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Ground-state preparation for a given Hamiltonian is a common quantum-computing task of great importance
and has relevant applications in quantum chemistry, computational material modeling, and combinatorial opti-
mization. We consider an approach to simulate dissipative non-Hermitian Hamiltonian quantum dynamics using
Hamiltonian simulation techniques to efficiently recover the ground state of a target Hamiltonian. The proposed
method facilitates the energy transfer by repeatedly projecting ancilla qubits to the desired state, rendering
the effective non-Hermitian Hamiltonian evolution on the system qubits. To make the method more resource
friendly in the noisy intermediate-scale quantum (NISQ) and early fault-tolerant era, we combine the non-
Hermitian projection algorithm with multiple variational gadgets, including variational module enhancement and
variational state recording, to reduce the required circuit depth and avoid the exponentially vanishing success
probability for postselections. We compare our method, the non-Hermitian-variational algorithm, with a pure
variational method, the quantum approximate optimization algorithm (QAOA), for solving the 3-SAT problem
and preparing the ground state for the transverse field Ising model. As demonstrated by numerical evidence, the
non-Hermitian-variational algorithm outperforms QAOA in convergence speed with improved quantum resource
efficiency.
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I. INTRODUCTION

Quantum simulation is one of the most anticipated ap-
plications of quantum computation. The goal of quantum
simulation is to quantitatively determine the dynamics and
physical properties of many-body quantum systems, which
is expected to manifest exponential speedup over classical
simulation schemes [1–3]. However, quantum computation
in the near future will be performed on the so-called noisy
intermediate-scale quantum (NISQ) hardware [4], charac-
terized by shallow circuit depths, limited error-mitigating
capability, and no large-scale error corrections. Suitable sim-
ulation algorithms able to efficiently exploit the presently
scarce and error-prone quantum computing resources to sim-
ulate nontrivial quantum systems are urgently called for for
developments [5,6].

In the NISQ era, the variational method is one of the
most popular approaches to prepare the ground state of a
given problem Hamiltonian HS . A prototypical example is the
variational quantum eigensolver (VQE) [7–12], which relies
on a quantum-classical hybrid optimization loop to iteratively
tune parametrized gates in order to realize a variational ansatz
that minimizes the energy. VQE has become the method of
choice for exploring a wide range of tasks including quantum
chemistry [5,13,14], condensed matter [15–23], and combi-
natorial optimization [24]. Conceptually, VQE is attractive as
a shallow parametrized quantum circuit can still potentially
encode a highly nontrivial quantum state, hard to simulate
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classically. However, practical challenges of optimizing a vast
number of circuit parameters have proven to be formidable
[25]. Many optimization algorithms, such as gradient descent,
are liable to becoming trapped in local minima [26,27] of a
high-dimensional energy landscape, and the general problem
agnostic circuit ansatz can be plagued with the barren plateaus
[26,28,29].

The quantum approximate optimization algorithm
(QAOA) [30–34] is another extensively studied variational
quantum algorithm. QAOA utilizes a problem-dependent
ansatz architecture inspired by adiabatic quantum
computation [35] as it constructs the circuit by alternating
parametrized unitary circuits generated by either a mixing
Hamiltonian HB or the problem Hamiltonian HS . The ground
state of HS could be reached via properly tuned parameters
when the ansatz circuit is deep enough. Although various
techniques to improve QAOA have been proposed [16,36–38],
due to its variational nature, only a few insights exist in terms
of the performance and the scaling behavior for QAOA
[39–41]. The task of identifying optimal parameters of the
QAOA circuit becomes more challenging as the circuit depth
increases [39].

Imaginary time evolution (ITE) approaches [42–44] utilize
evolution functions as an energy filter that gradually filters
out the high-energy part of the initial state and eventually
recovers the ground state. Unlike variational approaches, ITE
approaches are theoretically reliable and efficient for ground-
state simulation, as long as the overlap of the initial state and
the target state is not exponentially small. Different from VQE
and QAOA, ITE-based simulation algorithms do not rely on a
variational ansatz and thus are free from challenges of clas-
sical optimizations. However, the imaginary time propagator
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cannot be straightforwardly decomposed into a unitary gate
sequence, namely, the ITE approach is generally impossible
to directly realize on a quantum computer using polynomial
resources [45], though many attempts are proposed [46–48].
Besides conventional imaginary time evolution, quantum sim-
ulation algorithms based on other kinds of energy filters
have also attracted more academic attention recently [49–57].
Similar to the ITE approach, all energy-filtering algorithms
are theoretically guaranteed to obtain the ground state by
gradually filtering out high-energy components by consuming
many more quantum computational resources than variational
approaches. The cosine filter [55–57] is one of the energy-
filtering methods believed to significantly outperform the
well-established phase estimation scheme [52]. Its runtime
scales polynomially better with the spectral gap and the over-
lap of the trial state with the ground state in the allowed error
to the real ground state [55].

In this paper, we propose a family of non-Hermitian-
dynamics inspired algorithms for the ground-state simulation.
We analytically prove that the core idea of the non-Hermitian
Hamiltonian evolution algorithm is to provide a straightfor-
ward protocol to implement the aforementioned cosine-filter
evolution. We then numerically demonstrate the effectiveness
of our algorithm for preparing the ground state of quantum
many-body problems as well as classical combinatorial opti-
mization problems.

A major goal of this paper is to build upon a theoreti-
cally solid simulation methodology and propose techniques
utilizing variational gadgets that could reduce the required
quantum resources for experiments in the NISQ and early
fault-tolerant era. One main technique proposed is to imple-
ment a variational-module-assisted non-Hermitian Hamilto-
nian dynamics on the quantum devices that accelerate the
convergence of the dissipative or energy-filtering process
towards the ground state. This hybridization of traditional
Hamiltonian simulation techniques (such as the Trotteriza-
tion of dynamical propagator e−iHt ) and the parametrized
quantum circuits (with variationally tunable parameters) is of
high importance. On the one hand, it can greatly reduce the
circuit depth and postselection fail trials for Hamiltonian sim-
ulation algorithms. On the other hand, such hybrid pipeline
can assuage the challenges of optimizing a tremendous num-
ber of gate parameters if the simulation was done solely
within the variational framework. In this paper, we investi-
gate several hybridized circuit structures with non-Hermitian
Hamiltonian evolution and variational modules and identify
that the alternating layout for non-Hermitian propagator and
variational blocks is suitable. We also show that with a very
simple variational circuit structure (as simple as one layer of
single-qubit rotation gates), the original non-Hermitian propa-
gator can be greatly accelerated as confirmed by experiments.
Furthermore, we find that the non-Hermitian-variational hy-
brid algorithm outperforms the standard variational algorithm
QAOA and its variants in several standard tasks.

The second main technique with which we incorpo-
rate the variational idea into the non-Hermitian Hamiltonian
simulation algorithm is the state-recording procedure. The
non-Hermitian Hamiltonian evolution simulation faces a
vital challenge: the energy dissipation for non-Hermitian
propagation is implemented by repeatedly postselecting the

measurement results of ancilla qubits. In general, the required
computational resources for all postselections to succeed in-
crease exponentially with the number of postselections. Via
the first technique where two types of circuits are merged
together, the algorithm not only accelerates the convergence
of the energy-filtering process but also limits the number of
ancilla qubits to be postselected or processed for the same
accuracy. Nevertheless, the challenge remains that the al-
gorithm’s runtime scales exponentially with the number of
ancilla qubits. To further alleviate this critical burden, state
recording technique is utilized which exchanges the expenses
of quantum computational resources with classical optimiza-
tion ones. Inspired by previous works [58,59], we break the
full evolution time of the non-Hermitian Hamiltonian and
record intermediate approximate quantum states with the rel-
atively shallow parametrized quantum circuit determined by
a partial quantum tomography. Different from the real-time
dynamical simulation in [58,59], the number of measurements
can be drastically minimized in our state recording proce-
dure. Details on two possible partial tomography strategies
we proposed (suitable for different types of problems) will be
elucidated below.

This paper is organized as follows. We first present the
framework of the non-Hermitian Hamiltonian simulation al-
gorithm and theoretically show that it effectively realizes the
cosine energy filter and can reach the ground state in Sec. II.
We then show the numerical results on quantum many-body
simulation tasks as well as combinatorial optimization tasks
in Sec. III. Next, we discuss a hybrid version of this non-
Hermitian simulation algorithm, which introduces variational
modules to accelerate the convergence toward the desired
ground state in Sec. IV. Then we present the method of
breaking the full non-Hermitian Hamiltonian evolution into
time steps by state recording in Sec. V. This state-recording
scheme is introduced to save times of postselection since the
success probability of implementing the evolution decreases
exponentially with the number of postselections and thus time
steps. Variational state recording consumes extra time and re-
sources to perform. Therefore, we further propose customized
strategies of reduced state recording methods for many-body
quantum systems and classical combinatorial optimization
problem simulation in Sec. V to further minimize the required
number of measurement shots in real implementations. Fi-
nally, in Sec. VI, we discuss the further implication of our
algorithms with hybrid modules from fault-tolerant and NISQ
paradigms.

II. NON-HERMITIAN HAMILTONIAN
SIMULATION ALGORITHM

We propose a non-Hermitian Hamiltonian evolution al-
gorithm that is effectively equivalent to the cosine filter
approach [55–57] for simulating the ground state. The core
of the algorithm is simply the Hamiltonian simulation, which
is a theoretically well-established algorithm primitive that
manifests quantum advantage [45,60–63]. The non-Hermitian
Hamiltonian simulation can be realized on a quantum com-
puter as sketched in Fig. 1.

We start from an initial state |ψ0〉 in an n-qubit system,
coupled to an ancilla qubit |0〉. Then we construct a real-time
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FIG. 1. (a) The quantum circuit realization of non-Hermitian al-
gorithm. S (blue) is the problem system prepared in state |ψ0〉. A (red)
is the ancilla qubit prepared in state |0〉. Non-Hermitian block UNH

(yellow) is repeatedly applied where each Hamiltonian simulation
block is followed by a postselection on the ancilla qubit to state |0〉.
(b) The quantum circuit realization of the non-Hermitian-variational
hybrid algorithm. U (θ ) (green) is the variational block that can be
optimized with tuning parameters θ .

evolution block denoted by UNH:

UNH = e−iHs⊗YAdt , (1)

where HS is the problem Hamiltonian, YA = (0 −i
i 0 ) is the

Pauli-Y matrix on the ancilla qubit, and dt is the time for
the Hamiltonian propagator. We repeatedly apply the non-
Hermitian block UNH M times with a new ancilla qubit each
time step, and then the system under the Hamiltonian evolved
with time Mdt is

|φM〉 = U M
NH|ψ0〉|00 . . . 0〉

= cosM (HSdt )|ψ0〉|00 . . . 0〉
+ cosM−1 (HSdt ) · sin (HSdt )|ψ0〉|00 . . . 1〉
+ · · ·
+ cos (HSdt ) · sinM−1 (HSdt )|ψ0〉|01 . . . 1〉
+ sinM (HSdt )|ψ0〉|11 . . . 1〉. (2)

If we project the ancilla qubits to quantum state |00...0〉, we
obtain the normalized final state:

|ψM〉 = cosM (HSdt )|ψ0〉
‖ cosM (HSdt )|ψ0〉‖

. (3)

This corresponds to the cosine-filtering operation introduced
in [55]. Note if we postselect the ancilla qubit before ap-
plying the next non-Hermitian evolution block, then we can
recycle the ancilla qubit to effectively realize an M-step time
evolution with only one physical ancilla qubit. To show why
the cosine filter acts as an energy-filtering operation toward
the ground state, we Taylor expand the cosine filter and keep
the first nontrivial order of small time dt . We then find that its
short-time behavior mimics an imaginary time evolution that
targets the desired ground state:

cosM (Hsdt ) � e−(Hsdt )2/2M . (4)

In practice, the Hamiltonian takes the following form:
HS = ∑Nh

n=1 αnhn, where hn are the Pauli strings and αn are

the corresponding coefficients. The minimal and maximum
eigenvalues for HS are denoted as Emin and Emax. We normal-
ize the Hamiltonian such that the spectrum |Emin|, |Emax| � N ,
so that the spectrum of HS is strictly confined to the inter-
val [−N, N]. We make a global energy shift to ensure H ′

S =
HS + N/2 is a positive-definite operator, thus the minimal and
maximum eigenvalues become E ′

min > 0 and E ′
max < N . The

evolution time interval required dt� can be chosen such that
E ′

max · dt� � π/2 and the effect of the cosine filter is restricted
to the region [0, 1]. Repeated applications of such a fine-tuned
cosine filter are then guaranteed to act as an energy filter that
eventually distills the quantum state to the ground state of H ′

S .
More theoretical details on the cosine filter can be found in
Appendix A.

By postselecting all the ancilla qubits, we obtain the target
system state |ψM〉 and can measure the Hamiltonian expec-
tation as EM = 〈ψM |HS|ψM〉. Equivalently, we calculate the
expected energy for HS by classical postprocessing with the
following formula from the state before postselection:

EM = 〈φM |HSP|φM〉
〈φM |P|φM〉 , (5)

where P = 1
2M (1 + Z1)(1 + Z2)...(1 + ZM ) is a collective

projection operator. Note that the projection operator only
contains Pauli-Z terms, which do not introduce additional
measurement terms as we can measure these Pauli-Z terms
for ancilla qubits in parallel with the Pauli strings constitut-
ing the system Hamiltonian. Furthermore, based on the two
facts (1) PP = P and (2) [P, HS] = 0, we prove that the
postprocessing evaluation can be cast in the following form,
which implies a combinatorial reduction of Pauli string terms
(compared to the definition of P):

EM = C0
M〈φ0|HS|φ0〉 + ∑M

i=1 C i
M〈φi|HSZ1Z2 · · · Zi|φi〉

C0
M〈φ0|φ0〉 + ∑M

i=1 C i
M〈φi|Z1Z2 · · · Zi|φi〉

. (6)

Further details on postselection and postprocessing perspec-
tives can be found in Appendix A. According to Eq. (6), we
only need to measure the following observables in step i:

〈φi|HSZ1Z2 · · · Zi|φi〉, 〈φi|Z1Z2 · · · Zi|φi〉. (7)

Then we can use the observable measured in an earlier time
step along with these additional terms in Eq. (7) to construct
the energy EM in Eq. (6). It is worth noting that although we
only need to measure polynomial Pauli string terms to give the
estimation on the energy, the required total number of mea-
surement shots to given accuracy can still be exponentially
large. This complexity is intrinsically induced by the fact that
the denominator of Eq. (6) is in general exponentially small.

III. NUMERICAL RESULTS FOR QUANTUM SIMULATION
AND COMBINATORIAL OPTIMIZATION TASKS

In this paper, we consider the one-dimensional (1D) trans-
verse field Ising model (TFIM) ground-state problem and
3-SAT problems [64–67] to benchmark our algorithm. The 1D
TFIM Hamiltonian reads

HTFIM = J
∑
〈i j〉

ZiZ j + hX

∑
Xi, (8)
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where X and Z are the Pauli matrices, 〈i, j〉 denotes pairs
of interacting neighboring qubits, and J and hX are the cou-
pling strength and transverse field strength, respectively. More
details of the model used in this paper are presented in
Appendix F1.

The 3-SAT problem is a paradigmatic example of a nonde-
terministic polynomial (NP) complete problem [64]. A 3-SAT
problem is defined by a logical statement involving n boolean
variables bi. The logical statement consists of m clauses Ci in
conjunction: C1 ∧ C2 ∧ · · · ∧ Cm. Each clause is a disjunction
of three literals, where a literal is a boolean variable bi or its
negation ¬bi. For instance, a clause may read (b j ∨ ¬bk ∨ bl ).
The task is to first decide whether a given 3-SAT problem
is satisfiable; if so, then assign appropriate binary values to
satisfy the logical statement. We can map a 3-SAT problem to
the ground-state problem for a Hamiltonian on a set of qubits.
Under this mapping, each binary variable bi is represented as
a qubit state. Thus, an n-variable 3-SAT problem is mapped
into a Hilbert space of dimension N = 2n. Furthermore, each
clause of the logical statement is translated to a projector,
projecting on the bit strings that are not satisfying each
given clause. Hence, a logical statement with m clauses may
be translated to the following Hamiltonian with long-range
interaction:

H3-SAT =
m∑

α=1

∣∣bα
j b

α
k bα

l

〉〈
bα

j b
α
k bα

l

∣∣. (9)

Since the computational complexity is defined in terms of the
worst-case performance, hard instances of 3-SAT have been
intensively studied in the past. Following [65], we focus on
a particular set of 3-SAT instances, each characterized by a
unique solution and with a ratio m/n = 3. We note that this
ratio of 3 is different from the phase-transition point m/n ≈
4.2 [66,67] that has been extensively explored in studies that
characterize the degrees of satisfiability of random 3-SAT
problems. The subtle distinction is that the phase-transition
point characterizes the notion of “hardness” (with respect
to the m/n ratio) by averaging over 3-SAT instances having
variable number of solutions. However, when the focus is to
identify the most difficult 3-SAT instances having a unique
solution, it has been “empirically” found that these instances
tend to have an m/n ratio lower than the phase-transition
point. More details of the combinatorial optimization model
used in this paper are presented in Appendix F2.

We present the simulation results of the vanilla version of
our non-Hermitian dynamical algorithm in Fig. 2 (red line).
The results demonstrate that the non-Hermitian dynamical
algorithm successfully prepares the ground state for both
many-body quantum systems and classical combinatorial op-
timization problems.

IV. HYBRID VARIATIONAL BLOCKS WITH
NON-HERMITIAN HAMILTONIAN SIMULATION

As discussed before, the non-Hermitian dynamical sim-
ulation (which effectively implements the cosine filtering)
gradually drives the initial quantum state towards the ground
state. To accelerate this convergence and reduce circuit
depth as much as possible, we propose to insert blocks

FIG. 2. The energy value obtained from different algorithms for
different numbers of evolution steps. The error bar indicates the re-
sults from different initialization. (a) Simulation results for the 3-SAT
problem of eight variables (for details see Appendix F2). (b) Simu-
lation results for the 1D TFIM problem of eight spins (for details
see Appendix F1). “non-Herm” (square red line) stands for the non-
Hermitian Hamiltonian simulation algorithm, and “non-Herm+Vari”
(triangle green line) stands for the non-Hermitian algorithm com-
bined with variational blocks. “QAOA” (circle blue line) stands for
the standard QAOA algorithm with COBYLA optimizer.

of parametrized shallow quantum circuits between non-
Hermitian propagators. As illustrated with the numerical
examples below, the hybrid non-Hermitian-variational algo-
rithm reaches the ground state at the same accuracy with
a reduced circuit depth. Furthermore, we also compare the
simulation efficiency of the hybrid non-Hermitian-variational
algorithm with conventional QAOA, and show the superiority
in circuit depth and measurement consumption for our method
as elaborated in Appendix C.

The non-Hermitian-variational algorithm aims to combine
the strength of the two distinct approaches: variational and
Hamiltonian simulation methods. On the one hand, variational
methods have been actively developed to perform quantum
simulation with shallow quantum circuits with attention to
addressing the circuit structure design, quantum resource ef-
ficiency, barren plateau mitigation, and so on [16,17,68].
On the other hand, the optimization of gate parameters in
variational methods on a high-dimensional complex energy
landscape is faced with challenges such as local minima and

042418-4



NON-HERMITIAN GROUND-STATE-SEARCHING … PHYSICAL REVIEW A 107, 042418 (2023)

barren plateaus, which might be possibly overcome with the
non-Hermitian propagation that is theoretically guaranteed to
lower the overall energy of the quantum state.

We utilize several straightforward ideas to combine the two
simulation techniques. The first one is to prepend a variational
block in front of the non-Hermitian propagator. The varia-
tional module can be interpreted as improving the overlap
of the initial state and the ground state; thus, it efficiently
reduces the number of time steps needed by the following
non-Hermitian propagation to reach the ground state. The
benefits of adopting the variational module become clearer
when the system size increases. As we know, the overlap �

between a randomly generated initial state and the ground
state generally decays exponentially, which potentially leads
to a substantially increased non-Hermitian evolution time
step to converge to the ground state. The detail on the cor-
relation between the initial- and final-state overlap and the
required number of non-Hermitian propagation time lengths
is summarized in Appendix A. Beyond the simple idea, we
further consider a hybrid simulation scheme by alternating
the non-Hermitian Hamiltonian simulation blocks and varia-
tional blocks. We find that this hybrid scheme performs better
than the former approach. Further details can be found in
Appendix B and are sketched in Fig. 1. Because the variational
modules are iteratively appended to the circuit (after each unit
of non-Hermitian propagation), the variational modules can
be optimized layer by layer to further reduce the consumption
of quantum resources for optimization.

In Fig. 2, we first compare the numerical simulation of
the pure non-Hermitian algorithm and the non-Hermitian-
variational algorithm for the TFIM model and 3-SAT prob-
lems. The variational module we choose comprises only
single-qubit gates. Hence, each variational module consists of
an extremely shallow layer of quantum circuit. Yet we find
that the non-Hermitian-variational algorithm substantially
accelerates the ground-state preparation in comparison to
the pure non-Hermitian algorithm. Since the non-Hermitian-
variational algorithm adopts an alternating pattern of a
simple variational module (single-qubit gates) and a dynam-
ical propagator UNH = exp(−iHS ⊗ YAdt ) generated by the
problem Hamiltonian, the circuit structure is actually highly
comparable to the standard QAOA ansatz which also alter-
nates between unitaries generated by the single-qubit mixing
Hamiltonian and the problem Hamiltonian. Thus, we also
present numerical results given by the standard QAOA algo-
rithm in Fig. 2. As shown in Fig. 2, for both the many-body
problem and combinatorial optimization problem, the non-
Hermitian-variational algorithm outperforms QAOA with the
same number of Hamiltonian blocks. A more detailed account
on comparing the consumption of quantum resources for the
two algorithms in terms of circuit depth and the number of
measurement shots is given in Appendix C. The analysis
indicates our proposed method is highly useful for nontrivial
quantum simulations in the NISQ and the early fault-tolerant
era.

The introduction of variational modules in the circuit
substantially accelerates the convergence over purely non-
Hermitian evolution in general. This acceleration implies we
can deal with a smaller number of simulation time steps before
reaching a satisfying convergence, and mitigate the problem

of exponential difficulty in postselection or postprocessing.
There is another inherent property we observe with the non-
Hermitian-variational algorithm. Remarkably, the number of
measurement shots needed for accurately estimating the ob-
servable by postprocessing is greatly reduced with variational
modules mixed. This is because the magnitude of the denom-
inator of Eq. (6) is greatly increased from zero. In short, the
variational modules not only reduce the required duration of
the non-Hermitian evolution to reach a desired ground-state
energy accuracy but also reduce the required number of mea-
surement shots by improving the norm of the desired cosine
filter component in the final state as detailed in Appendix C.

V. BREAKING THE NON-HERMITIAN EVOLUTION
INTO PIECES BY STATE RECORDING

To constrain the circuit depth, we consider further mit-
igating the issue of the exponentially diminishing success
probability by breaking the full non-Hermitian evolution into
several pieces. At every given number of time steps, we mea-
sure the time-evolved quantum state (i.e., conducting partial
or full tomography to extract essential characteristics of this
state) and approximately store the state with parametrized
quantum circuits within a variational framework. Therefore,
we can resume the non-Hermitian propagation with the varia-
tional state as the new initial state.

Similar ideas about state recording in a variational manner
have been previously proposed in the literatures [58,59]. Most
of the previous methods attempted to capture the exact state
while our strategy is more flexible and consumes fewer quan-
tum resources on average as explained below. In addition to
the full-state recording, we provide two customized reduced
state-recording strategies that work well with classical com-
binatorial optimization problems and many-body quantum
problems, respectively.

We break the non-Hermitian evolution at every C steps
to satisfy ‖ cosC (HSdt )|ψ0〉‖ > η, where η is a threshold pa-
rameter for suitable number of measurement shots to arrive
at proper precision (details can be found in Appendix A).
Namely, we apply C consecutive blocks of the UNH propagator
to the initial state:

UC
NH = (e−iHs⊗YAdt )C . (10)

Let V ( �ωm) be the parametrized circuit for approximating the
exact quantum state at the mth step of the non-Hermitian
evolution initialized with |ψm〉 = V ( �ωm)|ψ0〉. The parameters
�ωm ∈ Rp denote the gate parameters in the quantum circuit

V ( �ωm). The objective is to find an optimal �dω to maximize
the fidelity between the variational states V (�ω + �dω)|ψ0〉 and
UC

NHV (�ω)|ψ0〉:
arg max

�dω∈Rp

∥∥〈ψ0|V †(�ω + �dω)UC
NHV (�ω)|ψ0〉

∥∥2
. (11)

In practice, the state fidelity appearing in Eq. (11) can be
evaluated with a quantum circuit by first creating the state
|��ω〉 = V †(�ω + �dω)UC

NHV (�ω)|ψ0〉 and then performing the
following projective measurement:

〈��ω|PAPS |��ω〉
〈��ω|PA|��ω〉 , (12)
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Algorithm 1. Concatenated non-Hermitian evolution with full-
state recording in between.

Input: HS , dt , C,V (�ω), Nrep

Output: Ef

1: Initialization �ω = 0
2: while i � Nrep do
3: Prepare variational quantum circuit: |��ω〉 = V †(�ω + �dω)

UC
NHV (�ω)|ψ0〉, UC

NH = e(−iHS⊗YAdt )C .
4: Measure the quantum circuit in Z direction and calculate

fidelity according to Eq. (12).
5: Optimize �dω based on gradient descent to maximize the

fidelity according to Eq. (11).
6: Update �ω = �ω + �dω.
7: end while
8: Return the final �ω f , calculate Ef = 〈ψ�ω f |HS|ψ�ω f 〉

where PA = 1
2nA

(1 + Z1)(1 + Z2) · · · (1 + ZnA ) projects the
ancilla qubit to the state |00 · · · 0〉, and PS = 1

2nS
(1 + Z1)(1 +

Z2) · · · (1 + ZnS ) projects the system qubits to the state
|00 · · · 0〉 (assuming |ψ0〉 = |00 · · · 0〉). nA = C is the cutoff
length for the propagation (or the number of time steps), and
nS denotes the number of system qubits. The derivation for
Eq. (12) is delegated to Appendix D. We summarize how to
simulate the non-Hermitian dynamics with the regular full-
state recordings at every Cth step in Algorithm 1, where Nrep

is the total number of state recordings performed. In Fig. 3
we demonstrate successful ground-state preparations for the
TFIM and 3-SAT models by running Algorithm 1. The spe-
cific variational ansatz used in these simulation experiments
is provided in Appendix D.

While the full-state recording is conceptually ideal, it
consumes a substantial amount of quantum resources for
measurements. Hence, we propose two other algorithms of
reduced state recording for the classical combinatorial opti-
mization problem and many-body quantum problem, which
requires fewer measurement operations.

For combinatorial optimization problems, inspired by a
recent work called the recursive QAOA [69], we propose a
reduced-recording algorithm with cutoff. The method goes
as follows. After each C steps of non-Hermitian evolution,
we measure Mhn = 〈ψ∗|hn|ψ∗〉 on the instantaneous quantum
state ψ∗ given by the non-Hermitian propagation, where hn

is a Pauli string (such as Zi, ZiZ j, ZiZkZ j ...) that constitutes
parts of the problem Hamiltonian for a combinatorial opti-
mization problem. Then, we set all Mhn � CB to be 1, and all
Mhn � −CB to be −1, and leave other Mhn untouched:

M ′
hn

=
⎧⎨
⎩

−1, (Mhn � −CB)
1, (Mhn � CB)

Mhn , (−CB < Mhn < CB)
, (13)

where CB is the bound we set for the confidence interval.
The motivation to substitute M ′

hn
= ±1 when |Mhn | > CB fol-

lows the argument given by the recursive QAOA. To speed
up in finding the ground state of HS by QAOA, recursive
QAOA records the correlation properties of two spin ob-
servables presented in Hamiltonian HS to be correlated or
anticorrelated according to the largest magnitude of measured

FIG. 3. The dynamic evolution of the system energy. We record
on each time evolution step for demonstration. The error bar indicates
the results from different initialization. (a) Simulation results of the
3-SAT problem of five variables. “non-Herm” (solid red line) stands
for the non-Hermitian algorithm, and “State Record” (dashed red
line) stands for full recording of non-Hermitian evolution by varia-
tional ansatz. CB = 0.5 (diamond blue line) for reduced recording of
non-Hermitian evolution by variational ansatz with recording bound
CB = 0.5. CB = 0.25 (circle purple line) for reduced recording of
non-Hermitian evolution by variational ansatz with recording bound
CB = 0.25. (b) Simulation results of the TFIM problem of four spins.
The variational ansatz is trained mostly on reduced recording for
randomly chosen Pauli strings and followed by three steps of full
recording. “non-Herm” (solid red line) stands for the non-Hermitian
algorithm, and “State Record” (dashed red line) stands for full
recording of non-Hermitian evolution by variational ansatz. Cr = 0.5
(diamond blue line) for reduced recording of non-Hermitian evo-
lution by variational ansatz with measurement ratio 0.5. Cr = 0.6
(circle purple line) for reduced recording of non-Hermitian evolution
by variational ansatz with measurement ratio 0.6.

correlation functions once optimizing the parameters to min-
imize 〈ψ |HS|ψ〉. Instead of using Mhn as in the full-state
recording, the variational ansatz here is trained according
to the updated value M ′

hn
. We summarize the details of the

reduced-recording algorithm as Algorithm 3 in Appendix E.
The numerical experiments demonstrating the applicability
of the reduced-recording algorithm on 3-SAT problems are
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presented in Fig. 3(a) by setting CB = 0.5 or 0.25. We find
that the reduced-recording algorithm successfully simulates
the desired ground state, and it is much more efficient than
fully recording.

Different from the recursive QAOA [69], we record the
qubits’ correlation statistics (measurement of bit strings in
the computational basis) according to CB instead of simply
updating a single Mhn with the largest absolute value and
eliminating one qubit at each iteration. With (potentially)
multiple Mhn values updated in each iteration, as prescribed
by Eq. (13), we tremendously modify the objective func-
tion’s landscape in the parameter space and allow more
efficient search for optimal parameters in the examples we
studied. The rationale behind the substitution M ′

hn
= ±1 is

that the non-Hermitian algorithm always progressively fil-
ters out the high-energy components and converges towards
the ground state. This core idea implies that the reduced
recording can work as long as it captures the related part
but not necessarily the full information of the original quan-
tum state. Further analysis and justification for the reduced
recording of Mhn are provided in Appendix E. In that Ap-
pendix E, we also show that the non-Hermitian algorithm
with reduced recording may substantially outperform recur-
sive QAOA with faster convergence, a point worth further
study.

In terms of preparing the ground state for a many-body
quantum Hamiltonian, we propose another reduced-recording
algorithm by randomly recording partial correlation statis-
tics of the target state. This strategy decreases the number
of measurements for the state recording. More specifically,
after each C steps of non-Hermitian evolution, we measure
Mhn = 〈ψ∗|hn|ψ∗〉 with respect to the intermediate quantum
state ψ∗ given by the non-Hermitian algorithm. Different
from the full-state recording method, we do not consider
every hn constituting the problem Hamiltonian. We randomly
choose Nr Pauli strings (from the problem Hamiltonian) for
the state recording after every C-step non-Hermitian evolu-
tion, and we denote the ratio of the number of randomly
selected Pauli strings to the total number of Pauli strings
in HS by Cr = Nr/N . The optimization objective for this
version of the reduced-state recording is to find an ansatz
circuit that can reproduce these Mhn values as closely as
possible:

arg min
�ω∈Rp

Nr∑
n=1

∥∥〈ψ0|V †(�ω)hnV (�ω)|ψ0〉 − Mhn

∥∥2
. (14)

We can vary this sampling ratio Cr along the course of the
non-Hermitian evolution to ensure the final result correctly
reflects the ground-state behavior of the original Hamiltonian.
In the beginning, we can be more lenient and record an ap-
proximate state with variational ansatz at a smaller Cr value.
As the energy-filtering progress goes to the late stage, it is
beneficial to more faithfully record the intermediate state ψ∗
by increasing Cr to 1 gradually. Nevertheless, for the TFIM
model we investigate in Fig. 3(b), we find the reduced record-
ing to work remarkably well even if we hold the sampling
ratio Cr at a fixed value much smaller than 1 throughout the
simulation except for the very last few steps, where we set
Cr = 1.0. The details of this reduced-recording algorithm for

the quantum Hamiltonian are summarized as Algorithm 3 in
Appendix E.

VI. DISCUSSION

We propose a non-Hermitian Hamiltonian simulation al-
gorithm to effectively realize an energy-filtering process that
efficiently approximates the ground state on a quantum com-
puter. The core subroutine of the proposed algorithm is the
Hamiltonian simulation algorithm, which is a well-established
task with various efficient implementations and is known
for potential quantum advantage. We further propose two
techniques with a variational toolbox, namely, (1) hybridiza-
tion with variational modules in circuit construction and (2)
reduced variational state recording of intermediate evolved
quantum states, to allow this non-Hermitian algorithm to work
better with limited quantum resources in the NISQ and early
fault-tolerant era. We demonstrate that our non-Hermitian al-
gorithm can provide a convincing performance boost for both
combinatorial optimization problems and quantum many-
body problems with many fewer quantum resources.

The hybridization with the variational module accelerates
the energy filtering and convergence towards the ground state.
Specifically, we propose an algorithm that alternates the ap-
plication of the non-Hermitian Hamiltonian evolution and
variational transformation. The non-Hermitian-variational al-
gorithm recovers the ground state more efficiently than the
standard QAOA in our numerical studies. We remind the
reader that the non-Hermitian-variational algorithm also im-
proves the success probability of postselection and thus
reduces the required number of measurements for postpro-
cessing the ancilla qubits.

We also propose an approach to break the full time evo-
lution of the non-Hermitian Hamiltonian by variationally
recording the intermediate quantum states with a parametrized
quantum circuit. To further save quantum resources, we
develop customized reduced-recording strategies for the com-
binatorial optimization problem and quantum many-body
problem, respectively. By comparing the simulation time steps
for convergence of full recording and reduced recording on the
given problems, we conclude that the reduced-recording algo-
rithms can recover the ground states with less consumption
of quantum resources. Specifically, the non-Hermitian Hamil-
tonian algorithm with reduced recording can consistently
outperform QAOA for the 3-SAT task under investigation.
Also, the reduced-recording method for the many-body quan-
tum problem provides a feasible approach to reduce the
number of Pauli strings to be evaluated during the simula-
tion, and makes the algorithm more scalable and resource
friendly.

Finally, we remind readers that all these variational gadgets
we explored in this paper can be utilized in many differ-
ent quantum algorithm design scenarios as useful algorithm
primitives. More importantly, the general idea of hybrid long-
term quantum algorithms (with rigorous theoretical bounds on
performance guarantees) and variational quantum algorithm
pipelines and gadgets (requiring fewer quantum resources) is
a very promising approach to achieve quantum advantage and
will potentially play an important role in the NISQ and early
fault-tolerant era.
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APPENDIX A: NON-HERMITIAN HAMILTONIAN
EVOLUTION AND COSINE ENERGY FILTERING

In this section, we illustrate how the cosine energy filter-
ing emerges from the non-Hermitian Hamiltonian evolution
described in the main text. We will then summarize the
key properties of cosine energy filtering for ground-state
simulation.

To simulate the ground state of a problem Hamiltonian HS

in the Hilbert space of n qubits, we prepare an initial state
|ψ0〉. An ancilla qubit is then introduced and initially prepared
in the state |0〉. After undergoing a real-time evolution UNH =
e−iHs⊗YAdt with time step dt , the system-ancilla joint quantum
state evolves to

|φ1〉 = UNH|ψ0〉|0〉
= cos (HSdt )|ψ0〉|0〉 − i sin (HSdt ) ⊗ YA|ψ0〉|0〉
= cos (HSdt )|ψ0〉|0〉 + sin (HSdt )|ψ0〉|1〉, (A1)

where YA is the usual Pauli operator applied on the ancilla
qubit. By projecting the ancilla qubit to |0〉, we obtain a
quantum state in the system’s Hilbert space:

|ψ1〉 = cos (HSdt )|ψ0〉
‖cos(HSdt )|ψ0〉‖ . (A2)

Repeating the real-time evolution block UNH M times by
recycling the ancilla qubit, we acquire the final quantum
state:

|φM〉 =U M
NH|ψ0〉|00 . . . 0〉

= cosM (HSdt )|ψ0〉|00 . . . 0〉
+ cosM−1 (HSdt ) · sin (HSdt )|ψ0〉|00 . . . 1〉
+ · · · + cos (HSdt ) · sinM−1 (HSdt )|ψ0〉|01 . . . 1〉
+ sinM (HSdt )|ψ0〉|11 . . . 1〉. (A3)

We project |φM〉 to the quantum state with the ancilla qubit on
state |00 · · · 0〉, and finally arrive at a normalized state as the
output:

|ψM〉 = cosM (HSdt )|ψ0〉
‖cosM (HSdt )|ψ0〉‖ . (A4)

Thus the non-Hermitian Hamiltonian evolution effectively
realizes the cosine energy filter. As discussed in the main
text, the non-Hermitian Hamiltonian evolution can be natu-
rally embedded as a straightforward real-time Hamiltonian
evolution with the Hamiltonian Hs ⊗ YA in the joint Hilbert
space involving an ancilla qubit. Since there are many well-
established theoretical analyses and efficient implementations
for Hamiltonian simulation exp(−iHt ), our method could be
very useful if we can efficiently deal with the postselection or
postprocessing of ancilla qubits.

Aiming at preparing a good approximation of the ground
state, the cosine filter [55] is a quantum simulation method
that may outperform the phase estimation [52] based ap-
proach. As is known the runtime of algorithms based on the
adiabatic algorithm [35] depends inversely polynomially on
the minimum spectral gap along the evolution path [70]. And
the probability of success for phase estimation is proportional
to � = ‖〈ψg|ψ0〉‖2, with |ψ0〉 the initial state and |ψg〉 the

ground state. According to [55], the runtime of the cosine
filter scales exponentially better in the allowed error to the
real ground state, and polynomially better with the spectral
gap and the overlap of the initialized trial state with the ground
state. Specifically, since

cosM (HSdt )|ψ0〉

= � cosM (Egdt )

(
|ψg〉 + cosM (Hsdt )

� cosM (Egdt )
|ψ¬g〉

)
, (A5)

where |ψ¬g〉 denotes excited states, cos(x) is concave and

decreasing in [0, π/2] and cosM (HSdt )
cosM (Egdt )

|ψ¬g〉 < e−�(M(Egdt )),
where  is the minimum energy gap of HS . In [55], it is proved
that high powers of cos(HSdt ) are approximately proportional
to projectors onto the ground state:∥∥∥∥ cosM (HSdt )|ψ0〉

‖ cosM (HSdt )|ψ0〉‖
− |ψg〉

∥∥∥∥ = O(ε), (A6)

where the required number of M time steps to get ε close to
|ψg〉 is given by

M = �

(
1

2
log2 1

χε

)
, (A7)

where χ is the lower bound of initial-state–ground-state over-
lap �. The norm of the quantum state with M non-Hermitian
blocks reads as

‖ cosM (HSdt )|ψ0〉‖ = �(�). (A8)

There are two perspectives in terms of energy estimation.
For postselection perspective, we must ensure that all M
ancilla qubits are postselected to state |0〉, leaving the final
system state in |ψM〉, and we then can measure the Hamilto-
nian expectation on this output state. The other postprocessing
perspective does not rely on postselection, and instead we re-
gard the final state jointly defined on the system qubits and M
ancilla qubits as |φM〉 and then we estimate the expectation for
HSP = HS (1 + Z1)(1 + Z2) · · · (1 + ZM ), where exponential
Pauli string terms are required to measure naïvely.

The complexity obstruction applies to both perspectives. In
terms of the postprocessing calculation of energy expectation
in the main text,

EM = 〈φM |HSP|φM〉
〈φM |P|φM〉 , (A9)

the number of measurement shots needed for the results
to reach a certain accuracy is inversely proportional to �

as the magnitude of the dominator is given by Eq. (A8).
Equivalently, from postprocessing perspective, the number of
experiments required for postselect ancilla qubits to succeed
is also inversely proportional to �, which is in general ex-
ponentially small. Under an extremely weak assumption that
there is a random initial state for the n-qubit system, the lower
bound on � is e−O(log 2n ). As a result, for the non-Hermitian
algorithm, the number of measurement shots grows exponen-
tially as the scaling up of system size for the random initial
state.

As discussed in the main text, instead of doing a generic
postselection on ancilla qubits with a cumulative success
probability that drops exponentially, we practically choose the
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classical postprocessing instead as given in Eq. (5). In this
perspective, we can do some simplifications by taking advan-
tage of the fact that all ancilla qubits essentially have identical
effects on the system evolution due to the time translational
invariance.

First, note that the projector satisfies PP = P and
[P, HS] = 0, and we can then prove that

〈φ1|Z1|φ1〉 = 〈φ2|Z1I2|φ2〉 = 〈φ3|Z1I2I3|φ3〉 · · · ,

〈φ1|HSZ1|φ1〉 = 〈φ2|HSZ1I2|φ2〉 = 〈φ3|HSZ1I2I3|φ3〉 · · · .

(A10)

And since 〈φM |Zi|φM〉=〈φ0|eiHS⊗Yidt Zie−iHS⊗Yidt |φ0〉, we have

〈φM |Z1|φM〉 = 〈φM |Z2|φM〉 = 〈φM |Z3|φM〉 · · · ,

〈φM |Z1Z2|φM〉 = 〈φM |Z1Z3|φM〉 = 〈φM |Z2Z3|φM〉 · · ·
· · ·
〈φM |Z1Z2 · · · Zn|φM〉. (A11)

Since 〈φM |HSZi|φM〉=〈φ0|eiHS⊗Yidt HSZieiHS⊗Yidt |φ0〉, we have

〈φn|HSZ1|φn〉 = 〈φn|HSZ2|φn〉 = 〈φn|HSZ3|φn〉 · · ·
〈φn|HSZ1Z2|ψn〉 = 〈φn|HSZ1Z3|φn〉 = 〈φn|HSZ2Z3|φn〉 · · ·

· · ·
〈φn|HSZ1Z2 · · · Zn|φn〉. (A12)

Thus, we simplify the estimation on energy expectation from
postprocessing perspective as

EM = C0
M〈φ0|HS|φ0〉 + ∑M

i=1 C i
M〈φi|HSZ1Z2 · · · Zi|φi〉

C0
M〈φ0|φ0〉 + ∑M

i=1 C i
M〈φi|Z1Z2 · · · Zi|φi〉

.

(A13)

APPENDIX B: HYBRID APPROACH BY INTERSPERSING
NON-HERMITIAN EVOLUTION WITH VARIATIONALLY

TUNED ADJUSTMENTS

In the NISQ era and early fault-tolerant period, we ac-
knowledge that the quantum circuit should be kept to a
minimal depth if possible. Hence, we propose to combine
the non-Hermitian algorithm with variational method to ac-
celerate the simulation towards the ground state. Since a
parametrized quantum circuit may possess strong express-
ibility and approximate many physically relevant quantum
states [68] with shallow depth, we believe that the addition
of variational modules may speed up the simulation process
and provide a better solution with shallower circuit depth.

On the other hand, the non-Hermitian Hamiltonian evolu-
tion algorithm with rigorous guarantee can help variational
optimization on a complex energy landscape, that usually
suffers from trapping in local minima and barren plateaus. The
energy-filtering process works with different mathematical
machinery to drive the system towards lower energy. There-
fore, the non-Hermitian evolution can help get a quantum state
out of the local minimum or barren plateau common in the
pure variational optimization setup.

FIG. 4. The quantum circuit for the non-Hermitian algorithm
combined with variational block. (a) The circuit structure of applying
a variational block in front of multiple non-Hermitian blocks. (b) The
circuit structure of alternatively applied non-Hermitian blocks and
variational blocks.

We compare two common hybrid quantum structures that
combine the non-Hermitian algorithm and the variational
method (see Fig. 4). One intuitive idea is to apply a variational
ansatz layer in front of the non-Hermitian propagator as dis-
played in Fig. 4(a). In this case, an obvious objective for the
ansatz layer is to improve the overlap of initial state and target
state, and thus we can efficiently reduce the Hamiltonian
evolution time steps required by subsequent non-Hermitian
evolution [see Eq. (A7)]. The second approach we explore
is to alternate the application of non-Hermitian block and
variational block as displayed in Fig. 4(b). We investigate
the effects of these two approaches by conducting numer-
ical experiments on 3-SAT and TFIM examples, as given
in Fig. 5. Here “UUCC” denotes the method of applying
the variational ansatz before the non-Hermitian evolution,
and “CUCU” denotes the method of interspersing the short-
time non-Hermitian propagators with variational blocks. In
experiments reported in Fig. 5, we adopt the simplest pos-
sible variational circuit in CUCU layout, namely, we only
put one layer of single-qubit gates in each variational block.
For UUCC we use a much more complex ansatz layout,
which consists of not only layers of single-qubit gates but
also entangling gates. Hence, a typical ansatz structure in the
UUCC scheme costs more quantum gates than the number of
single-qubit gates contained in the variational blocks in the
CUCU scheme. As shown in the figure, the second method
(CUCU) delivers better results for both the 3-SAT problem
of eight variables and a TFIM of eight spins even it has
more light-weighted variational blocks. Thus, we choose it as
the standard layout to combine the non-Hermitian algorithm
and variational method to illustrate the power of the non-
Hermitian-variational algorithm in the main text.

APPENDIX C: RESOURCE CONSUMPTION ESTIMATION

In the main text we conclude that the non-Hermitian
algorithm combined with variational method (non-Hermitian-
variational algorithm) is capable to boost the ground-state
simulation for both quantum many-body problems and clas-
sical combinatorial optimization problems compared to the
original non-Hermitian algorithm and conventional QAOA
algorithm. Here, we provide further results with different
system sizes on the ground-state preparation for the 3-SAT
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FIG. 5. The simulation results of the non-Hermitian algorithm combined with variational blocks. (a) Results for 3-SAT of eight variables.
(b) Results for TFIM of eight spins. CUCU (triangle blue line) denotes results of variational then non-Hermitian circuit structure. UUCC
(circle red line) denotes the results of interspersing non-Hermitian evolution with variational adjustments.

problem and TFIM problem (see Fig. 6). The results indicate
that the advantage of the non-Hermitian-variational algorithm
is universal and does not rely on the specific details of the
tasks.

We now analyze the resource consumption of the non-
Hermitian (non-Hermitian-variational) algorithm and QAOA
in terms of the depth of the quantum circuit Ndepth and the
number of measurements for convergence Nmeas.

To perform the non-Hermitian (non-Hermitian-variational)
or QAOA experiments, the circuit depth Ndepth is defined
based on the Hamiltonian evolution steps Nstep needed for the
algorithm to converge to an output state with energy within a
certain percentage (e.g., 1%) of the exact ground-state energy
and the circuit depth of a single evolution step NU :

Ndepth = Nstep×NU . (C1)

For QAOA simulation, NU is decided by the circuit depth
of realizing eiHSβ and eiHBγ from Trotterization. For the non-
Hermitian algorithm, NU is decided by the circuit depth of
realizing e−iHS⊗YAdt . For the non-Hermitian-variational algo-
rithm, NU is determined by the circuit depth of realizing
e−iHS⊗YAdt together with the circuit depth of an additional
variational block.

The number of measurements Nmeas required to conduct
the simulation is determined by the number of Pauli bases
that are required to estimate all Pauli string terms presented
in the Hamiltonian Nh, the number of parameters to be opti-
mized Npara (2Nstep in the QAOA case), estimation of average
iterations Nite for the optimization of a single parameter by
a classical optimizer, and measurement shots Nshots needed
for a quantum circuit to estimate the observable up to given
accuracy:

Nmeas = Nh×Npara×Nite×Nshots. (C2)

For the non-Hermitian algorithm without variational block,
we set Npara = Nite = 1. In the non-Hermitian-variational al-
gorithm, we optimize the parameters of the variational block
in a block-by-block fashion, thus the number of parameters
to be optimized is constrained along the evolution and can
effectively avoid local minima. According to Appendix A,
the measurement shots of the non-Hermitian algorithm to
calculate the results up to a certain accuracy is inversely
proportional to �, where � is the overlap between initial
state and ground state. From the simulation results, the non-
Hermitian-variational algorithms largely reduce the evolution
steps required by the original non-Hermitian algorithm and

FIG. 6. The ground-state energy estimation with different blocks of quantum circuit primitives. (a) Simulation results for the 3-SAT
problem of five variables. (b) Simulation results for the 1D TFIM problem of four spins. “non-Herm” (square red line) denotes the result
of the non-Hermitian algorithm, and “non-Herm+Vari” (triangle green line) denotes the result of the non-Hermitian algorithm combined with
variational block. “QAOA” (circle blue line) denotes the result of the QAOA algorithm.
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FIG. 7. The norm of the quantum state calculated along with
evolution for the 3-SAT problem of eight variables. “non-Herm”
(circle green line) presents the result of the non-Hermitian algorithm.
“non-Herm+vari” (triangle blue line) presents the result of the non-
Hermitian-variational algorithm. The introduction of the variational
blocks greatly mitigates the “sign problem” for the postprocessing.

demand a much smaller number of measurement shots owing
to the improvement on the norm of the final quantum state
(see Fig. 7).

We focus on the examples studied in this paper, four-site
and eight-site 1D TFIM and five-variable and eight-variable
3-SAT problems, to present the quantitative resources required
for the non-Hermitian-variational algorithm and QAOA in
Table I. For circuit depth estimation, the data presented in
Table I following Eq. (C1), e.g., 4×15 = 60, mean Nstep =
4 and NU = 15. The different Nstep for different algorithms
ensure that the final accuracy for ground-state energy is the
same. In terms of measurement shots estimation, the data
presented in Table I following Eq. (C2), e.g., 5×(4×2) =
40, mean Nh = 5 and Npara = 4×2, where 4 is the num-
ber of evolution steps Nstep. We ignore Nite and Nshots

here as they are similar for the QAOA and non-Hermitian-
variational algorithm. Npara = 2 for “non-Hermi+Vari” in
case “TFIM-4” is because the variational module considered
in an evolution step only includes two layers of single-
qubit rotations Rz(θ )Rx(θ ′), and all single-qubit gates in
one layer share the same parameters. Npara = 3 for “non-
Hermi+Vari” in case “TFIM-8” is because the variational
module considered here only includes three layers of single-
qubit rotations Rz(θ )Rx(θ ′)Rz(θ ′′), and again, all qubits
share the same parameters. Npara = 15 for “non-Hermi+Vari”

in case “3-SAT-5” is because the variational module
considered here includes three layers of single-qubit rotations
Rz(θ )Rx(θ ′)Rz(θ ′′), and all gates have different parameters.
Npara = 12 for “non-Hermi+Vari” in case “3-SAT-8” is be-
cause the variational module considered here includes three
layers of single-qubit rotations Rz(θ )Rx(θ ′)Rz(θ ′′), and half of
the qubits share the same parameters in an even-odd fashion.

APPENDIX D: CUTOFF NON-HERMITIAN
ALGORITHM BY STATE RECORDING

Although the non-Hermitian-variational algorithm is an
efficient method to accelerate ground-state simulation and
significantly suppress the circuit depth, it is worth noting that
the introduction of the variational module breaks the time
translation invariance leading to Eq. (6). To further suppress
the exponential cost of the algorithm, here we propose an
approach to break the continuity of the non-Hermitian process
(or non-Hermitian-variational process) by recording the inter-
mediate quantum state with a variational ansatz stored in the
parametrized circuit after every C steps (as implied by UC

NH in
the following equations in this section). Without loss of gen-
erality, we assume UC

NH containing variational blocks as given
in the “UCUC” scheme (introduced in Appendix C). The idea
of breaking the non-Hermitian process into small pieces helps
to avoid a long evolution time that goes beyond the coherence
time of the current generation of hardware and renders the
postselection success probability exponentially small. Partic-
ularly, we break the non-Hermitian evolution process into C
steps, which satisfies

‖ cosC (HSdt )|ψ0〉‖ > η, (D1)

where η is a bound set for a target number of measurement
shots.

The objective function for full recording of a quantum state
reads

arg max
dw∈Rp

∥∥〈ψ0|V †(�ω + �dω)UC
NHV (�ω)|ψ0〉

∥∥2
(D2)

where V is the parametrized quantum circuit (PQC) stor-
ing the intermediate quantum state. In practice, this full
recording of the quantum state can be realized by first build-
ing a quantum circuit as |�ω〉 = V †(ω + dω)UC

NHV (ω)|ψ0〉.
The interpretation of this circuit is as follows. First, the
quantum circuit V (ω) properly constructs the recorded state
from the previous segment of C-step evolution [i.e., the
state V (ω)|ψ0〉], and then we execute the next C steps

TABLE I. Quantum resource consumption for different algorithms.

TFIM-4 TFIM-8 3-SAT-5 3-SAT-8

QAOA (dep.) 4×15 = 60 13×27 = 351 15×69 = 1035 28×1774 = 49672
Non-Herm+Vari (dep.) 2×42 = 84 4×82 = 328 3×132 = 396 6×2307 = 13842
QAOA (meas.) 5×(4×2) = 40 9×(13×2) = 234 1×(15×2) = 30 1×(28×2)= 56
Non-Herm+Vari (meas.) 5×2 = 10 9×3 = 27 1×15 =15 1×12 = 12
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FIG. 8. The variational ansatz used for state recording.

of the non-Hermitian-variational algorithm using the quan-
tum circuit UC

NH. Finally, we want to represent this C-step
evolved state with the same variational circuit but having
updated parameters as implied by V †(ω + dω). This objective
function can be evaluated by conducting projective measure-
ments of PA = 1

2nA
(1 + Z1)(1 + Z2) . . . (1 + ZnA ) to postpro-

cess the ancilla qubit into state |00 · · · 0〉 and PS = 1
2nS

(1 +
Z1)(1 + Z2)...(1 + ZnS ) to realize the measurement on system
operator Ô = |0〉〈0|:

arg max
dw∈Rp

〈�ω|PAPS |�ω〉
〈�ω|PA|�ω〉 . (D3)

To avoid barren plateaus for the global loss function, the local
loss function that pins every qubit into the |0〉 state can also
be exploited.

The quantum variational ansatz Vω used in the main text to
record the quantum state output by the non-Hermitian algo-
rithm is shown in Fig. 8. The Hadamard gates are applied first
to realize the initial quantum state of a uniform superposition
of all computational basis states, |ψ0〉 = 1√

2n | + + · · · +〉.

APPENDIX E: REDUCED STATE RECORDING

In the main text, in order to further reduce the resource
consumption of state recording, we propose two bespoke
methods as reduced recording for the classical combinatorial
optimization problem (CO) and quantum many-body prob-
lem, respectively. In this section, we present the algorithms
of reduced state recording in Algorithm 2 and Algorithm 3.

In the main text, we present the simulation results of re-
duced recording for the combinatorial optimization problem.
In Fig. 9 we take the 3-SAT problem as an example to present
how the expected values Mhn = 〈ψt |hn|ψt 〉 for all Pauli strings
in the problem Hamiltonian (see Table II) change along the

Algorithm 2. Reduced state recording for the CO problem.

Input: HS , dt , C,V (�ω), Nrep,CB

Output: Ef

Initialization �ω = 0
while i � Nrep do

Prepare variational circuits combined of two parts: V (�ω),
UC

NH. UNH = e−iHS⊗YAdt .
Obtain state |ψ∗〉 = UC

NH|ψ0〉 and |ψ (�ω)〉 = V (�ω)|ψ0〉.
Measure Mhn = 〈ψ∗|hn|ψ∗〉 for n = 1 · · · N . Revise Mhn to
M ′

hn
according to Eq. (13) given CB.

Measure Mω
hn

= 〈ψ (�ω)|hn|ψ (�ω)〉.
Optimize �ω based on gradient descent to minimize∑N

n=1 ‖Mω
hn

− M ′
hn

‖
end while
Return the final �ω f , calculate Ef = 〈ψ (�ω f )|HS|ψ (�ω f )〉.

Algorithm 3. Reduction of a short unitary column.

Input: HS , dt , C,V (�ω), Nrep, Nr

Output: Ef

Initialization �ω = 0
while i � Nrep do

Prepare variational circuits combined of two parts: V (�ω), UC
NH.

UNH = e−iHS⊗YAdt .
Obtain state |ψ∗〉 = UC

NH|ψ0〉 and |ψ (�ω)〉 = V (�ω)|ψ0〉.
Randomly sampling Nr Pauli string operators from HS .
Measure M ′

hn
= 〈ψ∗|hn|ψ∗〉 for n = 1, 2...Nr .

Measure Mω
hn

= 〈ψ (�ω)|hn|ψ (�ω)〉.
Optimize �ω based on gradient descent to minimize∑Nr

n=1 ‖Mω
hn

− M ′
hn

‖
end while
Return the final �ω f , calculate Ef = 〈ψ (�ω f )|HS|ψ (�ω f )〉.

TABLE II. 3-SAT-5 qubits.

IIIIZ : −0.25 IIIZI : 0.125 IIIZZ : −0.125 IIZII : 0.375 IIZIZ : 0.125
IIZZI : −0.125 IIZZZ : 0.25 IZIII : −0.125 IZIIZ : 0.125 IZIZI : 0.5
IZIZZ : −0.375 IZZII : −0.125 IZZZI : 0.25 ZIIII : 0.25 ZIIIZ : −0.125
ZIIZI : −0.25 ZIZII : −0.125 ZIZIZ : 0.125 ZIZZI : −0.125 ZZIII : −0.25
ZZIIZ : 0.25 ZZIZI : −0.125 ZZZII : −0.125
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FIG. 9. The expectation value of Pauli strings Ô in 3-SAT HS calculated with different Hamiltonian evolution steps. (a) Results of the
non-Hermitian algorithm. (b) Results of the non-Hermitian-variational algorithm. (c) Results of QAOA.

evolution process as driven by the pure non-Hermitian algo-
rithm, non-Hermitian-variational algorithm, and QAOA. It is
easy to find that, compared with QAOA, the non-Hermitian al-
gorithm and non-Hermitian-variational algorithm give a much
more stable and smooth variable evolution process, making
the reduced-recording process much more effective by record-
ing the correlation properties Mhn = 〈ψt |hn|ψt 〉 according to a
confidence interval rather than the largest absolute value such
as QAOA [69].

Since the correlation functions of the non-Hermitian algo-
rithm behave more predictably with strong time correlation
and show fewer random temporal fluctuations as in the QAOA
case, we also expect that besides the reduced-recording
method, the recursive idea constructed based on this non-
Hermitian algorithm could outperform the original recursive
QAOA [69] by recursively setting some correlation functions
in the confidence region to be ±1 and removing a few qubits
at a time. This idea can also help solve the problem of
measurement shot explosion for larger size systems, owing
to the ability of the recursive non-Hermitian algorithm to
recursively decrease the system size during the simulation
process.

APPENDIX F: SIMULATION MODELS

Here we define and give some details about the models we
used in simulation experiments.

1. 1D transverse field Ising model

The 1D TFIM Hamiltonian with periodic boundary condi-
tion reads

HTFIM = J
∑
〈i j〉

ZiZ j + hX

∑
Xi, (F1)

where X and Z are the Pauli matrices, 〈i, j〉 denotes pairs
of interacting neighboring qubits, and J and hX are the cou-
pling strength and transverse field strength, respectively.
For all TFIM models we used in this paper, we set J =
1/

√
2 and hX = 1/

√
2, as TFIM at the critical point is gen-

erally believed to be the most difficult to simulate.

2. 3-SAT model

The 3-SAT problem is a paradigmatic example of a NP
problem [64]. A 3-SAT problem is defined by a logical state-
ment involving n boolean variables bi. The logical statement
consists of m clauses Ci in conjunction: C1 ∧ C2 ∧ · · · ∧ Cm.
Each clause is a disjunction of three literals, where a literal is
a boolean variable bi or its negation ¬bi. For instance, a clause
may read (b j ∨ ¬bk ∨ bl ). The task is to first decide whether a
given 3-SAT problem is satisfiable; if so, then assign appropri-
ate binary values to satisfy the logical statement. We can map
a 3-SAT problem to a Hamiltonian for a set of qubits. Under
this mapping, each binary variable bi is represented as a qubit
state. Thus, an n-variable 3-SAT problem is mapped into a
Hilbert space of dimension N = 2n. Furthermore, each clause
of the logical statement is translated to a projector, projecting
on the bit strings that are not satisfying each given clause.
Hence, a logical statement with m clauses may be translated
to the following Hamiltonian:

H3-SAT =
m∑

α=1

∣∣bα
j b

α
k bα

l

〉〈
bα

j b
α
k bα

l

∣∣. (F2)

Note that the 3-SAT problem intrinsically corresponds to a
classical many-body spin-glass Hamiltonian with long-range
interaction. Since the computational complexity is defined in
terms of the worst-case performance, hard instances of 3-SAT
have been intensively studied in the past. Following [65], we
focus on a particular set of 3-SAT instances, each of which is
characterized with a unique solution and a ratio of m/n = 3
in this paper. We note that this ratio of 3 is different from
the phase-transition point m/n ≈ 4.2 [66,67] that has been
intensively explored in studies that characterize the degrees of
satisfiability of random 3-SAT problems. The subtle distinc-
tion is that the phase-transition point characterizes the notion
of “hardness” (with respect to the m/n ratio) by averaging over
3-SAT instances having variable number of solutions. How-
ever, when the focus is to identify the most difficult 3-SAT
instances having unique solution, it has been “empirically”
found that these instances tend to have an m/n ratio lower
than the phase-transition point. The detailed information of
the Hamiltonian we used in this paper is presented in Tables II
and III.
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TABLE III. 3-SAT-8 qubits.

IIIIIIIZ : −0.14453125 IIIIIIZI : −0.28515625 IIIIIIZZ : 0.01953125 IIIIIZII : −0.62890625
IIIIIZIZ : 0.00390625 IIIIIZZI : 0.00390625 IIIIIZZZ : 0.01171875 IIIIZIII : −1.24609375
IIIIZIIZ : −0.01953125 IIIIZIZI : 0.02734375 IIIIZIZZ : 0.00390625 IIIIZZII : −0.05078125
IIIIZZIZ : 0.00390625 IIIIZZZI : 0.00390625 IIIIZZZZ : 0.02734375 IIIZIIII : −2.34765625
IIIZIIIZ : −0.01171875 IIIZIIZI : −0.01171875 IIIZIIZZ : 0.01171875 IIIZIZII : −0.04296875
IIIZIZIZ : −0.00390625 IIIZIZZI : 0.01171875 IIIZIZZZ : 0.01953125 IIIZZIII : 0.05859375
IIIZZIIZ : 0.00390625 IIIZZIZI : −0.02734375 IIIZZIZZ : 0.01171875 IIIZZZII : −0.04296875
IIIZZZIZ : 0.01171875 IIIZZZZI : −0.00390625 IIIZZZZZ : −0.01171875 IIZIIIII : −5.01953125
IIZIIIIZ : −0.01171875 IIZIIIZI : −0.04296875 IIZIIIZZ : −0.00390625 IIZIIZII : −0.07421875
IIZIIZIZ : 0.04296875 IIZIIZZI : −0.00390625 IIZIIZZZ : −0.01171875 IIZIZIII : −0.17578125
IIZIZIIZ : −0.02734375 IIZIZIZI : 0.00390625 IIZIZIZZ : −0.03515625 IIZIZZII : −0.04296875
IIZIZZIZ : −0.00390625 IIZIZZZI : 0.01171875 IIZIZZZZ : 0.01953125 IIZZIIII : −0.29296875
IIZZIIIZ : 0.02734375 IIZZIIZI : −0.01953125 IIZZIIZZ : −0.01171875 IIZZIZII : −0.01953125
IIZZIZIZ : 0.00390625 IIZZIZZI : 0.00390625 IIZZIZZZ : 0.05859375 IIZZZIII : 0.06640625
IIZZZIIZ : −0.00390625 IIZZZIZI : −0.01953125 IIZZZIZZ : 0.00390625 IIZZZZII : −0.03515625
IIZZZZIZ : 0.00390625 IIZZZZZI : −0.02734375 IIZZZZZZ : 0.01171875 IZIIIIII : −10.27734375
IZIIIIIZ : −0.03515625 IZIIIIZI : 0.01171875 IZIIIIZZ : 0.06640625 IZIIIZII : 0.02734375
IZIIIZIZ : 0.00390625 IZIIIZZI : 0.00390625 IZIIIZZZ : 0.01171875 IZIIZIII : −0.04296875
IZIIZIIZ : −0.00390625 IZIIZIZI : −0.01953125 IZIIZIZZ : −0.01171875 IZIIZZII : 0.07421875
IZIIZZIZ : 0.00390625 IZIIZZZI : −0.05859375 IZIIZZZZ : −0.00390625 IZIZIIII : −0.20703125
IZIZIIIZ : 0.00390625 IZIZIIZI : 0.00390625 IZIZIIZZ : 0.05859375 IZIZIZII : 0.08203125
IZIZIZIZ : −0.00390625 IZIZIZZI : 0.01171875 IZIZIZZZ : −0.01171875 IZIZZIII : 0.13671875
IZIZZIIZ : −0.01171875 IZIZZIZI : 0.01953125 IZIZZIZZ : −0.00390625 IZIZZZII : 0.05078125
IZIZZZIZ : 0.01171875 IZIZZZZI : −0.00390625 IZIZZZZZ : −0.01171875 IZZIIIII : 0.05859375
IZZIIIIZ : 0.00390625 IZZIIIZI : 0.03515625 IZZIIIZZ : −0.01953125 IZZIIZII : 0.05078125
IZZIIZIZ : −0.01953125 IZZIIZZI : −0.00390625 IZZIIZZZ : −0.04296875 IZZIZIII : 0.02734375
IZZIZIIZ : 0.01953125 IZZIZIZI : −0.01171875 IZZIZIZZ : 0.01171875 IZZIZZII : −0.01171875
IZZIZZIZ : −0.00390625 IZZIZZZI : 0.01171875 IZZIZZZZ : 0.01953125 IZZZIIII : −0.08984375
IZZZIIIZ : 0.01171875 IZZZIIZI : 0.02734375 IZZZIIZZ : −0.02734375 IZZZIZII : 0.01171875
IZZZIZIZ : 0.00390625 IZZZIZZI : 0.00390625 IZZZIZZZ : −0.00390625 IZZZZIII : 0.01953125
IZZZZIIZ : 0.01171875 IZZZZIZI : −0.00390625 IZZZZIZZ : −0.01171875 IZZZZZII : 0.08984375
IZZZZZIZ : 0.00390625 IZZZZZZI : −0.02734375 IZZZZZZZ : −0.01953125 ZIIIIIII : −21.35546875
ZIIIIIIZ : −0.01953125 ZIIIIIZI : −0.01953125 ZIIIIIZZ : 0.00390625 ZIIIIZII : −0.09765625
ZIIIIZIZ : −0.02734375 ZIIIIZZI : 0.05078125 ZIIIIZZZ : 0.02734375 ZIIIZIII : −0.16796875
ZIIIZIIZ : −0.00390625 ZIIIZIZI : −0.00390625 ZIIIZIZZ : 0.00390625 ZIIIZZII : −0.00390625
ZIIIZZIZ : −0.01171875 ZIIIZZZI : 0.00390625 ZIIIZZZZ : −0.00390625 ZIIZIIII : −0.20703125
ZIIZIIIZ : 0.00390625 ZIIZIIZI : −0.01171875 ZIIZIIZZ : −0.01953125 ZIIZIZII : −0.05859375
ZIIZIZIZ : −0.01953125 ZIIZIZZI : −0.01953125 ZIIZIZZZ : 0.01953125 ZIIZZIII : −0.09765625
ZIIZZIIZ : −0.02734375 ZIIZZIZI : −0.01171875 ZIIZZIZZ : −0.00390625 ZIIZZZII : −0.10546875
ZIIZZZIZ : 0.01171875 ZIIZZZZI : 0.04296875 ZIIZZZZZ : 0.00390625 ZIZIIIII : −0.72265625
ZIZIIIIZ : 0.00390625 ZIZIIIZI : 0.01953125 ZIZIIIZZ : −0.00390625 ZIZIIZII : −0.05859375
ZIZIIZIZ : 0.02734375 ZIZIIZZI : 0.02734375 ZIZIIZZZ : 0.01953125 ZIZIZIII : −0.05078125
ZIZIZIIZ : 0.00390625 ZIZIZIZI : 0.01953125 ZIZIZIZZ : −0.01953125 ZIZIZZII : −0.01171875
ZIZIZZIZ : −0.00390625 ZIZIZZZI : −0.00390625 ZIZIZZZZ : 0.00390625 ZIZZIIII : −0.01171875
ZIZZIIIZ : −0.03515625 ZIZZIIZI : −0.00390625 ZIZZIIZZ : 0.00390625 ZIZZIZII : −0.01953125
ZIZZIZIZ : −0.02734375 ZIZZIZZI : −0.01171875 ZIZZIZZZ : 0.04296875 ZIZZZIII : −0.07421875
ZIZZZIIZ : 0.01171875 ZIZZZIZI : 0.01171875 ZIZZZIZZ : 0.03515625 ZIZZZZII : −0.08203125
ZIZZZZIZ : −0.01171875 ZIZZZZZI : 0.03515625 ZIZZZZZZ : 0.01171875 ZZIIIIII : −1.73046875
ZZIIIIIZ : 0.04296875 ZZIIIIZI : 0.07421875 ZZIIIIZZ : 0.00390625 ZZIIIZII : 0.10546875
ZZIIIZIZ : −0.01171875 ZZIIIZZI : −0.02734375 ZZIIIZZZ : 0.04296875 ZZIIZIII : 0.26953125
ZZIIZIIZ : 0.02734375 ZZIIZIZI : 0.05859375 ZZIIZIZZ : 0.00390625 ZZIIZZII : 0.04296875
ZZIIZZIZ : 0.00390625 ZZIIZZZI : −0.01171875 ZZIIZZZZ : −0.01953125 ZZIZIIII : 0.48046875
ZZIZIIIZ : −0.02734375 ZZIZIIZI : −0.07421875 ZZIZIIZZ : −0.01953125 ZZIZIZII : −0.01171875
ZZIZIZIZ : −0.00390625 ZZIZIZZI : 0.02734375 ZZIZIZZZ : 0.00390625 ZZIZZIII : −0.16015625
ZZIZZIIZ : −0.02734375 ZZIZZIZI : 0.01953125 ZZIZZIZZ : −0.00390625 ZZIZZZII : 0.03515625
ZZIZZZIZ : 0.02734375 ZZIZZZZI : −0.03515625 ZZIZZZZZ : 0.01953125 ZZZIIIII : 1.27734375
ZZZIIIIZ : 0.03515625 ZZZIIIZI : 0.01953125 ZZZIIIZZ : −0.00390625 ZZZIIZII : 0.05078125
ZZZIIZIZ : −0.01953125 ZZZIIZZI : 0.01171875 ZZZIIZZZ : 0.00390625 ZZZIZIII : 0.13671875
ZZZIZIIZ : 0.00390625 ZZZIZIZI : −0.01171875 ZZZIZIZZ : −0.01953125 ZZZIZZII : 0.00390625
ZZZIZZIZ : 0.01171875 ZZZIZZZI : −0.01953125 ZZZIZZZZ : 0.01953125 ZZZZIIII : 0.11328125
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TABLE III. (Continued.)

ZZZZIIIZ : −0.03515625 ZZZZIIZI : −0.03515625 ZZZZIIZZ : 0.00390625 ZZZZIZII : −0.00390625
ZZZZIZIZ : −0.01171875 ZZZZIZZI : −0.02734375 ZZZZIZZZ : −0.00390625 ZZZZZIII : −0.13671875
ZZZZZIIZ : −0.01953125 ZZZZZIZI : 0.01171875 ZZZZZIZZ : −0.02734375 ZZZZZZII : 0.02734375
ZZZZZZIZ : 0.00390625 ZZZZZZZI : 0.01953125 ZZZZZZZZ : −0.00390625

[1] R. P. Feynman, in Feynman and Computation (CRC Press, Boca
Raton, FL, 2018), pp. 133–153

[2] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P.
Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell,
M. Barbieri et al., Nat. Chem. 2, 106 (2010).

[3] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak,
and M. Troyer, Phys. Rev. A 92, 062318 (2015).

[4] J. Preskill, Quantum 2, 79 (2018).
[5] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross,

D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn
et al., Quantum Sci. Technol. 3, 030503 (2018).

[6] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M.
Gambetta, Phys. Rev. A 100, 032328 (2019).

[7] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, Nat. Commun.
5, 4213 (2014).

[8] Y. Wang, F. Dolde, J. Biamonte, R. Babbush, V. Bergholm, S.
Yang, I. Jakobi, P. Neumann, A. Aspuru-Guzik, J. D. Whitfield
et al., ACS Nano 9, 7769 (2015).

[9] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R.
McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding
et al., Phys. Rev. X 6, 031007 (2016).

[10] Y. Shen, X. Zhang, S. Zhang, J.-N. Zhang, M.-H. Yung, and
K. Kim, Phys. Rev. A 95, 020501(R) (2017).

[11] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
New J. Phys. 18, 023023 (2016).

[12] S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, D. P.
Tew, J. L. O’Brien, and M. G. Thompson, Phys. Rev. Lett. 118,
100503 (2017).

[13] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Nature (London) 549, 242
(2017).

[14] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson,
M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P.
Sawaya et al., Chem. Rev. 119, 10856 (2019).

[15] C. Bravo-Prieto, J. Lumbreras-Zarapico, L. Tagliacozzo, and
J. I. Latorre, Quantum 4, 272 (2020).

[16] S.-X. Zhang, Z.-Q. Wan, C.-K. Lee, C.-Y. Hsieh, S. Zhang, and
H. Yao, Phys. Rev. Lett. 128, 120502 (2022).

[17] S.-X. Zhang, Z.-Q. Wan, C.-Y. Hsieh, H. Yao, and S. Zhang,
arXiv:2112.10380.

[18] S. Liu, S.-X. Zhang, C.-Y. Hsieh, S. Zhang, and H. Yao,
Phys. Rev. B 107, 024204 (2023).

[19] Y.-C. Chen, Y.-Q. Chen, A. Hu, C.-Y. Hsieh, and S. Zhang,
arXiv:2112.11782.

[20] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and
X. Yuan, Rev. Mod. Phys. 92, 015003 (2020).

[21] F. Verstraete, J. I. Cirac, and J. I. Latorre, Phys. Rev. A 79,
032316 (2009).

[22] P. Schmoll and R. Orús, Phys. Rev. B 95, 045112 (2017).
[23] M. Hebenstreit, D. Alsina, J. I. Latorre, and B. Kraus,

Phys. Rev. A 95, 052339 (2017).
[24] A. Garcia-Saez and J. Latorre, arXiv:1806.02287.
[25] T. Rudolph, arXiv:2107.13023.
[26] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and

H. Neven, Nat. Commun. 9, 4812 (2018).
[27] P. Díez-Valle, D. Porras, and J. J. García-Ripoll, Phys. Rev. A

104, 062426 (2021).
[28] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,

L. Wossnig, I. Rungger, G. H. Booth et al., arXiv:2111.05176.
[29] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio,

and P. J. Coles, Nat. Commun. 12, 6961 (2021).
[30] E. Farhi, J. Goldstone, and S. Gutmann, arXiv:1411.4028.
[31] S. Lloyd, arXiv:1812.11075.
[32] T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).
[33] M. E. Morales, J. D. Biamonte, and Z. Zimborás, Quantum Inf.

Proc. 19, 291 (2020).
[34] M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F. Arute,

K. Arya, J. Atalaya, J. C. Bardin, R. Barends, S. Boixo et al.,
Nat. Phys. 17, 332 (2021).

[35] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, arXiv:quant-
ph/0001106.

[36] Z.-C. Yang, A. Rahmani, A. Shabani, H. Neven, and C.
Chamon, Phys. Rev. X 7, 021027 (2017).

[37] D. Venturelli, M. Do, E. Rieffel, and J. Frank, Quantum Sci.
Technol. 3, 025004 (2018).

[38] A. Oddi and R. Rasconi, in International Conference on
the Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research (Springer, New York, 2018),
pp. 446–461.

[39] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin,
Phys. Rev. X 10, 021067 (2020).

[40] M. B. Hastings, arXiv:1905.07047.
[41] M. Streif and M. Leib, arXiv:1901.01903.
[42] L. Lehtovaara, J. Toivanen, and J. Eloranta, J. Comput. Phys.

221, 148 (2007).
[43] C. V. Kraus and J. I. Cirac, New J. Phys. 12, 113004 (2010).
[44] J. R. McClean and A. Aspuru-Guzik, RSC Adv. 5, 102277

(2015).
[45] D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2586 (1997).
[46] S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin, and X.

Yuan, npj Quantum Inf. 5, 75 (2019).
[47] M. Motta, C. Sun, A. T. Tan, M. J. O’Rourke, E. Ye, A. J.

Minnich, F. G. Brandão, and G. K.-L. Chan, Nat. Phys. 16, 205
(2020).

[48] K. Yeter-Aydeniz, B. T. Gard, J. Jakowski, S. Majumder,
G. S. Barron, G. Siopsis, T. S. Humble, and R. C. Pooser,
Adv. Quantum Technol. 4, 2100012 (2021).

042418-15

https://doi.org/10.1038/nchem.483
https://doi.org/10.1103/PhysRevA.92.062318
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1021/acsnano.5b01651
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1103/PhysRevA.95.020501
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1103/PhysRevLett.118.100503
https://doi.org/10.1038/nature23879
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.22331/q-2020-05-28-272
https://doi.org/10.1103/PhysRevLett.128.120502
http://arxiv.org/abs/arXiv:2112.10380
https://doi.org/10.1103/PhysRevB.107.024204
http://arxiv.org/abs/arXiv:2112.11782
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1103/PhysRevA.79.032316
https://doi.org/10.1103/PhysRevB.95.045112
https://doi.org/10.1103/PhysRevA.95.052339
http://arxiv.org/abs/arXiv:1806.02287
http://arxiv.org/abs/arXiv:2107.13023
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1103/PhysRevA.104.062426
http://arxiv.org/abs/arXiv:2111.05176
https://doi.org/10.1038/s41467-021-27045-6
http://arxiv.org/abs/arXiv:1411.4028
http://arxiv.org/abs/arXiv:1812.11075
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1007/s11128-020-02748-9
https://doi.org/10.1038/s41567-020-01105-y
http://arxiv.org/abs/arXiv:quant-ph/0001106
https://doi.org/10.1103/PhysRevX.7.021027
https://doi.org/10.1088/2058-9565/aaa331
https://doi.org/10.1103/PhysRevX.10.021067
http://arxiv.org/abs/arXiv:1905.07047
http://arxiv.org/abs/arXiv:1901.01903
https://doi.org/10.1016/j.jcp.2006.06.006
https://doi.org/10.1088/1367-2630/12/11/113004
https://doi.org/10.1039/C5RA23047K
https://doi.org/10.1103/PhysRevLett.79.2586
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1002/qute.202100012


CHEN, ZHANG, HSIEH, AND ZHANG PHYSICAL REVIEW A 107, 042418 (2023)

[49] L. N. Trefethen and D. Bau, Numerical Linear Algebra (SIAM,
Philadelphia, 1997), Vol. 50.

[50] J. Noble, M. Lubasch, and U. D. Jentschura, Eur. Phys. J. Plus
128, 93 (2013).

[51] M. C. Bañuls, D. A. Huse, and J. I. Cirac, Phys. Rev. B 101,
144305 (2020).

[52] A. Y. Kitaev, arXiv:quant-ph/9511026.
[53] D. Poulin and P. Wocjan, Phys. Rev. Lett. 102, 130503 (2009).
[54] D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 83, 5162 (1999).
[55] Y. Ge, J. Tura, and J. I. Cirac, J. Math. Phys. 60, 022202 (2019).
[56] S. Lu, M. C. Bañuls, and J. I. Cirac, PRX Quantum 2, 020321

(2021).
[57] D. Amaro, C. Modica, M. Rosenkranz, M. Fiorentini, M.

Benedetti, and M. Lubasch, Quantum Sci. Technol. 7, 015021
(2022).

[58] S.-H. Lin, R. Dilip, A. G. Green, A. Smith, and F. Pollmann,
PRX Quantum 2, 010342 (2021).

[59] S. Barison, F. Vicentini, and G. Carleo, Quantum 5, 512 (2021).
[60] S. Wiesner, arXiv:quant-ph/9603028.
[61] S. Lloyd, Science 273, 1073 (1996).
[62] C. Zalka, Proc. R. Soc. A 454, 313 (1998).
[63] I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A. Aspuru-

Guzik, Proc. Natl. Acad. Sci. USA 105, 18681 (2008).
[64] T. Hogg, Phys. Rev. A 67, 022314 (2003).
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