the minimization of quadratic
functions in λ on the right-hand sides. Hence, one arrives at

the optimal scaling prefactors

λopt = dNT

2d2 + dNT − 2
(∂ fQ estimation),

λopt = 4dNT

9d2 + 4dNT − 9
(∂∂ fQ estimation),

λopt = d3NT

4(d2 − 1)2 + d3NT
(∂∂ ′ fQ estimation), (22)

and realizes that λopt → 1 as d � NT → ∞, and λopt → 0 as
NT � d → ∞. The former limit for any fixed d is obvious,
since in the large-data limit, scaling prefactors are not really
necessary and all SPS estimation performances approach to
those of PS. On the other hand, for a fixed NT, sampling from
a circuit that has a large number of qubits would pay off with
very small prefactors.

Consequently, the corresponding optimized MSE expres-
sions for these optimized SPS estimators are given by

DSPS,opt (∂ fQ) = d2

(d + 1)(2d2 + dNT − 2)
,

DSPS,opt (∂∂ fQ) = 9d2

2(d + 1)(9d2 + 4dNT − 9)
,

(diagonal Hessian components)

DSPS,opt (∂∂ ′ fQ) = d4

(d + 1)[4(d2 − 1)2 + d3NT]
.

(off-diagonal Hessian components) (23)

For a fixed d , these optimized SPS MSEs converge to the PS
MSEs in (13), as they should.

VI. PERFORMANCE

A. Applications in quantum supervised learning and quantum
eigensolver problems

We will first demonstrate the performance of optimal FD
and GD estimators in typical applications of VQAs. As a
benchmark, we compare the estimation errors of these op-
timal estimators with those from PS estimators, using the
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FIG. 4. Averaged performance plots of gradient- and Hessian-component estimation, generated via Monte Carlo simulations, in the first
optimization step of VQAs pertaining to (a) quantum supervised learning that learns a (multivariate) function f (x), and (b) a quantum
eigensolver problem (Vl = 1 for all 1 � l � L) that searches for the ground-state energy of a water molecule having restricted excitation
levels, with each plot marker averaged over 500 random PEPQCs (L = 5 and four-repeated units of single-qubit and CNOT gates for each
Wl ) and 500 numerical experiments per PEPQC. All PEPQCs possess the Hilbert-space dimension d = 28, which are used to estimate
∂50,1 fQ (Case II), (∂50,1)2 fQ (Case II), and ∂50,1∂49,2 fQ (Case V). All FD (≡GD1 or J = 1), GD2 (J = 2), and GD3 (J = 3) estimators are opti-
mized according to Sec. V [“approx.” refers to the approximated optimization from (15)], where the dashed curves represent the corresponding
TDS analytical expressions in (8), (A10), (A11), and (13). As the cases (see also Fig. 7) considered here are different from the TDS case
(Case I), these TDS curves act as guiding lines, which also show that the actual optimal MSEs do not deviate very far from them. For
estimating gradient and off-diagonal Hessian components, both SPS and FD are comparable in performance, whereas it is GD3 that matches
with SPS in estimating diagonal Hessian components.

MSE as figure of merit. The first important example of a
VQA is quantum machine learning, where a PEPQC that
defines the quantum model fQ(x) = 〈0|U †

θ;xOUθ;x|0〉 is trained
to learn or express a general multivariate function f (x)
[| f (x)| � 1 for all x with no loss of generality] by minimiz-
ing an appropriate cost function. In this case, it is sufficient
to assign the observable circuit O as the multiqubit Pauli
operator Y ⊗ 1n−1.

The second widely studied example concerns quantum-
eigensolver tasks that search for minimum eigenvalues of
operators. Here, the observable O is one such operator of
interest that is typically Hermitian (for example, a Hamilton
operator describing the dynamics of an electronic system in a
molecule), and hence, decomposable as a linear combination
of multiqubit Pauli operators Ok . For this second application,
we will consider a simplified (trace-subtracted) Hamilton op-
erator O that describes the electrons in a water molecule with
restricted excitation levels. Using the Jordan-Wigner transfor-
mation, one may write O as a weighted sum of 96 eight-qubit
Pauli operators (see Appendix D).

Figure 4 showcases the estimation-error performances of
gradient and Hessian estimation in some of the physical cases
listed in Fig. 7 for the two aforementioned examples of VQA
applications. As a benchmark, the results indeed confirm that
optimal FD and GD strategies outperform the PS strategy
for NT below certain critical values that would depend on d
and the types of components. We also remark that although the
analytical curves in Fig. 4 are strictly meant for components

under Case I in Fig. 7 that is equivalent to the TDS condition,
we observe, through these and other numerical evidence not
shown here, that the analytical results in (8) and (A10) supply-
ing those curves can also approximate the estimation errors for
other cases well. Another important sanity verification from
the figure is that the optimal FD approximators defined by
the respective εopts prescribed in (15), along with their MSEs
in (16), quickly converge to the exact optimal curves with
increasing NT.

The estimation accuracy greatly improves when analyticity
is forsaken in SPS, where the optimization of the respective
scaling prefactors with respect to the averaged MSEs offer
comparable estimation performances with the optimal FD and
GD strategies. As NT increases, SPS eventually becomes the
most efficient strategy.

B. Benefits of optimized numerical estimators
for scalable NISQ devices

Relative to the standard PS strategy, the scaled version,
SPS, is statistically more efficient in estimating gradient and
Hessian components. This is immediately clear from either a
direct comparison of (23) with (13) under the TDS condition,
or the simple arguments in Appendix C 5 for all other cases:
for any d � 2 and NT > 0, DSPS( · ) < DPS( · ).

That the optimized FD and GD strategies could give
smaller estimation errors than PS for a significantly large
regime of NT can be understood by noting that the PS estima-
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FIG. 5. Exponential increase of N∗ in gradient and Hessian estimation schemes under the TDS condition. The N∗ values corresponding to
the approximated FD strategy [(24)], and those given by the cruder lower bounds of both the GD2 [J = 2, GD2 LB] and GD3 [J = 3, GD3
LB] strategies in (25), all serve as lower bounds to the actual N∗ values computed respectively using the correct εopts obtained from numerical
optimization of MSEs in (8) and (A10) over ε. For each estimation scheme, a larger N∗ is indicative of a greater sampling efficiency over the
PS strategy.

tors defined in Eqs. (11) and (12) correspond to an effective
ε ∼= π that is generally not optimal for minimizing the esti-
mation error—the combined errors 	2

copy and 	2
ε . When NT

is greater than a certain critical value N∗ (defined as the value
of NT for which DFD/GD,opt = DPS), the contribution of 	2

copy

is small enough to be dominated by the nonzero-ε error 	2
ε ,

such that the advantage of an ε-error-free PS estimator mani-
fests itself with a smaller MSE relative to those of the FD or
GD approximators.

To further support the usefulness of optimal FD and GD
schemes, we answer the important question: How does N∗
scale with the number of qubits n? Basic intuition suggests
that since the FD and GD estimation errors decreases with n
according to Sec. V A, while the PS ones do not [recall (13)],
the critical value NT = N∗ required for the PS strategy to start
outperforming the former schemes would also grow with n.
Indeed, based on the approximately minimized MSE’s in (16)
for the FD strategy under the TDS condition and the regime
N∗  d , we find that

N∗ ∼= 32(d2 − 1)

3d
(∂ fQ estimation) ;

N∗ ∼= 81(d2 − 1)

16d
(∂∂ fQ estimation) ;

N∗ ∼= 9(d2 − 1)2

d3
(∂∂ ′ fQ estimation). (24)

For the GD strategy under the TDS condition, the upper
bounds derived and stated in (21) conveniently permit us to
write down approximate and loose lower bounds of N∗:

N∗ � 384J2(d2 − 1)

d (J + 1)2(2J + 1)2 H2
J,2

(∂ fQ estimation) ;

N∗ � 6561J2(d2 − 1)

4 d (J + 1)2(2J + 1)3
(
2H2

J,2 + HJ,4
) (∂∂ fQ est.) ;

N∗ � 6561J (d2 − 1)2

16 d3 (J + 1)2(2J + 1)2 HJ,4
(∂∂ ′ fQ estimation).

(25)

While Eqs. (24) and (25) strictly hold only when N∗  d ,
they analytically show, at least in this regime, that
N∗ � O(2n). The plots in Fig. 5 clearly shows an exponen-
tial increase in N∗ with respect to n regardless of whether
εopt is found with numerical MSE optimization or large NT

approximation. In particular, for the optimized FD strategy,
the differences between the exact numerically obtained N∗s
and those from (24) are very small. In general, N∗ is a useful
measure for the sampling efficiency of a particular optimized
scheme in question. A larger N∗ implies that the optimized
numerical scheme gives a smaller estimation error for a larger
range of 1 � NT � N∗ in contrast to the analytical PS strat-
egy. A scheme that exhibits an exponentially growing N∗
with respect to n is therefore a much more statistically favor-
able one over PS for scalable VQAs. Figure 5 illustrates the
exponential growth in N∗ with respect to n for estimations per-
formed under the TDS condition. More general arguments in
Appendices B and C, which are applicable to all cases in
Fig. 7, technically guarantee an exponentially growing N∗
with n for all FD and GD estimation schemes. With this,
optimally tuned FD and GD strategies may be regarded as
prime candidates for scalable VQAs, especially on NISQ
platforms where estimating large-n circuit-model expectation
values with large numbers of sampling copies is practically
infeasible.

VII. IMPORTANT REMARKS AND POTENTIAL PITFALL

The results in this paper show that numerical estimators
possessing free parameters (ε for FD and GD and λ for SPS)
can be optimized to yield more accurate gradient and Hessian
estimation than analytical estimators (PS) that do not possess
such a freedom. The optimization refers to the minimization
of the relevant circuit-averaged MSE—an estimation-error
quantifier for the circuit function, gradient and Hessian—of
a given circuit ansatz and sampling-copy number NT with
respect to the free parameter. We recall that the average is
performed over not just the click data per training circuit, but
also over all possible training-circuit parameters according to
the ansatz structure.
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FIG. 6. Graphs of (a) εopt, (b) finite-copy error 	2
copy, and (c) nonzero-εopt approximation error 	2

εopt
for all three types of components

estimated with the FD strategy under various qubit numbers n and NT. All εopts are obtained by numerically minimizing the respective TDS
MSE expressions in (8) with no approximations. Numerical evidence shows that εopt ultimately grows exponentially in n. At the same time,
we see that both 	2

copy and 	2
εopt

also asymptotically drop exponentially with n. Note that the exponential drop in 	2
εopt

is solely due to n. As a
special case, when n is small so that NT  d , εopt is clearly small. Otherwise, the magnitude of εopt can be large by virtue of the behaviors of
	2

copy and 	2
εopt

.

For optimized FD and GD schemes, we reiterate that εopt is
consequently dependent on the circuit ansatz and NT. For the
PEPQC ansatz that leads to two-design approximating mod-
ules considered in this work, the resulting MSE expressions,
as shown for instance in Eq. (8) and (A10), are nonlinear
functions of ε, so that numerical methods for their minimiza-
tion are the only resort. Otherwise, analytical approximations
of εopt such as those in (15) for the FD strategy may be
employed when NT  d .

Moreover, rather unintuitively at first glance, we find
that εopt is typically not small, regardless of whether numerical
optimization or analytical approximations are invoked. In fact,
as d increases, numerical experience shows that εopt grows
roughly exponentially with n. One can already witness this
behavior approximately from (15). This is, apparently, at odds
with the usual narrative that εopt should be as small as possible,
preferably εopt → 0, in order for the approximation of gradi-
ent and Hessian components to be as accurate as possible.
While such a narrative is surely correct when no sampling
is required to estimate the components, in which case one
should just use the PS scheme and not even be bothered
with FD, GD, or any other numerical scheme, matters greatly
differ when sampling is required, as in the case of VQAs.
For FD and GD, it is obvious (see also the start of Sec. V A)
that εopt is neither minuscule nor astronomical, but somewhere

in between. However, for a fixed NT, as d or n increases, εopt

tends to larger values because the nonzero-εopt approximation
error 	2

εopt
approaches zero while the finite-copy error 	2

copy is
asymptotically constant. The value of εopt becomes tiny only
when NT is astronomical, in which case the usual narrative
applies. Figure 6 visually demonstrates all these remarks for
the FD strategy as an example.

If one, for instance, inspects the magnitudes of the re-
spective gradient estimators for FD and PS, one arrives
at the large-d limit formulas in (17) and (18) for any
fixed NT. On the other hand, the barren-plateau phenomenon
for the PEPQC ansatz implies that 〈(∂ fQ)2〉 drops exponen-
tially in n (see Tab. I). Therefore, given a fixed NT, the pres-
ence of εopt = εopt (d, NT) in step-size-dependent strategies
such as FD and GD can introduce a faster diminishing average
gradient-estimator magnitude that is more compatible with
the barren-plateau phenomenon, especially when d is large.
More specifically, these strategies do so not by choosing some
ad hoc εopt that is large, of course, but by minimizing either
the TDS MSE, or MSE upper bounds in other non-TDS cases,
provided that the circuit ansatz is known beforehand—the
PEPQC ansatz in our case. The PS strategy lacks this addi-
tional parameter degree of freedom, and therefore depends
only on a sufficiently large NT to surpass the performances
of FD and GD on average.
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We forewarn that while optimized numerical estimators
can boost estimation accuracies, this does not necessarily
mean that these estimators will improve circuit trainability
under the influence of the barren-plateau phenomenon. These
are clearly two separate problems, the latter of which is not
addressed by this paper. The analysis of the MSE through-
out the paper reveals the statistical quality in estimating
gradients and Hessians. The appearance of a free parame-
ter that characterizes a numerical estimator permits further
estimation-accuracy improvement with proper optimization of
this parameter. For an extremely large number of qubits n, the
landscape of fQ(θ; x) from a randomized two-design circuit,
for instance, is almost flat, so that the problem of distinguish-
ing function magnitudes in different θ search directions still
persists, even with accurate statistical estimations.

An absurd hypothetical scenario would be n → ∞, where
the initialized 〈 f 2

Q〉 ∼= 0 ∼= fQ, while the optimized estima-
tion error of any numerical estimator (FD, GD, or SPS) is
nearly zero [notice that from (13), analytical PS estimators
still give O(1/NT) estimation errors that are not necessar-
ily small in this scenario]. Such an infinitely-large quantum
circuit is not trainable, so low estimation errors surely does
not translate to better trainability. To see why, we note that
trainability pertains to function-minimization efficiency, and
so one should be strict about picking the right descent di-
rection in every function-value update. For a very large n,
such that the true gradient has a tiny magnitude, a very small
gradient-estimation MSE could still lead to many wrong up-
date directions with even slight statistical fluctuations, so that
cost-function minimization can still be very slow on average.
Thus, one should, instead, find ways to, as an example, reduce

Fθ0 =
〈

max{Var[ f̂Q(θ ± θ0; x)]}
| fQ(θ + θ0; x) − fQ(θ − θ0; x)|2

〉
(26)

for some chosen displacement θ0 when speaking of train-
ability. This quantifies the worst-case average relative spread
(variance) of f̂Q(θ ± θ0; x), which if too large, results in
the failure of distinguishing between fQ(θ + θ0; x) and
fQ(θ − θ0; x) in the direction set by θ0 through sampling.
For quantum circuits of large d that exhibit two-design prop-
erties, the numerator approaches O(1/N ) for N sampling
copies, and the denominator is at most O(1/poly d ), so that
Fθ0 � O((poly d )/N ). For large circuits, N must thus at least
be exponentially large in n for trainability [78].

Efforts in ameliorating the effects of barren plateaus would
therefore require deeper understanding in both the circuit
ansatz [78,79], and θ-initialization and optimization strate-
gies [80], for instance. Improving model trainability in the
presence of barren plateaus is a pertinent task without a
doubt, but is beyond the scope of this paper. With that said,
it cannot be overemphasized that both accurate estimation
and trainability are equally important in quantum computation
especially in the NISQ era where every bit of noise counts.
The methodology for optimizing estimators may be extended
to other circuit Ansätze and circuit-parameter initialization
procedures beyond the two-design approximating Ansätze and
randomized initialization considered in this paper.

VIII. CONCLUSION

Executing variational algorithms on modern NISQ de-
vices typically necessitate the computation of circuit-function
gradient and Hessian components through direct variational-
circuit-function sampling. A thorough understanding of the
inherent estimation errors is vital to ensure the reliability of
NISQ computation. In this work, we provide detailed analyses
on the estimation errors for various gradient and Hessian
computation methods that are relevant not only to gradi-
ent and Hessian-assisted optimization approaches, but also
nongradient-based routines, which require the estimation of
circuit-function differences.

Armed with these fundamental results that apply to
very general variational quantum-computation settings, we
propose optimally tuned gradient and Hessian numerical es-
timators that offer significantly reduced average estimation
errors on any NISQ device that can only supply a finite num-
ber of sampling copies within a given operation time duration.
These optimized numerical estimators work especially well in
improving the gradient and Hessian computation accuracies
during the initial stages of cost-function optimization, where
training parameters are first randomly initialized before the
optimization procedure such that all polynomially deep train-
ing modules possessing a hardware-efficient ansatz behave
closely as quantum two-designs. The simulation results sug-
gest that such optimally tuned estimators are still extremely
advantageous in estimation-error minimization for training
modules that are shallow.

Moreover, these numerical estimators are compatible with
the barren-plateau phenomenon; that is, given a fixed num-
ber of sampling copies, the average estimation errors based
on these optimized estimators scale with the corresponding
root-mean-squares of circuit-function gradient and Hessian
components, both of which drop exponentially with the
number of qubits employed. This desirable feature prevents
gradient and Hessian computation from turning into random
guesses for a fixed number of sampling copies as the circuit
size increases.

For the same number of sampling copies, this is in con-
trast to the analytical unscaled parameter-shift rule, which
estimates gradients and Hessians with errors that are asymp-
totically independent of the circuit-qubit number. We showed
that this consequently requires an exponentially increasing
number of sampling copies with the qubit number in order
for the analytical estimators to overtake the corresponding
optimally tuned ones in sampling performance. Hence, while
the absence of approximation errors with this analytical rule
is a commonly sought-after characteristic, optimally tuned
numerical estimators (including the scaled parameter-shift
estimators) still present a much more feasible estimation
strategy on practical NISQ devices with finite sampling-copy
numbers.

An obvious next step to take towards practical applica-
tions would be a performance analysis of known sampling
strategies in the presence of realistic noisy environments that
perforate typical quantum-computing architectures, such as
photon loss and depolarization. Knowledge about how (poten-
tially biased) noise models influence sampling computation
is pertinent for proposing possibly noise-model-agnostic
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optimized strategies to improve estimation qualities. Another
interesting area of discussion begins with recognizing the
error-mitigating effects in using the unscaled parameter-shift
rule, the reason of which is due to a large fixed step size to
define gradient and Hessian components, which could over-
look slight noise perturbations in the components and render
this analytical rule robust against noise. In contrast, conven-
tional wisdom often suggests that finite-difference methods
employ much smaller step sizes leading to estimators that
are relatively less robust to noise. However, when the knowl-
edge about the circuit ansatz is accounted for, the resulting
optimized finite-difference strategies correspond to step-size
magnitudes that could be comparable with those of the un-
scaled parameter-shift rule. Hence, the study of possible
error-mitigative power for optimized numerical schemes will
certainly be a part of the immediate future agenda.
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APPENDIX A: BASIC PROPERTIES OF PEPQCS

1. Haar-measure integration for quantum two-designs

An n-qubit serial-circuit model that contains trainable uni-
tary modules Wl that each has a O(poly(n, 2)) circuit depth,
so that a randomized Wl for a broad class of circuit ansätze
(including circuits consisting of single-qubit and CNOT gates)
may be approximated as a two-design [72]. PEPQCs form a
subclass of such two-design approximating circuits.

In view of this, the following integration result∫
(dU )HaarU

∗
j′1k′

1
U ∗

j′2k′
2
Uj1k1Uj2k2

= δ j1, j′1δ j2, j′2δk1,k′
1
δk2,k′

2
+ δ j1, j′2δ j2, j′1δk1,k′

2
δk2,k′

1

d2 − 1

− δ j1, j′1δ j2, j′2δk1,k′
2
δk2,k′

1
+ δ j1, j′2δ j2, j′1δk1,k′

1
δk2,k′

2

d (d2 − 1)
(A1)

in terms of the computational matrix elements Ujk = 〈 j|U |k〉
of a d-dimensional random unitary operator U distributed
according to the Haar measure (dU )Haar and the basic identity

〈U OU †〉Haar =
∫

(dU )Haar U OU † = 1

d
tr{O}, (A2)

are relevant [73]. By tracking all indices, it is possible to
derive another useful integral identity

〈U ⊗2 OU † ⊗2〉Haar =
∫

(dU )Haar U ⊗2 OU † ⊗2

=
[

tr{O}
d2 − 1

− tr{Oτ }
d (d2 − 1)

]
1

+
[

tr{Oτ }
d2 − 1

− tr{O}
d (d2 − 1)

]
τ, (A3)

where τ is the swap operator that carries the sim-
ple trace property tr{O1 ⊗ O2 τ } = tr{O1O2} = tr{U ⊗2 O1 ⊗
O2 U †⊗2 τ } for any two observables O1 and O2, and unitary
operator U . If one observable is traceless,

〈U ⊗2 O1 ⊗ O2 U † ⊗2〉Haar = d τ − 1

d (d2 − 1)
tr{O1O2}. (A4)

2. Training-parameter translation in fQ,k

If we denote A = ∏l+1
l ′=L Vl ′Wl ′ and B = ∏1

l ′=l−1 Vl ′Wl ′ , then

∂μ,l fQ,k = i

2
〈0|B†W (2)†

l σμlW
(1)†

l V †
l A†OkAVlWlB|0〉

+ c.c.,

(∂μ,l )
2 fQ,k = 1

2
〈0|B†W (2)†

l σμlW
(1)†

l V †
l A†OkAVl

× W (1)
l σμlW

(2)
l B|0〉 − 1

2
fQ,k, (A5)

where the argument x is hereby unstated for notational sim-
plicity unless otherwise necessary. From the unique property
σ 2

μl = 1 of (multiqubit) Pauli operators employed in PEPQCs,
all higher-order derivatives are simply ∂μ,l fQ,k and (∂μ,l )2 fQ,k

multiplied by simple phase factors:

(∂μ,l )
2k+1 fQ,k = (−1)k∂μ,l fQ,k,

(∂μ,l )
2k fQ,k = (−1)k+1(∂μ,l )

2 fQ,k . (A6)

From (A6), the Taylor series of fQ,k (θμl + θ0; x) can be re-
duced to a finite linear combination of the zeroth-, first-, and
second-order derivatives inasmuch as

fQ,k (θμl + θ0; x) = fQ,k (θμl ; x) + sin θ0 ∂μ,l fQ,k (θμl ; x)

+ (1 − cos θ0) (∂μ,l )
2 fQ,k (θμl ; x). (A7)

3. Conditions in gradient and Hessian averaging

Given a trainable module Wl , the gradient operation
∂μ,lWl = W (1)

l σμlW
(2)

l can introduce a single-qubit Pauli op-
erator σμl associated to the parameter θμl that divides Wl into
subcircuits of unitary operators W (1)

l and W (2)
l that may or may

not be two-designs depending on whether these subcircuits
are themselves sufficiently deep. Hence, strictly speaking, the
details of the circuit averaging procedure would depend on the
location of the gradient operations taken. We will explicitly
state the premise in analyzing gradient and Hessian estimation
methods:

(1) In Fig. 7, we list down all the physical cases in which
there exists at least an approximate two-design module that is
free from gradient operations. The reasonable assumption that
the entire circuit should be at least deep enough for the above
requirement to hold will allow us to subsequently analyze
sampling errors.

(2) With such an extent of generality, an exact expres-
sion of the MSE for either a gradient or Hessian component
is obtained when there exist at least two two-design-
approximable training modules sandwiching every training
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FIG. 7. A list of practically occurring cases in VQAs. All (red)
modules A, B, and C contain two-design trainable and arbitrary
nontrainable circuits. In all cases, it is reasonable to require that the
entire trainable portion of the quantum circuit should be sufficiently
deep, such that there exists at least one two-design module that is
free from gradient operations at any estimation instance. The TDS
condition, thus, corresponds to Case I for every component type.

module on which a derivative operation is performed for that
component—the two-design sandwiching (TDS) condition
(or Case I in Fig. 7).

(3) Whenever the TDS condition does not apply for any of
the derivative operation in a component, an upper bound of
the corresponding MSE is derived.

4. General difference gradient and Hessian method

Equations (9) and (10) are, respectively, equivalent to

[∂GD]J,ε
μ,l fQ,k ≡

J∑
j=1

c j sinc( jε/2) ∂μl fQ,k, (A8)

[∂∂ ′
GD]J,ε

μ,l;μ′,l ′ fQ,k ≡
J∑

j=1

c j[sinc( jε/2)]2∂μ,l∂μ′,l ′ fQ,k . (A9)

Similar arguments for the TDS condition in Sec. IV A leads to
the following quadratic forms for PEPQCs:

DGD( · ) = c�(M · ) c, M · > 0,

M∂ fQ = 4Jd

NT(d + 1)ε2
A∂ fQ + d2 v1v

�
1

2(d + 1)(d2 − 1)
,

M∂∂ fQ = (2J + 1)d

NT(d + 1)ε4
A∂∂ fQ + d2 v2v

�
2

2(d + 1)(d2 − 1)
,

(diagonal Hessian components)

M∂∂ ′ fQ = 16Jd

NT(d + 1)ε4
A∂∂ ′ fQ + d4 v2v

�
2

4(d + 1)(d2 − 1)2
,

(off-diagonal Hessian components) (A10)

where

v1 = 1 −

⎛⎜⎜⎝
sinc(ε/2)
sinc(ε)

...

sinc(Jε/2)

⎞⎟⎟⎠, v2 = 1 −

⎛⎜⎜⎜⎝
[sinc(ε/2)]2

[sinc(ε)]2

...

[sinc(Jε/2)]2

⎞⎟⎟⎟⎠,

A∂ fQ =

⎛⎜⎜⎜⎝
1 0 · · · 0
0 1

22 · · · 0
...

...
. . .

...

0 0 · · · 1
J2

⎞⎟⎟⎟⎠, A∂∂ ′ fQ = A2
∂ fQ

,

A∂∂ fQ = 2

⎛⎜⎜⎜⎝
1 0 · · · 0
0 1

24 · · · 0
...

...
. . .

...

0 0 · · · 1
J4

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
1
1
22

...
1
J2

⎞⎟⎟⎟⎠4

(
1

1

22

1

J2

)
.

(A11)

Here, NT is still the total number of sampling copies dis-
tributed equally to all sampled quantum-circuit functions for
one GD approximator per circuit-observable basis operator.
Just like the optimal FD strategy, the optimal GD strategy
in estimating gradient and Hessian components by invoking
either (A8) or (A9) would entail the choices of both ε and nor-
malized c that minimize the relevant operational DGD listed
in (A10).

APPENDIX B: QUANTUM-CIRCUIT AVERAGES 〈 · 〉
1. Inner-product average of translated fQ,ks

As a warmup for the upcoming expedition, we calculate the
inner product 〈 fQ,k (θμl + θ0; x) fQ,k (θμl + θ ′

0; x)〉 for arbitrary
translations θ0 and θ ′

0 on the same randomized parameter θμl .
From Eq. (A7),

〈 fQ,k (θμl + θ0; x) fQ,k (θμl + θ ′
0; x)〉

= 〈
f 2
Q,k

〉 + (2 − cos θ0 − cos θ ′
0)〈 fQ,k (∂μ,l )

2 fQ,k〉
+ sin θ0 sin θ ′

0〈(∂μ,l fQ,k )2〉
+ (1 − cos θ0)(1 − cos θ ′

0)〈[(∂μ,l )
2 fQ,k]2〉, (B1)

where we will show that 〈∂μ,l fQ,k (∂μ,l )2 fQ,k〉 and
〈 fQ,k ∂μ,l fQ,k〉 are zero for all three cases shown in Fig. 7.

〈 fQ,k ∂μ,l fQ,k〉for Cases I and II
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Upon taking the average over WL using Eq. (A4), we have

〈 fQ,k ∂μ,l fQ,k〉

= i

2(d + 1)
〈0|B†⊗2W (2)†⊗2

l 1 ⊗ σμW (2)⊗2
l B⊗2|0〉 + c.c.

(B2)

Since W (2)†⊗2
l 1 ⊗ σμW (2)⊗2

l is yet another Pauli operator,
these resulting expectation values are real regardless of
whether l = 1 or not (that is, whether B = 1 correspondingly
or not), so that 〈 fQ,k ∂μ,l fQ,k〉I,II = 0 for both cases.

〈 fQ,k ∂μ,l fQ,k〉for Case III

For this case, we define the operators

σ ′ = W (1)†
L V †

L Ok VLW (1)
L , (B3)

QIII = W (2)†⊗2
L σ ′ ⊗ σμLσ ′ W (2)⊗2

L . (B4)

From the realization that σ ′ in Eq. (B3) is a Pauli operator, the
following two trace properties

tr
{
V †⊗2

L−1 QIII V ⊗2
L−1

} = tr{σ ′ ⊗ σμLσ ′} = 0,

tr
{
V †⊗2

L−1 QIII V ⊗2
L−1τ

} = tr{σ ′σμLσ ′} = tr{σμL} = 0 (B5)

become apparent, giving us 〈 fQ,k ∂μ,l fQ,k〉III = 0.
By repeating the above calculations, we also find that

〈(∂μ,l fQ,k ) [(∂μ,l )2 fQ,k]〉I,II,III = 0. These results are consistent
with the property that average inner products of odd combined
derivative order is always zero, another inherent trait from a
Pauli-type observable Ok .

We are now left with 〈 fQ,k (∂μ,l )2 fQ,k〉, 〈|∂μ,l fQ,k|2〉 and
〈|(∂μ,l )2 fQ,k|2〉. First, the average of

fQ,k (∂μ,l )
2 fQ,k

= 1

2
〈0|B†⊗2W (2)†⊗2

l 1 ⊗ σμlW
(1)†⊗2

l V †⊗2
l

× A†⊗2O⊗2
k A⊗2V ⊗2

l W (1)⊗2
l 1 ⊗ σμlW

(2)⊗2
l B⊗2|0〉 − f 2

Q,k

2

(B6)

involves 〈 f 2
Q,k〉 = 1/(d + 1) according to Eq. (A4).〈

fQ,k (∂μ,l )
2 fQ,k

〉
for Case I

With (A4),

〈 fQ,k (∂μ,l )
2 fQ,k〉I

= d

2(d2 − 1)
〈〈0|B†W (2)†

l σμlW
(2)

l B|0〉2〉 − d

2(d2 − 1)
,

(B7)

or 〈 fQ,k (∂μ,l )
2 fQ,k〉I = − d2

2(d + 1)(d2 − 1)
. (B8)

〈
fQ,k (∂μ,l )

2 fQ,k
〉
for Case II

We note that

γII = 〈〈0|W (2)†
1 σμ1W

(2)
1 |0〉2〉 � 1, (B9)

so that

〈 fQ,k (∂μ,l )
2 fQ,k〉II = −d (1 − γII )

2(d2 − 1)
. (B10)

〈 fQ,k (∂μ,l )
2 fQ,k〉for Case III

For this case, consider the operator

Q′
III = W (2)†⊗2

L 1 ⊗ σμLσ ′⊗21 ⊗ σμLW (2)⊗2
L . (B11)

Its trace properties include tr{Q′
III} = 0,

tr
{
V †⊗2

L−1 Q′
IIIV

⊗2
L−1τ

} = tr{σ ′σμLσ ′σμL} = γIII(x). (B12)

With these,

〈 fQ,k (∂μ,l )
2 fQ,k〉III = −d − γIII(x)

2d (d + 1)
. (B13)

We catalog the calculations of 〈(∂μ,l fQ,k )2〉 and
〈[(∂μ,l )2 fQ,k]2〉 in the following sections, and simply list
the final answers:

〈 fQ,k (θμl + θ0; x) fQ,k (θμl + θ ′
0; x)〉

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d2
[

cos
(

θ0−θ ′
0

2

)]2
−1

(d+1)(d2−1) for Case I,

d (1−γII )
[

cos
(

θ0−θ ′
0

2

)]2
+dγII−1

d2−1 for Case II,

[d−γIII (x)]
[

cos
(

θ0−θ ′
0

2

)]2
+γIII (x)

d (d+1) for Case III.

(B14)

By taking θ0 = θ ′
0, we recover the special case

〈 fQ,k (θμl + θ0; x)2〉 = 1/(d + 1).

2. Averages of gradient components ∂ fQ,k

We derive results concerning 〈∂μ,l fQ,k〉 and 〈(∂μ,l fQ,k )2〉
for all the three cases in Fig. 7, beginning with the former.

〈∂μ,l fQ,k〉for Cases I and II

Again, as 〈W †
L V †

L Ok VLWL〉Haar = 0 for a Pauli Ok ,

〈∂μ,l fQ,k〉I,II = 0. (B15)

〈∂μ,l fQ,k〉for Case III

We inspect the operator

Q′′
III = W (2)†

L σμLW (1)†
L V †

L Ok VLW (1)
L W (2)

L . (B16)

Note that tr{σμLσ ′} is clearly real, so that

〈∂μ,L fQ,k〉III = i

2d
〈tr{σμlσ

′}〉 − i

2d
〈tr{σμlσ

′}〉 = 0. (B17)

Now, for the latter:

〈|∂μ,l fQ,k|2〉for Case I
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Averaging over WL yields

〈|∂μ,l fQ,k|2〉

= − d

4(d2 − 1)

〈〈0|B†⊗2W (2)†⊗2
l σ⊗2

μl W (2)⊗2
l B⊗2|0〉〉

+ d

4(d2 − 1)
+ c.c., (B18)

or

〈|∂μ,l fQ,k|2〉I = d2

2(d + 1)(d2 − 1)
. (B19)

〈|∂μ,l fQ,k|2〉for Case II

From (B9), we simply obtain

〈|∂μ,1 fQ,k|2〉II = d (1 − γII )

2(d2 − 1)
� d

2(d2 − 1)
. (B20)

〈|∂μ,l fQ,k|2〉for Case III

For this case, properties of the operators

Q′′′
III(a) = W (2)†⊗2

L σ⊗2
μL σ ′⊗2 W (2)⊗2

L ,

Q′′′
III(b) = W (2)†⊗2

L 1 ⊗ σμLσ ′⊗2σμL ⊗ 1W (2)⊗2
L (B21)

are necessary, where we recall σ ′ from Eq. (B3). To start off,

tr{Q′′′
III(a)} = tr{σμLσ ′}2 = tr{Q′′′

III(b)}. (B22)

For the trace properties with the swap operator, they are

tr
{
V †⊗2

L−1 Q′′′
III(a)V

⊗2
L−1τ

} = tr{σμLσ ′σμLσ ′} = γIII(x),

tr
{
V †⊗2

L−1 Q′′′
III(b)V

⊗2
L−1τ

} = tr{σ ′σμLσμLσ ′} = d. (B23)

These are critical in evaluating the average over WL−1 by
invoking Eq. (A4):

γIII(x) ≡ 〈tr{(σμLσ ′)2}〉,
γ ′

III(x) ≡ 〈tr{σμLσ ′}2〉,

〈|∂μ,L fQ,k|2〉III = −γ ′
III(x) + γIII(x)

2d (d + 1)
+ γ ′

III(x) + d

2d (d + 1)

= d − γIII(x)

2d (d + 1)
� 1

d + 1
. (B24)

The final inequality is of the Cauchy-Schwarz type

tr{[σμlσ
′]2}2 � tr

{
σ 2

μl

}
tr{[σ ′σμlσ

′]2} = d2, (B25)

or −d � γIII(x) � d .

3. Averages of diagonal Hessian components ∂∂ fQ,k

From (A5), just like ∂ fQ,k = 0, it can be easily confirmed
that 〈∂∂ fQ,k〉I,II,III = 0. For the squared averages, since

[(∂μ,l )
2 fQ,k]2 = 1

4

[
f 2
Q,k + DI − 2 DII

]
,

DI = 〈0|B†⊗2W (2)†⊗2
l σ⊗2

μl W (1)†⊗2
l V †⊗2

l A†⊗2O⊗2

× A⊗2V ⊗2
l W (1)⊗2

l σ⊗2
μl W (2)⊗2

l B⊗2|0〉,

DII = 〈0|B†⊗2W (2)†⊗2
l 1 ⊗ σμlW

(1)†⊗2
l V †⊗2

l A†⊗2

× O⊗2
k A⊗2V ⊗2

l W (1)⊗2
l 1 ⊗ σμlW

(2)⊗2
l B⊗2|0〉,

(B26)

we need the averages of DI and DII in all three cases.

〈|(∂μ,l )
2 fQ,k|2〉for Case I

That 〈DI〉 = 1/(d + 1) is immediate. On the other hand,

〈DII〉 = d

d2 − 1

〈〈0|B†⊗2W (2)†⊗2
l σ⊗2

μl W (2)⊗2
l B⊗2|0〉〉

− 1

d2 − 1

= − 1

(d + 1)(d2 − 1)
. (B27)

Altogether,

〈|(∂μ,l )
2 fQ,k|2〉I = d2

2(d + 1)(d2 − 1)
. (B28)

〈|(∂μ,l )
2 fQ,k|2〉for Case II

If l = 1, then 〈DI〉 = 1/(d + 1) still, but

〈DII〉 = dγII − 1

d2 − 1
, (B29)

so that

〈|(∂μ,1)2 fQ,k|2〉II = d − dγII

2(d2 − 1)
� d

2(d2 − 1)
, (B30)

where γII is as defined in (B9).

〈|(∂μ,l )
2 fQ,k|2〉for Case III

From (B11) and the operator definition

Q′′′′
III = W (2)†⊗2

L σ⊗2
μL σ ′⊗2σ⊗2

μL W (2)⊗2
L , (B31)

whose trace properties include tr{Q′′′′
III } = 0 and

tr
{
V †⊗2

L−1 Q′′′′
IIIV

⊗2
L−1τ

} = tr{σμLσ ′σ ′σμL} = d. (B32)

With these,

〈DI〉 = 〈〈0|B†⊗2 Q′′′′
III B

⊗2|0〉〉 = 1

d + 1
,

〈DII〉 = 〈〈0|B†⊗2 Q′
IIIB

⊗2|0〉〉 = γIII(x)

d (d + 1)
, (B33)

which finally brings us to

〈|(∂μ,L )2 fQ,k|2〉III = d − γIII(x)

2d (d + 1)
� 1

d + 1
. (B34)

4. Averages of off-diagonal Hessian components ∂μ,l∂μ′,l ′ fQ,k

The averages |∂μ,l∂μ′,l ′ fQ,k|2 are to be computed for a total
of seven cases depicted in Fig. 7. Each component consists of
a summation of four pieces:

∂μ,l∂μ′,l ′ fQ,k = [(1) + (1)c.c. + (2) + (2)c.c.],

(1) = − 1
4 〈0|C†W (2)†

l ′ σμ′l ′W
(1)†

l ′ V †
l ′ B†W (2)†

l σμlW
(1)†

l
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× V †
l A†OkAVlWlBVl ′Wl ′C|0〉,

(2) = 1
4 〈0|C†W †

l ′ V
†

l ′ B†W (2)†
l σμlW

(1)†
l V †

l A†OkA

× VlWlBV †
l ′ W

(1)†
l ′ σμ′l ′W

(2)†
l ′ C|0〉. (B35)

Its squared average thus involves 16 terms. We will list all of
their combinations conveniently for every case.

〈|∂μ,l∂μ′,l ′ fQ,k|2〉for Cases I and IV

Let σ̃μl = W (1)†
l ′ V †

l ′ B†W (2)†
l σμlW

(2)
l BVl ′W (1). Then upon

denoting γ̃ = tr{(σμ′l ′ σ̃μl )2} and γ̃ ′ = tr{σμ′l ′ σ̃μl}2, we get〈
(1)2 + (1)2

c.c.

〉 = 〈
(2)2 + (2)2

c.c.

〉 = 1

8d (d + 1)2

〈̃
γ + γ̃ ′〉,

2〈(1) × (1)c.c.〉 = d2 + d − 1

8(d + 1)(d2 − 1)
− 〈γ̃ ′〉

8d (d + 1)(d2 − 1)
,

2〈(1) × (2)〉 = 〈γ̃ ′ − d γ̃ 〉
8d (d + 1)(d2 − 1)

+ 1

8(d + 1)(d2 − 1)
,

2〈(1) × (2)c.c.〉 = 〈γ̃ + γ̃ ′〉
8d (d + 1)(d2 − 1)

− d

8(d + 1)(d2 − 1)
,

2〈(2) × (2)c.c.〉 = 2〈(1) × (1)c.c.〉. (B36)

These amount to

〈|∂μ,l∂μ′,l ′ fQ,k|2〉IV = d2 + 〈γ̃ ′〉
4(d + 1)(d2 − 1)

� d2

2(d + 1)(d2 − 1)
. (B37)

In Case I, 〈γ̃ ′〉 = d2/(d2 − 1), so that

〈|∂μ,l∂μ′,l ′ fQ,k|2〉I = d4

4(d + 1)(d2 − 1)2
. (B38)

〈|∂μ,l∂μ′,l ′ fQ,k|2〉for Cases II and V

Let us define the shorthand notations α =
〈0|W (2)†

l ′ σμ′l ′ σ̃μlW
(2)

l ′ |0〉, β = 〈0|W (2)†⊗2
l ′ σμ′l ′ σ̃μlσμ′l ′ ⊗

σ̃μlW
(2)⊗2

l ′ |0〉 and γ = 〈0|W (2)†
l ′ σμ′l ′W

(2)
l ′ |0〉. Then,

〈
(1)2 + (1)2

c.c.

〉 = 〈
(2)2 + (2)2

c.c.

〉 = Re{〈α2〉}
8(d + 1)

,

2〈(1) × (1)c.c.〉 = d

8(d2 − 1)
− 〈|α|2〉

8(d2 − 1)
,

2〈(1) × (2)〉 = 〈|α|2〉
8(d2 − 1)

− d〈β〉
8(d2 − 1)

,

2〈(1) × (2)c.c.〉 = 〈|α|2〉
8(d2 − 1)

− d〈γ 2〉
8(d2 − 1)

,

2〈(2) × (2)c.c.〉 = 2〈(1) × (1)c.c.〉, (B39)

such that

〈|∂μ,l∂μ′,l ′ fQ,k|2〉V = d〈1 + Re{α2} − β − γ 2〉
4(d2 − 1)

� 3d

4(d2 − 1)
.

(B40)

The inequality is deducible from the basic inequalities 0 �
γ 2 � 1, −1 � β � 1, and Re{α2} � |α|2 � 1.

When Case II holds, one arrives at 〈α2〉 = 〈γ 2〉/(d + 1)
and 〈β〉 = (d〈γ 2〉 − 1)/(d2 − 1), yielding

〈|∂μ,l∂μ′,l ′ fQ,k|2〉II = d3(1 − 〈γ 2〉)

4(d2 − 1)2
� d3

4(d2 − 1)2
. (B41)

〈|∂μ,l∂μ′,l ′ fQ,k|2〉for Cases III and VII

For these two cases, let us focus on the Pauli operators

σ0 ≡ W (1)†
l V †

l A†OkAVlW
(1)

l ,

σ1 ≡ V †
l ′ B†W (2)†

l σ0W
(2)

l BVl ′ ,

σ2 ≡ V †
l ′ B†W (2)†

l σμlW
(2)

l BVl ′ . (B42)

In terms of these Pauli operators and the rotated versions
σ̃ j = W (1)†

l ′ σ jW
(1)

l ′ , we define a new set of parameters: α′ =
tr{σμ′l ′ σ̃2σ̃1}, β ′ = tr{(σμ′l ′ σ̃2σ̃1)2}. These lead to〈

(1)2 + (1)2
c.c.

〉 = 〈
(2)2 + (2)2

c.c.

〉 = Re{〈α′2 + β ′〉}
8d (d + 1)

,

2〈(1) × (1)c.c.〉 = 〈|α′|2〉 + d

8d (d + 1)
,

2〈(1) × (2)〉 = −〈α′2 + tr{(σ1σ2)2}〉
8d (d + 1)

,

2〈(1) × (2)c.c.〉 = −〈|α′|2 + β ′〉
8d (d + 1)

,

2〈(2) × (2)c.c.〉 = 2〈(1) × (1)c.c.〉, (B43)

giving us

〈|∂μ,l∂μ′,l ′ fQ,k|2〉VII = d − 〈tr{(σ1σ2)2}〉
4d (d + 1)

� 1

2(d + 1)
,

(B44)

where we employed the Cauchy-Schwarz inequality −d �
tr{(σ1σ2)2} � d .
As tr{(σ1σ2)2} is independent of B, we see that Case III offers
no further tightening to the above inequality:

〈|∂μ,l∂μ′,l ′ fQ,k|2〉III �
1

2(d + 1)
. (B45)

〈|∂μ,l∂μ′,l ′ fQ,k|2〉for Case VI

In this final case, do expressions are〈
(1)2 + (1)2

c.c.

〉 = 〈
(2)2 + (2)2

c.c.

〉 = 1
8 Re{〈x2〉},

2〈(1) × (1)c.c.〉 = 1
8 〈|x|2〉,

2〈(1) × (2)〉 = − 1
8 〈xy〉,

2〈(1) × (2)c.c.〉 = − 1
8 〈xy∗〉,

2〈(2) × (2)c.c.〉 = 1
8 〈|y|2〉, (B46)

with

wμ′l ′ = 〈0|W (2)
l ′ σμ′l ′W

(2)
l ′ |0〉2 � 1,
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TABLE I. Summary table listing all averages (and their upper
bounds) of squared-magnitudes for all types of gradient and Hessian
components. We remind the reader that the notation ∂μ,l∂μ′,l ′ refers
to the off-diagonal components, where either μ �= μ′, or l �= l ′, or
both.

Case 〈|∂μ,l fQ,k |2〉 〈|(∂μ,l )2 fQ,k |2〉 〈|∂μ,l∂μ′,l ′ fQ,k |2〉
I d2

2(d+1)(d2−1)
d2

2(d+1)(d2−1)
d4

4(d+1)(d2−1)2

II � d
2(d2−1)

� d
2(d2−1)

� d3

4(d2−1)2

III � 1
d+1 � 1

d+1 � 1
2(d+1)

Case 〈|∂μ,l∂μ′,l ′ fQ,k |2〉
IV � d2

2(d+1)(d2−1)

V � 3d
4(d2−1)

VI � d
2(d2−1)

VII � 1
2(d+1)

〈x2〉 = wμ′l ′
〈tr{σ0σμl}2 + tr{σ0σμlσ0σμl}〉

d (d + 1)
,

〈|x|2〉 = 〈|y|2〉 = 〈tr{σ0σμl}2〉 wμ′l ′ − 1/d

d (d2 − 1)
+ d − wμ′l ′

d2 − 1
,

〈Re{xy}〉 = tr{σ0σμl}2(dwμ′l ′ − 1)

d (d2 − 1)

+ tr{(σ0σμl )2}(d − wμ′l ′ )

d (d2 − 1)
,

〈Re{xy∗}〉 = wμ′l ′

d + 1

(
1 + tr{σ0σμl}2

d

)
. (B47)

Combining these expressions gives us

〈|∂μ,l∂μ′,l ′ fQ,k|2〉VI = (1 − wμ′l ′ )(d − tr{σ0σμlσ0σμl})

4(d2 − 1)

� d

2(d2 − 1)
. (B48)

5. Summary table of all gradient and Hessian averages

Without referring to the details in Appendices B 2
through B 4, Table I summarizes the important averages of
squared magnitudes for all gradient- and Hessian-component
types. Evidently, all averages are at most O(1/d ), which is
crucial for revealing the beneficial statistical properties of
optimized FD and GD estimators.

APPENDIX C: OPTIMIZED SAMPLING ERRORS
FOR ALL CASES

1. Multinomial sampling distribution

If each d-dimensional Pauli basis operator Ok of the vari-
ational quantum circuit is measured independently, then each
measurement of a fixed number of sampling copies N is the
eigenbasis {|okl〉〈okl |}d−1

l=0 of Ok , where relative frequencies
νkl (θ; x) = nkl (θ; x)/N → pkl (θ; x) are recorded. Explicitly,
these relative frequencies satisfy the following basic statistical

identities:

E[νkl (θ; x)] = pkl (θ; x),

E[νkl (θ; x)νkl ′ (θ
′; x′)] = (1−δθ,θ′δx,x′ )pkl (θ; x)pkl ′ (θ

′; x′)

+ δθ,θ′δx,x′

N
[δl,l ′ pkl (θ; x)

+ (N − 1)pkl (θ; x)pkl ′ (θ; x)],

E[νkl (θ; x)νk′ �=k l ′ (θ
′; x′)] = pkl (θ; x)pk′l ′ (θ

′; x). (C1)

The above identities hold whenever circuits of different train-
ing parameters are sampled independently.

2. Function estimation

We start with the estimation of fQ using the unbiased esti-
mator in (4). Together with the multinomial identities in (C1),
this leads to

D( fQ) = 1

NT

(
1 − 〈

f 2
Q,k

〉)
, (C2)

where NT = N is the total number of copies per basis observ-
able needed to complete one function estimation evaluated
at the circuit parameters θ . For two-design approximable
PEPQCs, by making use of Eq. (A4), we quickly find that

〈 fQ,k (θμl ; x)2〉 = 〈 fQ,k (θμl + θ0; x)2〉 = 1

d + 1
(C3)

for any θ0 (see Appendix B 1), so that

D( fQ) = d

NT(d + 1)
. (C4)

3. Optimally tuned FD estimators for general cases

In their most general forms, the FD MSEs, which are lin-
ear combinations of finite-copy and nonzero-ε approximation
squared errors, read

DFD(∂ fQ) = 4d

NT(d + 1)ε2
+ 〈(∂ fQ)2〉g1(ε/2),

DFD(∂∂ fQ) = 18d

NT(d + 1)ε4
+ 〈(∂∂ fQ)2〉g2(ε/2),

DFD(∂∂ ′ fQ) = 16d

NT(d + 1)ε4
+ 〈(∂∂ ′ fQ)2〉g2(ε/2), (C5)

with g1(ε/2) = [1 − sinc(ε/2)]2, g2(ε/2) = {1 −
[sinc(ε/2)]2}2, and all the three average terms 〈(∂ fQ)2〉,
〈(∂∂ fQ)2〉 and 〈(∂∂ ′ fQ)2〉 have been rigorously worked out in
Appendices B 2–B 4.

Keeping in their arbitrary forms, we can proceed to mini-
mize all these MSEs and derive optimal FD estimators in the
regime ε � 1. Using the Taylor approximations g1(ε/2) ∼=
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ε4/576 and g2(ε/2) ∼= ε4/144, we identify two different func-
tional structures

DFD(∂ fQ) =̂ A1

ε2
+ ε4

576
B1,

DFD(∂∂ fQ),DFD(∂∂ ′ fQ) =̂ A2

ε4
+ ε4

144
B2, (C6)

where A1, A2, B1, B2 > 0.
Now, optimizing over ε for both kinds of structures,

min
ε

{
A1

ε2
+ ε4B1

576

}
=

(
3A2

1B1

256

)1/3

with ε =
(

288A1

B1

)1/6

,

min
ε

{
A2

ε4
+ ε4B2

144

}
=

√
A2B2

6
with ε =

(
144A2

B2

)1/8

. (C7)

These give the complete set of approximate εopts for all types
of sampling inasmuch as

εopt (∂ fQ) ∼=
[

1152d

〈(∂ fQ)2〉NT(d + 1)

]1/6

,

εopt (∂∂ fQ) ∼=
[

2592d

〈(∂∂ fQ)2〉NT(d + 1)

]1/8

,

εopt (∂∂ ′ fQ) ∼=
[

2304d

〈(∂∂ ′ fQ)2〉NT(d + 1)

]1/8

, (C8)

along with the optimized MSEs:

DFD,opt (∂ fQ) =
[

3 d2
〈
(∂ fQ)2

〉
16 N2

T (d + 1)2

]1/3

,

DFD,opt (∂∂ fQ) =
√

d〈(∂∂ fQ)2〉
2 NT(d + 1)

,

DFD,opt (∂∂ ′ fQ) = 2

3

√
d〈(∂∂ ′ fQ)2〉
NT(d + 1)

. (C9)

The final task is then to substitute the correct expressions
of 〈∂ fQ,k )2〉, 〈∂∂ fQ,k )2〉 and 〈∂∂ ′ fQ,k )2〉 that are applicable
to the relevant case in point as listed in Fig. 7. Enjoying
the fruits of our labor in Appendices B 2–B 4, summarized in
Table I, we observe that only Case I supplies exact analytical
expressions of these averages, whereas all other cases provide
only upper bounds. Optimally tuned estimators, therefore,
refer to either those that minimizes the exact expression of
two-design-averaged MSEs in Case I, or MSE upper bounds
in all other cases.

Analytical formulations of approximately optimal FD esti-
mators for any case require substitutions of the answers from
Table I, which may be done if so desired. For benchmarking
with the PS strategy, however, all one needs is to recog-
nize that Table I implies that 〈∂ fQ,k〉, 〈∂∂ fQ,k〉, 〈∂∂ ′ fQ,k〉 �
O(1/d ) for large d , so that

DFD,opt (∂ fQ) � O

(
1

N2/3
T d1/3

)
,

DFD,opt (∂∂ fQ),DFD,opt (∂∂ ′ fQ) � O

(
1

N1/2
T d1/2

)
, (C10)

all scales exponentially with n, which are compatible with the
barren-plateau phenomenon that also commensurately scales
all gradient- and Hessian-component squared-magnitudes ex-
ponentially with n.

4. Optimally tuned GD estimators for general cases

The generalization of FD estimators as defined by (9)
and (10), carries the same basic functional structure DGD =
c�M c in their MSEs in (A10) and (A11). The only additional
step one needs to perform is the minimization over normalized
c. To do this, we first introduce the Lagrange function

L = c�M c − 2 λ (c�1 − 1) (C11)

that is to be optimized, where λ is the Lagrange multiplier that
takes care of the normalization constraint, and the factor of 2
in front of λ is introduced for convenience that will become
clear very soon. An arbitrary variation of L over c gives

δL = δc� M c + c� M δc − λ (δc�1 + 1�δc). (C12)

A minimization of L, akin to the constrained minimization of
DGD, is done by setting δL = 0, resulting in M c = λ1. As M
is invertible, solving λ yields the extremal equation

c = M−11

1�M−11
. (C13)

In other words, the optimal DGDs may be obtained by first
substituting c in DGD with the optimal one defined in (C13),
and, next, minimizing the result over ε.

Just like for FD estimators, this second minimization
over ε can be done numerically, the results of which are
used in Figs. 3 and 4. To benchmark GD estimators with
the PS ones, we may again resort to looking at upper
bounds of DGD. Thankfully, the Cauchy-Schwarz inequal-
ity remains our dearest friend for this task, awarding us
with (1�1)2 � 1�M11�M−11, and consequently DGD,opt �
J−2 minε>0 1�M1.

We now take advantage of the fact that the J-dimensional
Ms, which are more precisely listed in (A10), give rise to
M ≡ 1�M 1 that are multidimensional analogs of the right-
hand sides in (C5), namely

M∂ fQ
∼= 4Jd HJ,2

NT(d + 1)ε2
+ ε4〈(∂ fQ,k )2〉 J2(J + 1)2(2J + 1)2

20736
,

M∂∂ fQ
∼= (2J + 1)d

NT(d + 1)ε4

(
4H2

J,2 + 2HJ,4
)

+ ε4〈(∂∂ fQ,k )2〉 J2(J + 1)2(2J + 1)2

5184
,

M∂∂ ′ fQ
∼= 16Jd HJ,4

NT(d + 1)ε4

+ ε4〈(∂∂ ′ fQ,k )2〉 J2(J + 1)2(2J + 1)2

5184
, (C14)

for ε � 1, where H j,k = ∑ j
m=1 m−k is the generalized har-

monic number. Recalling the results in (C7), we write down
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the optimized upper bounds

DGD,opt (∂ fQ) � 1

J2

[
〈(∂ f )2〉d2J4(1 + J )2(1 + 2J )2 H2

J,2

192N2
T (1 + d )2

]1/3

,

DGD,opt (∂∂ fQ) � 1

36J2

√
〈(∂∂ f )2〉dJ2(J + 1)2(2J + 1)3

(
4H2

J,2 + 2HJ,4
)

NT(d + 1)
,

DGD,opt (∂∂ ′ fQ) � 1

9J2

√
〈(∂∂ ′ f )2〉dJ3(1 + J )2(1 + 2J )2 HJ,4

NT(d + 1)
, (C15)

all of which reduce to the corresponding equalities in (C9) for
J = 1 as H1,k = 1. Unsurprisingly, for large d ,

DGD,opt (∂ fQ) � O

(
1

N2/3
T d1/3

)
,

DGD,opt (∂∂ fQ),DGD,opt (∂∂ ′ fQ) � O

(
1

N1/2
T d1/2

)
. (C16)

These inequalities are sufficient to again show that the optimal
MSEs for the GD estimators scale with the respective compo-
nent squared magnitudes.

5. Optimally tuned SPS estimators for general cases

For general cases, the DSPS( · ) expressions read

DSPS(∂ fQ) = dλ2

NT(d + 1)
+ 〈(∂ fQ)2〉(1 − λ)2,

DSPS(∂∂ fQ) = 9dλ2

8NT(d + 1)
+ 〈(∂∂ fQ)2〉(1 − λ)2,

(diagonal Hessian components)

DSPS(∂∂ ′ fQ) = dλ2

NT(d + 1)
+ 〈(∂∂ ′ fQ)2〉(1 − λ)2,

(off-diagonal Hessian components) (C17)

where s = π/2. After optimizing the scaling prefactors,

DSPS,opt (∂ fQ) = d〈(∂ fQ)2〉
d + (d + 1)〈(∂ fQ)2〉NT

,

DSPS,opt (∂∂ fQ) = 9d〈(∂∂ fQ)2〉
9d + 8(d + 1)〈(∂∂ fQ)2〉NT

,

(diagonal Hessian components)

DSPS,opt (∂∂ ′ fQ) = d〈(∂∂ ′ fQ)2〉
d + (d + 1)〈(∂∂ ′ fQ)2〉NT

.

(off-diagonal Hessian components) (C18)

It is straightforward to verify that DSPS,opt (∂ fQ),
DSPS,opt (∂∂ fQ), and DSPS,opt (∂∂ ′ fQ) are respectively
monotonically increasing in 〈(∂ fQ)2〉, 〈(∂∂ fQ)2〉, and
〈(∂∂ ′ fQ)2〉, since the derivatives

∂DSPS,opt (∂ fQ)

∂〈(∂ fQ)2〉 = d2

[d + (d + 1)〈(∂ fQ)2〉NT]2
,

∂DSPS,opt (∂∂ fQ)

∂〈(∂∂ fQ)2〉 = 81d2

[9d + 8(d + 1)〈(∂∂ fQ)2〉NT]2
,

∂DSPS,opt (∂∂ ′ fQ)

∂〈(∂∂ ′ fQ)2〉 = d2

[d + (d + 1)〈(∂∂ ′ fQ)2〉NT]2
, (C19)

are all non-negative. It then follows from Table I that the
SPS MSEs are always smaller than the PS MSEs as 〈(∂ fQ)2〉,
〈(∂∂ fQ)2〉, and 〈(∂∂ ′ fQ)2〉 are all less than one. Based
on (C18), in the limit NT  d , DSPS,opt ( · ) → DPS( · ).

APPENDIX D: SIMPLIFIED ELECTRONIC DESCRIPTION
OF A WATER MOLECULE

In the quantum-eigensolver scenario, the observable O =
H − h01, with h0 = tr{H}/d , is defined as a trace-subtracted
Hamilton operator H that describes the dynamics of electrons
in a water molecule. Under the Hartree-Fock approxima-
tion [81], every electron in the molecule is treated as an
independent particle that experiences both the Coulomb
potential from the nuclei and a mean field generated by
all other electrons. The results in Fig. 4(b) are gener-
ated by imposing an additional restriction on the electronic
excitation to four active orbitals. An application of the
Jordan-Wigner transformation turns the resulting Hartree-
Fock Hamilton operator into a linear combination of
multiqubit Pauli operators weighted by coefficients listed
in Table II.
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TABLE II. The complete sheet of all 96 multiqubit Pauli compo-
nents and their respective weights (of magnitudes larger than 10−3)
that constitute the observable O describing a neutral water molecule
in the minimal basis set sto-3g, where electronic excitations are re-
stricted to four active orbitals. The two hydrogen (H) atoms and one
oxygen (O) atom are geometrically positioned according to the re-
spective spatial (x, y, z) coordinates—H: (−0.0399, −0.0038, 0.0),
O: (1.5780, 0.8540, 0.0), H: (2.7909, −0.5159, 0.0). All coefficients
are generated using the QCHEM module in the “Pennylane” PYTHON

package [74].

k hk Ok1 Ok2 Ok3 Ok4 Ok5 Ok6 Ok7 Ok8

1 −0.180625859 1 1 1 1 1 1 Z 1
2 −0.180625859 1 1 1 1 1 1 1 Z
3 −0.159587991 1 1 1 1 Z 1 1 1
4 −0.159587991 1 1 1 1 1 Z 1 1
5 0.174193924 1 1 Z 1 1 1 1 1
6 0.174193924 1 1 1 Z 1 1 1 1
7 0.227570968 Z 1 1 1 1 1 1 1
8 0.227570968 1 Z 1 1 1 1 1 1
9 0.112704888 1 1 1 1 Z 1 Z 1
10 0.112704888 1 1 1 1 1 Z 1 Z
11 0.119520678 Z 1 1 1 Z 1 1 1
12 0.119520678 1 Z 1 1 1 Z 1 1
13 0.134010069 Z 1 1 1 1 1 Z 1
14 0.134010069 1 Z 1 1 1 1 1 Z
15 0.137351346 Z 1 1 1 1 Z 1 1
16 0.137351346 1 Z 1 1 Z 1 1 1
17 0.137670707 1 1 Z 1 Z 1 1 1
18 0.137670707 1 1 1 Z 1 Z 1 1
19 0.141387333 1 1 1 1 Z 1 1 Z
20 0.141387333 1 1 1 1 1 Z Z 1
21 0.147230746 1 1 Z 1 1 Z 1 1
22 0.147230746 1 1 1 Z Z 1 1 1
23 0.149265817 1 1 1 1 Z Z 1 1
24 0.149731063 1 1 Z 1 1 1 Z 1
25 0.149731063 1 1 1 Z 1 1 1 Z
26 0.151377428 Z 1 1 1 1 1 1 Z
27 0.151377428 1 Z 1 1 1 1 Z 1
28 0.154354359 1 1 1 1 1 1 Z Z
29 0.155818816 1 1 Z 1 1 1 1 Z
30 0.155818816 1 1 1 Z 1 1 Z 1
31 0.167560719 Z 1 Z 1 1 1 1 1
32 0.167560719 1 Z 1 Z 1 1 1 1
33 0.181433521 Z 1 1 Z 1 1 1 1
34 0.181433521 1 Z Z 1 1 1 1 1
35 0.19391146 Z Z 1 1 1 1 1 1
36 0.220039773 1 1 Z Z 1 1 1 1
37 −0.028682446 1 1 1 1 Y Y X X
38 −0.028682446 1 1 1 1 X X Y Y
39 −0.017830668 Y Y 1 1 X X 1 1
40 −0.017830668 X X 1 1 Y Y 1 1
41 −0.01736736 Y Y 1 1 1 1 X X
42 −0.01736736 X X 1 1 1 1 Y Y
43 −0.013872802 Y Y X X 1 1 1 1
44 −0.013872802 X X Y Y 1 1 1 1
45 −0.00956004 1 1 Y Y X X 1 1

46 −0.00956004 1 1 X X Y Y 1 1

47 −0.006087753 1 1 Y Y 1 1 X X

48 −0.006087753 1 1 X X 1 1 Y Y

TABLE II. (Continued.)

k hk Ok1 Ok2 Ok3 Ok4 Ok5 Ok6 Ok7 Ok8

49 0.006087753 1 1 Y X 1 1 X Y
50 0.006087753 1 1 X Y 1 1 Y X
51 0.00956004 1 1 Y X X Y 1 1
52 0.00956004 1 1 X Y Y X 1 1
53 0.01130811 1 Y Z Z 1 Y 1 1
54 0.01130811 1 X Z Z 1 X 1 1
55 0.013872802 Y X X Y 1 1 1 1
56 0.013872802 X Y Y X 1 1 1 1
57 0.01736736 Y X 1 1 1 1 X Y
58 0.01736736 X Y 1 1 1 1 Y X
59 0.017830668 Y X 1 1 X Y 1 1
60 0.017830668 X Y 1 1 Y X 1 1
61 0.028682446 1 1 1 1 Y X X Y
62 0.028682446 1 1 1 1 X Y Y X
63 0.029818179 Y Z Z 1 Y 1 1 1
64 0.029818179 X Z Z 1 X 1 1 1
65 0.029818179 1 Y 1 Z Z Y 1 1
66 0.029818179 1 X 1 Z Z X 1 1
67 0.030109333 Y Z 1 Z Y 1 1 1
68 0.030109333 X Z 1 Z X 1 1 1
69 0.030109333 1 Y Z 1 Z Y 1 1
70 0.030109333 1 X Z 1 Z X 1 1
71 0.030791132 Y 1 Z Z Y 1 1 1
72 0.030791132 X 1 Z Z X 1 1 1
73 0.043763244 Y Z Z Z Y 1 1 1
74 0.043763244 X Z Z Z X 1 1 1
75 0.043763244 1 Y Z Z Z Y 1 1
76 0.043763244 1 X Z Z Z X 1 1
77 −0.0145648 1 Y Z Z X 1 X Y
78 −0.0145648 1 Y Z Z Y 1 Y Y
79 −0.0145648 1 X Z Z X 1 X X
80 −0.0145648 1 X Z Z Y 1 Y X
81 0.010541633 Y Z Z Z Y 1 1 Z
82 0.010541633 X Z Z Z X 1 1 Z
83 0.010541633 1 Y Z Z Z Y Z 1
84 0.010541633 1 X Z Z Z X Z 1
85 0.01130811 Y Z Z Z Y Z 1 1
86 0.01130811 X Z Z Z X Z 1 1
87 0.025106432 Y Z Z Z Y 1 Z 1
88 0.025106432 X Z Z Z X 1 Z 1
89 0.025106432 1 Y Z Z Z Y 1 Z
90 0.025106432 1 X Z Z Z X 1 Z
91 0.030791132 Z Y Z Z Z Y 1 1
92 0.030791132 Z X Z Z Z X 1 1
93 −0.0145648 Y Z Z Z Z Y X X
94 −0.0145648 X Z Z Z Z X Y Y
95 0.0145648 Y Z Z Z Z X X Y
96 0.0145648 X Z Z Z Z Y Y X
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