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Phase-space quantum distributions and information theory
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The local structure present in Wigner and Husimi phase-space distributions and their marginals are studied
and quantified via information-theoretic quantities. Shannon, Rényi, and cumulative residual entropies of the
Wigner and Husimi distributions are examined in the ground and excited states of a harmonic oscillator. The
entropies of the Wigner function marginals are lower than the corresponding entropies of the Husimi function
marginals, which illustrates how the nodal structure present in the Wigner function is lost upon consideration of
the Husimi function. Shannon and cumulative residual entropies of the Wigner function yield entropies which
are complex valued. Absolute values and real components of these quantities increase with quantum number,
displaying a behavior which is consistent with their real-valued Husimi function counterparts. This comportment
is also similar to the real-valued Rényi entropies of the Wigner function. The entropies of the Wigner function
are observed to be lower than the corresponding Husimi function ones, in agreement with the results for the
marginals. The real components of the Wigner function entropies are seen to be closer to the uncertainty relation
bound compared to the corresponding Husimi function entropies. These real components are also closer to
the bound when contrasted to the entropic sum of the marginal densities. The Rényi or collision entropy of
the Wigner function sits exactly on the bound. Related statistical correlation measures show that the position-
momentum correlation is larger in the Wigner function compared to the Husimi function and increases with
quantum number.
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I. INTRODUCTION

Originally introduced in the study of communication sys-
tems, information theory has made an important impact in
its application to understanding relevant phenomena in the
quantum sciences and beyond. A considerable body of work
exists with the application of information-theoretic measures
to study quantum systems [1–19]. Among these, Rényi en-
tropies have also been applied to the study of quantum systems
[20–26]. However, for the most part, these have been limited
to studies in either the position or momentum space represen-
tations, via analysis of the respective densities. This is partly
due to their connections with the entropic uncertainty relations
[27–29]. On the other hand, there are fewer works with regard
to the application of information-theoretic measures to phase-
space distributions [30–36].

Phase-space or joint position-momentum distributions
have been examined in quantum mechanics. The connec-
tions between quantum mechanics and statistical mechanics,
when seeking quantum corrections to thermodynamics, was
addressed by Wigner [37] in his foundational paper of phase-
space representations. The Wigner function provides such a
connection, but has the characteristic of not being positive
definite, giving rise to fundamental questions about the un-
certainty principle and its connection with the phase-space
description. Later on, the Wigner function was shown to be
the solution of the quantum analog of the Liouville equa-
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tion [38,39]. This has led to its application and study in fields
such as quantum thermodynamics [40,41].

Attempts to address the negativity of the Wigner function
have also been made. It has been shown that an infinite num-
ber of phase-space distribution functions can be generated
using parametric families of functions [42–44]. Nevertheless,
the Wigner function is the only one that is bilinear in the wave
function and with the correct marginals [45]. The Wigner
function marginals are indeed the position and momentum
space densities.

However, applying a Gaussian convolution to the Wigner
function yields the Husimi function [44,46]. This is equiva-
lent to applying a Gaussian filter to a distribution. Hence, if
the Wigner function is experimentally accessible [47–52], the
Husimi function can also be obtained. The Husimi function
has the advantage that it is a positive-definite function, but
does not give the position and momentum space densities as
its marginals.

The aim of this work is an examination and assessment
of Shannon, Rényi, and cumulative residual entropies as ap-
plied to the Wigner and Husimi functions and their marginals.
Related statistical correlation measures, which quantify the
position-momentum correlation, are also discussed. The har-
monic oscillator is studied, since its ground-state Wigner
function provides the floor of the bound, in the formula-
tions of the Heisenberg uncertainty principle. One goal will
be to examine these bounds, given in terms of Wigner and
Husimi function entropies, in excited states. Our focus here
is to evaluate different expressions for entropies and mutual
information of the Wigner and Husimi functions and to assess
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their consistency with regard to interpretations. Definitions are
provided in the following before moving on to the discussion
and presentation of results.

II. WIGNER FUNCTION AND SHANNON ENTROPIES

The Wigner distribution or Wigner function (WF) is de-
fined in terms of the Weyl transform as

W (x, p) = 1

π h̄

∫
ρ(x − y, x + y)e−2ipy/h̄dy, (1)

where ρ(x − y, x + y) is the density matrix. For a pure state,
where the density matrix is given in terms of the wave function
ρ(x − y, x + y) = �∗(x − y)�(x + y), the WF is

W (x, p) = 1

π h̄

∫
�∗(x − y)�(x + y)e−2ipy/h̄dy. (2)

The limits on all integrals are [−∞,∞] unless stated other-
wise.

One of the strengths of the formulation in terms of Wigner
functions is that its marginals are the position and momentum
space densities of the system

ρ(x) =
∫

W (x, p)d p, (3)

π (p) =
∫

W (x, p)dx, (4)

respectively. Here ρ(x) and π (p) are normalized to unity, thus
satisfying ∫∫

W (x, p)dx d p = 1. (5)

The marginal densities are positive definite, while the
parent distribution (WF) is not necessarily so. The WF is
commonly referred to as a quasiprobability distribution since
it can possess negative regions. These negative regions and
their volumes are indeed a manifestation of quantum effects,
which makes their study interesting [53]. Note that in spite of
the negative regions, the WF is a properly normalizable func-
tion, a requisite for its interpretation as a probability density.
It is the negative regions which present issues in the definition
of corresponding information-theoretic quantities [54]. For
example, the Shannon entropy of the Wigner function [32] is
defined as

SW = −
∫∫

W (x, p) ln[W (x, p)]dx d p. (6)

However, since the WF possesses negative regions, its cor-
responding Shannon entropy is not real valued and has
imaginary components. The magnitude of the imaginary com-
ponent is related to the volume of the negative regions. The
real component also has contributions from these negative
parts [32].

On the other hand, the Shannon entropies of the marginals
of the WF are defined as

Sx
W = Sx = −

∫
ρ(x) ln[ρ(x)]dx, (7)

Sp
W = Sp = −

∫
π (p) ln[π (p)]d p (8)

and are real valued due to the positivity of the position and
momentum space densities. The entropies of the marginals
quantify the entropic uncertainty relation.

III. HUSIMI FUNCTION AND SHANNON ENTROPIES

The Husimi function (HF) can be obtained by the Weier-
strass transform applied to the Wigner function [46,55–57]

H (x, p) = 1

π h̄

∫∫
W (x, p)e−(x−x′ )2/2s2

e−(p−p′ )22s2/h̄2

dx′d p′.

(9)
The s parameter is arbitrary, with each distinct election pro-
ducing a different set of basis functions {|x, p〉} [58]. As s →
0, one recovers the position space density, while for s → ∞,
one gets the momentum space density. In this work, the value
of s is set at unity.

The HF is positive definite and avoids the negativity of the
WF. However, the HF does not have the same local structure
as the WF since it has been passed through a Gaussian filter.
One of the goals of this work is to examine and quantify the
differences between the local behaviors of the WF and HFs
and their marginals. The HF marginals

ρH (x) =
∫

H (x, p)d p, (10)

πH (p) =
∫

H (x, p)dx (11)

are not the position and momentum space densities. Here
ρH (x) and πH (p) are normalized to unity, thus satisfying

∫∫
H (x, p)dx d p = 1. (12)

The Shannon entropy of the Husimi function, known as the
Wehrl entropy [30], is

SH = −
∫∫

H (x, p) ln[H (x, p)]dx d p. (13)

Since the HF is positive definite, its Shannon entropy is real
valued. The entropies of the marginals of the HF are

Sx
H = −

∫
ρH (x) ln[ρH (x)]dx, (14)

Sp
H = −

∫
πH (p) ln[πH (p)]d p. (15)

There is one further definition which merits attention.
A relative (Kullback-Leibler) entropy is a measure of the
distance between two distributions. For example, this can
be defined in terms of the position space WF and HF
marginals as

SKL =
∫

ρ(x) ln

(
ρ(x)

ρH (x)

)
dx (16)

and gives a measure of the distance or similarity between the
position space density and the HF marginal. This measure is
well defined when the densities share the same zero values
(nodal structure) or when the density in the denominator does
not exhibit zeros.
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IV. MUTUAL INFORMATION

There is also current interest in the mutual information,
a measure of the statistical correlation between two or more
variables. The position-momentum statistical correlation in
the WF may be defined as

IW =
∫∫

W (x, p) ln

(
W (x, p)

ρ(x)π (p)

)
dxd p

= Sx
W + Sp

W − SW = St − SW (17)

and can be interpreted as a relative entropy or distance be-
tween the WF and a reference phase-space distribution, which
is separable and a product of the marginal distributions. This
quantity is also complex valued due to SW . Moreover, the
strength of such a proposal lies in the recognition that this
correlation between variables is in terms of the difference
from a quantity St that has been used to quantify the entropic
uncertainty relationship [27,28]

St = Sx
W + Sp

W � 1 + ln π. (18)

There is also a similar relationship for the HF [31,35]

St (H ) = Sx
H + Sp

H � SH � 1 + ln 2π. (19)

Note the presence of SH in Eq. (19), while Eq. (18) for St is
not formulated in terms of SW since it is complex valued. One
avenue of this work will be to explore how the real component
of SW behaves with regard to St and to the bound in Eq. (18)
in excited states. This is appealing since the WF and HF of
the ground-state harmonic oscillator provide the floor of the
respective bounds given in Eqs. (18) and (19). Likewise, one
can also define the mutual information for the HF [35]

IH =
∫∫

H (x, p) ln

(
H (x, p)

ρH (x)πH (p)

)
dxd p

= Sx
H + Sp

H − SH � 0. (20)

A further aim of this work is to compare the behavior of IW
and IH in the harmonic oscillator to discuss similarities or
differences.

V. CUMULATIVE DISTRIBUTIONS

Another avenue to tackling the negativity of the WF lies
in the use of related cumulative or survival distributions. The
survival s distribution of the WF is

sW (a, b) =
∫ ∞

a

∫ ∞

b
W (x, p)dx d p, (21)

while the survivals of the marginals are

sx
W (a) =

∫ ∞

a
ρ(x)dx, (22)

sp
W (b) =

∫ ∞

b
π (p)d p. (23)

The idea is that integration over regions of the WF could result
in the disappearance of the negative regions and translate into
the appearance of structure.

The cumulative residual entropy C [59] is defined for the
marginals as

Cx
W = −

∫
sx

W (a) ln sx
W (a)da, (24)

Cp
W = −

∫
sp

W (b) ln sp
W (b)db. (25)

An uncertainty relationship in terms of these cumulative
entropies can be provided if one takes the n = 0 harmonic-
oscillator state as the saturation point for the bound,

St (CW ) = Cx
W + Cp

W � c1 = −
∫

erfc(a) ln

(
erfc(a)

2

)
da,

(26)

where erfc(a) is the complementary error function and erfc(a)
2

is the survival density of the n = 0 oscillator state.
There is also a cumulative residual Jeffreys divergence R

[60] which can be used to measure the distance between the
WF and HF survival densities of the marginals,

R =
∫

sx
W (a) ln

(
sx

W (a)

sx
H (a)

)
da +

∫
sx

H (a) ln

(
sx

H (a)

sx
W (a)

)
da.

(27)
This is the symmetrized survival counterpart to the relative
entropy of the parent distributions given in Eq. (16).

Application of a similar entropic definition to the two-
variable WF survival distribution in Eq. (21) results in
divergence of the required integral. Thus, entropic-type def-
initions for two-variable distributions have been obtained [59]
from use of conditional entropies. The joint cumulative resid-
ual entropy J is defined for the WF as

JW = Cx
W + E [ε(b|x)], (28)

where

E [ε(b|x)] = −
∫∫

P(x, p > b) ln

(
P(x, p > b)

ρ(x)

)
db dx,

(29)
with

P(x, p > b) =
∫ ∞

b
W (x, p)d p (30)

an auxiliary density.
The counterpart to the mutual information is the cross

cumulative residual entropy C [59], which measures the cor-
relation in a survival distribution. It is defined for the WF as

CW = Cx
W − E [ε(b|x)]. (31)

It is also possible to define J and C using momentum space
quantities Cp

W and E [ε(b|p)].
The corresponding information measures for the HF are

defined in exactly the same manner as the ones for the WF,
by substituting the HF densities for the WF ones in the
expressions above. These are not provided for brevity. The
uncertainty relation for the marginals of the HF is

St (CH ) = Cx
H + Cp

H � c2 = − 1√
2

∫
erfc(a) ln

(
erfc(a)

2
√

2

)
da,

(32)
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where erfc(a)
2
√

2
is the survival density of the Husimi marginals

for the n = 0 state.

VI. RÉNYI ENTROPY AND INFORMATION

Thus far, we have discussed options for obtaining densi-
ties that are related to the WF, which are positive definite.
Such densities are attractive since there are no issues relat-
ing to their use in entropic definitions. Densities which are
not positive definite (such as the WF) yield complex-valued
entropies. Another path forward is to use the nonpositive-
definite densities, but in entropic expressions which do not
yield complex-valued quantities.

The Rényi entropies are parameter dependent and are given
for the WF marginals as

Rx
α = 1

1 − α
ln

( ∫
ρ(x)αdx

)
,

Rp
β = 1

1 − β
ln

( ∫
π (p)βd p

)
. (33)

The Shannon entropies are recovered in the limit

lim
α→1

Rx
α = Sx

W , lim
β→1

Rp
β = Sp

W . (34)

We now consider the Rényi entropy of the WF. In the
following, the same label (α) is used for the parameter as
in the position space entropy. The reasoning for this election
will be apparent in the subsequent discussion. The particular
choice of α = 2 is known as the collision entropy and in the
context of the WF is

RW
2 = − ln

( ∫∫
W (x, p)2dx d p

)
. (35)

Note that even though the WF has negative regions, the inte-
grand above is positive valued due to the particular choice of
α = 2. The state overlap in the WF is defined as [61]

|〈ψ |θ〉|2 = 2π h̄
∫∫

Wψ (x, p)Wθ (x, p)dx d p. (36)

With ψ = θ , the left-hand side of Eq. (36) is unity, which
yields the collision entropy as (h̄ = 1)

RW
2 = ln(2π ). (37)

Here RW
2 is real valued and a constant, independent of the

particular state.
Entropic uncertainty relations in terms of Rényi entropies

of the marginals have been given as [62,63]

Rp
β + Rx

α � − 1

2(1 − β )
ln

(
β

π

)
− 1

2(1 − α)
ln

(
α

π

)
, (38)

with the restriction that 1
α

+ 1
β

= 2. The use of such a relation
with different values of the parameter in each space presents
an obstacle to the comparison of the marginal entropies with
that of a suitably defined phase-space entropy. Which of the
two values would one consider for the phase-space entropy?
Thus, for an adequate comparison, one would need to use the
same parameter value for each entropic definition. Moreover,
this parameter should be even valued to yield a real-valued
phase-space Rényi entropy.

The Shannon entropic uncertainty relationship saturates
for a Gaussian distribution (n = 0 oscillator). We proceed by
using this to write a Rényi uncertainty relation for α = β = 2,

4 as

St
(
RW

2

) = Rp
2 + Rx

2 � ln 2π,

St
(
RW

4

) = Rp
4 + Rx

4 � ln 3
√

4π, (39)

where the expressions on the right-hand side correspond to the
Rényi entropies of the marginals for the n = 0 state. Another
goal of this work is to examine these bounds, given in terms of
the Rényi entropies of the marginals, and to compare them to
RW

2 and RW
4 . These phase-space entropies are real valued and

one can conjecture as to their presence in the equation above.
The Rényi divergence in position space is defined as

DR = 1

α − 1
ln

(∫
ρ(x)α

ρH (x)α−1
dx

)
(40)

and is a measure of the distance between the two densities
ρ(x) and ρH (x). A Rényi mutual information with α = 2 is
defined for the WF as

IW
R = ln

( ∫∫
W (x, p)2

π (p)ρ(x)
dx d p

)
. (41)

The integral diverges when π (p) or ρ(x) in the denominator
of the expression presents zeros (nodal structure) that are not
shared with the WF in the numerator. On the other hand,
the measure is finite valued when applied to the HF and its
marginals.

The one-variable Cauchy-Schwarz divergence [64] has a
form similar to IW

R . It is defined, in general, in terms of f (x)
and g(x), as

DCS = − ln

⎛
⎜⎝

∫
[ f (x)g(x)]2dx√

[
∫

f (x)2dx][
∫

g(x)2dx]

⎞
⎟⎠. (42)

This allows us to define the Cauchy-Schwarz mutual informa-
tion [65] in terms of the WF, replacing f (x) with W (x, p), g(x)
with ρ(x)π (p), and dx with dxd p, in Eq. (42), as

ICS
W = R2(W (x, p) × π (p)ρ(x)) − 1

2 R2(W (x, p))

− 1
2 R2(π (p)ρ(x)). (43)

Corresponding measures for the HF (RH
2 , IH

R , and ICS
H ) are

obtained by substituting the HF for the WF and replacing the
marginals ρ(x) and π (p) by ρH (x) and πH (p) in the expres-
sions above. The uncertainty relations in terms of the Husimi
marginals are

St
(
RH

2

) = Rp
2 (H ) + Rx

2(H ) � ln 4π,

St
(
RH

4

) = Rp
4 (H ) + Rx

4(H ) � ln 2 3
√

4π (44)

for α = β = 2, 4. Again, one can conjecture the presence of
RH

2 and RH
4 in these relations.

VII. HARMONIC OSCILLATOR

We now focus our attention on the harmonic oscillator in
this work. Our goal is to compare and contrast the entropic and
correlation measures as a function of quantum number n. Such
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FIG. 1. Plots of (a)–(c) the Wigner function W (x, p) and (d)–(f) the Husimi function H (x, p), with the oscillator frequency ω = 1, for
states (a) and (d) n = 0, (b) and (e) n = 1, and (c) and (f) n = 5. The value of ω is set at unity in all subsequent plots. Densities are given in
atomic units.

an analysis should provide insights into the similarities or
differences between the phase-space distributions of ground
and excited states and the characteristics of these distributions
upon excitation.

The WF of a harmonic oscillator with quantum number
n is

Wn(x, p) = (π h̄)−1(−1)ne−2H/h̄ωLn

(
4H
h̄ω

)
, (45)

where H is the Hamiltonian

H(x, p) = p2

2m
+ mω2x2

2
. (46)

Here Ln(z) is the nth-order Laguerre polynomial and ω is the
oscillator frequency.

The HF of the oscillator is

Hn(x, p) = (2π h̄n!)−1e−H/h̄ω

( H
h̄ω

)n

. (47)

We restrict our consideration to the case of ω = 1 and use
units of h̄ = m = 1. The choice of ω simplifies the analysis,
since ρ(x) = π (p) and ρH (x) = πH (p).

In particular, we compare the behavior of the Shannon
entropies of the Wigner and Husimi functions. The Shannon
(Wehrl) entropy of the Husimi function is real valued, while
the Shannon entropy of the Wigner function is complex val-
ued. The behavior of the Shannon entropies of the Husimi
function is used as a guide to evaluate the behavior of the real
and imaginary components of the Wigner function entropy.
The entropies of the respective marginals are also considered.
One would expect that the Shannon entropies of the Husimi
function would be greater than the corresponding ones for the
Wigner function; however, their quantification is important in
the calculation of statistical correlation (mutual information)
measures, where the correlation between the x and p vari-
ables is measured. Entropic sums of the Wigner and Husimi

function marginals, which form the basis of entropic uncer-
tainty relations, will also be compared to the entropies of their
parent distributions. Furthermore, other classes of entropies,
such as the Rényi and cumulative residual entropies, are ex-
plored from the perspective of obtaining real-valued Wigner
entropies and correlation measures. Comparisons among the
behaviors of the measures are performed as an aid in evaluat-
ing the consistency of the results obtained from the different
measures, which is an important consideration in any related
interpretations.

VIII. RESULTS AND DISCUSSION

We begin the discussion by considering the local structure
present in the WF and HF, their cumulative distributions,
and respective marginal densities. It is this structure which
is quantified by the information-theoretic measures. We then
proceed to examine the behaviors of the entropic and correla-
tion measures in subsequent sections.

A. Density functions

Figure 1 presents the WF and HF for different states of the
harmonic oscillator. The WF and HF are similar in appearance
in the ground state. One can appreciate the appearance of a
nodal structure in both cases as n is increased. However, the
differences are more apparent for larger n. The nodal structure
is more visible in the WF with n = 5 as compared to the HF.
Furthermore, the chosen perspective illustrates the negative
regions of the WF for n = 1, 5, which are not present in the
HF, since it is positive definite.

Figure 2 provides a representation of the survival functions
sW (a, b) and sH (a, b). We chose to illustrate these curves as a
function of b, where a particular value of a is represented by an
individual curve. Notably, for a positive-definite function such
as the HF, all curves are monotonically decaying as a function
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Plots for (a)–(c) the survival function of the Wigner function sW (a, b) and (d)–(f) the survival function of the Husimi function
sH (a, b) for states with (a) and (d) n = 1, (b) and (e) n = 5, and (c) and (f) n = 10. The plots are shown as a function of b, with each
individual curve corresponding to a value of a in the interval [−3, 3], [−5, 5], [−7, 6], and [−8, 7] in steps of 0.2 units. Survival functions are
dimensionless.

of either a or b. On the other hand, there are structures present
in the curves corresponding to the WF, due to the presence of
the negative regions. One can appreciate that these curves are
not monotonically decreasing.

The WF and HF marginal densities can be compared in
Fig. 3. Note that only position space marginal densities are
presented, since for ω = 1, ρ(x) = π (p) and ρH (x) = πH (p).
One can observe how the nodal structure increases with n for
the position space density (WF marginal). On the other hand,
this nodal structure is absent, or a broad average, in the HF
marginal.

Figure 4 shows the WF and HF one-variable survival
functions. First, the nodal structure in the position density
translates into wiggles in the corresponding survival function
[60]. In fact, there are 2n wiggles for each quantum state.
The wiggles present in the WF survival functions are not
present in those for the HF, since the HF marginal itself
does not contain the nodal structure to the same extent as
the WF.

B. Entropies of marginal distributions

We now present a discussion of the WF and HF marginal
distribution entropies, before moving on to consider the WF
and HF entropies. This is done since all marginal distributions
are positive definite and there are no issues with complex-
valued entropies. This provides a clearer comparison of the
different entropic quantities and also allows a consideration
of the differences between the WF and HF marginals. Es-
tablishing such a basis will allow for easier consideration of
the interpretations, when the entropies of the WF and HF are
discussed. Larger values of these entropies are associated with
a delocalization of the underlying distribution.

Figure 5 presents the behavior of the Shannon entropy,
the cumulative residual entropy, and the Rényi entropy for
both the WF and the HF marginals with quantum number n.
All entropic measures, using either the WF or HF marginals,
increase with n. The important point is that the entropy of
the WF marginal is always lower than the corresponding HF
one, for a particular n. This observation is independent of

(a) (b) (c)

(d) (e) (f)

FIG. 3. Plots of (a)–(c) the Wigner function marginal densities ρ(x) and (d)–(f) the Husimi function marginal densities ρH (x) for states
with (a) and (d) n = 1, (b) and (e) n = 5, and (c) and (f) n = 10. Densities are given in atomic units.
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Plots of (a)–(c) the survival functions for the Wigner function marginals sx
W (a) (d)–(f) the survival functions for the Husimi function

marginals sx
H (a) for states with (a) and (d) n = 1, (b) and (e) n = 5, and (c) and (f) n = 10. Survival functions are dimensionless.

the entropic measure. Thus, the nodal structure present in the
position space density (Figs. 3 and 4) yields that this density is
more localized (smaller values) compared to the HF marginal.
It is the loss of structure in the HF marginal compared to the
WF one that is responsible for the higher entropic values of
the HF marginals.

One could also ask how much the WF marginals resem-
ble the HF ones and how this depends on n. The distance
measures in Eqs. (16), (27), and (40) can be used to quantify
this similarity or dissimilarity. This information is provided
in Fig. 6. One can see that the interpretations from the first
two measures are different. The SKL measure illustrates that
the distance between the position space density and the HF
marginal (shown in Fig. 3) increases with n, while the R
measure decreases with n. This is an important difference
when considering the marginals or their survivals. This con-
trast can be explained by examining Figs. 3 and 4, where the
marginals and the cumulative densities of HF and WF are
shown. In Fig. 3 it is apparent that the difference between
the distributions increases with n. The absence of structure
in the HF marginals contrasts with the increasing number
of nodes in the density (WF marginal). This is captured by
SKL in its increasing tendency as n increases. On the other
hand, Fig. 4 shows that the nodes translate into wiggles in
the survival distribution of the WF marginals, but they are
less pronounced with increasing quantum number. Hence, for
larger n, the cumulative distributions of the marginals seem to
be more similar, as captured by R. The Rényi divergence DR

is also presented. The increasing behavior is consistent with
that of SKL.

C. Entropies of the Wigner and Husimi functions

The preceding section established that the entropies of
WF marginals are smaller than those of the corresponding HF
marginals, due to the nodal structure that is present in the WF
marginals. This is independent of the entropic definitions that
are employed.

We now move on to examine the entropies of the Wigner
and Husimi functions. The behaviors of the absolute value and
the real component are shown in Fig. 7.

The Shannon entropy of the WF is complex valued for
n > 0. For n = 0, the Wigner function is separable and is a
product of the position and momentum space densities. Thus,
its Shannon entropy is real valued for n = 0, while it is com-
plex valued for n > 0. This can be seen from consideration of
the real component and the absolute value. They are equal in
the ground state, while they differ in the excited states. The
Husimi function for the ground state (n = 0) is also separable
into a product of its marginal densities. The HF Shannon
entropies are real valued for all n, since the Husimi function
is positive definite in ground and excited states.

An important point is that J is complex valued for n > 0,
which illustrates that the auxiliary density defined in Eq. (30)
as the integral over the WF has negative regions. On the other
hand, one can observe that these regions must be smaller than
those of the WF, since the real and absolute values almost

(a) (b) (c)

FIG. 5. (a) Plot of the Shannon entropies of the Wigner function marginal Sx
W (blue circles) and the Shannon entropies of the Husimi

function marginal Sx
H (red diamonds) vs n. (b) Plot of the cumulative residual entropies of the Wigner function marginal Cx

W (blue circles)
and the cumulative residual entropies of the Husimi function marginal Cx

H (red diamonds) vs n. (c) Plot of the Rényi entropies of the Wigner
function marginal RW

2 (blue circles) and the Rényi entropies of the Husimi function marginal RH
2 (red diamonds) vs n. Units for all measures

are in nat.
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(a) (b) (c)

FIG. 6. (a) Kullback-Leibler distance SKL (red circles) between the Wigner and Husimi marginals vs n. (b) Cumulative residual Jeffreys
divergence R (blue circles) between the Wigner and Husimi marginals vs n. (c) Rényi divergence DR (green circles) between the Wigner and
Husimi marginals vs n. Units for all measures are in nat.

coincide in the J case. This is different from the Shannon
entropy values, which illustrate a marked difference.

In addition, the interpretation from J is that the entropy
of the WF is lower than that of the HF and increases with
n. This is consistent with the observations from the marginal
entropies. We now focus attention on the behavior of the
Shannon entropy curves. If one considers the curve with the
real component, it can be seen that its behavior is consistent
with J ones, in that these values are lower than those of the
corresponding HF ones. There is a crossover when consid-
ering the norm of the WF entropy and the HF entropy. This
result for the absolute value here seems to be less appropriate
when compared to the one for the real component.

Rényi entropies are shown in Fig. 8. Note that RW
2 is con-

stant valued and does not depend on n. This contrasts with the
RH

2 curve, which increases with n, and is consistent with the
behavior observed for the other entropic measures. The RW

4
increases with n, which upon comparison to RW

2 illustrates the
dependence of the Rényi entropy behavior on the parameter.
The behaviors of RW

4 and RH
4 are consistent with the other

measures in that they increase with n. Both the RW
2 and RW

4

values are lower than the corresponding RH
2 and RH

4 ones for
a particular n. This relation between the WF and HF Rényi
entropy values is consistent with that observed from the other
entropic measures.

D. Entropic sums: Bounds and relations
with phase-space entropies

We now discuss and compare the behavior of the entropic
sums of the marginal distributions with those of the entropies

of the Wigner (real component) and Husimi distributions.
These entropies and entropic sums are compared to the bounds
given in Eqs. (18), (19), (26), and (39). Adjusted definitions
are presented in Fig. 9 so that all quantities can be compared
to the common bound 1 + ln π . The expressions are given in
Table I. The absolute values of the Wigner function entropies
are not shown since these were found to lie above the sum of
the respective marginal entropies.

The distance to this bound, or uncertainty deficit, has been
argued as the strength of a statement [35]. Stronger statements
are associated with smaller distances. Note that the values of
all quantities lie on the bound for the n = 0 state. Figure 9
illustrates that the phase-space entropies are all lower than
the corresponding sum of the entropies of their marginals.
While this is expected for SH and the bound in Eq. (19), it
also shows that the real components of the complex-valued
entropies recover this tendency. This allows a conjecture on
the presence of the real component of the corresponding WF
entropies in Eqs. (18) and (26). The entropic sums of the WF
marginals are also closer to the bound in comparison to the
respective HF ones. The cumulative residual entropies present
an exception to this behavior as the HF values are closer to the
bound.

Most importantly, one observes that the real components of
the WF entropies Re(SW ) and Re(J ) are closer to the bound
than the corresponding HF ones. The interpretation of this is
that the WF entropies provide stronger statements than their
HF counterparts.

The bounds for the Rényi entropies presented in Eqs. (39)
and (44) are also obeyed. Another observation is that the

(a) (b)

FIG. 7. (a) Plot of the absolute value of the Shannon entropy of the Wigner function |SW | (blue circles), the real part of the Shannon
entropy of the Wigner function Re(SW ) (green triangles), and the Shannon entropy of the Husimi function SH (red diamonds) vs n. (b) Plot of
the absolute value of the cumulative residual entropy of the Wigner function |JW | (blue circles), the real part of the cumulative residual entropy
of the Wigner function Re(JW ) (green triangles), and the cumulative residual entropy of the Husimi function JH (red diamonds) vs n. Units for
all measures are in nat.

042417-8



PHASE-SPACE QUANTUM DISTRIBUTIONS AND … PHYSICAL REVIEW A 107, 042417 (2023)

(a) (b)

FIG. 8. Plots of the Rényi entropies of the Wigner function RW
α (blue circles) and the Rényi entropies of the Husimi function RH

α (red
diamonds) with (a) α = 2 and (b) α = 4 vs n. Units for all measures are in nat.

Rényi entropy RW
2 sits on the bound and is the closest of all

the measures. This contrasts with the behavior of RH
4 , which is

farther away from the bound. It is noteworthy that both Rényi
entropies of the WF are closer to the bound than the corre-
sponding HF ones. Moreover, all phase-space Rényi entropies
are closer to the bound compared to their corresponding en-
tropic sums.

E. Correlation measures

The differences between the entropies of the phase-space
distributions and those of the marginals were discussed in
the preceding section. These differences can be quantified by
examining the correlation measures. Larger values of these

measures imply a greater statistical correlation between the
x and p variables.

The trends in the correlation measures with n are pre-
sented in Fig. 10. All correlation measures are zero valued
for the n = 0 ground state. This is true for both the WF
and HF measures, as these distributions are separable into
a product of their respective marginals. The x-p correlation
increases with n and is higher for the WF compared to the
HF. In general, this is independent of the use of real com-
ponents, or absolute values, in the mutual information and C
measures.

One should notice that the real part of the Wigner function
mutual information yields an extremely small negative value
(−0.01) for the n = 1 state. It is positive and increasing for

(a) (b)

(c) (d)

FIG. 9. Plots of (a) Shannon-like measures, (b) cumulative residual-like measures, and (c) and (d) Rényi-like measures vs n: (a) SH −
ln 2 (red diamonds), St (H ) − ln 2 (black open circles), St (green triangles), and Re(SW ) (blue closed circles); (b) JH − c2 + 1 + ln π (red
diamonds), St (CH ) − c2 + 1 + ln π (black open circles), St (CW ) − c1 + 1 + ln π (green triangles), and Re(JW ) − c1 + 1 + ln π (blue closed
circles); (c) RH

2 + 1 − ln(4) (red diamonds), St (RH
2 ) + 1 − ln(4) (black open circles), St (RW

2 ) + 1 − ln(2) (green triangles), and RW
2 + 1 − ln(2)

(blue closed circles); and (d) RH
4 + 1 − ln(2 3

√
4) (red diamonds), St (RH

4 ) + 1 − ln(2 3
√

4) (black open circles), St (RW
4 ) + 1 − ln( 3

√
4) (green

triangles), and RW
4 + 1 − ln( 3

√
4) (blue closed circle). The horizontal line is the 1 + ln π bound. Units for all measures are in nat.
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TABLE I. Expressions used to evaluate the 1 + ln π bound.

Shannon-like Cumulative residual-like Rényi-like

SH − ln 2 JH − c2 + 1 + ln π RH
2 + 1 − ln(4)

RH
4 + 1 − ln(2 3

√
4)

St (H ) − ln 2 St (CH ) − c2 + 1 + ln π St

(
RH

2

) + 1 − ln(4)

St

(
RH

4

) + 1 − ln(2 3
√

4)

St St (CW ) − c1 + 1 + ln π St

(
RW

2

) + 1 − ln(2)

St

(
RW

4

) + 1 − ln( 3
√

4)

Re(SW ) Re(JW ) − c1 + 1 + ln π RW
2 + 1 − ln(2)

RW
4 + 1 − ln( 3

√
4)

the other states where n > 1. The ICS measure, which is real
valued, provides more evidence of the consistent behavior
observed among all the measures. The Rényi mutual infor-
mation of the HF is also shown in Fig. 10. Its behavior with
n is consistent with the other correlation measures for the HF.
The plot for the Rényi mutual information of the WF is not
presented, since the integral that defines the measure diverges
for n > 0. For n = 0, it is zero valued.

Figure 11 illustrates how the magnitude of the imaginary
component increases negatively with n in the Wigner function
mutual information and C. Furthermore, Eqs. (17) and (31)
show that these magnitudes of the imaginary components in
the correlation measures are the negative of those in SW and
CW , respectively. Thus, the volume of the negative regions in
the Wigner function, which is proportional to these quantities,
must increase with n.

IX. CONCLUSION

We compared and analyzed the behavior of various
information-theoretic quantities when applied to Husimi and
Wigner phase-space distributions. The former is positive def-
inite while the latter is not. The question of the use of
the Wigner function in an information-theoretic framework
was addressed. This work also examined available options
of formulating the entropic uncertainty relations in terms of
phase-space distributions. The negative regions in Wigner
functions yield Shannon and cumulative entropies with

imaginary components. The absolute value and real parts
of these entropies increase with quantum number and are
lower than the corresponding real-valued Husimi entropies.
This relation is consistent with the results presented for the
marginal entropies. On the other hand, there is a difference in
behavior between the Rényi entropies (α = 2) of the Wigner
and Husimi functions. The Wigner function Rényi entropy is
constant, while the Husimi function Rényi entropy increases
with n. This changes when the Rényi entropy (α = 4) pa-
rameter is altered. Both Wigner and Husimi Rényi entropies
now increase with n, in accordance with the tendencies ob-
served for the other entropies. The entropic sums of both
the Wigner and Husimi function marginal densities and the
corresponding phase-space entropies were examined with re-
gard to the uncertainty relation bound. The real components
of the Wigner function entropies were observed to be closer
to the bound than the corresponding Husimi function ones.
They were also closer to the bound than the respective en-
tropic sums. These results are also consistent with those from
the real-valued Rényi entropies. In fact, the Wigner function
Rényi entropy with α = 2 lies on the bound for all quantum
numbers. Mutual information-type statistical correlation mea-
sures, which quantify the position-momentum correlation in
the Wigner and Husimi functions, were also examined. These
were observed to increase with n, with the interpretation
that the correlation from the Wigner function is larger than
the corresponding Husimi function one. Strikingly, both the
absolute values and real components of the complex-valued

(a) (b) (c)

FIG. 10. (a) Plot of the absolute value of the Wigner function mutual information |IW | (blue circles), the real part of the Wigner function
mutual information Re(IW ) (green triangles), and the Husimi function mutual information IH (red diamonds) vs n. (b) Plot of the absolute value
of Wigner function cross cumulative residual entropy |CW | (blue circles), the real part of the Wigner function cross cumulative residual entropy
Re(CW ) (green triangles), and the Husimi function cross cumulative residual entropy CH (red diamonds) vs n. (c) Plot of the Wigner function
Cauchy-Schwarz information ICS

W (blue circles) and the Husimi function Cauchy-Schwarz information ICS
H (red diamonds) vs n and the Husimi

function Rényi mutual information IH
R (green triangles), with α = 2 vs n. Units for all measures are in nat.
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(a) (b)

FIG. 11. Plots of (a) the imaginary component of the Wigner function mutual information Im(IW ) and (b) the Wigner function cross
cumulative residual entropy Im(CW ) vs n. Units for all measures are in nat.

Wigner measures displayed a tendency similar to the real-
valued Cauchy-Schwarz mutual information of the Wigner
function.
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