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Weak amplification and other postselection-based metrological protocols can enhance precision while esti-
mating small parameters, outperforming postselection-free protocols. In general, these enhancements are largely
constrained because the protocols yielding higher precision are rarely obtained due to a lower probability of
successful postselection. It is shown that this precision can further be improved with the help of quantum
resources like entanglement and negativity in the quasiprobability distribution. However, these quantum advan-
tages in attaining considerable success probability with large precision are bounded irrespective of any accessible
quantum resources. The advantage is being considered only within the scope of postselected metrology. Here
we derive a bound of these advantages in postselected metrology, establishing a connection with weak value
optimization where the latter can be understood in terms of the geometric phase. We introduce a scheme that
saturates the bound, yielding anomalously large precision. Moreover, we prove that these advantages can be
achieved with positive quasiprobability distribution. We also provide an optimal metrological scheme using a

three-level nondegenerate quantum system.
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I. INTRODUCTION

Parameter estimation, which is central to mathematical
statistics, is an elementary problem in information theory. Its
main objective is to construct and evaluate various methods
that can estimate the values of parameters of either an in-
formation source or a communication channel. In estimation
theory, the Cramér-Rao inequality [1,2] expresses a lower
bound on the variance of unbiased estimators 6, stating that
the variance of any such estimator Var(6,) is at least as high
as the inverse of the Fisher information, ¥ (6):

1
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The Fisher information quantifies the amount of information a
sample conveys about an unknown parameter. In other words,
it tells us how well one can measure a parameter, given
a certain amount of data. A common metrological task is
concerned with designing an optimized experimental setup
that minimizes the estimator’s error by maximizing the Fisher
information [3].

It has been shown that utilization of quantum resources
can improve the precision of parameter estimations beyond
classical limits. This idea is at the basis of the continuously
growing research area of quantum metrology that aims at
reaching the fundamental bounds in metrology by exploiting
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quantum probes. The central quantity in quantum metrology
is the quantum Fisher information (QFI), which is the optimal
Fisher information of a metrological protocol over different
measurement settings [4—7]. When N number of classical
probes, each interacting onc at a time with the system un-
der study, the variance of the estimator optimally scales as
N~2, and it stands for the probes that are at most classically
correlated. This limit is called the standard quantum limit
(SQL), and it stands for the probes that are at most clas-
sically correlated. Using quantum probes, this scale can be
optimally enhanced to N~!, called the Heisenberg limit (HL)
[8-10]. The quest for measurement schemes surpassing the
SQL has inspired a variety of clever strategies, employing
squeezing of the vacuum [11-15], optimizing the probing time
[16], monitoring the environment [17,18], and exploiting non-
Markovian effects [19,20]. Besides the fundamental interest
about ultimate precision limits, quantum metrology presents
different applications, such as measurement on biological sys-
tems [21,22], gravitational wave detection [23], atomic clocks
[24-26], interferometry with atomic and molecular matter
waves [27-29], Hamiltonian estimation [30-33], and other
general sensing technologies [34,35].

It is considered that the HL represents a fundamental limit
on the sensitivity of quantum measurements. However, dif-
ferent studies have shown that interactions among particles
may be a valuable resource for quantum metrology, allow-
ing scaling beyond the HL [36-38]. Naturally, the question
arises: What are the alternative protocols that can be rele-
vant to achieving such scaling? A recent theoretical study
has reported that the postselected quantum experiments can
be used to overcome the HL by enabling a quantum state

©2023 American Physical Society
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to carry more Fisher information [39]. The reason behind
this benefit is claimed to be the negative quasiprobability
distribution [40-46] which is an important manifestation of
nonclassicality. Also, it has been shown that improved advan-
tages can be attained when properly conditioned experiments
are performed. However, this advantage comes with a lower
rate of successful postselection [47,48].

We ask, in this article, if this advantage be bounded fun-
damentally irrespective of any accessible quantum resources.
We conclude that it can. Using geometric arguments, we
derive a bound of these advantages using weak value opti-
mization and show that the intrinsic weak values of the system
observable play a key role in bounding this advantage. We
construct a preparation-and-postselection procedure that sat-
urates the bound using a three-level nondegenerate quantum
system. Surprisingly, at the saturation point, the quasiprob-
ability distribution of this setting turns out to be positive. So
far, the negative quasiprobability distribution is considered es-
sential for postselected QFI to overcome the HL. Our scheme
achieves the same without accounting for any negative or
nonreal elements in the quasiprobability distribution. Finally,
we propose an alternative way to understand this quantum
advantage.

II. POSTSELECTED QUANTUM FISHER INFORMATION

A typical situation in quantum parameter estimation is to
estimate a parameter 6 that is encoded on the system state
through some general quantum evolution pg = &Ey(p), where
&y is a trace-preserving completely positive map. The param-
eters could be the phases of light in interferometers, unitary
phase shifts, the decay constant of an atom, the strength of
magnetic or gravitational fields, etc. The efficiency of an esti-
mation procedure is characterized in terms of the mean-square
estimation error (MSE),

— Ouel?}, (1)

where 6 is an estimator for 6y and Eg,,{.} denotes an expec-
tation over data. For unbiased estimators, a strict lower bound
on the MSE—the quantum Cramér-Rao bound (QCRB)—is
expressed in terms of the quantum Fisher information F,(0)
associated with the state Py that encodes the parameter. Un-
der measurements on N copies of the system, the QCRB is
expressed as

MSE(erue) = Edata{[g (data)

1
MSE(@6) > NT @) 2)
Consider a quantum experiment that outputs the state py =
U(6)poU"(6), where py undergoes the unitary transformation
U®) = e~ 4% driven by A with 6 e R. If Do 1s pure, such
that pg = |¥y)(¥y|, the optimized quantum Fisher informa-
tion can be written as

Fo@|pe) = 4Var(A),,. (3)

The Fisher information can be further optimized over all input
states, which gives

max(¥o(017)) = 4n;;01x{Var(A)ﬁ0} =(Aa)?, @

Fai
ailed postselection

,Ps

[y,
. POStselected

Fina| measurement state

FIG. 1. A scheme for postselected metrology First, an input
quantum state |;) undergoes a unitary transformation U®) = e~ i0A:
[Y;) — |¥g). Second, the quantum state is subjected to a post-
selective measurement with the projectors {£', 1 — F}. After the
successful postselection with ¥, the updated (renormalized) state
becomes [V1") = F W)/ (Yo F |¥))"/2, which is further analyzed
to estimate the parameters.

where Aa is the difference between the maximum and the
minimum eigenvalues of A. In order to show how postselec-
tion could help retrieve more information per measurement,
we present a short review of the postselected prepare-measure
experiment. According to the protocol, as shown in Fig. 1,
a selective measurement takes place after U (0) but before
the final measurement. The renormalized quantum state that

W™y /\/ Py, where the
unnormalized state is defined as |W}*) = Flyy), with F =
Zfeﬁs |f)(f] being the postselecting projection operator,
where #P is the chosen set of postselection and pi’ =
Tr(F py) is the probability of postselection. Finally, the postse-

lected state goes through an optimized measurement protocol.
Compiling all the steps leads to [39]

passes the postselection is [¢)°) =

FolO1VE") = 45 T ) — (19 ©

(5
where [W*) = 9,|WP*).

This gives the quantum Fisher information available from a
quantum state after its postselection. Evidently, (6| 1//5 *) ex-
ceeds Fo(610y), since pgs < 1. Moreover, if the postselections
result in a quasiprobability distribution (i.e., with negative
entries), the rate of improvement in retrieving information
per measurement can even surpass the standard limit of the
Fisher information [39]. The postselected quantum Fisher in-
formation can be re-expressed in terms of the quasiprobability
distribution:

2
aa (](590
Fo(0lv)) —42 —la 4Zp—,,f . (6
a,d, 0
e feFr
where ‘K(f"a, P= = (fla){a|pgla’){d|f) refers to an element of

the doubly extended Kirkwood-Dirac (KD) qua51probab11-
ity distribution [40,41], defined in terms of eigenbases of A
and F. This is an extension of the standard KD distribution
which is obtained under two weak measurements followed
by a strong measurement performed sequentially on the
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system. If A commutes with ¥, as they do classically, then
they share an eigenbasis for which K 5 wr! S , and
the postselected quantum Fisher 1nf0rmat10n is bounded as
Fo@l¥5) < (Aa)®. In contrast to this, if the quasiproba-
bility distribution contains negative values, the postselected
quantum Fisher information can be seen to violate the stan-
dard bound: Fo(0|¥)°) > (Aa)>. We will see shortly how
these nonclassical advantages can be accommodated in any
quantum experiments to achieve anomalously large quantum
Fisher information. In fact, this gain in information can be
related to the weak values of the system observable. For that,
first we rewrite Eq. (6) in the operator form:

Fo(01v)") = = Tr[FAU (0)poU (9)"A]

9

ITe[FU 0)poU (0)'A1%. (7)

2
ps
Py

The aim is to choose F and po in a way that Fo(0]y)")
approaches the maximum. We begin with a pure initial state
|¥;) and the postselction is carried out with the Projector
F = kaefp, | fx) (fx| on the updated state |yy) = U (0)|¥;),
where #P° is the postselection basis. Then the postselection
probability becomes

= [alfl, ®)

SreF e

and Eq. (7) leads to

FoO WD) (P))" =4 phiphila, AL, ©
i<j
where Akw = %ZL?}S) and 97( = |(¥y|fi)|?. It can be seen that

there is no enhancement in postselected QFI when the system
is postselected with a rank-1 projector.

Note, AX is nothing but the weak values corresponding
to the observable A between the preselected state |¢) and
the kth component of the postselected state |fi), and
is the postselection probability [49] (see the Appendices for
details). Therefore, optimizing enhancement in postselected
metrology can be connected to the weak value optimization,
as we discuss below.

III. WEAK VALUE OPTIMIZATION: A GEOMETRIC
INTERPRETATION

In general, a large weak value appears when it is less likely
to have successful postselection of the system. It indicates
that large weak values are obtained but very rarely. It has
been shown that by exploiting quantum resources, e.g., entan-
glement, squeezed states, etc., the success probability can be
improved for a fixed weak value. However, the advantage in
attaining considerable success probability with a large weak
value is bounded irrespective of any accessible quantum re-
sources. To optimize the advantage, one can either start by
fixing the weak value or keeping the success probability fixed.
Usually, these are attained from separate optimization proto-
cols. In order to access these advantages simultaneously from
a single protocol, we can start with optimizing a combined

quantity 7:
n(va pv) = pslAw|2~ (10)

We refer to this quantity as the efficiency of a weak value
metrological protocol. To check how efficient a protocol is,
one needs to quantify the gain in terms of |A,| along with a
cost pi to access the same. Evidently, minimal cost implies
higher probability of successful postselection. The efficiency
is bounded by the following relation:

1(Aw, ps) < 1A [op, (11)

where the operator norm is defined as ||X [lop :=
sup|¢>€¢,{(¢>|)2|¢>) : (¢|¢) = 1}. Once the upper bound is
known, the optimization procedure can be initiated using a
proper trial function. To make it more insightful, we would
like to explore the geometric connection behind the process
of optimization. A detailed analysis will soon reveal how
the geometric phase appears in the context of efficiency of a
metrological experiment. To establish the connection, we start
by taking the observable A= > i arlag)(ax|. Substituting it
into Eq. (10) leads to

N(Au, p) =| Y axl(Yrrlae) | ¥s)]
k

2

x exp[i®¥(1¥). lac), [¥s))]| (12)

where O (1Y), |ax), 1Y) = arg({sla) (axl i) (il ¥5)) is

the Bergman angle, widely known as the geometric phase
[50]. In the realm of quantum states when cyclic transition
occurs starting from a preselected state |v;) to the same state
via a path that connects |ay) and |v/¢) through geodesic lines
on the Bloch sphere, the final state acquires an excess phase
over |;). This phase is proportional to the solid angle at the
center, subtended by the geodesic triangle with vertices at
[Vi), |¥r), and |ax). Now, we aim to optimize the protocol
for maximum efficiency. One way to ensure this is to keep the
function under summation positive for all k. Any exception to
this will not lead to the desired optimization. To saturate the
bound, the postselected state is taken to be parallel to A|;),
ie.,

V) = L@, (13)

(il A%[)

which is similar to the case considered in Ref. [51]. Evaluating
the expression for the Bergman angle, we obtain

) 2
QL (1Y), lak), 1¥r)) = arg[akM]
(VilA2 )
+ arg({Yrlvi)). (14)

Note that, instead of ay, all the terms inside the first argument
function are positive, which simplifies the expression:

O (1Y), la), 1vy)) = arg[sgn(an)] + arg((Y¢1¥:)).  (15)
This straightforwardly leads to

exp[i®g: (1¥), lax), 1¥5))] = sgn(ar)exp(ig), (16)
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where sgn(a;) = % is the sign function and ¢ =
arg((Y¥s|¥;)) is a constant phase which does not contribute
to the efficiency. The maximum efficiency is attained when
g depends on the eigenvalues g via a sign function only.
This ensures that the terms under summation in Eq. (12) are
positive for all k, leading to maximum efficiency. An example
using the spin-1/2 system is outlined in the Appendices.
It is worth noting that the optimization in terms of efficiency,
following the geometric argument, is more general in the
sense that it takes into account both the weak values and the
postselection probability.

IV. BOUNDING POSTSELECTED METROLOGY
THROUGH WEAK VALUE OPTIMIZATION

In the same line, as mentioned in the context of efficiency
of a weak value amplification, we can also assign a trade-off
relation between the probability of postselection and the infor-
mation obtained upon postselection. We begin with defining a
similar quantity as metrological efficiency here as well.

Definition 1. For any arbitrary state preparation and posts-
election, the efficiency of a postselected metrological protocol
&P* with the postselected Fisher information % and the total
probability of successful postselection p}’ is defined as

% (pys Fo) = Py Fo- (17)

This efficiency cannot be arbitrarily large, as mentioned in
the theorem below.

Theorem 2. The efficiency of a protocol for postselected
metrology is bounded according to the following inequality:

EP(ph's Fo) < 411A[op- (18)

The highest efficiency is achieved under the following condi-
tion,

(VilAly:) =0 and Vfi ¢ 7P,

Proof. Since the Fisher information decreases when the
states are mixed, we can expect that the maximum effi-
ciency will be achieved for pure states only. Here, we start
with preparing the system in a pure initial state |y;) which
evolves to |yy) after the parameter 6 is encoded via unitary
exp(—iA@). Then, the efficiency of the protocol can be ex-
pressed in terms of the standard KD distribution and efficiency
in weak value amplification as

Eps QS’TQ Z Pek’

JreFPs

A¥ =o0. (19)

2

Ea ) B DA e

m. frefrs

where K"} = (Yg|an) (anlfi) (fil¥s) is the standard KD
distribution (see the Appendices for derivation). To maximize
the efficiency we treat the first and second terms in the right-
hand side of this expression independently. Applying Bessel’s
inequality for the first term, we obtain

o on(heAL) = Y 1Weldlfi)l

JreFrs freFrs

<A |op- 1)

Since the second term is a non-negative quantity, the inequal-
ity (18) is always respected. [ |

Now we investigate the condition to achieve optimal ef-
ficiency. The inequality (21) saturates under the following

condition,
> n(ph.AL) =o0. (22)
SegFrs
Since all the terms inside the summation sign are posi-
tive, the condition is equivalent with Vf; ¢ FP°, (Yy|A|fi) =
0. This implies that all the intrinsic weak values with
failed postselected states have to be zero separately. The
condition for the second term in the right -hand side of

Eq. (21) to be zero is ), kaeffps am’K fk = 0, which im-

plies Y fueTm (WolAlf) felwg) = 0. Puttlng together both the
conditions, we obtain

(VilAlyi) =0 and Vfi ¢ 7P,

Under this condition, the inequality (18) saturates, which is
termed as information-preserving postselected metrology.

Now, we point out a situation where we achieve the
bound for a rank-2 postselection. Thzen, Eq. (9) reduces to
Fo@lY5 ) (py)* = 4P PnlA, — ALl
Under this condition, we get

Eps( GS’TQ)

A* =o0. (23)

First we set A2 = 0.

Pelpgz | w’ (24)
Imposing the weak value optimization (1 1) on the first posts-
election leads to
ps

(3 70) = 4 1%y (25)
Once pj, starts to tend towards zero, one can get closer to
the saturation. Thus, we need to maintain |f,) perpendicular
to Alwg) and |yy) parallel to A| f1), simultaneously. Also,
we need to choose the initial state of the system in such a
way that the average of A2 saturates under the optimality
conditions. It is now evident from the geometric interpretation
that the optimization for the first intrinsic weak value would be
attained when the geometric phases between the preselection,
the eigenstates of A, and the postselection have certain depen-
dence with the eigenvalues of A. Below, we give an example
to show how to achieve optimal quantum enhancement in the
context of postselected metrology.

A. Information-preserving postselected metrology using a
three-level quantum system

Consider the state space of the system is spanned by the
basis set {|A), |A), | — A)}, which are the eigenvectors of the
system observable A with corresponding eigenvalues A, X,
and —A, respectively. We want to estimate 6 that lies close
to its true value 6y and the difference between them is 8y =
6 — 6y, with |8y| < 1. First, we choose the postselection F=

|f1)(fil + [f2) {f2], with

A =1=2)
If1) = 5
cos|A) + cosa| — A)

V2

(26)

If2) = + sina|4), (27)
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FIG. 2. Information-preserving postselected metrology. Figures from the left represent the postselected Fisher information ¥, the
probability of successful postselection pj’, and the efficiency of the protocol, respectively, with different values of ¢ — 8 and «, for A = 1.
The optimality condition is attained when ¢ — &y. For more details, see the text.

where « is a real parameter. We also choose the initial state

) = U™ (0p)[(cosp + ising)|1) + (cosg — ising)| — A)]
1 - \/z £
(28)

where the unitary U6y) = exp(—iA@o). In this setting the
evolved state becomes

1
V2
+ (cosg — ising)e™*| — )], (29)

V) = UO)|y) = —=[(cosp + ising)e ™" [1)

where ¢ is a real parameter. Putting this postselection and the
initial state into Eq. (10), we find
4)2cos’a
sin?(¢p — A8y) + cos2acos?(¢p — ASy)
(30)

FolOlvy)ry =

The total postselection probability comes out of the following
estimation:

b = b+ phy = sin®(¢ — A8g) + cos’acos? (¢ — Adp),
(31)

along with the respective weak values

—ilcos(¢p — Adg) A2 iAsin(¢p — Ady)
sin(p — A8g) cos(¢p — A8g)
As ¢ approaches Ady, the condition for optimal quantum

advantages gets satisfied. This can clearly be seen from the

following expressions when compiling with appropriate lim-
its:

A}U = (32)

. S _ 2
¢1_1)I}\180 Py = cos’a, (33)
: pPsy __ 2 2
¢1i‘?39 Fo(01¥)°) = 4A%sec’a, and (34)
: ps., _ 2
Jm &) Fo) = 427 (35)

Thus, in the aforementioned limit, we achieve the
information-preserving  protocol associated with the
postselected metrology. Figure 2 reflects how the Fisher
information, the probability of postselection, and the
efficiency of the protocol are dependent on the change of

parameters {¢ — Ay, @}. The parameter o opens up a choice
for the experimenter to decide the degree of precision without
violating the restriction of information preservation. Before
moving to further discussion, we should note that tuning ¢ in
the limit ¢ — A&y would not be an easy task. We must have a
pre-estimated error range of the parameter 6 beforehand; let us
call it Ay. The experimenter then needs to perform a trial run
tuning ¢ with different values within the range |¢| < AAg.
When Ay is sufficiently small, reaching the optimal limit
becomes easier. Even if the tuning is not perfect for reaching
the optimal point, it gives us a range of different values of
¢ where we may experience anomalous QFI (see Fig. 2). To
widen this range, one can consider increasing the value of A.
In comparison to the setup [39], our protocol relaxes some
experimental restrictions yet achieves anomalous QFI without
any loss of information. Additionally, we can experience this
anomalousness in this setup even without setting the 69 — 0
condition. Moreover, all these advantages can be obtained
only by considering a three-level system. Thus, by construc-
tion, this setup is more profitable to attain the desired results.

B. Role of quasiprobalility in postselected metrology

In this section, we show that the protocols having pos-
itive KD distribution, which so far has been considered to
be classical, can harness quantum advantages in postselected
metrology.

We aim to prove this claim by the same example mentioned
earlier. The KD distribution corresponding to the system state
is positive everywhere when the optimality conditions are
imposed (see Table I). However, under these conditions, we
can obtain anomalously large QFI.

Here, we propose an alternative approach for pure
states. We start by referring an identity that addresses
the relation between the KD distribution and the classical
joint probability distribution for two successive projective
measurements [42]:

4}, =Tr(pAnFidn) + 3 {THl( = I

[SIE]

+Te[(p — P)E ]}, (36)
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where If‘k% = exp(—i%Am)ﬁkexp(i%Am) and p’ is the post-
measurement state achieved after a nonselective projective
measurement on p with A,, and (1 — A,,). {A,,} and {F;} are
two different orthonormal sets of projectors. Here, the KD
distribution is composed of two terms. The first term in the
right-hand side is called the Wigner formula, which refers the
classical joint probability distribution for a set of outcomes
a, and f; upon a successive projective measurement on p
first with A,, and then with F;. The second and third terms
together can be considered as quantum modification terms
which arise due to the the noncommutativity of measurement
observables. Whenever the observables commute, this part
vanishes. For simplicity, we denote the Wigner formula as
Q, s = Te(pALFAL).

Theorem 3. For pure states, the metrological efficiency
& pS(pgs; Fo) = 0, when its KD distribution equals the corre-
sponding Wigner formula,

Kar.o = Qo (37)

Proof. Upon solving to satisfy the above condition, one
can straightforwardly obtain two conditions:

(Volam)(am|fe) =0 (38)

or

(am| Vo) (filam) = {fil¥s)- (39)

The condition (39) refers to the points where the KD distri-
bution and the Wigner formula both take zero values. To keep

the triviality aside, we neglect that and consider the condition
(40). Recall Eq. (21),

Z 2 Kl

m. fiefrs

SPS(PH 37:Q = 4 Z |Ak
freFrs
(40)

Decomposing the terms under summation and imposing the
condition (40) lead to

> Pl =pp :

2
2 an
m

feFe
gclve)
2 D ) =
m. fief e

Replacing this to Eq. (40) yields
£ (P Fo) = 0. (41)

See the Appendices for the detailed calculation. [ |

We have emphasized the point earlier that the KD dis-
tribution and the Wigner formula are not equal when the
measurement observables do not commute. However, the KD
distribution may still be positive in such cases. The example
here also exhibits a similar feature (see Table II), where the
Wigner formula differs from KD distribution. This observa-
tion provides an insight which indicates that the standard
notion of KD nonclassicality [52] and the quantum advantage
in postselected metrology may not have a direct connection.

TABLE 1. KD distribution corresponding to the system state is
tabulated. Under the optimality condition, the distribution is posi-
tive for all values of . Here, {|A), |A), | — A)} are the eigenvectors
of system observable A and {|f1), |fo), If3)} is the complete set of
postselection bases.

lim 4 - s, Wjﬁ,_/k [fi) [f2) 1f3)
2 inz
A 0 o y
%) 0 0 0
20 02,
=) 0 “ N

Rather the quantum advantage may have links with the non-
vanishing quantum modification terms in KD distribution.

Thus, we have shown that the quantum advantage in posts-
elected metrology does not appropriately reciprocate with the
standard KD nonclassicality, which is often connected with
negative or nonreal values in the distribution. Contrary to this,
we have shown there exist states with positive KD distribu-
tion, which can lead the experimenter to have QFI beyond
the HL in postselected metrology. Our results indicate that the
quantum modification terms in the identity Eq. (36) effectively
contribute to the efficiency in postselected metrology, which
in consequence shows anomalous QFIL.

V. DISCUSSION

We have studied postselected quantum metrology that has
been shown to have better precision over other metrologi-
cal protocols. It can even yield infinite precision, however,
with very low probability. In a realistic situation, one has
to consider both precision as well as probability. So far, an
optimization protocol, which genuinely signifies the quantum
advantages considering both of these quantities, has been
missing.

We have shown that the accessible advantage is bounded
irrespective of the quantum resources utilized in postselected
metrology. Our results highlight the significance of weak val-
ues to study the quantum advantage. In general, the weak
values and the geometric phases are interrelated [53,54]. We
have provided a unique way to examine the optimality condi-
tions by analyzing the geometric phases associated with the
states under consideration. Using this scheme in postselected
metrology, we have found an essential geometric argument in
finding the optimal way to engineer the postselection.

It is evident that negative or nonreal elements in the
Kirkwood-Dirac distribution are an essential signifier or in-
dicator of nonclassicality. However, they do not represent
a complete witness for nonclassicality. We prove that even
positive Kirkwood-Dirac distributions can have operationally

TABLE II. Wigner formula corresponding to the system state.

lim g 2, K2 |f1) |f2) 1f3)
) % cozzoc sin’a
%) 0 0 0

|- . o e
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relevant nonclassical features. However, the exact nonclassi-
cal feature of the Kirkwood-Dirac distribution that enables
such advantage is still unknown. It can clearly be seen that
the necessary and sufficient condition for which the efficiency
of postselection metrology is zero is that all the intrinsic
weak values must be independent of the postselection. The
weak values are seen to be directly connected with condi-
tional Kirkwood-Dirac quasiprobabilities, which are defined
as Kirkwood-Dirac quasiprobabilities of a state subjected to a
postselection. We conclude that the conditional KD distribu-
tion has to be independent of postselection (see Appendix G)
in order to have zero quantum advantage. Classically, when
conditional probabilities do not depend upon the postselec-
tion, it implies that the corresponding events are statistically
independent. In this case, also, we can sense that there might
be some statistical independence at the level of quasiproba-
bilities which prevents the experimenter from accessing the
quantum advantage.

In summary, our work brings a better understanding of
postselected metrology and provides a fundamental bound of
quantum advantages irrespective of the quantum resources
utilized. We provide a metrological protocol that can harness
the maximum possible quantum advantage. Our results lay
a foundation for further exploration of multiparameter post-
selected metrology and possible quantum advantages. Our
study indicates that the negative or nonreal elements in the
Kirkwood-Dirac distribution does not correspond to nonclas-
sicality always. Thus, it is expected to initiate an effort for a
complete characterization of nonclassicality on the theoretical
ground.
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APPENDIX A: WEAK VALUE AMPLIFICATION

In standard weak value amplification (WVA) protocol, an
experimenter prepares the meter and the system in some pure
initial states |¢) and |y;), respectively. Then they are cou-
pled weakly using the interaction Hamiltonian Hi, = figA ®
FS8(t — 1), where F and A are observables corresponding
to the meter and the system, respectively, and g is a small
parameter signifying the coupling strength between the sys-
tem and the meter. The function §(¢ — #p) indicates that the
interaction between the system and the meter is impulsive.
Finally, the postselection of the system is done onto a pure
final state |vf), discarding all the other events where the
postselection fails. This procedure effectively prepares an
updated meter state that includes the effect of the system
|¢') = M|¢)/||IM|¢)||, which is mentioned in terms of the
Kraus operator M= (gﬁ,«lexp(—igAA ®F)|1ﬂi). Averaging a
meter observable R using this updated meter state yields
(R) 3y = (¢|MTRM|p)/(¢|M'M|p). The observable average
is well approximated up to first order in g [55,56]:

(R)4y ~ 2g[ReA,, Ima + ImA,, Rea], (A1)

where o = (RF )iy is the correlation parameter that can be
fixed by the choice of meter observables and the initial meter
state |¢), and A,, = (1/ff|A|1/fi)/(1/ff|w,-) is a complex weak
value controlled by the system. This relation shows how a
large weak value can enhance the sensitivity of the meter even
with small g. In the case of estimating g, the weak value has
notable ability to amplify its effect in the meter.

APPENDIX B: GENERALIZED PROTOCOL
FOR OPTIMIZATION

All the optimization discussed so far can be generalized
in terms of efficiency. At the point of optimization, the weak
value and the postselection probability turn out to be

Wildlya)? _ (ild%v)
= _ , Ay = - . (B1)

(il A2 (VilAli)

It is interesting to note that only the real part of the weak
value will contribute when the point of saturation is reached.
At this point, anomalously large weak values can be obtained
when the observable average of A tends to zero. It has been
shown that for a fixed weak value, the probability of suc-
cessful postselection can be maximized by taking the final
state parallel to A - Ay)|¥y) [57]. Alternatively, one can also
conduct optimization to maximize the weak value for a fixed
postselection probability. To accomplish such enhancements,
one needs to use different optimization protocols. If we opti-
mize the efficiency n(A,, ps), it is still possible to attain the
optimized values of the aforementioned protocols as special
cases. Here, we demonstrate this conjunction of two different
protocols with an example.

We consider coupling n entangled systems to the meter
simultaneously where the system qubits are prepared in an
entangled state [58],

s

1
; )\')( ®n )"V ®n . B2
|1ﬁ)——ﬁ(| )"+ [1,)%") (B2)

Here, A, and A, are two arbitrary eigenvalues of an operator a
whose eigenvectors span a subsystem. The rest of the subsys-
tems are different copies of the same. From this preparation
we construct the overall system observable as follows,

n

A= Zl®k71 Ra® I®n7k’ (B3)
k=1

where the operators in the tensor product act sequentially with
different subsystems. The weak value, following Eq. (B1), is

n(A; +27)
C ety
Under the condition for a fixed weak value, we simply obtain

LA VAL — 4n2)2 + dnA ),

(B4)

w

w

4 2n
For large weak values the above expression can be approx-
imated as A, ~ {(Ay, — nAc)/2n, —A,}. The first root of A,
corresponds to the case of nonanomalous weak value ampli-
fication. Under this choice, the eigenvalues of the operator
are of the order of the weak value. However, the second
choice, i.e., A, & —A,, corresponds to anomalous weak value

(BS)
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Non-anomalous
Weak Values

Anomalous
Weak Values

FIG. 3. Plot for optimal weak values and postselection proba-
bility for different initial state preparations characterized by X, and
Ay. The red surface corresponds to the optimal weak values A,,. The
steep regions in this surface correspond to anomalous weak values,
where they change rapidly upon small changes in the eigenvalues A,
and A, due to anomalous amplification. In the nonanomalous region,
the gradient is relatively low since the weak values scale with the
eigenvalues here. The surface below stands for the corresponding
success probability p,. The blue regions stand for low success prob-
ability, and the yellow regions stand for high success probability.

amplification where the observable average with respect to the
initial state approaches zero. The postselection probability for
the optimal weak value turns out to be

ps = 1?22 /A2, (B6)

Thus, the probability scales quadratically with n and shows
improvement in estimation while comparing with the clas-
sical cases. Now, we explore the exact opposite case where
the postselection probability is held fixed with a varying
A, . Starting with the same initial entangled state and using
Eq. (B1), we arrive directly at

20 £ A2 —42p, — 122

Ay
! 4ps_2

(B7)

For very low pj, this expression can be approximated as
Ay & —A. Interestingly, we have traced the same approxi-
mated condition where anomalously large weak values appear
(see Fig. 3). This yields the optimal weak value for a given
probability of postselection,

|Aw| = nk/\/ps, (B8)

and it scales linearly with n. Clearly, the optimal values of A,,

and py are appearing from a unified optimization process. In
experiments, this unified optimization scheme would access
large weak values at the cost of low probability and vice versa
if the situation arises. Besides, this scheme also incorporates
the cases where large eigenvalues of the system observable
mostly do the amplification. This situation is referred to as
the nonanomalous regime. In this regime, the weak values
appear at the level of average values of the observable without
any anomalous amplification. This would help us visualize the
transition from weak values to average values, which is caused
by the choice of preselection and postselection of the system
in this scenario.

[0)
P

[vr)
0,6+m)

FIG. 4. Geometric phases associated with weak value amplifica-
tion in the 2D Bloch sphere. The gray region is a lune in the 2D Bloch
sphere with the dihedral angle 0; so it has area 20. This region is
subtended by the state transition |v;) — [0) — [¥¢) — [v;) which
creates a geometric phase factor exp(—i6). The pink region is a half
sphere with area 2. A state transition |y;) Yal0) |1) via 0 [Yr) —
|1;) subtends the gray and the pink region together in Bloch sphere
creating a geometric phase factor —exp(—if). These two state transi-
tions generate the optimal weak value amplification when a spin-1/2
system is prepared in |i;) with latitude and longitude (6, ¢) in the
2D Bloch sphere and the system observable is o;.

APPENDIX C: EXAMPLE DEMONSTRATING
THE GEOMETRIC OPTIMIZATION OF WVA

We take a spin-1/2 system as our reference for this exam-
ple since the one qubit Bloch sphere is the simplest state-space
geometry to visualize. The &, operator is taken as the system
observable. Now we prepare the system in a state [i;) =
cos(6/2)|0) + esin(8/2)|1), which is represented as a point
with latitude and longitude (6, ¢) in the Bloch sphere. The
north and south poles refer to the |0) and |1) states, respec-
tively.

Now, the optimal efficiency in weak value is attained
when the system is postselected in |yf) = cos(6/2)[0) —
e'?sin(6/2)|1), which specifically refers to the point in the
Bloch sphere with coordinates (6, ¢ + 7). Since in the opti-
mal limit the geometric phases ®¢* depend on the eigenvalues
of the observable via sign functions, we can expect the follow-
ing in the optimal limit:

exp[i®,(1¥i)o.g- 10}, [¥f)o.p4n)] = X (Ch)
exp[i®; ' (1¥i)a.p. 1), [V)ogin)] = —x,  (C2)

where x is some constant independent of the eigenvalues of
the observable. The gray region in Fig. 4 is subtended by the
transition path [;) — |0) — [¥¢) — [¢;). All the transitions
are executed through great circles in the 2D Bloch sphere. The
area of this region is 26, so this region will create a geomet-
ric phase factor exp(—i6). This geometric phase corresponds

to the first state transition in Eq. (C1). We take the second
.. ia |0 ia |0, . ..
transition |y;) M [1) M [ ) — [v¥;). This transition
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subtends the black and the pink region together. The pink
region is a half sphere, so it has area 2r. Thus, the total
area covered by the second transition is 27t + 26. This creates
a total geometric phase factor exp(—i(2w + 26)/2) which
equals —exp(—if). Thus, taking y = exp(—i6) reconciles this
geometric understanding of weak value optimization with the
standard weak value optimization procedure.

APPENDIX D: RELATION BETWEEN POSTSELECTED
FISHER INFORMATION AND WEAK VALUES

The postselected quantum Fisher information is given by

S S S 1
FolOIVE) = 45 147 )

— 4w

—. 1
()’

where the unnormalized postselected quantum state is
W5y = FU0)I¥o), where [v) (Yol = po. pj = Tr(F py) is
the probability of postselection. In this Appendix, we show
that how the postselected Fisher information and weak values
are related. Before doing this, we quickly recap the way of
re-expressing Eq. (D1) in terms of the operator form. The first

J

o0l ()" =41}
Simplifying Eq. (D5), we find
Fo(O1yd) (P7) =[P | walALFI + PRSI

— P l(WolA1 ) 1P = (WolALA) (filwe) (Yol f2) (FalAlYe) —

This expression can be written in a more concise way:

FoOlvy)(p

— WelAlfi) IALf)

k
where A}, RUATAR

. Further simplification leads to

Fo(01v5") (P}

Repeating the same calculation for a rank-3 projector, we obtain

Fo(O1w) (P)" =4[ b phalAl, — A

+ 20y) (el AL + [WalAL2)1P) = [(WalALA) filve) +

(WelAlf2)1* + phy

P =4[l PRy ALY + P B

term of Eq. (D1) is

4 . - 4 AA Al A 4 PP
— (VW) = —=Te[FU 0)poU " (0)F '] = = Tr(FApoA).
) Py Py

(D2)

We can express A and F' in their corresponding eigendecom-
positions to rewrite Eq. (D2) in terms of the doubly extended
Kirkwood-Dirac quasiprobability distribution. Similarly, the
second term of Eq. (D1) is

4

. 2 4 A
— S = =T Ep AP, (D3)
(Pp) (V)
Combining the expressions above, we obtain
Fo (010" = - TePAD 0)p00 (0)'A
Q(W/g)—p_gsr[ (©)poU (9)'A]
- ITe[FU0)pol (0)'A1°.  (D4)

ps) 2

0
Rearranging Eq. (8) in the main text along with the re-
placement of total probability pgs as a sum of individual
probabilities when the postselction is done with a rank-2 pro-
jector, we get

From these two expressions we can easily extrapolate a generalized formula for a rank-n projector as follows:

FolOlvy)

APPENDIX E: EFFICIENCY OF
THE POSTSELECTED METROLOGY

We begin by writing the the evolved pure state in the
following form,

U)ol 6)" = [¥0) (g

Rewriting the first part of the right-hand side in Eq. (8) in the
main text followed by a decomposition for the postselection
projectors yield, we get

(EL)

Tr[FAD ©)poU 0)'A1 = ) [(¥olAlfi)

frerr

(E2)

(WolA| L) (falYe))]. (D)

[(WalALA) 1 + ooy [ AL P — Py (W lALA) P
(WolAlf2) (ol Wo) (Yol fi) (FilAIYg)].  (D6)
4217 — B by AZAL — ph phaalAZ], (D7)
) = apfpislAl, — ALL (D8)
2 pelAL — AL+ ph Al - ALl] (D9)
V=4 g b An - A (D10)

m<n

(

Using weak value optimization and rewriting the previous

equation, we get
Z p9k|Ak ’
fieF®

Tr[FAU (0)poU () A] = (E3)
This expression establishes a connection between the effi-
ciency of weak value amplification and the efficiency of
postselected quantum metrology. Using a similar method we
can derive the following regarding the second term in the the
right-hand side of Eq. (40) in the main text:

D WelAlfi) (filvs).

JreFPs

Te[FU 0)poU (0)A] = (E4)
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Rewriting the same equation after a spectral decomposition of
A, we obtain

TALFT @)U O) A1 =" " aw(Wolan) (anl fo)fil Vo)

m. feFrs
=2 ) anayyi". (ES)
m. frefps

Putting these expressions altogether, we can easily obtain
Eq. (21) in the main text.

APPENDIX F: DERIVATION OF THE RELATIONSHIP
BETWEEN EFFICIENCY OF WVA
AND GEOMETRIC PHASE

We start with the expression for the geometric phase,

g (i), law), [Wp)) = arg((Wrla)(al i) (Yilyr))

= arg((Ysla)(al¥i)) + arg((Vil¥r).
(F1)

Rearranging Eq. (F1), we obtain

arg((Vrla)(alyi)) = O (1), lax), [¥r)) — arg((Wil¥rr)).
(F2)

Rewriting the efficiency of WVA in terms of the geometric
phase, we get

n(ps, Aw) = |(WrlA1Yi)|?

2

D a(Wyla) (aclyi)
k

> a] (Wl ()|

k

x expli arg((Yrslan) (alyiDI”.  (F3)

Replacing Eq. (F2) in Eq. (F3), we get

Aw) =] al(Vrsla) (al¥r)]

k

xexpli [@y (1), Iak),|¢f>)—arg((¢i|1ﬁf))]}|2-
(F4)

n(ps,

Since (Y;|¥s) is not dependent on the eigenvalues of the
system observable, it creates a global phase and does not
contribute to the efficiency. Thus, we obtain

2
1w, po) = | Y x| slan) el exp(i @2) . (FS)
k

APPENDIX G: CONDITIONAL KD DISTRIBUTION
AND EFFICIENCY IN POSTSELECTED METROLOGY

We start with Eq. (10) and see that the necessary and suffi-
cient condition to have & (p}’; Fo) = 0 is that all the intrinsic
weak values AX are independent of postselection f; for all
fi € ¥P5. A natural question would arise here: how is this
condition being manifested at the level of Kirkwood-Dirac
quasiprobabilities? To answer this, we refer readers to see
the discussion on the conditional Kirkwood-Dirac distribution
[59,60]: a distribution of a state (|i)) that is conditioned on
postselection (|f)(f]), (}’(C(””’l7 nlf) W where
{lan)} and {|b,)} are two sets of complete orthonormal bases
referring to the points in the distribution. Note that, when
postselection |f) belongs to the orthonormal set {|b,)}, the
conditional KD distribution equals a weak value of a projector

|G (O, V(C‘(l‘;/”)“flf) = % . We now prove that all the

weak values AX are independent irrespective of postselection,
which straightforwardly implies that K Cl(:;f’:;”f “ must be inde-
=AL Vi, fi € TP

0. It can be seen that any

pendent of the postselection fe. A

( ) (
Z a(?(C" Sil fi ‘igfz\fl ) =

shift [39] in the eigenvalues of A does not contribute to the
Fisher information for the quasiprobabilities which are potent
to harness nonclassical advantage. Thus, we can assume the
eigenvalues a are all positive, which implies that 7(C(a f’“f V=

KCyH" Vi fi € TP,
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