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The inevitable noise within one-sided device-independent quantum information tasks may completely break
any steering resources. These noisy effects are characterized by the steerability breaking (SB) channels. In this
work, we demonstrate the use of a control system that can superpose N copies of the given SB channel to activate
SB channels such that the channel becomes a non-SB one. In particular, we analytically and numerically show
that the SB depolarizing and amplitude-damping channel can be coherently activated when N � 2. In addition,
for both cases, the channels can preserve more steerability when increasing N . Finally, we propose circuit models
to implement our proposed approaches and present the simulation results.
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I. INTRODUCTION

Quantum steering refers to a phenomenon in which one
party (say, Alice) can affect another distant party (say, Bob)
by her black-box measurements [1–5]. It has been shown
that quantum steering is strongly related to many impor-
tant features in quantum physics. For instance, (1) there
is a one-to-one mapping between steering and measure-
ment incompatibility [6–10], and (2) quantum steering is
an intermediate correlation between entanglement [11–13]
and Bell nonlocality [14–17]. A large variety of applica-
tions based on quantum steerability (also called one-sided
device-independent quantum information tasks) has been
reported experimentally [18–24], including quantum key dis-
tribution [25], quantum random number generation [26,27],
subchannel-discrimination problems [28,29], and quantum
metrology [30]. To take advantage of these tasks, many pro-
tocols on the quantification [31–35] and manipulation of
quantum steerability have been proposed, e.g., the super-
activation of quantum steering [36–38] and distillation of
quantum steering [39–41].

Recently, many generalizations of quantum steering have
been proposed to characterize the properties of a quantum
channel [42–45]. An example is an undesired quantum chan-
nel, denoted as a steerability-breaking (SB) channel [46–49],
for steering-based applications. An SB channel is conceptu-
ally defined in a similar way as the entanglement-breaking
channel [50–52] but the focus is on steerability (see also
the cases on high-dimensional steering [53,54]). For instance,
if a quantum channel completely depolarizes the system,
any steering resource [32] will be broken after the channel.
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Intuitively, SB channels are not useful for one-sided device-
independent quantum information tasks. Similar to the
hierarchy relation among entanglement, quantum steering,
and Bell nonlocality [55,56], an SB channel must be en-
tanglement breaking [57–59] but not necessarily nonlocality
breaking [60–62].

In this work, we investigate a method to “coherently” acti-
vate SB channels by utilizing a coherently controlled system
[63–68]. In other words, an SB channel is coherently acti-
vated if a quantum ancillary system can improve an undesired
property of the channel such that it becomes non-SB. The
framework involves a set of quantum channels and a quantum
system that serves as control to determine which channel
to apply. As shown in Fig. 1, the quantum system can be
transmitted through N copies of channels in a superposition
manner. The ancillary system is a scheme that can therefore
be regarded as a quantum extension of channel multiplexing;
such schemes been applied to a wide range of disciplines,
including quantum communication [69–74], relativistic quan-
tum theory [75–77], and open quantum systems [78–81].

Here, we analytically and numerically show that the SB
depolarizing and the SB amplitude-damping channels can
be coherently activated when N � 2. In addition, when the
copies of these channels increase, the steering preservability
of both cases can be enhanced. Here, the channel preservabil-
ity denotes the ability to maintain the quantum resource [82].
Therefore, using a quantum ancillary system, the undesired
channel for steering-based tasks can now be used to transmit
the steering resource within the task. Finally, to extend our
approach to a practical level, we propose circuit models for the
coherent activation of SB channels and present the simulation
results.

This paper is organized as follows. In Sec. II, we sum-
marize the basic notions, including quantum steering, SB
channels, and coherently controlled system. In Sec. III, we
present our main results by providing two examples for the
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FIG. 1. A steerability-breaking (SB) channel breaks the quantum
steerability of any bipartite quantum state ρAB (black balls) with Al-
ice’s measurement assemblage (black box with input x and outcome
a). Bob’s measurement is fully characterized. Now, we consider N
copies of the SB channel in which each channel is assigned by an
associated-ancilla system (green ball) from a computational basis,
i.e., |1〉C . We test whether the SB channel can be coherently activated
when one prepares the ancilla system in

∑
i |i〉 /

√
N .

coherent activation of SB channels. In Sec. IV, we propose
circuit models for the simulations. Finally, we summarize our
results and provide our outlook in Sec. V.

II. PRELIMINARY NOTIONS

In this section, we briefly recall the quantum steering [2–4]
and its associated breaking channels [46,49]. We then intro-
duce the concept of a coherently controlled ancillary system
in the sense that a dynamical process of a system is coherently
controlled by an ancilla system.

A. Quantum steering and its associated breaking channel

Given a bipartite state ρAB, satisfying ρAB � 0 and
Tr(ρAB) = 1, one party (say Alice) aims to steer another party
(say Bob) via a set of measurements �M := {M(a|x)} acting on
her sharing system; the resulting state is described by

σ (a|x) = TrA[M(a|x) ⊗ 1ρAB]. (1)

The above formula contains both information about the proba-
bilities associated with Alice’s measurement results p(a|x) =
Tr[σ (a|x)] and Bob’s conditional quantum state

ρ(a, x) = σ (a|x)/Tr[σ (a|x)]. (2)

The collections of the (subnormalized) states �σ = {σ (a|x)}a,x

and the measurements �M = {M(a|x)}a,x are called as the
assemblage and measurement assemblage, respectively. A
classical description of an assemblage can be described by a
local-hidden-state (LHS) model:

σ (a|x) =
∑

λ

p(λ)p(a|x, λ)σλ, (3)

where σλ is a predetermined quantum state and p(a|x, λ)
is a postprocessing with hidden variables λ. If an assem-
blage admits an LHS model, it is unsteerable; otherwise, it is

steerable. One can use the steering robustness [28] to quantify
the quantum steerability:

RS (�σ ) = min

{
t |σ (a|x) + tτ (a|x)

1 + t
admits an LHS model

}
,

(4)

where t � 0 and �τ is a noisy assemblage. To generate a
steerable assemblage, the measurement assemblage �M must
be incompatible, namely [6–8]

M(a|x) �=
∑

λ

p(λ)p(a|x, λ)Mλ. (5)

Similar to the LHS model, a compatible measurement implies
that the measurement assemblage can be described by prede-
termined measurements Mλ with postprocessing and hidden
variables.

A quantum channel is described by a completely-positive
and trace-preserving map �. We say that � is SB if the
output state ρ ′

AB = � ⊗ 1(ρAB) always generates unsteerable
assemblages for all measurement assemblages �M and bipartite
states ρAB. We denote a channel as X -SB when the channel
is SB with a fixed number of inputs X . For instance, if x ∈
{1, 2, 3}, such a channel is 3-SB. According to Refs. [46,47],
an SB channel is equivalent to an incompatibility-breaking
channel in the sense that output measurement assemblages
are always compatible for all input measurement assemblages.
In other words, it is sufficient to use the maximally entan-
gled state |�〉 = ∑

i 1/
√

d |i〉 |i〉 as an input of the channel
to test whether the channel is SB or not. This property can
be observed via the relation [M(a|x) ⊗ 1](� ⊗ 1) |�〉 〈�| =
�†[M(a|x)] ⊗ 1 |�〉 〈�|. Here, d is the dimension of the sub-
system. Therefore, if the dual map �† of a quantum channel �

acting on any measurement assemblage �M always generates a
compatible measurement assemblage, the channel � is SB or
incompatibility breaking.

B. Coherently controlled ancillary system

Here, we review the concept of the coherently controlled
ancillary system of multiple quantum channels. The properties
of the coherently controlled ancillary system can be fully char-
acterized when the unitary implementations of the member
channels are specified [83]. Consider a set of N quantum
channels {�n}n=1···N that can act on the target system with an
initial state ρ. According to the Stinespring dilation theorem
[84], the channel �n can be implemented by introducing an
additional environment En prepared in |En〉 and a system-
environment global unitary Un, such that

Un(|ψ〉 ⊗ |En〉) =
∑

i

(Kn,i |ψ〉) ⊗ |en,i〉 ∀|ψ〉, (6)

where {|en,i〉}i is a set of orthonormal states for En and {Kn,i}i

constitutes a Kraus representation for the channel �n, i.e.,
�n(ρ) = ∑

i Kn,i ρ K†
n,i.

The coherent control of these N channels is achieved by
introducing an N-dimensional control system C in a state ρC

and a global unitary U = ∑
n |n〉 〈n| ⊗ Un. The output reduced
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state of the control-target system can be written as

ρCT = Tr{En}

[
U

(
ρC ⊗ ρ

N⊗
l=1

|El〉 〈El |
)
U†

]
. (7)

If ρC = |n〉 〈n|, we have ρCT = |n〉 〈n| ⊗ �n(ρ). Thus, C can
be seen as a classical control determining the specified chan-
nel that can be applied to the target system. Further, one
can expect that if C is prepared in

∑
i |i〉 /

√
N , the target

system can “pass through” these N quantum channels in a
coherent manner. More formally, the output reduced state of
the control-target system can be expressed as

ρCT = 1

N

N∑
n=1

|n〉 〈n| ⊗ �n(ρ) +
∑
m �=n

|m〉 〈n| ⊗ TmρT †
n . (8)

Here, Tn = ∑
i Kn,i 〈En|en,i〉 is called the transformation ma-

trix of the implementation of {�n}n [83]. Because we are
interested in the target system, before discarding C, one can
perform a measurement on C with postselection. Here, it is
sufficient to consider the projective measurement |+〉〈+| =∑

i, j |i〉 〈 j| /N for demonstrating our main results. We also
note that this choice of measurement is also applied on differ-
ent applications of the coherently controlled ancillary system
(see Refs. [69,83,85]). The consequent postmeasurement state
of the target system then reads

ρT =
1
N

∑N
n=1 �n(ρ) + 1

N2

∑
m �=n TmρT †

n

1 + 1
N2

∑
m �=n Tr[TmρT †

n ]
. (9)

The numerator consists of two terms: The first term charac-
terizes the average effect of these N channels and the second
term is characterized by the transformation matrices.

III. COHERENT ACTIVATION OF
STEERABILITY-BREAKING CHANNEL

As mentioned in the introduction, an SB channel can be
coherently activated if the SB channel becomes non-SB via
the coherently controlled ancillary system. Therefore, an un-
desired channel after coherent activation can now be used to
transmit a steerable assemblage. In this section, we provide
several concrete examples. In Sec. III A, we analytically show
that the SB depolarizing channel can be coherently activated.
In addition, when we coherently control multiple copies of the
depolarizing channel, one can reliably transmit the steerable
resource. In Sec. III B, the numerical calculations indicate that
the SB amplitude-damping channel can also be coherently
activated.

A. Depolarizing channel

As a concrete demonstration, we consider the coherent
activation of the SB depolarizing channel by the coherently
controlled ancillary system. First, we briefly discuss the case
without the coherent control. A specific Stinespring dilation

of the depolarizing channel �Dep can be described by

U Dep |ψ〉 ⊗ |0〉 =
√

1 − 3p

4
|ψ〉 ⊗ |0〉+

√
p

4

3∑
i=1

σi |ψ〉 ⊗ |i〉 ,

(10)

where p is the visibility of the depolarizing channel, and σi are
Pauli matrices for i = 1, 2, 3. Here, |0〉 and |i〉 are the input
and output states of the extended environment, respectively.
In this Stinespring dilation, the Kraus operators of the depo-
larizing channel can be formulated as

KDep
0 =

√
1 − 3p

4
1, KDep

i =
√

p

4
σi, ∀i = 1, 2, 3. (11)

In summary, after the above operations, the state is linearly
mixed with the maximally mixed state, namely

�Dep(ρ) = (1 − p)ρ + p1/2. (12)

Intuitively, when p = 1, any state after the channel becomes
the maximally mixed state. Therefore, no information task
will have an advantage if one sends the state through this chan-
nel. However, if p = 0, the channel is the identity channel,
which reliably preserves the quantum information. Without
loss of generality, for any qubit channel, the visibility can
be accessed by performing channel twirling. We describe the
physical implementation of the depolarizing channel using a
concrete circuit model in Sec. IV.

It has been shown that the depolarizing channel is 2-SB,
when p � 1 − 1/

√
2 [49]. In other words, any assemblage

with two measurements cannot be transmitted via the depolar-
izing channel with the visibility in this range. This threshold
can be obtained by considering the maximally entangled
state |�〉 〈�| with |�〉 = ∑

i 1/
√

d |i〉 |i〉 and measurement
assemblage M(a|x) = 1

2 (1 + (−1)aσx ) with a ∈ {1, 2} and
x ∈ {1, 2}. The resulting assemblage is

σ Dep(a|x) = (1 − p)M(a|x)T /2 + p1/4, (13)

which is unsteerable when p � 1 − 1/
√

2. However, the exact
boundary between the SB and non-SB depolarizing channel is
still an open question [49]. Without loss of generality, we only
discuss the two-measurement scenario below. It can be easily
extended to the three-measurement scenario.

If the initial state of the control system ρC = 1
N

∑
i j |i〉 〈 j|,

by inserting the unitary of the extended environment into
Eq. (7), we have

ρ
Dep
CT = 1

N
1 ⊗ �Dep(ρ) + 1

N

∑
i, j

|i〉 〈 j| ⊗
(

1−3p

4

)
�Id(ρ),

(14)

where �Id denotes the identity channel. After the projective
measurement

∑
i j |i〉 〈 j| /N on the control system, the target

state becomes

ρ
Dep
T = 4�Dep(ρ) + (4 − 3p)(N − 1)�Id(ρ)

4 + (4 − 3p)(N − 1)
. (15)

The above formula can be seen as a different combination
of the depolarizing channel and the identity channel [cf.
Eq. (12)].
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Next, we discuss the properties of the coherently controlled
depolarizing channel described by Eq. (15). Consider that
the input state of the target system is the maximally entan-
gled state ρ = |�〉 〈�| in Eq. (15). After the channel, Alice
performs the Pauli measurements M(a|x) = 1

2 (1 + (−1)aσx )
with a ∈ {1, 2} and x ∈ {1, 2}. The output state assemblage
can be written as

σ
Dep
T (a|x)

= TrA
[
M(a|x) ⊗ 1 |�〉 〈�|Dep

T

]
= 1

4 + (4 − 3p)(N − 1)

[
4TrA

(
M(a|x) ⊗ 1�Dep

A (|�〉 〈�|))
+ (4 − 3p)(N − 1)TrA(M(a|x) ⊗ 1 |�〉 〈�|)]

= 1

4 + (4 − 3p)(N − 1)
[4σ Dep(a|x)

+ (4 − 3p)(N − 1)σ Id(a|x)], (16)

where �
Dep
A is a shorthand notation for �Dep ⊗ 1, σ Dep(a|x)

and σ Id(a|x) denote the assemblage generated by the max-
imally entangled states after the channels �Dep and �Id,
respectively.

We briefly discuss the case with N=2 such that

σ
Dep
T (a|x) = 1

8 − 3p
[4σ Dep(a|x) + (4 − 3p)σ Id(a|x)],

= 1

8 − 3p

[
(8 − 7p)MT (a|x)/2 + p1

]
. (17)

As can be seen, given visibility p, the final description
in Eq. (17) can be seen as a mixture of M(a|x)T and
1/4 with the “effective” parameter p′ = 4p/(8 − 3p) such
that σ Dep(a|x) = (1 − p′)M(a|x)T /2 + p′1/4. In this con-
struction, the coherently controlled depolarizing channel is in
the same form of the standard depolarizing channel, whereas
the visibility p changes to the effective parameter p′ by
the transformation in Eq. (17). When the visibility p = 1 −
1/

√
2 (the threshold of the 2-SB depolarizing channel), the

effective parameter p′ = 0.164. Because p′ = 0.164 < 1 −
1/

√
2, the coherently controlled depolarizing channel is not

2-SB such that the channel can now be used to transmit
steerable assemblage. In other words, the SB depolarizing
channel is coherently activated. Moreover, one can observe
that the threshold of the 2-SB coherently controlled depo-
larizing channel shifts to p = 0.48 with N = 2. Recall that
when p � 1 − 1/

√
2 the standard depolarizing channel is SB;

otherwise, it is non-2-SB.
Finally, we can see that when the number of copies N

the weight on the identity channel [cf. Eqs. (15), and (17)]
increases simultaneously. Thus, one can preserve quantum
steerability and lead the threshold of the 2-SB coherently con-
trolled depolarizing channel shifts to p = 0.71 with N = 4.
The comparison of the steerability over the N coherently con-
trolled channel is presented in Fig. 2. Moreover, if N → ∞,
the coherently controlled channel asymptotically becomes the
identity channel.

FIG. 2. Steerability over the coherently controlled N depolariz-
ing channel. The simulation results are marked by symbols. When
N = 1, the system suffers the standard depolarizing channel. The
channel is undesired for two measurements (2-SB) after p � 1 −
1/

√
2. If we apply the concept of coherent control, the quantum-

classical boundaries shift to p = 0.48 and 0.71 for N = 2 and N = 4,
respectively. Thus, the SB depolarizing channel after the coherent
control can now be used to transmit steerable assemblage.

B. Amplitude-damping channel

Another concrete example is the amplitude-damping chan-
nel. The unitaries of the amplitude-damping channel transmit
the system |1〉 to |0〉 with visibility

√
1 − p, while preserving

the system |0〉 with certainty, namely

U Amp |0〉 ⊗ |0〉 = |0〉 ⊗ |0〉 ,

U Amp |1〉 ⊗ |0〉 =
√

1 − p |1〉 ⊗ |0〉 + √
p |0〉 ⊗ |1〉 . (18)

Therefore, the Kraus operators of the amplitude-damping
channel can be written as

KAmp
0 =

(
1 0
0

√
1 − p

)
, KAmp

1 =
(

0
√

p
0 0

)
. (19)

In summary, the output of the amplitude-damping channel can
be expressed as (see also Sec. IV for the physical implemen-
tation of the amplitude-damping channel)

�Amp(ρ) = (1 − p)ρ + p |0〉 〈0| . (20)

The amplitude-damping channel is 2-SB when p � 0.5 be-
cause (1) under the two-measurement scenario, the maximal
violations of quantum steeraiblity and Bell nonlocality of
a quantum state are equivalent [33] and (2) the amplitude-
damping channel is Bell nonlocality breaking under the
two-measurement scenario if p � 0.5 [49,60,61]. This thresh-
old can be observed when considering, the maximally
entangled state and Pauli measurements σx with x ∈ {1, 2}.
For more general scenarios, the exact boundary is still un-
known. However, it does not change the main statement in
this work.

Inserting all the unitaries, the control system, and the
extended environment into Eq. (9), the output of the target
system can be expressed as

ρ
Amp
T = �Amp(ρ) + (N − 1)KAmp

0 ρKAmp
0

1 + (N − 1)Tr
[
KAmp

0 ρKAmp
0

] . (21)
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FIG. 3. Steerability over the coherently controlled N amplitude-
damping channel. The simulation results are marked by symbols.
If N = 1, the system suffers from the standard amplitude-damping
channel which is undesired (SB) when p � 0.5. The coherently
controlled amplitude-damping channels are SB when p � 0.67 and
p � 0.81 for N = 2 and N = 4, respectively. Obviously, with the
coherently controlled system, the SB amplitude-damping channel
can be activated.

Because the Kraus operator KAmp
0 is full rank, the off-diagonal

terms in the state ρAMP
T never vanish unless p = 0 with the

given state ρ with coherency. Compared with the second term
in Eq. (20), the Kraus operator KAmp

0 can preserve the coher-
ence of the system.

Now, we consider the input state and the measure-
ment assemblage to be the maximally entangled state and
Pauli measurements σx with x ∈ {1, 2}, respectively. We
numerically present the steerability over visibility with dif-
ferent numbers of copies N in Fig. 3. One can see that
when N = 2 and N = 4, the SB amplitude-damping chan-
nel is coherently activated because the quantum-classical
boundaries shift to p = 0.67 and p = 0.81, respectively.
Finally, when N increases, the steering preservability of
the coherently controlled amplitude-damping channel is
enhanced.

IV. CIRCUIT SIMULATION

In this section, we present both the controlled depolariz-
ing channel and the controlled amplitude-damping channel
with circuit models. Here, we only consider that N is even
because we are using multiple qubits as the control sys-
tem. As the circuit models may be applicable over a wide
range of experimental systems, i.e., superconducting and pho-
tonic systems, our results are feasible in near-term quantum
devices.

Before introducing the circuit models for implementing the
controlled channels, we introduce the circuits that are used to
demonstrate the Pauli measurements and prepare the maxi-
mally entangled state as an input of the target system. We first
assume that the initial state of each qubit is in |0〉, and the mea-
surement gate is always on the computational basis. These two
initializations are commonly used in many universal quan-
tum computers, including IBM quantum experience, QuTech,
and ionQ [86–90]. The Pauli measurements can be achieved
by inserting suitable unitaries before the measurement

gate; for instance, measurements on σ1 and σ2 bases can be
demonstrated by rotating the computational basis via H and
S†H gates respectively. Note that H is the Hadamard gate and
S is the phase gate, namely

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
. (22)

The maximally entangled state can be generated by operating
the Hadamard gate followed by the controlled-NOT (CNOT)
gate on state |00〉. With the maximally entangled state, the
Choi state can be obtained by sending Alice’s subsystem into
the quantum channel. Using the concrete examples mentioned
in Sec. III, we describe the detailed implementations of the
depolarizing and the amplitude-damping channels in the fol-
lowing subsections.

A. Circuit model for coherently controlled channels

Here, we introduce a general method to establish the coher-
ently controlled channel (see also the case of N = 2 and X =
2 in Fig. 4). If we want to create an N coherently controlled
channel, we have to prepare an N-dimensional control system
in state ρC = 1

N

∑N
i j=1 |i〉 〈 j| and a controlled unitary U . Here,

we use γ qubits to be the N-dimensional control system with
N = 2γ . However, the number from 1 to 2γ in decimal form is
represented in binary form with γ digits. We show a general
circuit model with γ = 2 (N = 4) as an example: γ > 2 cases
can be naturally extended from this. For the γ = 2 case, we
prepare two control qubits in 1

4

∑4
i j=1 |i〉 〈 j|, which can be

created by performing Hadamard gates on each qubit. The U
in this case can be written as

U = |0〉 〈0| ⊗ |0〉 〈0| ⊗ U00

+ |0〉 〈0| ⊗ |1〉 〈1| ⊗ U01

+ |1〉 〈1| ⊗ |0〉 〈0| ⊗ U10

+ |1〉 〈1| ⊗ |1〉 〈1| ⊗ U11. (23)

We note that Eq. (23) can be seen as the operation. It can be
decomposed into a series of two-qubits and single-qubit gates
[91].

B. Circuit model for the coherently controlled
amplitude-damping channel

Because we introduced the general case of the coher-
ently controlled channel, here, we focus on simulating the
amplitude-damping channel with a quantum circuit. The
coherently controlled amplitude-damping channel can be ob-
tained by replacing the unitary U in Fig. 4(a) with the unitary
U Amp [see also Fig. 4(b)]. Here, we consider that the input
of the target state is |ψ〉, and the initial state of the envi-
ronmental system is in |0〉. We apply a controlled rotation
y, namely CRy(θ ) = |0〉 〈0| ⊗ 1 + |1〉 |1〉 ⊗ Ry(θ ), followed
subsequently with a CNOT operation. Here, Ry(θ ) is a single
qubit rotation in the y axis and its matrix form can be written
as

Ry(θ ) =
(

cos
(

θ
2

) − sin
(

θ
2

)
sin

(
θ
2

)
cos

(
θ
2

)
)

. (24)

042415-5



KU, LEE, LAI, LIN, AND CHEN PHYSICAL REVIEW A 107, 042415 (2023)

FIG. 4. (a) Circuit model of a coherently controlled channel with N = 2 and X = 2. The main idea is using the control system to determine
whether the unitary U is acting on the target system. Here, we see that if the control system is in |0〉 (|1〉), then the target will be coupled to the
first (second) environment. One can use the control system in |+〉 and measure the control system on the |+〉 to establish a superposed channel.
Note that the white dot in the control system denotes that the unitary is applied when the control system is in |1〉, and it can be obtained
by adding a Pauli-X gate before and after the black dot. (b) Circuit model of an amplitude-damping channel, which can be constructed by a
controlled rotation and a CNOT gate. Here, the ancilla qubit is initial in |0〉. The visibility of amplitude-damping in Eq. (18) can be reformulated
by θ = 2 arcsin

√
p. (c) Circuit model of a depolarizing channel. The two ancillas, being an environment, are initially prepared in |0〉. By

using the (control) rotation y with angles φ1 = 2 arcsin
√

p/2, φ2 = 2 arcsin
√

p/(4 − 2p), and φ3 = π/2, in order, we can construct a state√
1 − 3p/4 |0〉 |0〉 + √

p/4(|0〉 |1〉 + |1〉 |0〉 + |1〉 |1〉) (see the colored box). Using this state as a control system and applying controlled-
controlled I , Pauli-X , Pauli-Y , and Pauli-Z gates on the target system, the depolarizing channel can be established.

When we apply these gates on the target state, one can eas-
ily see that if θ = 2 arcsin

√
p, this circuit is equivalent to

the amplitude-damping channel in Eq. (20). Moreover, the
visibility p in the amplitude-damping channel is adjustable
by a control-rotation y gate for our circuit implementation.
With this circuit, the simulation results of steering robustness
under the coherently controlled amplitude-damping channel
with γ = 0, 1, and 2 (N = 1, 2, and 4) are presented in
Fig. 3.

C. Circuit model for the coherently controlled
depolarizing channel

We present the coherently controlled depolarizing channel
by replacing U in Fig. 4(a) with U Dep. To implement U Dep,
we consider a two-qubit system as the environment and ap-
ply Ry(φ1) followed subsequently by CRy(φ2) and CRy(φ3)
in order [see also the colored box in Fig. 4(c)]. After the
operations, the environmental state becomes

|0〉 |0〉 → cos
φ1

2
cos

φ2

2
|0〉 |0〉 − cos

φ3

2
sin

φ1

2
|0〉 |1〉

− cos
φ1

2
sin

φ2

2
|1〉 |0〉

+ sin
φ3

2
sin

φ1

2
|1〉 |1〉 . (25)

The visibility p in Eq. (10) is encoded into these three param-
eters with the relations

φ1 = 2 arcsin

√
p

2
,

φ2 = 2 arcsin
√

p

(4 − 2p)
,

φ3 = π

2
. (26)

In other words, the visibility p in the depolarizing channel
can be completely determined by the adjustable gates Ry(φ1),
CRy(φ2), and CRy(φ3) in our circuit construction.

Finally, we use the environmental system as a control
system to manipulate the target system. More specifically,
we apply controlled-controlled identity, Pauli-X , Pauli-Y , and
Pauli-Z gates on the environmental and target systems. The
controlled-controlled operations change the target state to

|ψ〉⊗ |0〉 |0〉 →
√

1−3p

4
|ψ〉 ⊗ |0〉 |0〉+

√
p

4
σ1 |ψ〉 ⊗ |0〉 |1〉

+
√

p

4
σ2 |ψ〉⊗ |1〉 |0〉 +

√
p

4
σ3 |ψ〉⊗ |1〉 |1〉 ,

(27)
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which has the same form as Eq. (10), and we can thus simulate
the depolarizing channel. The simulation results of steering
robustness under the coherently controlled depolarizing chan-
nel with γ = 0, 1, and 2 (N = 1, 2, and 4) are presented in
Fig. 2.

V. DISCUSSION

In this work, we investigated how a coherent control of
quantum channels can be used to activate a SB channel.
More specifically, we considered two explicit cases, including
depolarizing and amplitude-damping channels, because their
SB ranges are clearly derived in Refs. [46,49]. We showed
that the SB properties of both channels can be coherently
activated with two copies of the channels. In this construction,
the steerability can be preserved even through the original
channel that breaks quantum steerability for any states and
measurements. Therefore, the coherently controlled channel
can now be applied to steering-based quantum information
tasks, i.e., random number generation. If the number of copies
increases, the steering preservabilities can be enhanced for
both cases. In addition, we constructed the circuit models for
both cases and present the simulation results.

This work also highlights the need to consider some
research questions. It has been shown that local filtering op-

erations can be used to activate hidden teleportation power
[92], hidden steerability [38], and hidden nonlocality [93,94].
Can local filtering operations activate SB channels? More-
over, instead of measuring on the control system, a collective
measurement by “untrusted party” on many copies of the un-
steerable assemblage can violate the steering inequality [36].
Can a collective measurement activate the SB channels? From
the viewpoint of open quantum systems, superposing quantum
evolutions can trigger quantum non-Markovain [80,95] and
Zeno-like effects [95]. Therefore, it would be worthwhile to
explore the impact of these effects on the activation of quan-
tum steerability.
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