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Catalysis in charging quantum batteries
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We propose an approach for the optimization of the charging of harmonic oscillators (quantum batteries)
coupled to a harmonic oscillator (charger), driven by a laser field. We demonstrate that energy transfer limitations
can be significantly mitigated in the presence of catalyst systems, mediating between the charger and quantum
batteries. We show that these catalyst systems, either qubits or harmonic oscillators, enhance the amount of
energy transferred to quantum batteries, while they themselves store almost no energy. It eliminates the need
for optimizing the frequency of the charging laser field whose optimal value in the bare setting depends on the
coupling strengths between the charger and the batteries.
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I. INTRODUCTION

With the advent of quantum technology a growing curios-
ity, regarding how the current technologies can be enhanced
under the principles of quantum mechanics, began. Different
topics have been explored by scientists, such as quantum ther-
modynamics, quantum cryptography, quantum metrology, and
quantum computing. The quantum thermodynamics theory
addresses the concepts of energy, work, heat, temperature, and
entropy production in quantum systems [1–6]. Recently, the
study of energy transfer has brought forward a diverse and
rich set of phenomena, in the context of quantum batteries, to
be both theoretically and experimentally investigated [7–13].
As in classical batteries, the aim is to boost the energy transfer
from the battery to the charger to be later extracted in the form
of work. Many researchers proposed and investigated possi-
ble benefits coming from quantum effects, such as quantum
correlations and quantum coherence of the initial state, in the
charging of quantum batteries [14–19].

Even though this field is promising and filled with a
plethora of interesting applications, there exist some issues or
experimental limitations to be addressed. One of them is hav-
ing the initial quantum coherence in the state of the charger
for boosting the energy transfer [16]. This, of course, requires
specific preparation which might not be experimentally favor-
able. Therefore, in general, it would be preferable to start from
the ground state. Quantum correlations, proposed in Ref. [14],
may also be troublesome since uncorrelating the battery from
the charger can significantly disturb the state of the battery
and consumes energy. Another issue to be noticed is that
it is energetically and experimentally more beneficial to use
quantum harmonic oscillators (QHO), especially as a battery
for storing energy, rather than two-level systems (TLS). The
reason is the ability to store an arbitrary amount of energy (up
to natural technical limitations of the particular experimental
setup) in one QHO while the maximum energy stored by a
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TLS is restricted to one quanta. The storage capacity can be
increased by using many TLS though this is not experimen-
tally desirable as it could be complicated to build or control.

In resource theories of entanglement and thermodynamics,
tasks like entanglement distillation and state transformations
can be enabled by performing them with the help of an an-
cillary system playing the role of a catalyst (i.e., a system
whose state is not affected by the operations) [20,21]. These
effects can be further enhanced if one allows for approximate
catalysis in which the state of the added system does not
have to be returned completely unaltered. This may lead to
trivialization of the entire theory, as arbitrary transition be-
tween states become possible. Transformations of bipartite
pure entangled states without any communication, possible up
to an arbitrary precision due to approximate catalysis, are an
example of the so-called embezzling [22].

Motivated by these effects, here we ask about the use-
fulness of catalylic systems outside of resource theoretical
framework, namely, in battery charging protocols, hoping to
identify scenarios in which energy transfer is enhanced. We
show that using a qubit or a harmonic oscillator ancillary
system, prepared in the ground state, can boost the energy
transfer in battery charging protocols, while the energy of
the catalyst is left almost unaffected by the transformation.
More specifically, we demonstrate that the mere presence of
a catalyst mediating between the charger and the battery can
allow charger-battery systems to realize energy transfers that
would otherwise require probing the coupling between the
charger and the battery (see Fig. 1).

We first examine the basic model of the quantum charger-
battery system. As stated above, TLSs are not appropriate
for storing an arbitrary amount of energy thus, to this end,
we use QHOs as both quantum charger and quantum battery.
An external laser field is shined on the charger and both the
charger and the battery are assumed to be initially in the
ground state. We then examine the intuitive way of improv-
ing energy transfer in the basic model which is based on
the tuning of the external laser field with the system of the
charger-battery. We will use the analysis of this case to argue
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(a)

(b)

FIG. 1. (a) Efficient charging of a quantum system (battery) can-
not be achieved by external energy driving in the presence of noise.
(b) Addition of a catalyst makes the energy transfer effective, while
keeping the state of the catalyst almost unaffected. Note that the
catalyst may be a qubit or a harmonic oscillator.

for the catalytic nature of the extended setup in which an
ancillary system is added to the charger-battery platform. We
then extend the method to the case of simultaneous charging
of multiple batteries, in which the benefit of the catalytic
approach is even more pronounced: the optimal charging laser
frequency is stabilized, while in the bare setting it would
depend on multiple couplings between the charger and the
batteries.

While not essential for the proposed catalytic method of
charging, the noise affecting it is also taken into account for il-
lustrative purposes. Following [11], we use the local approach
in the construction of the respective master equation. We
discuss the applicability of the method for any weak coupling
with the environment.

II. ENERGY TRANSFER FROM A CHARGER
TO A BATTERY: THE BASIC MODEL

In this section we present the basic model of the charger-
battery system and in the next sections we will present how
the energy transfer can be greatly boosted in this basic model.
Consider a QHO, as a charger, which interacts (charges) with
another QHO (as the battery) (see Fig. 2) [15]. A classical

FIG. 2. A QHO acting as a quantum charger (middle), powered
by the classical laser field (left), and interacting with another QHO
acting as a battery (right). Energy dissipation, indicated by blue
curved arrows, occurs through the charger.

laser field with frequency ω f feeds energy into the charger.
Thus the Hamiltonian is written as (h̄ = 1)

H = ωaa†a + ωbb†b + g(ab† + ba†)

+ F (eiω f t a + e−iω f t a†), (1)

where a (a†) and b (b†) are the annihilation (creation) opera-
tors of the charger A and the battery B, respectively. Here g is
the coupling constant, ω f is the laser field frequency, and F
the amplitude of the laser field. The interaction between the
laser field and the charger has been computed in the dipole
approximation and rotating wave approximation (RWA) [23],
where the frequencies of the charger and the battery are much
bigger than the decay rates, justifying the application of RWA
(or secular approximation at the level of the master equation).
Both the charger and the battery are prepared initially in
ground states. It is assumed that the dissipation of energy
into the environment E occurs through the charger. Therefore,
the evolution of the state of the entire system ρAB, in the
interaction picture with respect to local Hamiltonians, can be
described by the Lindblad form master equation [24]

ρ̇AB =LAB[ρAB]

= − i[g(ab† + ba†) + F (ei�t a + e−i�t a†), ρAB]

+ γ (N (T ) + 1)Da[ρAB] + γ N (T )Da† [ρAB], (2)

where � = ω f − ωa is the detunning between the laser field
and the charger A and N (T ) = 1/(eω/kT − 1) the average
number of the photon in mode ω of the environment, with
Boltzman factor k, at temperature T , and

Dc[ρ] = cρc† − 1
2 {c†c, ρAB}, (3)

is the dissipator. The validity of the Lindblad master equa-
tion in zero temperature requires some elaboration. In deriving
the Lindblad master equation the “time-correlation” functions
appear [24]. The width of this function represents the correla-
tion time (memory time) τc and in order for the Born-Markov
approximation to hold, the correlation time must be short.
Therefore, there might be a concern about the divergence of
the correlation time as the temperature of the environment
goes to zero. In Ref. [25] it was shown that this correlation
time is equal to τc = 2π/ωs, where ωs is the frequency of the
system interacting with the bath, which clearly shows that the
correlation time does not diverges. For a different argument
on this issue we refer the reader to Ref. [26].

We assume the charger and the battery are on resonance
with each other ωa = ωb = ω. The evolution can be solved
exactly. For the figures of merit we choose energy stored in
the battery

EB(t ) = 〈b†b〉, (4)

as well as its ergotropy

WB = 〈b†b〉 − min
U

〈Ub†bU †〉, (5)

quantifying the amount of work extractable from the battery
by a unitary process [27]. The energy and ergotropy of the
charger EA(t ) and WA are defined analogously.

For zero detuning � = 0, which is the case usually ex-
plored in the literature [11], in Fig. 3 we present the time
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(a) (b)

FIG. 3. Off-resonant charging of a basic model. Energy EB/ω

(dashed line) and ergotropy WB/ω (dotted line) of a quantum battery
B, charged by a quantum charger A versus gt for g = 0.2ω, F =
0.1ω, γ = 0.05ω, and � = 0. In (a) N (T ) = 0 and (b) N (T ) = 1.

dependence of the system energy and ergotropy. As is seen
for zero temperature of the environment, where N (T ) = 0, the
maximum energy stored in the battery is almost 0.9, i.e., less
than one quanta of energy [see Fig. 3(a)] and for nonzero tem-
perature of the environment, with N (T ) = 1, the maximum
energy stored in the battery is around 1.2 [see Fig. 3(b)]. We
note that for a quantum harmonic oscillator linearly coupled
to a zero-temperature bath, the Markovian dynamics maps
a coherent state into a coherent state [28]. Since the initial
state is chosen to be a vacuum (also a coherent state) the
state remains coherent (and hence pure) for all the times [28].
Hence the ergotropy extraction will be equal to the internal
energy of the battery, i.e., all of the stored energy can be
extracted in the form of work [Fig. 3(a)].

To discuss the effect of the detuning, we look at the evo-
lution of the energies and ergotropies of the charger and the
battery [11]

WA = 16ωF 2

ε2
e− γ t

2 sinh2(εt/4), (6)

WB = ωF 2

g2

(
1 − e− γ t

4
[

cosh(εt/4) + γ

ε
sinh(εt/4)

])2
, (7)

where

ε =
√

γ 2 − (4g)2. (8)

From above we see that the zero-temperature solution
shows limitations on the values of the available ergotropy.
Numerical studies (see Fig. 4) reveal that this bound pertains
to the nonzero temperature regime. Indeed, the energy stored
in the charger and the battery are bounded to be of the order
(F/g)2 in a noiseless case oscillating with a frequency of the
order g. The effect of local noise results in the suppression of
these oscillations.

We point out that the existence of the bound on energy
stored in the charger and the battery (and present already for a
noiseless case) stems entirely from the fact that the laser fre-
quency ω, while in tune with local frequencies of the charger
and the battery oscillators, is out of tune with respect to the
frequency of the global charger-battery system, affected by
the presence of interaction between the harmonic oscillators.
Indeed, for a fixed driving amplitude F , nonrestricted energy
storing on the battery seems possible only in the limit g → 0.
This, however, requires diverging charging times.

(a) (b)

FIG. 4. On-resonant charging of a basic model. Energy EB/ω

(dashed blue line) and ergotropy WB/ω (dash-dotted blue line) of
a quantum battery B, charged by a quantum charger A versus gt
and ω f = ω+ = ω + g (the same plot is obtained for ω− = ω −
g), g = 0.2ω, F = 0.1ω, and γ = 0.05ω. In (a) N (T ) = 0, and in
(b) N (T ) = 1. It is seen that energy transfer in the resonance case,
where ω f = ω+, keeps increasing with time.

The off-resonance nature of the driving becomes apparent
after rewriting the system Hamiltonian (1) in terms of the
global supermodes operators

C± = 1√
2

(a ± b), (9)

which results in

H = ω+C†
+C+ + ω−C†

−C− + F√
2

(e−iω f tC+ + eiω f tC†
+)

+ F√
2

(e−iω f tC− + eiω f tC†
−), (10)

where

ω± = ω ± g. (11)

Equation (11) reveals that the detuning is especially pro-
nounced in the strong-coupling regime g ≈ ω, blocking the
energy transfer. Energy transfer can be restored by shifting
the laser frequency to ω+ or ω−, which results in unrestricted
charging of the global modes C+ or C−, respectively. In Fig. 4
the energy and ergotropy of the battery are plotted for ω f =
ω+ (the same plots for ω− = ω − g) and it is observed that the
ergotropy extraction keeps boundlessly increasing with time.

This intuition behind the off-resonant drive will be cru-
cial in assessing stability of the catalyst-enhanced charging
protocol with respect to fluctuations of the frequency drive
(Sec. III C). Here we note that for the efficient charging to
take place in timescales t , we need to probe ω± (or g) to
the precision 1/t to set the on-resonant driving frequency.
Analogously, time instabilities of ω or g of the order �ω and
�g restrict the effective charging times to 1/�ω and 1/�g,
respectively. The reason is the following: the off-resonance
drive restricts the unbounded charging of the on-resonant case
(see Fig. 4, blue curve) to oscillate with period 1/g [according
to Eqs. (6) and (7)], with g being the measure of the detuning
with respect to the resonant drive (11). This is visualized
by the cyan-colored curves of Fig. 4, which correspond to
charging with a drive of frequency ω, remaining out of tune
with respect to the resonant frequency ω ± g by a term g.
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FIG. 5. A two-level quantum system interacts with the charger
and the battery, playing the role of a catalyst. In this paper, we inves-
tigate the usage of both qubits and harmonic oscillators as catalysts.

III. CATALYSIS IN CHARGING QUANTUM BATTERIES

A. Model of the catalysis-assisted charging

In this section we propose a method for avoiding the men-
tioned necessity for tuning the laser frequency. We extend the
system by a catalyst mediating the interaction between the
charger and the battery (see Fig. 5). The charger interacts with
the catalyst and the catalyst interacts with the oscillator while
there exists no direct interaction between the charger and the
battery. The Hamiltonian of the entire system becomes

H = ωa†a + ωqq†q + ωb†b + gaq(aq† + a†q)

+ gbq(bq† + b†q) + F (eiω f t a + e−iω f t a†), (12)

where q (q†) are either annihilation (creation) operators of the
qubit (q = σx − iσy, with σx and σy denoting Pauli matrices),
or of harmonic oscillator [q, q†] = 1.

Introducing the supermode operators

C+ = sin θ a + cos θ b, (13)

C− = cos θ a − sin θ b, (14)

where

sin θ = gaq√
g2

aq + g2
bq

, cos θ = gbq√
g2

aq + g2
bq

, (15)

the Hamiltonian in Eq. (1) can be rewritten in the form

H = ω+C†
+C+ + ω−C†

−C− + ωqq†q + g(C+q† + C†
+q)

+ F sin θ (e−iω f tC+ + eiω f tC†
+)

+ F cos θ (e−iω f tC− + eiω f tC†
−), (16)

where, in this case, for the supermode frequencies we have
ω± = ω and g =

√
g2

aq + g2
bq. Despite zero detuning � =

ω f − ω = 0, the laser field will be on resonance with the
global mode C− of the charger-battery system [see the Ap-
pendix for a generalization to the arbitrary number of modes
(cells) in the battery]. Consequently, in the noiseless case an
unlimited transfer of energy to mode C− takes place, inde-
pendently of the value of interaction constants gaq and gbq, as
well as energy splitting wq of the catalyst, which are allowed
to be unknown and fluctuate in time. In the presence of noise
the energy transfer is still significantly boosted. Nevertheless,

depending on the dissipation rate, a bound would appear on
the energy transfer.

For the case in which the catalyst is a harmonic oscillator,
we argue that it will store a negligible amount of energy.
This follows from the observation that, while the mode C−
is fully decoupled from C+ and q, the later modes are charged
according to the following Hamiltonian:

H ′ = ωC†
+C+ + ωqq†q + g(C+q† + C†

+q)

+ F sin θ (e−iω f tC+ + eiω f tC†
+), (17)

which, upon substitution C+ → a, F sin θ → F , and q → b,
reproduces exactly the Hamiltonian (1) provided that we set
wq = ω. Therefore, by deciding on this value of ωq, we en-
force a bound on the energy stored in the catalyst to be of
the order of (F sin θ )2/(g2

aq + g2
bq ), which in the weak driving

limit is negligible.
In the case where the catalyst is a qubit, the energy stored

by it is naturally bounded by its energy splitting ωq. By
directly solving the dynamics of the system for the qubit
catalyst, below we show that its energy also remains close
to 0 for the charging. Similar results can be obtained for the
harmonic oscillator case.

Assuming energy splitting in the catalyst qubit be equal to
ωq = ω and keeping ω = ωq in the interaction picture with
respect to local Hamiltonians, the equation of motion for the
system is given by

ρ̇ABQ = − i[g(aq† + qa† + bq† + qb†)

+ (F̃a + F̃ ∗a†), ρABQ]

+
∑

x=a,q

γx((N (T ) + 1)Dx[ρABQ]

+ N (T )Dx† [ρABQ]), (18)

with F̃ = Feit�.
For the case of the qubit catalyst, we take q = σx + iσy,

(σx and σy being Pauli matrices), and solve the master equa-
tion (18) numerically [29]. While doing so, we model the
battery and the charger as 15-level systems, making sure that
during the evolution the population on the highest levels re-
main negligible, assuring that finite-size effects do not appear.

On the other hand, for the harmonic-oscillator case
([q, q†] = 1), the master equation (18) leads to equations of
motion of the first and second moments of the total system.
We are able to obtain an exact dynamics by solving them
numerically. We present them below for the zero-temperature
scenario γa = γ , γq = 0, N (T ) = 0:

〈ȧ〉 = −iF̃ ∗ − ig1〈q〉 − γ

2
〈a〉, (19)

〈ḃ〉 = −ig2〈q〉, (20)

〈q̇〉 = −ig1〈a〉 − ig2〈b〉, (21)

〈 ˙a†a〉 = −2Im〈F̃a〉 + 2g1Im〈a†q〉 − γ 〈a†a〉, (22)

〈 ˙b†b〉 = 2g2Im〈b†q〉, (23)

〈 ˙q†q〉 = −2g1Im〈a†q〉 − 2g2Im〈b†q〉. (24)
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(a) (b)

FIG. 6. Charging in a qubit catalyst model. Dissipation on the
charger. Energy EB/ω (dashed blue line) and ergotropy WB/ω (dash-
dotted blue line) of the battery and energy EC (t ) (dotted green line) of
the catalyst versus gt for gaq = gbq = 0.2ω, F = 0.1ω, γa = 0.05ω,
and � = 0. In (a) N (T ) = 0 and in (b) N (T ) = 1. Adding a qubit
between the charger and the battery causes the energy and the er-
gotropy to keep increasing with time. The catalyst qubit does not
store any energy throughout the evolution.

〈 ˙a†q〉 = iF̃ 〈q〉 − ig2〈a†b〉 − ig1(〈a†a〉 − 〈q†q〉) − γ

2
〈a†q〉,

(25)

〈 ˙b†q〉 = −ig1〈ab†〉 − ig2〈b†b〉 + ig2〈q†q〉, (26)

〈 ˙ab†〉 = −iF̃ ∗〈b†〉 − ig1〈b†q〉 + ig2〈aq†〉 − γ

2
〈ab†〉. (27)

It is readily seen from the equations above that the solu-
tions for the second-order momenta can be written as products
of the solutions of the first-order momenta, i.e., for all X, Z ∈
{a, q, b, a†, q†, b†} we have

〈XZ〉 = 〈X 〉〈Z〉. (28)

Equation (28) indicates that the state of the entire system is
factorized throughout the entire evolution provided the initial
state is a product of coherent states. Therefore, all the subsys-
tems are in coherent states for all times, if initialized as such
initially. We can write

ρAQB(t ) = |α(t )〉A〈α(t )| ⊗ |α′(t )〉Q〈α′(t )| ⊗ |α′′(t )〉B〈α′′(t )|,
(29)

where |α(t )〉A, |α′(t )〉Q, and |α′′(t )〉B are coherent states of A,
Q, and B, respectively.

B. Resonant drive

We first investigate the case of the resonant drive (ω f = w)
of zero detuning � = 0. For a catalyst qubit isolated from the
environment γq = 0, the numerical results presented in Fig. 6
show that the internal energy and ergotropy extraction of the
battery keep increasing with time with no bound on it. This
is remarkable because here the qubit acts only as a catalyst
which facilitates more transfer of energy from the charger to
the battery while it stores almost no energy during the entire
process of charging. It also suggests that the catalyst does
not get significantly entangled with either the charger or the
battery. Consequently, resetting it for another charging pro-
cess would not be connected with energy expenses. As noted
above, as the second moments of the equations of motion
factorize, the product structure of the state of the total system

FIG. 7. Charging in a catalyst model. Dissipation on the charger
and the catalyst. Energy EB/ω (dashed blue line) and ergotropy
WB/ω (dash-dotted blue line) of the battery and energy EC (t ) (dotted
green line) of the catalyst versus gt when both the charger and the
catalyst qubit are dissipating energy into the vacuum for N (T ) = 0,
gaq = gbq = 0.2ω, F = 0.1ω, γa = γq = 0.05ω, and � = 0.

is preserved. As can be seen in Fig. 6, the ergotropy is equal
to energy also for the qubit catalyst case.

In Fig. 7 the energy and ergotropy are plotted for the case
when both the charger and the catalyst qubit dissipate energy
into the environment. Since the energy carried by the qubit is
not significant, dissipation of energy through the qubit is not
expected to affect the energy transfer. Indeed, compared to
Fig. 6, the results do not change considerably, which confirms
that the energy dissipation via the catalyst is negligible.

C. Off-resonant drive

Below we show that charging performed with the use of the
catalyst shows the same type of dependence on fluctuations
of the frequency of the drive as the noncatalytic drive. Here
we show the exact results obtained for the harmonic oscillator
catalyst, based on Eqs. (19) to (27). Figure 8 shows the time
dependence of the energies of the charger and the battery
when subjected to a drive with different offsets �/ω.

We start the analysis by noticing that, for the resonant
drive in the noisy case [Fig. 8(e), inset], the dynamics of the
system with a harmonic oscillator catalyst closely resembles
that containing the qubit catalyst (Fig. 6) in short timescales,
where it was possible to obtain the latter.

For nonzero detunings and noisless evolution [Figs. 8(a) to
8(d)], we see that the scaling of the period of oscillations cor-
responds to 1/�, in agreement with the intuition based on the
analogy between the off-resonant driving of the system of two
harmonic oscillators [Hamiltonians (1) and (10)] according to
Eqs. (6) and (7), and that of the off-resonant driving of two
virtual modes C+ and C− of the system containing a catalyst
[Eqs. (12) and (16)]. We also observe a suppression of size of
the oscillations with dependency on the detuning (F/�)2, as
expected.

For the noisy drive [Figs. 8(a) to 8(d)] we observe further
limitations of the amplitude of the stored energy, with os-
cillations effectively disappearing in the overdumped regime
γa > �.

We end the characterization of the system behavior by
focusing on the stability of the catalytic character with respect
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(a) (b) (c) (d)
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FIG. 8. Effects of detuning in battery charging assisted by harmonic oscillator catalyst. Energies of the charger EA and battery EB for
different values of local noise on the charger γa and detunings �. N (T ) = 0, gaq = gbq = 0.2ω, F = 0.1ω, γb = 0. (a)–(d): γa = 0; (e)–(h):
γa = 0.05; � = 0 for (a) and (e); � = 0.01 for (b) and (f); � = 0.05 for (c) and (g); � = 0.1 for (d) and (h). The detunings � are given in the
units of ω.

to detuning. In Fig. 9 we show how the detuning affects energy
of the catalyst

EQ = ωq†q, (30)

where again we take it to be a harmonic oscillator. For better
clarity of the presentation, we focus on the noisless case
(γa = γb = 0). As pointed out in the discussion of Eq. (17),
the system will have two more resonant frequencies ω± =
ω ±

√
g2

aq + g2
bq. In contrast to the drive with frequency ω,

applying a pulse with these resonant frequencies would lead
to the efficient charging of the virtual modes defined on all
subsystems, including the catalyst. This is what we observe
from the exact numerical solution, cf. Figs. 9(a) and 9(e). The
period of the oscillations and the amplitude of the energy of
the catalyst, the charger, and the battery all grow in an un-
bounded fashion at a resonance (notice the changing scales).

Consequently, if the control of the driving frequency al-
lows to set it tightly within the range ω ±

√
g2

aq + g2
bq (strictly

speaking, the resonant frequencies ω ±
√

g2
aq + g2

bq should not
be approached by a small distance shorter than δω for times
comparable to 1/δω), the state of the catalyst would effec-
tively remain unaffected by the evolution. Moreover, should
the drive frequency ω f diverge from the resonant frequency
ω, this would slow the charging down, but would not pre-
vent the resumption of energy accumulation after the resonant
condition is reestablished. This stems from the fact that no
correlations can be built between the subsystems, as product
structure (28) is preserved also for off-resonant drive.

IV. EXPERIMENTAL REALIzATION

We note that the current proposal can be implemented with
the current state-of-the-art superconducting technology [30].

)

)

(a) (b) (c)

(d) (e) (f)

FIG. 9. Detuning with respect to different resonance frequencies. Energies of the charger EA, the battery EB, and the harmonic catalyst EQ

are plotted at and near to the resonant frequencies ω and ω+ = ω +
√

g2
aq + g2

bq. N (T ) = 0, γa = γb = 0, gaq = gbq = g = 1
2
√

2
ω, F = 0.1ω.

Frequency of the drive ω f taken to be equal to (a) ω (basic resonance, catalyst inactive), (b) 1.02ω, (c) 1.25ω, (d) 1.48ω, (e) 1.5ω (global
resonance, catalyst charging preferred), and (f) 1.52ω.
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resonator

CL

qubit

CsCJ

LJ

Cg Cg

resonator qubit resonator 

(a) (b)

(c)

FIG. 10. The electrical circuit describing (a) an LC microwave
resonator with capacitance C and inductance L, (b) superconducting
Transmon qubit, (c) the coupling of two microwave resonators to a
superconducting Transmon qubit. The resonators are coupled capac-
itively to the qubit using the middle capacitances Cg.

The high level control of the nanofabrication techniques of the
quantum circuits allows careful designing and fabrication of
qubits and resonators with the coupling rates approaching the
strong-coupling regime gaq ∼ ωq [31]. The coherence time
of superconducting qubits and resonators are in the order of
milliseconds; allowing efficient energy exchange between the
cavity and qubits. The possibility to tune the qubit-resonator
coupling rate [32] would allow to reach the target values. This
provides the additional control parameter to optimize the en-
ergy transfer between the charger and battery, and ultimately
realize the current platform.

Figure 10(a) shows the circuit of a microwave LC resonator
(such as a λ/2 resonator) with inductance L and capacitance
C. The Hamiltonian of the circuit can be expressed in terms of
charge number n and phase operator φ, resulting in [25]

Hr = 4ECn2 − EL

2
φ2, (31)

where EC = e2/2C and EL = (φ0/2π )2/L are the charg-
ing and inductive energies, respectively, and φ0 = h/2e. By
quantizing the charge number n = (EL/32EC )1/4(a − a†) and
phase φ = (2EC/EL )1/4(a + a†) with [a, a†] = 1, Eq. (31) re-
duces to the Hamiltonian of QHO

Hr = h̄ωr
(
a†a + 1

2

)
, (32)

where ωr = 1/
√

LC is the resonance frequency of the mi-
crowave resonator. Figure 10(b), however, describes the
circuit of a Transmon qubit with shunt capacitance Cs and
self-capacitance CJ . The Hamiltonian describing the Trans-
mon qubit is [25]

Hq = 4ECn2 − EJcosφ (33)

where the charging energy is defined by EC = e2/2(CJ + Cs)
while the Josephson energy is EJ = Icφ0/2π with Ic being
the critical current of the junction. By quantizing the phase
and charge numbers and considering a sufficiently large an-
harmonicity in the circuit (due to strong nonlinearity in the
Josephson junction), we can effectively treat the Transmon
qubit as a quantum two-level system and simplifying the

Hamiltonian to [25]

Hq = ωq

2
σz, (34)

where h̄ωq = √
8EJEC − EC is the resonance frequency of the

qubit.
The Transmon qubit can efficiently be coupled to several

microwave resonators to realize the battery-charger configu-
ration described in Sec. III. Figure 10(c) shows an example
where two microwave resonators are capacitively coupled
[25,31,33,34] to a flux-tunable Transmon qubit. The coupling
rates depend on the coupling captaincies Cg and can be de-
signed to accommodate efficient energy transfer between the
charger and battery through the Transmon qubit. The Hamil-
tonian for this tripartite coupled system is [25,31]

H = ωa†a + ωb†b + ωqσz + gaq(a + a†)(σ− + σ+)

+ (b + b†)(σ− + σ+) + Hdriv, (35)

where Hdriv is the Hamiltonian of the drive field, a and b are
the annihilation operators of the microwave resonators, and
σi are the Pauli metrics describing the Transmon qubit. In the
rotating wave approximation, the above Hamiltonian reduces
to the battery-charger Hamiltonian (12).

V. SUMMARY

The use of a catalyst offers a substantial operational benefit
for qubit battery charging. Here, one does not need to know
the coupling strength to observe a boost in the energy transfer,
which makes this setup easier to realize. On the other hand,
it should be noticed that in the dispersive regime � = ω −
ωq � g, the frequency of the catalyst is far detuned from the
frequency of the charger, the energy transfer is expected to
decrease and approach zero for large detunings.

We introduced a catalytic approach for charging quantum
batteries. A catalyst initially in the ground state is added to
the system and as a result the laser field, tuned to the spec-
trum of the charger and the battery, becomes on resonance
with the supermodes of the extended charger-battery-catalyst
system. Consequently, it is seen that the amount of energy
transferred to the battery is significantly boosted, with no
bound on it when there is no dissipation, while the catalyst
is guaranteed to remain close to the ground state throughout
the entire evolution. The method has an advantage of not
relying on probing of the coupling strength and is susceptible
to its fluctuations, as well as to fluctuations of the driving
frequency, as long as they remain much smaller than the
coupling.
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APPENDIX: GENERALIZATION TO ARBITRARY
NUMBER OF MODES IN THE BATTERY

If we have k modes (cells) in the battery and each mode
interacts with the qubit separately the Hamiltonian reads

H =
k∑

i=0

ωa†
i ai + ωqq†q +

k∑
i=0

gi(aiq
† + a†

i q) (A1)

+ F (e−iω f t a0 + eiω f t a†
0), (A2)

where a0 (a†
0) is the annihilation (creation) operator of the

charger and ai (a†
i ), i = 0, are the annihilation (creation) op-

erators of the cells of the battery. Following the Bogoljubov
method [35], we define the supermode operators Ci as

Ci =
∑

l=0,...,k

gil

nl
al , i = 0, . . . , k, (A3)

where nl =
√∑

j=0,...,k g2
jl and gik are constants (to be de-

termined), such that the normalized vectors Gi defined by

gik as

Gi = (g0i, g1i, . . . , gki )/ni, i = 0, . . . , k, (A4)

are mutually orthogonal and

g0l/nl = gl , l = 0, . . . , k. (A5)

Then the Hamiltonian in Eq. (A1) may be rewritten as

H =
k∑

i=0

ωC†
i Ci + ωqq†q + (C0q† + C†

0 q) (A6)

+ F
k∑

i=0

χi(e
−iω f tCi + eiω f tC†

i ), (A7)

in which χ are functions of coefficients gik . In general, the
transformation in Eq. (A3) may be described by a matrix Ĝ
whose ith column is formed by a vector Gi (note that labels
of columns belong to the set {0, 1, . . . , k}). We therefore have
χi = [Ĝ−1]0i. Thus for � = 0 the laser field will be on reso-
nance with the system of the charger-battery.
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