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Entanglement of particles versus entanglement of fields: Independent quantum resources
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Nature allows one to explore a manifold of remarkable quantum effects. Most prominently, quantum entangle-
ment can be observed in many-particle systems, between multiple quantized fields, and in hybrid combinations
thereof. This diversity, however, also leads to contradicting conclusions about what truly constitutes entangle-
ment in any given physical scenario. By explicitly allowing various perspectives, we rigorously consider different
notions of entanglement in the context of first and second quantization. By providing instructive examples, we
show that particle entanglement and field entanglement are actually distinct phenomena that can occur and be
observed independently of each other. This conclusion not only affects our fundamental understanding but has
direct implications for quantum technology which can harness those independent forms of entanglement in
practical scenarios.
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I. INTRODUCTION

Our modern capacity to manipulate and control single
quantum systems opened the door to previously inconceivable
applications [1,2]. Nowadays, we are pursuing communica-
tion, simulation, computation, and sensing in a manner that
surpasses their classical counterparts by harnessing quantum
effects and quantum correlations. More generally, quantum
theory delivered a whole new framework for making sense of
certain natural phenomena and gave birth to a plethora of dif-
ferent quantum effects that have been explored to advance our
fundamental understanding and technological developments.

Undoubtedly, one of the most fundamental and most
widely recognized quantum phenomena is entanglement [3].
Indeed, any generic composite system has the potential to be
in a state that exhibits this form of quantum correlation, and
many methods exist to detect and characterize entanglement
[4–6]. While other exciting forms of quantum correlations
exist [7–9], entanglement is an archetypal example for how
composite quantum systems and their quantum interference
properties are in opposition to a classical picture of nature
[10–12], occurring also between different degrees of freedom
in single particles [13]. Quantum protocols, such as quantum
teleportation [14] and superdense coding [15], exploit the
nonlocal aspect of entanglement to establish quantum com-
munication between distant parties, which has been proven
by recent long-range [16] and ground-satellite [17] experi-
ments. Furthermore, entanglement was explored in various
many-body systems [18], ranging from different elementary
particles—most notably, photons—to macroscopic structures
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[19–21]. Besides particles, entanglement of quantized fields
is the backbone of continuous-variable quantum science
[22–24].

Since only a very few requirements have to be satisfied
for the emergence of entanglement, we see a richness and
variety of entangled states second to none. Consider the Bell
states—they are the prime example of two entangled qubits;
but multilevel systems offer even richer high-dimensional
entanglement [25], featuring larger encoding alphabets than
two-level systems. Besides the dimensions of the individual
subsystems, the number of them further boosts the variety of
quantum correlations, which applies to theory [26–29] and ex-
periments [30–33] alike. For instance, already in three qubits
there exist two unique classes of states with different entan-
glement structures, the W and Greenberger-Horne-Zeilinger
(GHZ) states [34]. And the number of distinct forms of en-
tanglement becomes exceedingly complex from here on, e.g.,
highly multipartite graph [35] and hypergraph [36] states.
Eventually, in very large systems, macroscopic entanglement
can be analyzed [37,38], even encompassing systems with
undefined numbers of subsystems [39], systems with large
masses [40], and micro-macro transitions [41]. Entanglement
is a prime resource for quantum information applications
[42] and connects to other fundamental phenomena, such as
steering and nonlocality [43]. It also plays a role in quantum
metrology [44–47], which, however, is a topic of ongoing
debates [48].

The purely mathematical structure of entanglement theory
is certainly not the most abstract one. Nonetheless, there are
often debates about what can be considered proper physical
entanglement and what bears only a formal resemblance. One
example is the notion of classical entanglement, where the
nonproduct form of classical fields is considered to be an ana-
log for entanglement [49], despite not involving any quantum
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states at all [50]. For quantum fields, the choice of the mode
basis can alter between mode entanglement and disentangle-
ment without actually changing the physical states; hence,
mode-independent definitions of entanglement were recently
introduced [51]. Furthermore, the problem of how—and if—
the entanglement of particles and entanglement of fields are
different is frequently met with a certain amount of vague-
ness (see, e.g., Refs. [52,53]), not only hindering theoretical
progress but also limiting to what extent we can harness this
resource.

Another debate revolves around the exchange symmetry of
matter particles and force-carrying fields that is sometimes
considered to be one form of entanglement and sometimes
considered a separate quantum effect. The nature of entan-
glement due to indistinguishability has been vastly studied
(see, e.g., Refs. [54–57] and the references therein). Some
works, however, have shown that the symmetrization of indis-
tinguishable particles alone is a useful resource in quantum
applications [58–63]. Despite the additional sophistication
when it comes to telling symmetrization effects and other
superposition phenomena apart [64], methods have been
developed to characterize entanglement for symmetric and
antisymmetric algebras [65–69].

In this contribution, we provide the framework to rigor-
ously define and characterize entanglement between quantum
particles and quantum fields. Specifically, we elaborate on the
relation of quantum correlations to the quantum description
in first (particles) and second (fields) quantization. Instruc-
tive examples then prove that particle-entangled states can
be field disentangled and vice versa, and both particle and
field entanglements can be present and absent at the same
time as well. Consequently, quantum correlations in particles
and fields present two independent quantum effects—the as-
pect that we aim to call out here—that are both valid kinds
of entanglement. In addition, for completeness, bosonic and
fermionic systems are commented on, too, showing that the
found independence applies regardless of exchange symme-
try.

We organize this paper as follows: A brief recapitulation
of essential concepts and notations is provided in Sec. II. We
then formulate scenarios of quantum fields whose excitation
yields distinguishable particles in Sec. III. Here, we also put
forward the independence of particle entanglement and field
entanglement. In Sec. IV, we proceed with some examples for
bosons and fermions. We conclude in Sec. V.

II. PRELIMINARIES

In this section, we recapitulate concepts that are relevant in
the context of this work. This includes establishing notations
that are especially useful for identifying and relating first and
second quantization.

A. Fundamentals

For any number of subsystems, we can define the notion of
a factorizable (pure) state, e.g.,

|ψ〉 = |ψ0〉 ⊗ |ψ1〉 ⊗ |ψ2〉 ⊗ · · · . (1)

If the state of a composite quantum system is in this form,
we can have local quantum interference but not global quan-
tum correlations. Whenever the state of the system is not in
this form, the parties are entangled, implying an insufficient
description in terms of subsystem states alone. (For the sake
of exposition, we focus on fully factorizable states throughout
this work, and forms of partial entanglement can be deduced
by combining multiple subsystems into one subsystem.)

Beyond pure states, the concept of factorizability can be
advanced to the notion of separable states [70], allowing for
classical correlation too. In this case, the mixed-state density
operator in a separable (i.e., disentangled) configuration reads

ρ̂ =
∫

dP(ψ0, ψ1, . . .)|ψ0〉〈ψ0| ⊗ |ψ1〉〈ψ1| ⊗ · · · , (2)

where P denotes a non-negative joint probability distribution
over pure tensor-product states. It is worth commenting that
P � 0 in the above expansion allows one to decompose in-
separable, i.e., entangled, states as well [71], as demonstrated
in theory [72] and experiment [73]. For simplicity, we study
pure states in this work; nevertheless, the above convex hull
construction for mixed states can be used to elevate our ap-
proach from pure to mixed states straightforwardly.

When talking about fermions and bosons, one has to re-
spect the exchange symmetry when defining composite spaces
[74]. That is, rather than utilizing the tensor product ⊗, the
symmetric tensor product ∨ and skew-symmetric (likewise,
antisymmetric) tensor product ∧ ought to be used, e.g.,

|ψ0〉 ∨ |ψ1〉 = |ψ0〉 ⊗ |ψ1〉 + |ψ1〉 ⊗ |ψ0〉,
|ψ0〉 ∧ |ψ1〉 = |ψ0〉 ⊗ |ψ1〉 − |ψ1〉 ⊗ |ψ0〉. (3)

In the former case of bosons, we can also speak about
two identical particles, |ψ0〉 ∨ |ψ1〉 with |ψ0〉 = |ψ1〉, being
a stronger restriction than just having indistinguishable par-
ticles. For the latter fermionic scenario, however, we have
|ψ0〉 ∨ |ψ1〉 = 0 when |ψ0〉 = |ψ1〉 holds true. Please be
aware that |ψ0〉 ‖ |ψ1〉 would suffice in both scenarios, but we
ignore global phases and assume a proper normalization to 1,
〈ψ0|ψ0〉 = 1 = 〈ψ1|ψ1〉.

In general, we include a normalization factor, N ∈ C, to
indicate when a phase and normalization have been ignored.
For example, N |φ〉∨n represents a normalized and symmetric
vector of n identical bosons for N = (n!〈φ|φ〉n)−1/2. It is also
worth reminding ourselves that |φ〉⊗0 is defined as the number
1, similarly applying to ∧ and ∨.

B. Fock space

In first quantization, one considers a system with a fixed
particle number. For instance, if the single-particle Hilbert
space is H , we have an n-particle space H ⊗n, assuming
that all involved particles are distinguishable. In the cases
of indistinguishable particles, one has H ∨n and H ∧n for
bosons and fermions, respectively. For the sake of simplicity,
we describe all particles through the same Hilbert space H . In
nature, one can observe interferences of states with different
particle numbers too. For example, in principle, a laser yields
a coherent superposition of n identical photon states for all
possible n ∈ N, termed the coherent state. But, for example,
a superposition of the form H ⊗n 	 |ψ (n)〉 + |ψ (m)〉 ∈ H ⊗m
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for m 
= n is ill-defined. The superscript, e.g., (n), indicates
the number of particles in the state.

The well-established Fock space [75], related to second
quantization, overcomes the aforementioned limitations, be-
ing defined through the direct sum of all n-particle spaces,

HFock =
⊕
n∈N

H ⊗n, (4)

where H ⊗0 = C. (See Ref. [76] for a thorough study of the
transition from first to second quantization of light.) Because
of this direct-sum-based definition, we can generally organize
the fixed-particle components in a vector [75],⎡

⎢⎢⎢⎣
|ψ (0)〉
|ψ (1)〉
|ψ (2)〉

...

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

|ψ (0)〉
0
0
...

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
|ψ (1)〉

0
...

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0

|ψ (2)〉
...

⎤
⎥⎥⎦+ · · ·

=
⊕
n∈N

|ψ (n)〉 = |�〉Fock, (5)

providing the sought-after ability to interfere states with dif-
ferent particle numbers. The subscript “Fock” is used to
distinguish states in Fock space from quantum states for a
given fixed particle number. In addition, 〈ψ (n)|ψ (n)〉 is the
probability to find |�〉Fock in the n-particle component. It
is worth pointing out that |ψ (0)〉 ∈ H ⊗0 = C is a complex
number representing vacuum (|ψ (0)〉 = 1 when normalized),
whose Fock-state representation is

|vac〉Fock =

⎡
⎢⎢⎣

1
0
0
...

⎤
⎥⎥⎦. (6)

Furthermore, quantum field theories are typically formu-
lated through annihilation and creation operators that act on
the Fock space. We recapitulate that notion, also using the
vector formalism described above. The generation of one extra
(distinguishable) particle in the state |φ〉 for each component
of the Fock vector can be determined through the action

â†
φ|�〉Fock =

⊕
n∈N

(|φ〉 ⊗ |ψ (n)〉)

=

⎡
⎢⎢⎢⎣

0 0 0 . . .

|φ〉⊗ 0 0 . . .

0 |φ〉⊗ 0 . . .
...

...
. . .

. . .

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

|ψ (0)〉
|ψ (1)〉
|ψ (2)〉

...

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0
|φ〉 ⊗ |ψ (0)〉
|φ〉 ⊗ |ψ (1)〉

...

⎤
⎥⎥⎥⎦. (7)

As it is not relevant for our purpose, we ignore the commonly
utilized factor

√
n + 1 in the definition of the creation operator

when it acts on the n-particle state. (Technically, our choice
of factors relates to a so-called exponential phase operator

[77]; a comparison of both kinds of factors can be found in
Ref. [78].) The annihilation operator is obtained by Hermitian
conjugation, âφ = (â†

φ )†. Using our normalization, an n-fold
excitation of the mode φ is given by

|nφ〉Fock = â†nφ

φ |vac〉Fock, (8)

effectively resulting in a single, nonvanishing Fock-state com-
ponent that is the nφ-fold tensor product of |φ〉. Again, for
indistinguishable particles, we replace ⊗ with the tensor prod-
ucts ∨ and ∧ to obtain the desired exchange symmetry. For
example, the aforementioned coherent state in the optical
mode φ takes the general form

|�〉Fock =
∑
n∈N

�nâ†n
φ |vac〉Fock =

⊕
n∈N

(�n|φ〉∨n). (9)

In the following, we apply all recapitulated facts from this
section for the purpose of studying entanglement between
particles and fields. To this end, we say that the single-particle
Hilbert space H is given by the computational orthonormal
basis

{| j〉 : j ∈ N}. (10)

Then, the second quantization for the jth mode is based on
the creation operator â†

j , e.g., resulting in multimode number
states

|n0, n1, n2, . . .〉Fock = â†n0
0 â†n1

1 â†n2
2 · · · |vac〉Fock, (11)

with the nonvanishing (n0 + n1 + n2 + · · · )-particle compo-
nent |0〉⊗n0 ⊗ |1〉⊗n1 ⊗ |2〉⊗n2 ⊗ · · · .

It is worth pointing out that the order of the single-particle
states—defining the modes—is determined through the order
of action of the creation operators and may be changed as
desired, e.g., using â†

0â†
1â†

0 to obtain |0〉 ⊗ |1〉 ⊗ |0〉. Nonethe-
less, our choice of ordering in Eq. (11) for distinguishable
scenarios suffices for our intents and purposes, and the order
becomes superfluous once we consider indistinguishability
[see Eq. (3)].

C. Outline

In the remainder of this work, our goal is to explore the
uniting and distinct features of entanglement in the particle
picture and for quantum fields. We provide explicit examples
to show why field and particle entanglements are independent
notions of quantum correlations. Along the way, rigorous def-
initions of particle and field entanglements are given within
the Fock-vector-based framework, as described above. This
allows us to clearly highlight the similarities and differences
of both kinds of entanglement.

III. DISTINGUISHABLE PARTICLES

In this section, we establish the principles of particle and
field entanglements. Specifically, we consider distinguishable
particles and compare both forms of quantum correlations.
Examples are constructed for all combinations, i.e., being only
particle or field entangled, being disentangled with respect
to either notion, and being simultaneously entangled in both
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forms. Thereby, we show the independence of field and parti-
cle entanglements.

A. Particle entanglement

Suppose that we have n particles, all of which are distin-
guishable. As discussed in the previous section, all particles
are expanded in the computational basis [Eq. (10)] for the
sake of convenience. Now, by definition, we have an n-particle
factorizable state |ψ (n)〉 if we can write this state as the tensor
product

|ψ (n)〉 = |ψ1,n〉 ⊗ · · · ⊗ |ψn,n〉. (12)

The labels in the subscript indicate the subsystem (particle la-
bel) and the total number of particles of the state, respectively.
( Mixed-state separability for classically correlated systems
follows the discussion in the previous section.) Conversely, we
have entanglement in the n-particle state if |ψ (n)〉 
= |ψ1,n〉 ⊗
· · · ⊗ |ψn,n〉 holds true.

This approach can be generalized to the Fock-space de-
scription. That is, the state |�〉Fock is particle factorizable if
all n-particle components are n-particle factorizable,

|�〉Fock =
⊕
n∈N

(|ψ1,n〉 ⊗ · · · ⊗ |ψn,n〉), (13)

i.e., each n-particle component is a tensor product of the
form |ψ1,n〉 ⊗ · · · ⊗ |ψn,n〉. For example, this approach was
used to investigate macroscopic entanglement in systems with
fluctuating numbers of particles [39].

B. Field entanglement

Using the modes that are determined by our computa-
tional basis [Eq. (10)], we can now define field factorizability
through the relation

|�〉Fock = |�0〉Fock � |�1〉Fock � |�2〉Fock � · · · . (14)

Herein, � indicates the standard tensor product of Fock
spaces; this symbol is used here for the purpose of distinguish-
ing it from the tensor product ⊗ as used previously for fixed
particle numbers. With �, Fock basis elements are

|n0, n1, . . .〉Fock = |n0〉Fock � |n1〉Fock � · · · (15)

for n0, n1, . . . ∈ N. See also Eq. (11) in this context. Being
defined for the basis elements, this tensor product can thereby
be extended to arbitrary states in Eq. (14), using the expansion

|� j〉Fock =
∑
n j∈N

�n j |n j〉Fock for j ∈ N. (16)

By definition, if Eq. (14) is falsified, the state under study is
field entangled (also commonly referred to as mode entan-
gled).

For a preliminary comparison with particle entanglement,
we expand the state in Eq. (14) in the Fock basis, additionally
utilizing Eq. (16), according to its N-particle components. We

find

|�0〉Fock � |�1〉Fock � · · ·
=

∑
n0,n1,...∈N

�n0,0�n1,1 · · · |n0, n1, . . .〉Fock

=
⊕
N∈N

⎛
⎜⎜⎝

∑
n0,n1,...∈N:

n0+n1+···=N

∏
j∈N

�n j , j |0〉⊗n0 ⊗ |1〉⊗n1 ⊗ · · ·

⎞
⎟⎟⎠.

(17)

Note that the N-particle component takes the form of a linear
combination, i.e., superpositions.

The similarities between particle and field entanglements
are clear. Either kind of quantum correlation violates a tensor-
product form, Eqs. (12) and (14), applying tensor products ⊗
and � which respectively operate on the multiparticle Hilbert
space and the Fock space. Thus, their mathematical structures
are similar. On the physical side, both kinds of correlations
answer the question of whether a state can be fully described
by local quantum states using either individual particles or
distinct modes. The examples we construct in the following,
however, show the dissimilarities between particle-entangled
and field-entangled states, demonstrating their inequivalence.

C. Proof-of-concept examples

In our examples here, we mainly focus on the qubit space
(i.e., having two distinct modes, the zeroth and the first) for the
sake of exposition. We start with the Fock states as previously
defined, which are both field and particle factorizable,

|n0〉Fock � |n1〉Fock = â†n0
0 â†n1

1 |vac〉Fock

=
⊕
N∈N

(
δN,n0+n1 |0〉⊗n0 ⊗ |1〉⊗n1

)
, (18)

with the Kronecker symbol δN,n0+n1 = 1 for N = n0 + n1 and
zero otherwise. That is, these states are tensor products with
respect to � and all N-particle components, |0〉 ⊗ · · · ⊗ |0〉 ⊗
|1〉 ⊗ · · · ⊗ |1〉. Keep in mind that the algebraic null 0 for
n0 + n1 
= N can always be seen as an arbitrary product state
with a zero probability amplitude in the Fock representation.
In addition, it is noteworthy that many more states which
are factorizable with respect to particles and fields exist. Our
objective is only to provide at least one representative example
for all the different kinds of quantum correlations within the
classification of particle and field entanglements.

Our second example concerns a field-entangled and
particle-factorizable state. The two-mode state that exempli-
fies that is

N
∑
n∈N

λn|n, n〉Fock = N
⊕

N∈N:N=2n

λn(|0〉⊗n ⊗ |1〉⊗n), (19)

using the normalization constant N and a complex parameter
λ, with 0 < |λ| < 1. In optics, this state relates to a so-called
two-mode squeezed (vacuum) state. In the Fock expansion,
we have a Schmidt decomposition that has an infinite (specifi-
cally, larger than 1) Schmidt rank [1], certifying entanglement.
Each N-particle component, however, is clearly a product
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state of the form |0〉 ⊗ · · · ⊗ |0〉 ⊗ |1〉 ⊗ · · · ⊗ |1〉 and is thus
factorizable for all particle numbers.

In contrast to the previous example, we can also have field-
factorizable and particle-entangled states. A representative
is

N (|�〉Fock � |�〉Fock )

= N
⊕
N∈N

⎛
⎜⎜⎝

∑
n,m∈N:
n+m=N

λnλm |0〉⊗n ⊗ |1〉⊗m

⎞
⎟⎟⎠

= N
⊕
N∈N

λN (|1〉 ⊗ |1〉⊗(N−1) + |0〉 ⊗ |φ(N−1)〉). (20)

Therein, both modes are individually given through |�〉Fock =∑
n∈N λn|n〉Fock. By contrast, the N-particle component takes

a superposition form (see the second line), as discussed in the
context of Eq. (17). In the third line of Eq. (20), a factorization
of the components for N > 1 fails because the decom-
position includes the linearly independent parts |1〉⊗(N−1)

and |φ(N−1)〉 = ∑
n∈N:1�n�N |0〉⊗n ⊗ |1〉⊗(N−1−n), implying a

Schmidt rank of 2, like a Bell state. Particle entanglement of
this field-factorizable state is thus proven.

It is worth emphasizing that the previous two examples
that are either field or particle entangled depend on different
superpositions. That is, the particle entanglement was demon-
strated by superimposing states in first quantization, while
field entanglement was achieved by superpositions in second-
quantization Fock space. Together with the products ⊗ and �,
this led to mutually exclusive forms of quantum correlations.

For completeness, we can also consider a field-entangled
and particle-entangled state. In particular, we construct an
example whose particle entanglement corresponds to GHZ
states and field quantum correlations resemble a so-called
NOON state [79]. The state has the form

N (|�〉Fock � |0〉Fock+|0〉Fock � |�〉Fock )

= N
∑
N∈N

λN (|N, 0〉Fock + |0, N〉Fock )

= N
⊕
N∈N

λN (|0〉⊗N + |1〉⊗N ), (21)

using the fact that |�〉Fock, as given before, is linearly indepen-
dent of |0〉Fock. As we have particle and field entanglements
at the same time, we could also speak about a form of hy-
brid entanglement here that allows harnessing the properties
of GHZ states in the particle picture and the capabilities of
NOON states when operating on quantized fields.

D. Preliminary summary

In summary, we have demonstrated that particle and field
entanglements are phenomena which can occur indepen-
dently. In other words, particle entanglement does not imply
field entanglement, nor does field entanglement imply parti-
cle entanglement. This extends to mixed states [Eq. (2)] and
notions of field and particle separability and inseparability as
well. Since entanglement serves as a resource in many appli-
cations, this also means that particle and field entanglements

are resources that are independently accessible, allowing for
high flexibility in diverse quantum technology applications
that can simultaneously harness field and particle quantum
correlations.

IV. INDISTINGUISHABLE PARTICLES

For completeness, we also comment on the case of in-
distinguishable systems. As pointed out before, quantum
correlations in such scenarios have been widely discussed in
terms of theoretical and experimental developments. See, e.g.,
Ref. [57] for a thorough classification. While it is not our
intention to dive into all the finer details of entanglement of
indistinguishable particles, we still want to show that field and
particle entanglements are independent phenomena in such
scenarios too. To this end, below, we lay out the adopted nota-
tion and provide examples for all combinations of factorizabil-
ity and entanglement of indistinguishable particles and fields,
thus completing our catalog of examples of the independence
of field and particle entanglements for all possible scenarios.

A. Bosonic quantum fields

For indistinguishable particles, such as bosons, the notion
of particle entanglement is contentious. This is due to the
definition of the symmetric tensor product ∨ [Eq. (3)], which
generally produces a nonlocal superposition with respect to
⊗. This leads to two possible definitions of separability. In
the community, there have been discussions from defenders of
both definitions [54–56], and both sides have produced con-
vincing arguments, in particular, when focusing on applica-
tions [58–60]. An agnostic standpoint is taken here, meaning
that we discuss all options of particle entanglement in bosonic
(and later in fermionic) systems without any preference, and
the reader is invited to select their preferred point of view.

We begin with two bosons to discuss different options of
factorizability. For n > 2 bosons, the general ideas presented
here can be generalized. We compare the two provided factor-
izations through a convenient decomposition and present an
example of entanglement that is applicable to both notions.

First, one can say that a system of two indistinguishable
particles with symmetric exchange symmetry is particle fac-
torizable if

|ψ (2)〉 = N |ψ1〉 ∨ |ψ2〉
= N (|ψ1〉 ⊗ |ψ2〉 + |ψ2〉 ⊗ |ψ1〉) (22)

for any |ψ1〉, |ψ2〉 ∈ H . Second, when additionally requiring
identical (states of) particles, we have particle factorizability
that reads

|ψ ′(2)〉 = N |ψ (1)〉 ∨ |ψ (1)〉 = 2N |ψ (1)〉 ⊗ |ψ (1)〉 (23)

for arbitrary one-particle states |ψ (1)〉 ∈ H , which is also
factorizable with respect to ⊗. One can readily see that factor-
izability in the form |ψ ′(2)〉 implies factorizability as described
through |ψ (2)〉 with |ψ1〉 = |ψ2〉 = |ψ (1)〉. Conversely, entan-
glement of indistinguishable bosons yields entanglement of
identical bosons.

For an additional comparison, we decompose the state
|ψ (2)〉 in terms of states of the form |ψ ′(2)〉. Here, it is con-
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venient to define the following parameter and states:

γ = 〈ψ1|ψ2〉, |e±〉 =
|ψ1〉 ± γ ∗

|γ | |ψ2〉√
2(1 ± |γ |) , (24)

where |e+〉 and |e−〉 are orthonormal. Note that we suppose
that 〈ψ1|ψ1〉 = 1 = 〈ψ2|ψ2〉 is obeyed and that |ψ1〉 and |ψ2〉
are neither parallel nor orthogonal to exclude trivial cases. By
using the quantities in Eq. (24), we obtain

|ψ (2)〉 = |ψ1〉 ⊗ |ψ2〉 + |ψ2〉 ⊗ |ψ1〉√
2(1 + |γ |2)

= γ

|γ |
1 + |γ |√

2(1 + |γ |2)
|e+〉 ⊗ |e+〉

− γ

|γ |
1 − |γ |√

2(1 + |γ |2)
|e−〉 ⊗ |e−〉. (25)

This shows that |ψ (2)〉 is a superposition of factorizable states
of identical particles, |e+〉 ∨ |e+〉 and |e−〉 ∨ |e−〉, while being
factorizable for distinguishable particles, |ψ1〉 ∨ |ψ2〉.

An example for a state that is entangled with respect to both
notions of factorizable bosons is

|χ (2)〉 = N (|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 + |2〉 ⊗ |2〉). (26)

Applying the above results, this state is a superposition of
the following products of three identical boson states: (|0〉 +
|1〉)∨2, (|0〉 − |1〉)∨2, and |2〉∨2. At the same time, it is a
superposition of the two symmetric product states |0〉 ∨ |1〉
and |2〉∨2 of indistinguishable bosons.

Regardless of which of the aforementioned definitions is
used for bosons, we have particle factorizability in the Fock
representation when

|�〉Fock =
⊕
n∈N

(|ψ1,n〉 ∨ · · · ∨ |ψn,n〉) (27)

applies, where we additionally require that |ψ1,n〉 = · · · =
|ψn,n〉 in the case of products of identical particles. For
correspondingly entangled states of bosons, the above repre-
sentation does not apply. Except for the details pertaining to
the exchange symmetry, which we discussed already, this def-
inition of particle factorizability is analogous to the definition
of distinguishable particles in Eq. (13). Also, because of the
symmetry, the order of creation operators no longer plays a
role, and all orderings we choose for distinguishable particles
become superfluous.

The Fock basis for computational modes is thus given by

|n0, n1, . . .〉Fock = N â†n0
0 â†n1

1 · · · |vac〉Fock

= N
⊕
N∈N

(
δN,n0+n1+··· |0〉∨n0 ∨ |1〉∨n1 ∨ · · · ).

(28)

Interestingly, however, formally, the same tensor-product over
Fock spaces applies as in the case of distinguishable parti-
cles [see Eq. (15)] to define product bases in Fock space,
e.g., |n0, n1〉Fock = |n0〉Fock � |n1〉Fock, for the zeroth and first
modes. Moreover, the same applies to the actual definition
of field-factorizable states in bosonic systems, for which we
can directly copy the definition from the previous section [see
Eq. (14)]. Therefore, the mode-based notion of entanglement

has not fundamentally changed compared to the earlier sce-
nario of distinguishable particles.

Again, we can construct examples to highlight the distinct
features of particle and field entanglements. As before, Fock
basis states are field factorizable, e.g., |2, 0〉Fock and |1, 1〉Fock

for modes 0 and 1. The state |2, 0〉Fock is also factorizable with
respect to indistinguishable and identical bosons, resembling
|0〉∨2, and the state |1, 1〉Fock is factorizable with respect to
indistinguishable bosons, |0〉 ∨ |1〉, but entangled for identi-
cal bosons, as discussed via the decomposition of two-boson
states above.

A state that is field entangled and factorizable for indistin-
guishable and identical bosons is

|� ′〉Fock = N

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

|0〉∨2

|1〉∨3

0
...

⎤
⎥⎥⎥⎥⎥⎥⎦

= |2, 0〉Fock + 3|0, 3〉Fock√
10

. (29)

By construction, this state is factorizable in the particle picture
and entangled in terms of field components, as deduced from
the Schmidt number of 2 in Fock space. The simple modifica-
tion

|�〉Fock = N

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

|0〉 ∨ |1〉
|1〉∨3

0
...

⎤
⎥⎥⎥⎥⎥⎥⎦

= |1, 1〉Fock + 3
√

2|0, 3〉Fock√
19

(30)

is rather similar, except that we now loose factorizability with
respect to identical particles because of the modified two-
particle component because |0〉 ∨ |1〉 
= |ψ (1)〉∨2.

Conversely, states that are field factorizable and particle
entangled can be constructed too. For example, the product
vector (|0〉Fock + |1〉Fock )�3 has a two-particle component pro-
portional to (|0〉 ∨ |1〉 + |1〉 ∨ |2〉 + |2〉 ∨ |0〉). In a few steps,
one can show that this is not factorizable for indistinguishable
particles, implying the same for identical bosons: equat-
ing |0〉 ∨ |1〉 + |2〉 ∨ |2〉 + |2〉 ∨ |0〉 with the ansatz (α0|0〉 +
α1|1〉 + α2|2〉) ∨ (β0|0〉 + β1|1〉 + β2|2〉) means that we have
to set, without loss of generality, α0 = 0 so that we do not
have a |0〉 ∨ |0〉 component, which implies that α1 = α2 =
1/β0. This, in turn, implies that β1 = β2 = 0 so that the
|1〉 ∨ |1〉 and |2〉 ∨ |2〉 components are removed; however,
now, |1〉 ∨ |2〉 also comes with a zero factor, contradicting the
decomposition of the given two-particle state.

We can also find a state that is entangled with respect to all
three notions that are investigated in this section. For example,
the following three-mode state, using Eq. (26), satisfies our
demands:

|X 〉Fock =

⎡
⎢⎢⎢⎢⎣

0
0

|χ (2)〉
0
...

⎤
⎥⎥⎥⎥⎦ =

√
2|1, 1, 0〉Fock + |0, 0, 2〉Fock√

3
. (31)
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As described above, |χ (2)〉 [Eq. (26)] is particle entangled
with respect to both discussed options. Furthermore, factoring
the zeroth mode already fails since the remaining two-mode
vectors |1, 0〉Fock and |0, 2〉Fock are linearly independent,
resulting in a Schmidt rank larger than 1 being required for
factorizability.

To summarize, we again find that field and particle entan-
glements are independent phenomena for bosons. Examples
were constructed that showed that quantum correlations be-
tween fields and identical particles can occur independently,
which holds true for indistinguishable particles as well. What
is dependent are the two forms of particle entanglement for
which there is no case of factorizability in terms of identical
states and entanglement for symmetrized (i.e., only indistin-
guishable) states, as discussed at the beginning of the section.
The definition of entanglement between modes is not con-
ceptually different from the case without exchange symmetry.
Since the exchange symmetry acts on the level of individual
particles, this observation makes sense.

B. Indistinguishable particles: Quantum fields of fermions

Last, we complete our investigation of entanglement
between fields and particles by studying scenarios with
skew-symmetric fermions. In contrast to the bosonic parti-
cles, where |ψ〉 ⊗ |ψ〉 = N |ψ〉 ∨ |ψ〉 presents a standard
tensor product as well as a symmetric tensor product, the
Pauli exclusion principle, mathematically determined through
|ψ〉 ∧ |ψ〉 = 0, does not allow for factorizability of identi-
cal fermions. Thus, from a purist perspective, all fermionic
states, including examples like |0〉 ∧ |1〉 = |0〉 ⊗ |1〉 − |1〉 ⊗
|0〉, could be considered to be particle entangled. This ren-
ders it trivial to study entanglement of identical particles.
Therefore, we here focus on the notion that states of the
form |ψ1〉 ∧ · · · ∧ |ψn〉 are factorizable with respect to the
antisymmetric tensor product, i.e., the distinguishable case.

Furthermore, antisymmetry further implies that each basis
state | j〉 can be occupied once at most. Specifically, we have
â†2

j = 0 because it acts like the operator | j〉 ∧ | j〉∧ = 0 on
each n-particle component of the Fock space, as discussed
in Sec. II. Thus, Fock basis elements take a form considered
previously, |n0〉Fock � |n1〉Fock � · · · , but with the significant
restriction n j ∈ {0, 1} for each mode j, rather than n j ∈ N.

As a final remark, we mention that the Schmidt decom-
position (also known as singular-value decomposition) that is
applicable to distinguishable particles and can be adjusted to
bosons (Takagi’s factorization) is replaced by the so-called
Slater decomposition for fermions. For instance, using the
definitions in Eq. (24), we have

|ψ (2)〉 = N |ψ1〉 ∧ |ψ2〉

= |ψ1〉 ⊗ |ψ2〉 − |ψ2〉 ⊗ |ψ1〉√
2(1 − |γ |2)

= 1√
2

γ

|γ | (|e−〉 ⊗ |e+〉 − |e+〉 ⊗ |e−〉). (32)

Hence, this state is proportional to the skew-symmetric prod-
uct of two orthonormal states, |e−〉 ∧ |e+〉, and has a so-called
Slater rank of 1 [65,69]. Through this unit rank, we can

thus identify factorizability for skew-symmetric tensors anal-
ogously to a Schmidt rank of 1 for distinguishable particles.

As done previously for distinguishable particles and indis-
tinguishable and identical bosons, we now provide examples
to display the independence of field and particle entangle-
ments for systems of indistinguishable fermions. As one
example, this is relevant for modern research at the interface
of quantum chemistry and quantum information [80,81].

Very much like in the case of distinguishable particles
and bosonic fields, we find that the basis states of the Fock
space are field factorizable and particle factorizable at the
same time. That is, the (M + 1)-mode Fock basis states
|n0〉Fock � · · · � |nM〉Fock are a product with respect to �, and
the only nonvanishing particle component of the Fock vector,
which is the one pertaining to n0 + · · · + nM particles, reads
|0〉∧n0 ∧ · · · ∧ |M〉∧nM .

On the other hand, we can easily find examples in which
we have particle and field entanglements at the same time.
For instance, we can consider a generalized GHZ-type state in
the particle picture, proportional to

|0〉 ∧ · · · ∧ |M − 1〉 + |M〉 ∧ · · · ∧ |2M − 1〉
+ · · · + |(L − 1)M〉 ∧ · · · ∧ |LM − 1〉, (33)

which superimposes LM occupied modes, where L, M ∈ N.
In the field notation of Fock spaces, the same state resembles
a W -type state,

|1〉�M
Fock � |0〉�(L−1)M

Fock + |0〉�M
Fock � |1〉�M

Fock � |0〉�(L−2)M
Fock

+ · · · + |0〉�(L−1)M
Fock � |1〉�M

Fock. (34)

Therefore, this fermionic state is entangled in the particle and
field sense.

Finally, examples for particle-factorizable and field-
entangled states and vice versa are provided. The two-
particle state N (|0〉 + |1〉) ∧ (|2〉 + |3〉) reads like a twofold
copy of entangled Bell states in the Fock representation,
N (|0, 1〉Fock + |1, 0〉Fock )�2. Hence, we simultaneously have
a particle-factorizable and field-entangled state. On the other
hand, a particle-entangled and field-factorizable state is
N (|0〉Fock + |1〉Fock )�4. This state has a two-particle compo-
nent proportional to

|0〉 ∧ |1〉 + |0〉 ∧ |2〉 + |0〉 ∧ |3〉
+ |1〉 ∧ |2〉 + |1〉 ∧ |3〉 + |2〉 ∧ |3〉

= (|0〉 + |1〉) ∧ (|1〉 + |2〉 + |3〉) + |2〉 ∧ |3〉, (35)

where the latter form is a sum of two products of linearly
independent vectors. This implies a Slater rank (of 2) greater
than 1 and thus nonfactorizability with respect to ∧.

In conclusion, for all combinations of factorizability and
entanglement of fermionic particles and fields, we have pro-
vided examples. The resulting independence of particle and
field entanglements for fermions completes our analysis of
distinguishable and indistinguishable particles.

V. CONCLUSION

We investigated different notions of entanglement as a con-
sequence of first and second quantization in quantum physics,
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providing a framework to rigorously define and character-
ize entanglement between particles, fields, and their hybrid
combinations. We started by establishing distinct notations
and highlighting the role of Fock space to precisely define
the different notions of separability. Examples were explicitly
analyzed, extending to cases for distinguishable and indistin-
guishable particles. Importantly, it was shown that quantum
correlations in particles and fields are independent quantum
effects since particle-entangled states can be field disentan-
gled and field-entangled states can be particle disentangled.
In addition, we presented examples of full separability with
respect to either notion and joint particle-field entanglement.
Therefore, the quite common assumption that entanglement of
fields implies entanglement of particles or vice versa is ren-
dered obsolete. Rather, the findings of this work demonstrate
on the basis of concrete examples that it does matter for the
fundamental notion of entanglement whether one studies it in
the context of first or second quantization. As the exchange of
symmetry could play a role, we also showed that the same
concept of independence applies to bosonic and fermionic
systems.

The independent kinds of entanglement were rigorously
determined here with the aim of deepening fundamental un-
derstanding of essential quantum correlations. In addition,
our investigation has direct implications for practical quantum
technologies; in particular, we showed that particle and field
entanglements provide two distinct resources for quantum
information processing that can be exploited separately and
jointly. For instance, states that are both particle and field
entangled may serve as an interface to convert field-based
quantum resources to particle-based technology platforms and
vice versa.
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