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Controlling gain with loss: Bounds on localizable entanglement in multiqubit systems
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We investigate the relation between the amount of entanglement localized on a chosen subsystem of a
multiqubit system via local measurements on the rest of the system, and the bipartite entanglement that is lost
during this measurement process. We study a number of paradigmatic pure states, including the generalized
Greenberger–Horne–Zeilinger (GHZ), the generalized W (gW), Dicke, and the generalized Dicke states. For
the generalized GHZ and W states, we analytically derive bounds on localizable entanglement in terms of
the entanglement present in the system prior to the measurement. Also, for the Dicke and the generalized
Dicke states, we demonstrate that with increasing system size, localizable entanglement tends to be equal to
the bipartite entanglement present in the system over a specific partition before measurement. We extend the
investigation numerically in the case of arbitrary multiqubit pure states. We also analytically determine the
modification of these results, including the proposed bounds, in situations where these pure states are subjected
to single-qubit phase-flip noise on all qubits. Additionally, we study one-dimensional paradigmatic quantum
spin models, namely, the transverse-field XY model and the XXZ model in an external field, and numerically
demonstrate a cubic dependence of the localized entanglement on the lost entanglement. We show that this
relation is robust even in the presence of disorder in the strength of the external field.
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I. INTRODUCTION

In the last three decades, entanglement [1,2] has been
established as the key resource in quantum information
processing tasks, including quantum teleportation [1,3,4], su-
perdense coding [1,5–7], and quantum cryptography [8,9].
Concepts related to entanglement theory have also been
used in areas that are seemingly different from quan-
tum information theory, such as in probing gauge-gravity
duality [10–13], in understanding time as an emergent phe-
nomena from entanglement [14–16], and even in studying
systems like photosynthetic complexes [17] that are impor-
tant from a biological point of view. These have motivated
enormous experimental advancements in creating and ma-
nipulating entangled states in the laboratory using various
substrates, namely, photons [18–20], trapped ions [21–23],
cold atoms [24–26], superconducting qubits [27,28], and nu-
clear magnetic resonance molecules [29]. Moreover, quantum
many-body systems [30] have emerged as the natural choice
for implementing quantum information processing tasks, and
the necessity of studying the entanglement properties of these
systems has also been realized [31,32].

Entanglement over a subsystem A of a composite quan-
tum system in state ρ can be quantified by computing an
appropriate entanglement measure E over the reduced state
ρA = TrB[ρ] of the subsystem A, where B is the rest of the sys-
tem [1,2]. While this approach has been successful in a wide
variety of multiparty quantum states [1,2,33], there exist states
like N-qubit Greenberger–Horne–Zeilinger (GHZ) states [34],
graph states [35], and stabilizer states in quantum error cor-
recting codes [36,37] for which the partial trace-based avenue
may lead to a vanishing entanglement measure on state ρA. In
such situations, one may take a measurement-based approach,

where nonzero bipartite or multipartite entanglement can be
localized on subsystem A in the postmeasured state of the
system by performing measurements on B [38]. In the case
of a multiqubit system, this leads to the definition of the
localizable entanglement [39–41], defined as the maximum
average entanglement localized over A via local single-qubit
projection measurements on all qubits in B, given by

〈EA〉 = max
∑

k

pkE
(
ρ̃k

A

)
. (1)

Here, k labels the measurement outcomes corresponding
to the postmeasured states ρ̃k occurring with probability
pk (
∑

k pk = 1), where ρ̃k
A = TrB[ρ̃k]. Depending on the pos-

sible partitions in A, the entanglement measure E computed
over A postmeasurement can be either a bipartite [39–41] or
a multipartite [42] measure. Apart from successfully charac-
terizing entanglement in GHZ and GHZ-like states such as
the graph [35] and the stabilizer states [43,44], localizable
entanglement and related ideas have been immensely useful
in defining the correlation length in one-dimensional (1D)
quantum spin models [39–41,45], in characterizing quantum
phase transitions in the cluster-Ising [46,47] and cluster-XY
models [48] in terms of entanglement, and in entanglement
percolation through quantum networks [49].

The measurement on subsystem B completely decouples B
from A, leading to

ρ → ρ̃ = ρ̃A ⊗ ρ̃B, (2)

implying a complete loss in entanglement over all qubits
belonging to the different subsystems A and B. A natural
question that arises is whether and how the entanglement
〈EA〉 localized on A via measurements on B depends on
the entanglement that is lost during the same measurement
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FIG. 1. Consider a multiqubit system divided into three subsys-
tems, A1, A2, and B, with bipartite entanglement EA1A2:B, EA1:A2B,
and EA2:A1B over different bipartitions. Measurement on all qubits in
B, denoted by MB, decouples the subsystem B from the qubits in
A ≡ A1A2.

process. More specifically, considering a bipartition A1 : A2

of A (i.e., an overall tripartition A1 : A2 : B of the multiqubit
system, see Fig. 1) and a bipartite entanglement measure E ,
we ponder the following question: Does any relation exist
between the bipartite entanglement 〈EA〉 ≡ 〈EA1A2〉 localized
over subsystem A via single-qubit projection measurements
on all qubits in B, and the entanglement over different bipar-
titions prior to the measurement, namely, EA1A2:B, EA1:A2B, and
EA2:A1B, that are lost during the measurement process leading
to 〈EA1A2〉? On one hand, the answer to this question may give
rise to constraints on the entanglement localizable over the
subsystem of a multiqubit system in terms of the entanglement
present in the system prior to measurement—a situation that
is of fundamental interest from the perspective of complete
characterization of the system via entanglement. On the other
hand, such a study may also aid in estimating the localizable
entanglement prior to the measurement via the information on
the bipartite entanglement present in the system. The latter is
advantageous from a practical point of view, especially in sit-
uations where performing the measurements and optimizing
over all possible measurements may turn out to be difficult.

A few results exist in this direction. Note that the mono-
tonicity of E [1,33,50–52] implies that〈

EA1A2

〉
� min

[
EA1:A2B, EA2:A1B

]
. (3)

It has been shown that the inequality (3) can be tightened to
an equality in the case of asymptotic pure-state distillation
[53,54]. At the single copy level, it has also been shown
that for all three-qubit pure states with each of A1, A2, and B
being a qubit, the inequality (3) becomes an equality via some
measurement on B for a specific choice of entanglement mea-
sure [55]. In the case of multiqubit pure states, investigation
on the relation between localizable multipartite entanglement
〈EA〉 and the multipartite entanglement, as quantified by the
multiparty entanglement measure E , over the state prior to
the measurement has also been made [42]. However, we are
still far from a systematic and complete understanding of the
problem in the case of arbitrary multiqubit quantum states.

In this paper, we study the interplay between 〈EA1A2〉,
EA1:A2B, EA2:A1B, and EA1A2:B in multiqubit systems, where
each of the partitions A1, A2, and B may consist of multi-
ple qubits. We start with the investigation of a number of
paradigmatic N-qubit pure states, including the generalized
GHZ states [34,56], the generalized W states [56,57], Dicke
states [58–61], and generalized Dicke (gD) states [42], and an-
alytically derive bounds of 〈EA1A2〉 in terms of EA1:A2B, EA2:A1B,

and EA1A2:B. In the cases of arbitrary pure states of N qubits,
we numerically investigate whether it is always possible to
exceed the loss in bipartite entanglement via localizations
performed through measurement. We extend our investigation
to the pure states subjected to the single-qubit phase flip noise
[62,63] of the Markovian [64] and non-Markovian [65–67]
type, and discuss the modifications of the bounds obtained for
pure states due to the presence of noise. We also look into
the ground states obtained from 1D interacting quantum spin
models, both in the presence and absence of disorder [68].
More specifically, we consider the 1D transverse-field XY
(TXY) model [69–74] and the 1D XXZ model in an external
field [75–80], where disorder can be present in the strength
of the field. We numerically demonstrate a cubic dependence
of the localizable entanglement on the entanglement lost dur-
ing measurement in the ground states of the ordered and the
disordered models, and demonstrate that the relation is robust
against the presence of disorder in the field strength.

The rest of the paper is organized as follows. In Sec. II,
we formally define the localizable entanglement and compute
it, along with the bipartite entanglements present in the un-
measured states, in the case of paradigmatic multiqubit pure
states. We also present the numerical data corresponding to
arbitrary N-qubit pure states and discuss the implications of
the data. The modifications of the results for the pure state
due to subjecting the states to single-qubit Markovian and
non-Markovian phase flip channels are discussed in Sec. III.
The study of the localizable and the lost entanglement in the
ground states of ordered and disordered 1D quantum spin
models can be found in Sec. IV. Section V presents the out-
look and concluding remarks.

II. MULTIQUBIT PURE STATES

In this section, we explore a number of paradigmatic mul-
tiqubit pure states and discuss the correlation between the
localizable entanglement and the bipartite entanglement that
is lost due to measurement. Let us take an N-qubit system,
S, where the qubits are labeled 1, 2, · · · , N . As discussed in
Sec. I, we consider a tripartition A1 : A2 : B of the system, and
perform single-qubit rank-1 projection measurements on all
qubits in B. Without any loss in generality, we assume that B
holds n(< N − 1) qubits, and A = A1 ∪ A2 consists of the rest
N − n qubits. We label the qubits in B as 1, 2, · · · , n, and the
qubits in A as n + 1, n + 2, · · · , N − 1, N . In this situation,
〈EA1A2〉 [Eq. (1)] takes the form

〈
EA1A2

〉 = max
2n−1∑
k=0

pkE
(
ρ̃k

A1A2

)
, (4)

where ρ̃k
A1A2

= TrB[ρ̃k], ρ̃k = [MkρMk†]/pk , and pk =
Tr[MkρMk†], with Mk being the measurement operation
corresponding to the measurement outcome k, and the
maximization is performed over the set of all possible
single-qubit rank-1 projection measurements on all qubits in
B. Note that the maximum value of 〈EA1A2〉 cannot exceed the
maximum value of the chosen entanglement measure, Emax,
implying 〈EA1A2〉 � Emax.

The measurement operators {Mk} can be written as
Mk = IA1A2 ⊗ Pk

B , with the projectors on the qubits in B
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corresponding to the measurement outcome k given by Pk
B =

|b̃k〉〈b̃k|, where ki = 0, 1 and k ≡ k1k2 · · · kn is a multi-index.
Here, |b̃k〉 = ⊗∀i∈B|bki〉, and

|b0〉i = cos
θi

2
|0〉 + eiφi sin

θi

2
|1〉,

|b1〉i = sin
θi

2
|0〉 − eiφi cos

θi

2
|1〉 (5)

on all qubits i ∈ B, where θi, φi ∈ R, 0 � θi � π , 0 � φ �
2π . Unless otherwise stated, we maintain these notations in
all subsequent calculations. Also, we use A and A1A2 inter-
changeably, since A ≡ A1 ∪ A2 = A1A2.

The maximum value of 〈EA1A2〉 as well as the optimal
measurement basis on B providing this value depends on the
choice of E . Therefore, a discussion on the choice of E is in
order here. Note that the analytical determination of bounds
reported in this as well as in the subsequent sections depends
on the computability of the entanglement measure in terms of
the state parameters. Also, a computable measure for mixed
states is desired as required in the case of noisy systems,
discussed in Sec. III. In view of these, we choose negativity
[81–85] (see Appendix A for a brief definition) as the entan-
glement measure for demonstration of the results, although
it is important to remind ourselves that negativity, by defini-
tion, does not take into account entangled states with positive
partial transpose. Therefore, it cannot provide the full picture
in the Cd1 ⊗ Cd2 scenario except the case of C2 ⊗ C2 and
C2 ⊗ C3 [86–88]. We have also tested our results for other
entanglement measures, such as logarithmic negativity [89]
and von Neumann entropy [1,2,82,90,91] (see Appendix A for
brief definitions), and have found the results to be qualitatively
valid. We comment on the subtle differences for different
measures as we discuss the specific results in this section and
in the subsequent sections.

A. Generalized GHZ states

We start with the N-qubit generalized GHZ (gGHZ) state
[34], given by

|gGHZ〉 = a0|0〉⊗N + a1|1〉⊗N , (6)

where a0 and a1 are complex numbers, i.e., a0, a1 ∈ C, and
the state is normalized, implying |a0|2 + |a1|2 = 1. For the
gGHZ state, we present the following proposition.

Proposition I. For any tripartition A1 : A2 : B of an N-qubit
gGHZ state,〈

EA1A2

〉 = EA1A2:B = EA1:A2B = EA2:A1B. (7)

Proof. Partial transposition of ρ = |gGHZ〉〈gGHZ| with
respect to the subsystems B leads to

ρTB = |a0|2(|0〉〈0|)⊗N + |a1|2(|1〉〈1|)⊗N

+ a0a∗
1(|0〉〈1|)⊗N−n(|1〉〈0|)⊗n

+ a∗
0a1(|1〉〈0|)⊗N−n(|0〉〈1|)⊗n, (8)

with nonzero eigenvalues |a0|2, |a1|2,±|a0||a1|. Therefore,
the entanglement between partition A1A2 and partition B, as
quantified by negativity, is given by

EA1A2:B = 2|a0|
√

1 − |a0|2. (9)

We now compute localizable entanglement, 〈EA1A2〉, for
the gGHZ state. Application of the measurement operator
Mk corresponding to the measurement outcome k on |gGHZ〉
leads to

Mk|gGHZ〉 = |gGHZk〉A1A2
⊗ |b̃k〉B, (10)

where

|gGHZk〉 = 1√
pk

(
a0 f k

0 |0〉⊗(N−n) + a1 f k
1 |1〉⊗(N−n)

)
,

pk = |a0|2| f k
0 |2 + |a1|2| f k

1 |2. (11)

Here,

f k
0 =

∏
i∈B

f ki
0 =

∏
i∈B

〈
bki

∣∣0〉i,
f k
1 =

∏
i∈B

f ki
1 =

∏
i∈B

〈
bki

∣∣1〉i (12)

are functions of 2n real parameters {θi, φi}, i = 1, · · · , n. The
negativity, Ek

A1:A2
, can now be computed for each postmea-

sured state |gGHZk〉 on A1A2 as

Ek
A1:A2

= 2|a0|
√

1 − |a0|2
∣∣ f k

0

∣∣∣∣ f k
1

∣∣
pk

. (13)

The localizable entanglement across the bipartition A1 : A2 of
A is, therefore,

〈
EA1:A2

〉 = 2|a0|
√

1 − |a0|2
[

max
2n−1∑
k=0

∣∣ f k
0

∣∣∣∣ f k
1

∣∣]. (14)

To perform the maximization, we note that | f k
0,1|, and sub-

sequently pk and Ek
A1:A2

, are independent of {φi}, i = 1, · · · , n,
thereby reducing the maximization problem to one involving
n real parameters, {θi}, i = 1, · · · , n. Moreover, since | f k

0,1| �
0, and ∣∣ f k

0

∣∣∣∣ f k
1

∣∣ = 1

2n

∏
∀i∈B

sin θi, (15)

one obtains

max
θi

2n−1∑
k=0

∣∣ f k
0

∣∣∣∣ f k
1

∣∣ = 1

2n

2n−1∑
k=0

max
θi

∏
∀i∈B

sin θi

= 1, (16)

where the maximization takes place for θi = π
2 ∀i ∈ B, imply-

ing that a σ x measurement on all qubits in B is optimal for
obtaining the maximum 〈EA1A2〉 as〈

EA1A2

〉 = 2|a0|
√

1 − |a0|2. (17)

It is easy to see from the symmetry of the gGHZ state that
EA1A2:B = EA1:A2B = EA2:A1B, leading to〈

EA1A2

〉 = EA1A2:B = EA1:A2B = EA2:A1B. (18)

Hence the proof. �
Therefore, in the case of the N-qubit gGHZ states, it is not

possible to exceed the bipartite entanglement present in the
state prior to the measurement via localizable entanglement.
Note also that for the N-qubit gGHZ state, (3) is an equality.
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Also, one can use von Neumann entropy to compute entangl-
ment in the case of the pure gGHZ states, where Eq. (18) is
found to be unaltered.

B. Generalized W states

Next, we focus on the N-qubit generalized W states
[56,57], given by

|gW〉 =
N∑

i=1

ai|0〉⊗(i−1)|1〉i|0〉⊗(N−i), (19)

where ai ∈ C ∀i ∈ {1, 2, · · · , N}, satisfying the normalization
condition

∑N
i=1 |ai|2 = 1. Let us first consider a subset of the

N-qubit gW states given in Eq. (19) where the coefficients ai

are real, i.e., ai ∈ R. We first focus on the correlation between
〈EA1A2〉 and EA1A2:B ≡ EAB. Negativity over any bipartition AB
of the system is given by1

EA1A2:B = 2

∣∣∣∣∣∣∣
⎡
⎣
⎛
⎝ n+m∑

i=n+1

a2
i +

N∑
i=n+m+1

a2
i

⎞
⎠ n∑

i=1

a2
i

⎤
⎦

1
2

∣∣∣∣∣∣∣, (20)

where we have assumed that qubits 1, 2, · · · , n constitute the
subsystem B, and qubits n + 1, n + 2, · · · , N form the sub-
system B. On the other hand, computation of 〈EA1A2〉 involves
application of Mk , k = 0, 1, · · · , 2n − 1, on the n qubits in B
of |gW〉 (see Sec. II A), leading to

Mk|gW〉 = |b̃k〉B ⊗ |ψk〉A1A2
, (21)

with

|ψk〉 = ck
0|0〉⊗(N−n) +

N−n∑
i=1

ck
i |0〉⊗(i−1)|1〉i|0〉⊗(N−n−i),

(22)

where ck
0 = f k

0 /
√

pk , and ck
i = f kan+i/

√
pk , i =

1, 2, · · · , N − n, with pk being the probability of obtaining
the measurement outcome k, such that

∑N−n
i=0 |ck

i |2 = 1
ensuring normalization. Note further that among the
coefficients ck

i , i = 0, 1, · · · , N − n, only ck
0 is complex

(see Appendix B for explicit examples with the cases of
single- and two-qubit measurements). Using this, negativity
in the state |ψk〉 over the bipartition A1 : A2 can be written for
all k as2

Ek
A1A2

= 2( f k )2

pk

∣∣∣∣∣∣∣
⎡
⎣
⎛
⎝ n+m∑

i=n+1

a2
i

⎞
⎠ N∑

n+m+1

a2
i

⎤
⎦

1
2

∣∣∣∣∣∣∣. (23)

1For gW states with real coefficients, this can be obtained by
observing the patterns of the negative eigenvalues of the partially
transposed density matrix of the smaller systems. Equation (20) is
also verified numerically for large gW states with real coefficients
as well as complex coefficients, where in the case of the latter, a2

i is
replaced by |ai|2.

2This expression for negativity of the states of the form in Eq. (22)
has also been obtained analytically for smaller systems and has been
verified numerically for larger systems.

Here, we have assumed, without any loss in generality, that
the subsystem A1 (A2) is constituted of the qubits n + 1, n +
2, · · · , n + m (qubits n + m + 1, n + m + 2, · · · , N). There-
fore, 〈

EA1A2

〉 = ∑
k

pkEk
A1A2

= 2

∣∣∣∣∣∣∣
⎡
⎣
⎛
⎝ n+m∑

i=n+1

a2
i

⎞
⎠ N∑

n+m+1

a2
i

⎤
⎦

1
2

∣∣∣∣∣∣∣
∑

k

( f k )2. (24)

For small values of n, it can analytically be shown that the
factor

∑2n−1
k=0 ( f k )2 = 13, while our numerical investigation

shows this to be true for high values of n also. This leads to

〈
EA1A2

〉 = 2

∣∣∣∣∣∣∣
⎡
⎣
⎛
⎝ n+m∑

i=n+1

a2
i

⎞
⎠ N∑

n+m+1

a2
i

⎤
⎦

1
2

∣∣∣∣∣∣∣. (25)

We now propose the following for an N-qubit gW state
with real coefficients.

Proposition II. In the space (EA1A2:B, 〈EA1A2〉), the localiz-
able entanglement 〈EA1A2〉 of an N-qubit normalized gW state
with real coefficients is upper bounded by the line

〈
EA1A2

〉 = 1

2

(
1 +

√
1 − E2

A1A2:B

)
, (26)

where EA1A2:B is the bipartite entanglement over the bipartition
A1A2 : B in the state prior to measurement on all the qubits
in B.

Proof. For ease of calculation, we focus on 〈EA1A2〉2
given

by [using Eq. (25) and normalization of the gW state],

〈
EA1A2

〉2 = 4

⎛
⎝1 −

n∑
i=1

a2
i −

n+m∑
i=n+1

a2
i

⎞
⎠ n+m∑

i=n+1

a2
i , (27)

which, for fixed a =∑n
i=1 a2

i , is a single-parameter func-
tion F (x) = 4x(1 − a − x) of x, where x ≡∑n+m

i=n+1 a2
i . The

function F (x) has the maximum value (1 − a)2, occurring at
x = (1 − a)/2. This implies

∑n+m
i=n+1 a2

i = (1 − a)/2 for the
maximum of 〈EA1A2〉 = 1 − a. Note also from Eq. (20) that
EA1A2:B = 2

√
a(1 − a). Eliminating a and subsequently solv-

ing for 〈EA1A2〉, one obtains Eq. (26). �
The following corollaries can be obtained straightfor-

wardly from Proposition I.
Corollary II.1. The family of gW states with real coeffi-

cients that satisfy Eq. (26) is given by

n+m∑
i=n+1

a2
i =

N∑
i=n+m+1

a2
i = 1

2

(
1 −

n∑
i=1

a2
i

)
. (28)

Proof. For a fixed value of
∑n

i=1 a2
i , the maximization con-

dition for 〈EA1A2〉 is given by
∑n+m

i=n+1 a2
i = 1

2 (1 −∑n
i=1 a2

i ).
From the normalization of the gW states, Eq. (28) follows. �

Corollary II.2. For the family of gW states given by
Eq. (28), EA1:A2B = EA2:A1B.

3See Appendix B for cases up to n = 2.
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Proof. Similar to Eq. (20), entanglement over the biparti-
tions A2 : A1B and A1 : A2B can be written as

EA1:A2B = 2

∣∣∣∣∣∣∣
⎡
⎣
⎛
⎝ n∑

i=1

a2
i +

N∑
i=n+m+1

a2
i

⎞
⎠ n+m∑

i=n+1

a2
i

⎤
⎦

1
2

∣∣∣∣∣∣∣ (29)

and

EA2:A1B = 2

∣∣∣∣∣∣∣
⎡
⎣
⎛
⎝ n∑

i=1

a2
i +

n+m∑
i=n+1

a2
i

⎞
⎠ N∑

i=n+m+1

a2
i

⎤
⎦

1
2

∣∣∣∣∣∣∣, (30)

respectively. Clearly, for
∑n+m

i=n+1 a2
i =∑N

i=n+m+1 a2
i ,

EA1:A2B = EA2:A1B. �
Proposition III. In (min{EA1:A2B, EA2:A1B}, 〈EA1A2〉) space,

the localizable entanglement 〈EA1A2〉 of an N-qubit normalized
gW state with real coefficients is upper bounded by the line〈

EA1A2

〉 = min{EA1:A2B, EA2:A1B}, (31)

and lower-bounded by the line〈
EA1A2

〉2 − 2
〈
EA1A2

〉+ (min
{
EA1:A2B, EA2:A1B

})2 = 0, (32)

where EA1:A2B (EA2:A1B) is the bipartite entanglement over the
bipartition A1 : A2B (A2 : A1B) in the state prior to measure-
ment on all the qubits in B.

Proof. The upper bound follows from the monotonicity of
E [see Eq. (3)]. On the other hand, note that from Eqs. (29)
and (30),

E2
A1:A2B = 4

⎛
⎝ n+m∑

i=n+1

a2
i

⎞
⎠ n∑

i=1

a2
i + 〈EA1A2

〉2
(33)

and

E2
A2:A1B = 4

⎛
⎝ N∑

i=n+m+1

a2
i

⎞
⎠ n∑

i=1

a2
i + 〈EA1A2

〉2
, (34)

respectively, where we have used Eq. (25). Let us proceed by
assuming EA2:A1B � EA1:A2B, implying min{EA1:A2B, EA2:A1B} =
EA1:A2B, and

∑N
i=n+m+1 a2

i �∑n+m
i=n+1 a2

i . For a fixed a =∑n+m
i=n+1 a2

i , 〈EA1A2〉 is minimum if
∑N

i=n+m+1 a2
i is minimum,

leading to
∑N

i=n+m+1 a2
i = a, and subsequently 〈EA1A2〉 � 2a

and EA1:A2B = 2
√

a(1 − a). Eliminating a, we obtain the equa-
tion of the lower bound as〈

EA1A2

〉2 − 2
〈
EA1A2

〉+ E2
A1:A2B = 0. (35)

Similarly, assuming EA1:A2B � EA2:A1B, one can also prove that〈
EA1A2

〉2 − 2
〈
EA1A2

〉+ E2
A2:A1B = 0. (36)

Equations (35) and (36) lead to Eq. (32). �
Note 1. Note here that Propositions II and III and the related

corollaries are proved for the subclass of gW states with real
coefficients, and it is therefore logical to ask whether the
same results apply to the gW states with complex coefficients.
While analytical calculation is difficult for a generic N-qubit
gW state due to increase in the number of state parameters,
for demonstration, we perform the calculation for the gW state
with N = 3, and find Propositions II and III and the corollaries

to be unchanged (see Appendix C). We also numerically check
the applicability of these results for N-qubit gW states with
with arbitrary N and complex coefficients and find them to
be valid. Therefore, for generic gW states, Propositions II, III
and Corollaries II.1 and II.2 can be straightforwardly updated
by replacing a2

i with |ai|2 for all i = 1, · · · , N . For demon-
strations of these results, see Figs. 2(a) and 2(b). Specific
examples of the family of states described in Eq. (28) can be
found in Appendix D.

Note 2. Note in Fig. 2(a) that apart from the line given by
Eq. (26), the Haar uniformly [92,93] chosen gW states are also
bounded by the lines (a) EA1A2:B = 0, (b) 〈EA1A2〉 = 0, and (c)
EA1A2:B = 1, which are not shown explicitly in the figure, and
which are obtained from the fact that 0 � EA1A2:B, 〈EA1A2:B〉 �
1. It is worthwhile to note that the family of gW states, for
which EA1A2:B = 1, are given by

4
n∑

i=1

a2
i = 1/

N∑
i=n+1

a2
i . (37)

The significance of these states will be clear in Sec. III B. For
examples of such states, see Appendix D.

Note 3. We point out here that one can also use other
entanglement measures, such as the logarithmic negativity or
the von Neumann entropy, to demonstrate the above results.
With a change in the entanglement measure, the family of gW
states providing the bounds [see Eqs. (28) and (37)] remain
unchanged, although the functional form of the dependence of
〈EA1A2〉 on EA1A2:B [see Eq. (26)] and min{EA1:A2B, EA2:A1B} [see
Eq. (32)] corresponding to the bounds change. In Figs. 2(c)
and 2(d), we have demonstrated this pictorially using negativ-
ity, logarithmic negativity, and von Neumann entropy as the
entanglement measures, although we refrain from writing the
equivalent equations corresponding to Eqs. (26) and (32) for
these measures to keep the text uncluttered. Note, however,
that the bound (3) remains unaltered with a change in entan-
glement measures.

C. Dicke states

We now consider the class of symmetric states that remain
invariant under permutation of parties. More specifically, we
focus on the Dicke states [58–61] of N qubits, where N0 qubits
are in the ground state |0〉, and the rest of the N1 = N − N0

qubits are in the excited state |1〉. A Dicke state with N1

excited qubits can be written as

|D(N, N1)〉 = 1√(N
N1

) ∑
i

Pi(|0〉⊗N−N1 |1〉⊗N1 ), (38)

where for a fixed N , N1 = 0, 1, 2, · · · , N . Here, {Pi} is the set
of all possible permutations of N0 (N1) qubits at the ground
(excited) state, such that N0 + N1 = N . Note that |D(N, 0)〉
and |D(N, N )〉 are product states, while |D1〉 and |DN−1〉 are
identical to N-qubit W states, or its local unitary equivalents,
the results for which can be determined as special cases of
the gW states discussed in Sec. II B. Note also that in the
case of n = m < N/2 (n = m < (N − 1)/2), where N is even
(odd), with m being the size of the subsystem A1, symmetry
of the Dicke states under qubit permutations suggests that
EA1:A2B = EA1A2:B. We focus on the scenario where n = 1, and
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min{EA1:A2B , EA2:A1B}

E
A

1
A

2

(b)
E

A
1
A

2

EA1A2:B

(a)
L1

L2

L1

L2

EA1A2:B

E
A

1
A

2

min{EA1:A2B , EA2:A1B}

E
A

1
A

2

(c) (d)

FIG. 2. Generalized W states. Scatter plot of a sample of 107 Haar uniformly generated three-qubit gW states on the (a) (EA1A2:B, 〈EA1A2 〉)
plane and the (b) (min{EA1:A2B, EA2:A1B}, 〈EA1A2 〉) plane, where negativity is used as the entanglement measure. The lines L1 and L2 on the
(EA1A2:B, 〈EA1A2 〉) plane represent, respectively, the family of states following Eq. (26), and EA1A2:B = 1. On the other hand, the lines L1 and L2

on the (min{EA1:A2B, EA2:A1B}, 〈EA1A2 〉) plane represent the family of states obeying Eqs. (31) and (32), respectively. The bounds for logarithmic
negativity and von Neumann entropy are shown in (c) and (d) along with the same for negativity for comparison (see Sec. II B, Note 3 for
a discussion). All quantities plotted are dimensionless, except the entanglement and localizable entanglement computed using von Neumann
entropy as the entanglement measure, which are in ebits.

without any loss in generality, measure on qubit 1. Negativity
for Dicke states are computable over 1:rest bipartition as [94]
(see also Refs. [95,96])

EA1A2:B = max
i, j,i �= j

1(N
N1

)
√(

N − 1

N1 − i

)(
N − 1

N1 − j

)
, (39)

where B is constituted of one (measured) qubit, and i, j =
0, 1. On the other hand, using von Neumann entropy as the
entanglement measure [97]:

EA1A2:B = −N − N1

N
log2

N − N1

N
− N1

N
log2

N1

N
. (40)

In the case of |D(N, N1)〉, the normalized postmeasured
states are given by

|D〉 = 1√
p

[√
N − N1

N
cos

θ

2
D(N − 1, N1)

+
√

N1

N
e−iφ sin

θ

2
D(N − 1, N1 − 1)

]
, (41)

|D⊥〉 = 1√
p⊥

[√
N − N1

N
sin

θ

2
D(N − 1, N1)

−
√

N1

N
e−iφ cos

θ

2
D(N − 1, N1 − 1)

]
, (42)
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with

p = cos2 θ

2
− N1

N
cos θ, (43)

p⊥ = sin2 θ

2
+ N1

N
cos θ. (44)

Determination of the general form of any entanglement mea-
sure over a bipartition of states of the form |D〉, |D⊥〉, and
the subsequent analytical optimization is a difficult task. How-
ever, our numerical analysis suggests that the optimization of
localizable negativity, in the current situation, always takes
place in the σ z basis. Using this information, |D〉, |D⊥〉 and
p, p⊥ become

|D〉 = |D(N − 1, N1)〉,
|D⊥〉 = |D(N − 1, N1 − 1)〉, (45)

and

p = (N − N1)/N ; p⊥ = N1/N, (46)

respectively, resulting in

〈
EA1A2

〉 = max
i, j,i �= j

N − N1

N
(N−1

N1

)
√(

N − 2

N1 − i

)(
N − 2

N1 − j

)

+ max
i, j,i �= j

N1

N
(N−1

N1−1

)
√(

N − 2

N1 − 1 − i

)(
N − 2

N1 − 1 − j

)
.

(47)

when negativity is used as entanglement measure. Using von
Neumann entropy instead, one obtains

〈EA1A2〉 = −M0[(1 − M1) log2 (1 − M1)

+ M1 log2 M1] − (1 − M0)[M2 log2 M2

+ (1 − M2) log2(1 − M2)], (48)

with M0 = (N − N1)/N , M1 = N1/(N − 1) and M2 = (N −
N1)/(N − 1). It is easy to numerically check that EA1A2:B �
〈EA1A2〉, which approaches equality as N increases in the case
of both negativity and von Neumann entropy. Note also that
the variation of 〈EA1A2〉 with EA1A2:B is non-monotonic for
lower values of N1, resulting in a larger difference between
〈EA1A2〉 and EA1A2:B at higher N . However, these features dis-
appear as N1 increases. See Figs. 3(a) and 3(c).

a. Generalized Dicke states. Using the Dicke states, one
can define an N-qubit permutation-symmetric state in the
form of a gD state [42], as

|D(N )〉 =
N∑

N1=0

aN1 |D(N, N1)〉, (49)

where aN1 ∈ C, and
∑N

N1=0 |aN1 |2 = 1. Due to a large number
of state parameters, analytical calculation is difficult for gD
states. However, as in the case of the Dicke states, the per-
mutation symmetry can be used here also to have EA1:A2B =
EA1A2:B in the case of n = m < N/2 (n = m < (N − 1)/2) for
even (odd) N . This implies that it is sufficient to look into
the relation between 〈EA1A2〉 and min{EA1:A2B, EA2:A1B}, which
is given by (3). Moreover, our numerical results suggest that

min{EA1:A2B, EA2:A1B} = EA1:A2B for all Haar uniformly gener-
ated gD states, which leads to the upper bound of 〈EA1A2〉 as
〈EA1A2〉 � EA1A2:B [see Figs. 3(b) and 3(d)]. It is clear from the
scatter diagrams that as N increases, the difference between
EA1A2:B and 〈EA1A2〉 decreases, and considerably larger fraction
of states are found to obey 〈EA1A2〉 = EA1A2:B in the situation
where each of the subsystems B and A1 holds only one qubit.

D. Arbitrary multiqubit pure states

In this section, we investigate the question posed in Sec. I
for arbitrary states of systems with arbitrary number of qubits.

a. Three-qubit systems. While analytical calculation of the
relevant quantities is difficult for a large number of qubits,
in relation to Proposition II, some analytical results can be
derived for the three-qubit systems (N = 3) with n = m = 1.
Note that the three-qubit gW states are a subset of the three-
qubit W class states, which, together with the three-qubit GHZ
class states, form the complete set of three-qubit pure states
[56]. We explore whether the bound in Proposition II also
applies to the three-qubit W class states given by [56]

|ψW〉 = a0|000〉 + a1|100〉 + a2|010〉 + a3|001〉, (50)

where
∑3

i=0 |ai|2 = 1 and ai ∈ C, i = 0, 1, 2, 3. For ease of
discussion, we consider qubits 1, 2, and 3 to be subsystems B,
A1, and A2, respectively. Also, we first consider the subclass
of the W-class states with real coefficients only, i.e., ai ∈ R,
i = 0, 1, 2, 3, and numerically verify that the negativity over
different bipartitions of the three-qubit W-class states are
given by

E1:23 = 2
∣∣a1

√
a2

2 + a2
3

∣∣, (51)

E2:13 = 2
∣∣a2

√
a2

1 + a2
3

∣∣, (52)

E3:12 = 2
∣∣a3

√
a2

1 + a2
2

∣∣. (53)

Further, performing local projection measurements in the ba-
sis {|b0〉, |b1〉} on qubit 1, one obtains the postmeasured states
on qubits 2 and 3 to be in the same form as in Eq. (22), with
f k
0 and f k (k = 0, 1) given in Appendix B. Similar to the

three-qubit gW states, negativity of the postmeasured states
are independent of the measurement basis and are given by
2|a2||a3|. This leads to

〈E23〉 = 2|a2||a3|. (54)

We are now in a position to present the following proposition
for the W class states of three qubits.

Proposition IV. In the space (E1:23, 〈E23〉), the localizable
entanglement 〈E23〉 of a three-qubit normalized W-class state
with real coefficients is upper bounded by the line

〈E23〉 = 1

2

(
1 +

√
1 − E2

1:23

)
, (55)

where E1:23 is the bipartite entanglement over the bipartition
1 : 23 in the state prior to measurement on qubit 1.

Proof. Similar to the case of the gW states, we can write
〈E23〉2 as

〈E23〉2 = 4a2
2

(
1 − a2

0 − a2
1 − a2

2

)
. (56)
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FIG. 3. Dicke states. (a), (c) Scatter plots of |D(N, N1)〉 for N � 35 on the (EA1A2:B, 〈EA1A2 〉) plane, with all possible values of N1 =
1, · · · , N − 1, using (a) negativity and (c) von Neumann entropy as entanglement measures. (b), (d) Scatter plot of Haar uniformly generated
gD states of N = 3, N = 4, and N = 5 qubits on the (EA1A2:B, 〈EA1A2 〉) plane, where each of the subsystems B and A1 are constituted of one
qubit only. For each value of N , a sample of 105 states are used. The chosen entanglement measures are (b) negativity and (d) von Neumann
entropy. All quantities plotted are dimensionless, except the entanglement and localizable entanglement computed using von Neumann entropy
as the entanglement measure, which are in ebits.

For a fixed value of a2
0 + a2

1 = a2, the maximum of 〈E23〉2, and
therefore of 〈E23〉, occurs at a2

2 = (1 − a2)/2, the maximum
value of 〈E23〉 being (1 − a2). Also, E1:23 = 2|a1

√
1 − a2|.

Note that the maximum value of 〈E23〉 as well as E1:23 have
two free parameters, a0 and a1, constrained by a2

0 + a2
1 being

a constant, a2. Eliminating a1 from 〈E23〉 and E1:23, followed
by solving for 〈E23〉, leads to

〈E23〉 = 1

2

[(
1 − a2

0

)+
√(

1 − a2
0

)2 − E2
1:23

]
, (57)

where 0 � a2
0 � a2. Further maximization with respect to a0

implies a0 = 0, leading to Eq. (55). �
Similar to the three-qubit gW states, the following corol-

laries originate from Proposition IV.

Corollary IV.1. The family of W class states with real
coefficients that satisfy Eq. (55) are given by

a2
2 = a2

3 = (1 − a2
1

)/
2. (58)

Proof. The proof of this corollary follows from the max-
imization condition of 〈E23〉, and the normalization of the
W-class state. �

Corollary IV.2. For the family of W-class states given by
Eq. (58), E2:13 = E3:12.

Proof. The proof of this corollary follows from identifying
the states satisfying Eq. (58) as the three-qubit gW states, and
from the proof of Corollary II.2. �

Proposition V. In (min{E2:13, E3:12}, 〈E23〉) space, the local-
izable entanglement 〈E23〉 of a three-qubit normalized W-class
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FIG. 4. GHZ and W-class states. Scatter plot of a sample of 107 Haar-uniformly generated three-qubit W-class states on the (a) (E1:23, 〈E23〉)
and (b) (min{E2:13, E3:12}, 〈E23〉) plane. The lines L1 and L2 bounding the states correspond to Eq. (55) and E1:23 = 1, respectively. (c) A sample
of 107 Haar uniformly generated GHZ-class states are also found to be bound by the same upper and lower bounds as proposed in Proposition
III. In (a)–(c), negativity is used as entanglement measure, while the corresponding figures for von Neumann entropy are given in (d)–(f).
All quantities plotted are dimensionless, except the entanglement and localizable entanglement computed using von Neumann entropy as the
entanglement measure, which are in ebits.

state with real coefficients is upper-bounded by the line

〈E23〉 = min{E2:13, E3:12}, (59)

and lower bounded by the line

〈E23〉2 − 2〈E23〉 + (min{E2:13, E3:12})2 = 0, (60)

where E2:13 (E3:12) is the bipartite entanglement over the bi-
partition 2 : 13 (3 : 12) in the state prior to measurement on
the qubit 1.

Proof. Similar to the proof of Proposition III, the upper
bound follows from the monotonicity of E [see Eq. (3)]. To
prove the lower bound, we start by assuming E2:13 � E3:12

and min{E2:13, E3:12} = E3:12, which, by virtue of Eqs. (52)
and (53), implies a2

2 � a2
3. For a fixed a3 and a0, 〈E23〉 is min-

imum if a2 is minimum, leading to a2 = a3, and subsequently
〈E23〉 � 2a2

3. On the other hand, exploiting normalization of
the W-class state, E3:12 = 2|a3

√
1 − a2

0 − a2
3 |. Eliminating a3

from E3:12 and the minimum of 〈E23〉, we obtain

〈E23〉2 + E2
3:12 − 2〈E23〉

(
1 − a2

0

) = 0. (61)

Similar to Proposition V, it can be shown that 〈E23〉 attains a
minimum for a0 = 0, leading to Eq. (60). �

Note 4. Similar to the case of N-qubit gW states, in this
case also, we numerically verify that the Propositions IV and

V remain valid in the case of generic three-qubit states from
W class with complex coefficients. The bounds in the case of
three-qubit W class states are demonstrated in Figs. 4(a) and
4(b).

Note 5. We also investigate the three-qubit GHZ class
states, given by

|ψGHZ〉 =
7∑

i=0

ci|φi〉, (62)

with ci ∈ C and {|φi〉; i = 0, 1, · · · , 7} being the standard
product basis in the Hilbert space of three qubits. While
analytical investigation is difficult due to a large number of
parameters involved in these states, our numerical analysis
does not provide any evidence of the existence of an upper
bound of 〈E23〉 on the (E1:23, 〈E23〉) plane. However, our inves-
tigation involving a sample of 107 Haar uniformly generated
GHZ-class states did not find any example that violates the
lower bound proposed in Proposition V [see Fig. 4(c) for a
demonstration]. While this does not analytically prove the
validity of the lower bound, this implies that Proposition IV
has the potential to distinguish between the three-qubit W class
states from the GHZ class states.
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TABLE I. Variations of the fraction of Haar uniformly generated three-, four-, and five-qubit states for which δ1 > 0, as a function of the
noise parameter q, which assumes five values, q = 0.0, 0.1, 0.2, 0.3, and 0.4, from left to right along the row for a specific combination of N ,
n, and m, in the case of the Markovian phase-flip noise, where negativity is used as entanglement measure. In all cases, we have kept n = 1,
where n and m being the sizes of B and A1 respectively. For the three-qubit system, only GHZ class states are considered. For each case, the
percentages are determined from a sample size of 105 Haar uniformly generated states.

Fraction of states (in %) with δ1 > 0

N n m q = 0.0 q = 0.1 q = 0.2 q = 0.3 q = 0.4

3 1 1 23.343% 23.608% 23.097% 21.530% 18.890%
4 1 1 38.704% 20.461% 15.757% 15.514% 15.336%
5 1 1 44.920% 14.213% 12.942% 10.531% 07.487%
5 1 2 100.00% 100.00% 100.00% 100.00% 93.402%

b. Larger systems. To study the correlation between local-
izable entanglement 〈EA1A2〉 and the bipartite entanglement
lost due to the measurement, namely, EA1A2:B, EA1:A2B, and
EA2:A1B in the case of pure states on N qubits, we look into
how the states are distributed on the (EA1A2:B, 〈EA1A2〉) and the
(min[EA1:A2B, EA2:A1B], 〈EA1A2〉) spaces. To investigate this, we
define the following:

δ1 = 〈EA1A2

〉− EAB, (63)

δ2 = 〈EA1A2

〉− min{EA1B:A2 , EA2B:A1}. (64)

Note that δ1 � 0 (δ2 � 0) implies 〈EA1A2〉 � EA1A2:B (EA1A2〉 �
min{EA1B:A2 , EA2B:A1}), which is representative of a sit-
uation where one can, on average, localize at least
EA1A2:B (min{EA2:A1B, EA1:A2B}) amount of entanglement via
local projection measurements on the qubits in B. The per-
centages of N-qubit states for which δ1 > 0 are included in
Table I for different combinations of N and m, keeping n = 1,
where in each case, a sample of 105 Haar uniformly generated
pure states are considered. Clearly, the percentage of states
for which δ1 > 0 increases overall with the increase in the
number of qubits, implying that the number of states for which
〈EA1A2〉 > EA1A2:B are more for larger systems. However, the
percentage of states for which δ1 = 0, up to our numerical
accuracy, is negligibly small for all cases of (N, n, m). On
the other hand, as expected, δ2 > 0 does not occur for any
multiqubit pure states, as it would imply a violation of (3).
Moreover, for a very small fraction of states, δ2 = 0. This
fraction overall increases with an increase in the number of
qubits in the system.

Note 6. We point out here that the analysis presented in
Sec. II D can also be carried out using entanglement measures
other than negativity, where no qualitative results are changed
except Eqs. (57) and (60). While we refrain from writing the
corresponding equivalent equations, we pictorially demon-
strate this in Figs. 4(d)–4(f) using von Neumann entropy.
Similar features are also found for logarithmic negativity.
Note also that the data included in Table I are specific to the
choice of negativity as an entanglement measure.

III. QUANTUM STATES UNDER PHASE-FLIP NOISE

It is now logical to ask whether and how the results re-
ported in Sec. II are modified if the multiqubit system is
subjected to noise [62]. In this paper, we consider a situa-
tion where qubits of the multiqubit system are sent through

independent phase-flip channels [62,63]. These phase-flip
channels can be either Markovian [64] or non-Markovian
[65–67]. Using the Kraus operator representation, the evolu-
tion of the quantum state ρ0 = |ψ〉〈ψ | under these phase-flip
channels is given by

ρ =
∑

α

Kαρ0K†
α , (65)

such that
∑

α K†
αKα = I , I being the identity operator in the

Hilbert space of the multiqubit system, and Kraus operators
{Kα}, takes the form Kα = √

pαK ′
α with

K ′
α =

N⊗
i=1

K ′
αi

; pα =
N∏

i=1

pαi . (66)

Here, the index α ≡ α1α2 · · · αN is interpreted as a multi-
index,

∑
αi

pαi = 1, and K ′
αi

are the single-qubit Kraus
operators, the form of which depends on the type of noise
under consideration. In the case of the phase-flip noise, αi ∈
{0, 1}, K ′

αi=0 = Ii, and K ′
αi=1 = σ z

i , with

pαi=0 = 1 − q

2
, pαi=1 = q

2
(67)

in the Markovian case [64], and

pαi=0 =
(

1 − q

2

)(
1 − αq

2

)
,

pαi=1 =
[
1 + α

(
1 − q

2

)]q

2
(68)

in the non-Markovian case [65–67]. Here, q is the noise
strength (0 � q � 1) and α is the non-Markovianity param-
eter (0 � α � 1). For ease of discussion, from now onward,
we denote entanglement in the noiseless scenario with a super-
script 0. For example, 〈EA1A2〉0

and E0
AB denote the localizable

entanglement over subsystem A and the bipartite entangle-
ment overbipartition A : B of the system in the case of ρ0.
Also, in this section, we use negativity as an entanglement
measure to demonstrate all our results.

A. Generalized GHZ states

We start our discussions with the N-qubit gGHZ state
subjected to phase-flip noise on all qubits. In this situation,
we prove the following proposition.

Proposition VI. For any tripartition A1 : A2 : B of an N-
qubit gGHZ state under uncorrelated phase-flip channel on all
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qubits, 〈
EA1A2

〉 = EA1A2:B = EA1:A2B = EA2:A1B, (69)

irrespective of whether the noise is Markovian or non-
Markovian.

Proof. The N-qubit gGHZ state, under the Markovian
phase-flip noise on all qubits, takes the form

ρ = (|a0|2(|0〉〈0|)⊗N + |a1|2(|1〉〈1|)⊗N )

+ (1 − q)N (a0a∗
1(|0〉〈1|)⊗N + a∗

0a1(|1〉〈0|)⊗N ). (70)

Partial transposition of ρ with respect to the subsystems B
leads to

ρTB = (|a0|2(|0〉〈0|)⊗N + |a1|2(|1〉〈1|)⊗N )

+ (1 − q)N a0a∗
1(|0〉〈1|)⊗N−n(|1〉〈0|)⊗n

+ (1 − q)N a∗
0a1(|1〉〈0|)⊗N−n(|0〉〈1|)⊗n, (71)

with nonzero eigenvalues |a0|2, |a1|2,±(1 − q)N |a0||a1|.
Therefore, the entanglement between partition A and partition
B, as quantified by negativity [81–85], is given by

EA1A2:B = 2(1 − q)N |a0|
√

1 − |a0|2
= (1 − q)N E0

A1A2:B. (72)

To calculate the localizable entanglement over subsystem
A with bipartition A1 : A2, we proceed as in the case of Propo-
sition I, and write the postmeasured states on A as

ρ̃k
A = TrB[(MkρMk†)/pk], (73)

which, written explicitly, takes the form

ρ̃k
A = 1

pk

[{|a0|2| f k
0 |2(|0〉〈0|)⊗N−n

+ |a1|2| f k
1 |2(|1〉〈1|)⊗N−n

}
+ (1 − q)N

{
a0a∗

1 f k
0 f k∗

1 (|0〉〈1|)⊗N−n

+ a∗
0a1 f k

1 f k∗
0 (|1〉〈0|)⊗N−n)

}]
, (74)

with

pk = (|a0|2
∣∣ f k

0

∣∣2 + |a1|2
∣∣ f k

1

∣∣2). (75)

Partial transposition of ρ̃k
A over any bipartition A1 : A2, and

subsequent calculation of negativity followed by the optimiza-
tion of average negativity over A1 : A2 yields

〈
EA1:A2

〉 = 2(1 − q)N |a0|
√

1 − |a0|2
[

max
2n−1∑
k=0

∣∣ f k
0

∣∣∣∣ f k
1

∣∣],
(76)

as in Eq. (14). The maximization is similar to that shown in
the proof of Proposition I, leading to〈

EA1:A2

〉 = (1 − q)N
〈
EA1A2

〉0 = EA1A2:B. (77)

Also, from the symmetry of ρ, EA1A2:B = EA1:A2B = EA2:A1B,
leading to Eq. (69).

The same line of calculations would follow for the non-
Markovian phase-flip channel, leading to

EA1A2:B = |1 − f (q, α)|N E0
A1A2:B,〈

EA1A2

〉 = |1 − f (q, α)|N 〈EA1A2

〉0
, (78)

with

f (q, α) = q
{

1 + α
(

1 − q

2

)}
, (79)

which implies 〈EA1A2〉 = EA1A2:B. A similar proof follows for
EA1:A2B, and EA2:A1B also, resulting in Eq. (69) for the non-
Markovian phase-flip channel. Hence the proof. �

Note 7. A comparative discussion on the variation of en-
tanglement with q in the cases of the Markovian and the
non-Markovian phase-flip channels is in order here. Note that
in the former case, entanglement decays monotonically with
q, as indicated from the (1 − q)N dependence, while the decay
fastens exponentially with increasing number of qubits. It also
indicates that entanglement vanishes asymptotically with in-
creasing q, attaining zero value only at q = 1. Similar features
are also present in the case of the non-Markovian channel,
except one where in contrast to entanglement vanishing only
at q = 1 in the former case, entanglement vanishes at a finite
critical q in the latter, given by

qc = 1

α
(1 + α −

√
1 + α2). (80)

For q > qc, entanglement revives again. Note that qc is a
monotonically decreasing function of α, which, in the limit
α → 0 (the Markovian limit), goes to 1.

B. Generalized W states

We now focus on the N-qubit gW states under the phase-
flip noise on all qubits. Analytical investigation of 〈EA1A2〉 as
well as bipartite entanglement over the unmeasured state in
such cases is difficult due to the increasing number of state
as well as optimization parameters. However, our numeri-
cal investigation suggests that irrespective of the tripartition
A1 : A2 : B of the N-qubit system, the optimization of 〈EA1A2〉
always takes place via σ z measurement on all qubits i ∈ B.
This result can be utilized to determine the dependence of
〈EA1A2〉 and EA1A2:B on the noise strength q, and extend the
Propositions II and III, as follows.

a. Markovian phase-flip channels. In the case of the
Markovian phase-flip channels, we obtain4〈

EA1A2

〉 = (1 − q)2
〈
EA1A2

〉0
, (81)

EA1A2:B = (1 − q)2E0
A1A2:B, (82)

Given these results, we present the following proposition.
Proposition VII. In the space (EA1A2:B, 〈EA1A2〉), the local-

izable entanglement 〈EA1A2〉 of an N-qubit normalized gW

4These expressions are determined for systems of small sizes, and
are verified numerically for larger systems with different combina-
tions of (N, n, m).
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FIG. 5. Generalized W states under Markovian phase-flip channels. Modification of boundaries of gW states proposed in Propositions II and
III on the (a) (EA1A2:B, 〈EA1A2 〉) and (b) (min{EA1:A2B, EA2:A1B}, 〈EA1A2 〉) plane due to Markovian phase-flip noise of noise strength q = 0, 0.1, 0.2
(see also Fig. 2), using negativity as the entanglement measure. The modified boundaries are given in Propositions VI and VII. The trivial
boundaries corresponding to zero entanglement lines are not shown. All quantities plotted in all figures are dimensionless.

state subjected to Markovian phase-flip channels of the same
strength, q, on all qubits is bounded by the lines

〈
EA1A2

〉 = 1

2

[
(1 − q)2 +

√
(1 − q)4 − E2

A1A2:B

]
, (83)

and

EA1A2:B = (1 − q)2, (84)

where EA1A2:B is the bipartite entanglement over the bipartition
A1A2 : B in the state prior to measurement on all the qubits
in B.

Note 8. It is worthwhile to note that the line given in
Eq. (84) corresponds to the family of states, described by
Eq. (37), subjected to the single-qubit phase-flip channels on
all qubits.

Note 9. Proposition VI implies that the area on the
(EA1A2:B, 〈EA1A2〉) plane confining the noisy gW states shrinks
with increasing noise strength q, and vanishes at q = 1. This
is demonstrated in Fig. 5(a).

Noting that EA1:A2B and EA2:A1B also have a similar depen-
dence on q as EA1A2:B, Proposition III can be extended to the
case of gW states under phase-flip noise, as follows.

Proposition VIII. In (min{EA1:A2B, EA2:A1B}, 〈EA1A2〉) space,
the localizable entanglement 〈EA1A2〉 of an N-qubit normalized
gW state subjected to the phase-flip channel of strength q on
all qubits is upper-bounded by the line〈

EA1A2

〉 = min
{
EA1:A2B, EA2:A1B

}
, (85)

and lower bounded by the line〈
EA1A2

〉2 − 2(1 − q)2
〈
EA1A2

〉+ (min
{
EA1:A2B, EA2:A1B

})2 = 0,

(86)

where EA1:A2B (EA2:A1B) is the entanglement over the biparti-
tion A1 : A2B (A2 : A1B) in the state prior to measurement on
all the qubits in B.

b. Non-Markovian phase-flip channels. A similar ap-
proach can also be taken in the case of the non-Markovian

channels, where entanglement has the following dependence
on q and α: 〈

EA1A2

〉 = |1 − f (q, α)|2〈EA1A2

〉0
, (87)

EA1A2:B = |1 − f (q, α)|2E0
A1A2:B, (88)

EA1:A2B = |1 − f (q, α)|2E0
A1:A2B, (89)

EA2:A1B = |1 − f (q, α)|2E0
A2:A1B, (90)

with f (q, α) given in Eq. (79). Using these, one can straight-
forwardly obtain the results on the bounds on the gW states
when subjected to non-Markovian phase-flip channels, by re-
placing the (1 − q)2 factors with |1 − f (q, α)|2. To keep the
text uncluttered, we refrain from writing these Propositions
explicitly.

Similar to the Markovian case, for a fixed value of α,
the area on the EA1A2:B − 〈EA1A2〉 plane confining the noisy
gW states shrinks with increasing q in the case of the non-
Markovian phase flip channel also. However, in contrast to the
Markovian case, the area vanishes at a critical noise strength
qc, given in Eq. (80), and then revives again for q > qc (see
Fig. 6 for a demonstration). It is worthwhile to note that the
decay of entanglement in the case of the gW states under
Markovian and non-Markovian phase-flip channels is inde-
pendent of the number of qubits in the system, as opposed
to the case of the gGHZ states, where the dependence is
exponential in N .

C. Numerical results

The complexity of the states obtained via applying single-
qubit phase-flip noise to all qubits of a multiqubit states
prevents analytical investigation into the relation between the
localizable and the destroyed entanglement in most cases. In
this subsection, we discuss the numerical results obtained for
the mixed states generated via subjecting three-qubit W-class
states, N-qubit Dicke and gD states, and arbitrary N-qubit

042411-12



CONTROLLING GAIN WITH LOSS: BOUNDS ON … PHYSICAL REVIEW A 107, 042411 (2023)
|1
−

f
(q

,α
)|2

E
A

1
A

2
A1A2:B

E
A

1
A

2

A1A2:B

E
A

1
A

2

A1A2:B

E
A

1
A

2

A1A2:B

E
A

1
A

2

A1A2:B

(a) (b) (c)

(d) (e) (f)

q = 0.1 q = 0.2

q = 0.4 q = 0.9 q = 1.0

q
=

0.
1

q
=

0.
2

q
=

0.
4

q
=

0.
9

q
=

1.
0

E

EE

EE

q

FIG. 6. Generalized W states under non-Markovian phase-flip noise. (a) The variation of |1 − f (q, α)|2 as a function of q for α = 0.9,
demonstrating the variation of entanglement with q [see Eqs. (87)–(90)], which exhibits monotonic decay followed by a vanishing at qc

[Eq. (80)] and a subsequent revival for q > qc, where negativity is used as entanglement measure. In the entire range 0 � q � 1, five values of
noise strengths, namely, (b) q = 0.1, (c) q = 0.2, (d) q = 0.4, (e) q = 0.9, and (f) q = 1.0 are chosen, and the modification of the boundaries
on the four-qubit gW states, as given in Proposition II, with varying q is demonstrated. The region accessible by the gW states on the
(EA1A2:B, 〈EA1A2 〉) decreases at first, vanishes at q = qc, and then revives again. All quantities plotted in all figures are dimensionless.

pure states to Markovian and non-Markovian phase-flip chan-
nels.

a. Three-qubit states. Our numerical investigation of the
three-qubit W-class states subjected to Markovian as well as
non-Markovian phase-flip channels indicate that the variations
of the localizable entanglement 〈E23〉 as well as the bipartite
entanglement lost during measurement, namely, E1:23, E2:13,
and E3:12, are identical to that described in Eqs. (81) and
(82) (Markovian) and Eqs. (87)–(90) (non-Markovian). This
implies that the mixed states obtained from the three-qubit
W-class states, for a specific noise strength q, are bounded in
a similar way as described for the gW states under phase-flip
noise. On the other hand, while a similar numerical analysis is
difficult for the GHZ class states due to the increased number
of parameters, we observe that similar to the pure GHZ-class
states discussed in Note 4 [see also Fig. 4(c)], the bounds
proposed in Eqs. (85) and (86) hold also for three-qubit
GHZ-class states subjected to the Markovian phase-flip noise
channels.

b. Dicke states and generalized Dicke states under noise.
We also numerically investigate the N-qubit Dicke and gD
states subjected to Markovian and non-Markovian phase-flip
channels. Figures 7(a) and 7(b) depict the scatter plots of the
Dicke states up to N = 8, and N1 = 1, 2, where Markovian

and non-Markovian phase-flip channel is applied to all qubits.
It is clear from the figures that similar to the case of the Pure
Dicke states (see Sec. II D), (a) the variation of 〈EA1A2〉 with
EA1A2:B remains non-monotonic and (b) with increasing N1, the
states tend to the 〈EA1A2〉 = EA1A2:B line. Also, increasing the
non-Markovianity factor α generally tends to lower values of
〈EA1A2〉 and EA1A2:B.

In the case of the gD states, our numerical investiga-
tion suggests that while the upper bound 〈EA1A2〉 � EA1A2:B

remains valid even in the presence of phase-flip noise ir-
respective of whether it is Markovian or non-Markovian.
However, with increasing number of qubits, as in the case
of the pure gD states, more states are concentrated close
to the 〈EA1A2〉 = EA1A2:B line, although the number of states
for which 〈EA1A2〉 = EA1A2:B diminishes drastically. This is
demonstrated in Figs. 7(c) and 7(d) for gD states with N =
3, 4 qubits, respectively, under Markovian phase-flip noise.
The results remain qualitatively the same even in the presence
of non-Markovian phase-flip noise also.

c. Arbitrary pure states under noise. It is important to note
that the numerical investigation for arbitrary N-qubit pure
states subjected to phase-flip channels is resource intensive
even for a small number of qubits due to the optimization in-
volved in the computation of localizable entanglement, as the
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FIG. 7. Dicke and generalized Dicke states under phase-flip noise. (a), (b) Scatter plots of N-qubit Dicke states, for up to N = 8, under
Markovian and non-Markovian phase-flip noise are shown on the (EA1A2:B, 〈EA1A2 〉) planes for (a) N1 = 1, and (b) N1 = 2. (c), (d). On the other
hand, scatter plots of samples of 107 gD states with (c) N = 3 and (d) N = 4 are shown on the (EA1A2:B, 〈EA1A2 〉) plane. In all plots, negativity
is used as entanglement measure. All quantities plotted in all figures are dimensionless.

number of optimization parameter increases with increasing n,
the size of the measured subsystem B. In this paper, we restrict
ourselves in reporting data for which B is constituted of one
qubit only. Similar to the pure states of N qubits described in
Sec. II D, we focus on δ1 and δ2 [Eqs. (63) and (64)] also for
the mixed states obtained by subjecting N-qubit arbitrary pure
states to Markovian phase-flip channels. As expected, for all
investigated values of q, no states are found for which δ2 � 0,
implying a violation of inequality (3), which is similar to the
case of the pure states (see Sec. II D). On the other hand, the
percentage of states for which δ1 > 0 are tabulated in Table I
for different noise strengths in the case of the Markovian
phase-flip channel. It is clear from the table that (a) for a fixed
N with n = 1, the number of states for which δ1 > 0 overall
decreases with increasing q, and (b) for a specific q value >0,
such states overall decreases in number with increasing N , as
long as n and m are fixed at 1.

It is important to note that the effect of single-qubit Pauli
noise on localizable entanglement has been explored in liter-
ature [93,98], and a set of hierarchies between the localizable
entanglement over a specific subsystem in a multiqubit state
is proposed [98] in situations when local noise acts on either
the subparts or on all the qubits of the whole system. In
contrast, our work probes the multiparty systems subjected to
single-qubit Pauli noise on all qubits via the bounds on lo-
calizable entanglement imposed by the entanglement present
in the noisy system prior to measurement. We once again
stress here that while we have used negativity as an en-
tanglement measure to discuss the results in Sec. III, using
other computable bipartite entanglement measures for mixed
states, e.g., logarithmic negativity, yields qualitatively similar
results, with changes only in the functional dependence of
〈EA1A2〉 on EA1A2:B and min{EA1:A2B, EA2:A1B}, corresponding
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FIG. 8. Ordered 1D quantum spin models. Variations of EA1A2:B [(a), (d)] and 〈EA1A2 〉 [(b), (e)] as functions of g for the TXY model [(a),
(b)] and the XXZ model [(d), (e)] with different system sizes. (c), (f) Scatter plots of the ground states in 1D TXY model (c), and 1D XXZ
model (f) in an external field on the (EA1A2:B, 〈EA1A2 〉) plan. The variations of 〈EA1A2 〉 as a function of EA1A2:B are fitted to Eq. (92) for both the
1D TXY model and the 1D XXZ model. In the case of the TXY model, γ is taken to be 0.5, while for the XXZ model, � = 0.5. In this figure,
we have used negativity to quantify entanglement. All quantities plotted in all figures are dimensionless.

to the bounds, and in the data presented in Table I, which
exclusively correspond to negativity.

IV. INTERACTING 1D QUANTUM SPIN MODELS

It is natural to ask whether the bounds discussed in Sec. II
for the pure states also exist in the ground states of paradig-
matic quantum spin Hamiltonians. To investigate this, we
focus on the 1D quantum spin chains with N spin-1/2 par-
ticles, governed by a Hamiltonian given by [79]

H =
N∑

i=1

[
Jxy

i,i+1

4

{
(1 + γ )σ x

i σ x
i+1 + (1 − γ )σ y

i σ
y
i+1

}

+ Jzz
i,i+1

4
σ z

i σ z
i+1 + hi

2
σ z

i

]
. (91)

In Eq. (91), σ ’s are Pauli operators, γ is the xy anisotropy
parameter, hi is local magnetic field strength corresponding
to spin i, and Jxy

i,i+1 (Jzz
i,i+1) represents the nearest-neighbor

xy (zz) interaction strengths. Also, we assume periodic bound-
ary conditions (PBCs) in the system, implying σ

x,y,z
N+1 ≡ σ

x,y,z
1 .

A number of paradigmatic 1D quantum spin models can be

represented by different special cases of H . In this paper,
we are interested in two of them, namely, (a) TXY (0 <

γ � 1, Jzz
i,i+1 = 0) [69–74] (note that the transverse-field Ising

model [73,74,99] is a special case of the TXY model with γ =
1), and (b) XXZ model with magnetic field (XXZ) (γ = 0)
[75–80].

A. Ordered quantum spin models

In the case of the ordered quantum spin models where
order exists in all spin-spin couplings as well as the field
strengths, we assume Jxy

i,i+1 = Jxy > 0, Jzz
i,i+1 = Jzz > 0, and

hi = h > 0 for all i = 1, 2, · · · , N . In such models, we nu-
merically investigate the correlation between 〈EA1A2〉 and
{EA1A2:B, EA1B:A2 , EA2B:A1} in the ground state, which is ob-
tained via numerical diagonalization of H . We first consider
the ordered antiferromagnetic (AFM) TXY model, and define
g = h/Jxy as the dimensionless field-strength. The model ex-
hibits a quantum phase transition from an AFM phase (g < 1)
to a paramagnetic (PM) phase (g > 1) at gc = 1, for all values
of γ > 0 [31,70–74,100,101]. Figures 8(a) and 8(b) depict the
variations of EA1A2:B and 〈EA1A2〉, respectively, with negativity
quantifying entanglement, as functions of g. The shape of the
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TABLE II. Fitting parameters corresponding to Eq. (92) for the
ordered TXY and XXZ model, with negativity, logarithmic negativ-
ity, and von Neumann entropy as entanglement measures. We have
reported the error in the fitting iff the absolute value of the error
�10−3.

TXY model.

Logarithmic von Neumann
Parameters Negativity Negativity entropy

λ0 0.015 0.058 −0.0064
λ1 0.511 0.225 0.735
λ2 1.087 1.516 0.703
λ3 −0.629 −0.812 −0.454

XXZ model.

Logarithmic von Neumann
Parameters Negativity Negativity entropy

λ0 2.799 × 10−5 0 0
λ1 0.828 1.207 ± 0.001 0.786
λ2 0.387 ± 0.002 −0.648 ± 0.008 0.611 ± 0.001
λ3 −0.359 0.331 ± 0.002 −0.612

curve changes from convex to concave at g = 1, indicating
that the absolute value of the first derivative of entanglement
with respect to g exhibits a sharp peak at g = 1, signaling
the quantum phase transition. Figure 8(c) presents the scatter
plot of 〈EA1A2〉 − EA1A2:B corresponding to the ordered TXY
model for different values of N using negativity, where for
each N , values of n, m = 1. This, along with the PBC, ensures
that EA1A2:B = EA1:A2B, while our numerical findings suggest
that for the ground states of the TXY model with n = m =
1, min{EA1:A2B, EA2:A1B} = EA1:A2B for all values of N . This
implies that it is sufficient to investigate the dependence of
〈EA1A2〉 on EA1A2:B. It is evident from the figure that 〈EA1A2〉 is
positively correlated with EA1A2:B. Irrespective of the value of
N , the data suggests a cubic dependence of 〈EA1A2〉 on EA1A2:B,
given by〈

EA1A2

〉 = λ3E3
A1A2:B + λ2E2

A1A2:B + λ1EA1A2:B + λ0, (92)

where the values of λ0,1,2,3 can be obtained by fitting the
numerical data to Eq. (92) (see Table II). Note that at g → ∞,
both EA1A2:B and 〈EA1A2〉 tend to vanish as the ground state
of the TXY model becomes fully polarized. Therefore, one
expects λ0 = 0 in Eq. (92). However, we fit only the numerical
data up to g = 2 to Eq. (92), which results in a small nonzero
value of λ0. Our numerical investigation also suggests that the
form of Eq. (92) remains invariant with a change in the values
of the xy anisotropy parameter γ . Also, the qualitative results
as well as the form (92) are invariant with a change in the
entanglement measures, with a change only in the values of
the fitting parameters. See Table II.

In the case of the XXZ model in a magnetic field along
the z direction with PBCs, we assume Jzz = �Jxy, where �

signifies the z-anisotropy parameter, and denote the dimen-
sionless field strength by g = h/Jxy. For −1 � � � 1, the
model undergoes a quantum phase transition from the XY
phase to the ferromagnetic (FM) phase at the critical field
strength gc = ±(1 + �) [79]. Similar to the TXY model, we

fix � and investigate the correlation between 〈EA1A2〉 and
EA1A2:B. The data for the variations of EA1A2:B and 〈EA1A2〉
with g using negativity are presented in Figs. 8(d) and 8(e),
respectively, for � = 0.5, where the quantum phase transition
is indicated ar gc = 1.5 via a sharp fall in the value of en-
tanglement. Figure 8(f) depicts the scatter plot of the points
(〈EA1A2〉, EA1A2:B) with negativity as entanglement measure,
where the fitted curve has the same form as in Eq. (92). Note
that in the case of the XXZ model in an external field, both
EA1A2:B and 〈EA1A2〉 reduces to zero for g > 1.5. Therefore,
the (EA1A2:B, 〈EA1A2〉) data includes the point (0,0), leading to
λ0 = 0 in the fitted curve. It is also worthwhile to note that
in the case of the XXZ model, the overall relation between
〈EA1A2〉 and EA1A2:B also remains unaltered with a change in
the value of � within the mentioned region −1 � � � 1.
All these results for the XXZ model qualitatively remain the
same if the choice of entanglement measure is changed, with
only a change in the fitting parameters (see Table II). It is
therefore clear from our numerical analysis that each of these
1D models can be classified by the variations of 〈EA1A2〉 with
EA1A2:B, irrespective of the values of the system parameters as
well as the system size.

B. Disordered quantum spin models

In a disordered quantum spin model [68], the values of a
relevant system parameter, such as g, are chosen from a Gaus-
sian distribution, P(g), of fixed mean, 〈g〉, and fixed standard
deviation, σg. Here, σg represents the strength of the disorder,
and each random value of g represents a random parameter
configuration of the quantum spin model, describing a random
realization of the system. For each random realization of the
system, the quantity of interest, Q(g), can be computed. A
subsequent quenched average of Q(g) over a statistically large
number of random realizations is given by

〈Q〉d =
∫

P(g)Q(g)dg, (93)

where the subscript d represents a quenched average, and
〈Q〉 is effectively a function of 〈g〉 and σg. Note that the
corresponding ordered result can be obtained as a special case
at σg = 0. Note also that disorder can, in principle, be present
in a number of system parameters. In this paper, however, we
confine ourselves in situations where only one chosen system
parameter is disordered.

We start with the TXY model, choosing the field strength
h (and hence g, where Jxy is constant) to be the disor-
dered system parameter. The quenched averaged localizable
entanglement, 〈〈EA1A2〉〉d , and the bipartite entanglement,
〈EA1A2:B〉d , quantified using negativity, in the ground state
of the system are numerically computed for different values
of the disorder strength σg, and are plotted against 〈g〉 in
Figs. 9(a) and 9(b). In each of these computations on an
N-qubit system, both n and m are taken to be 1, similar to the
ordered scenario. Figure 9(c), on the other hand, represents
the scatter plots of the ground state of the 1D disordered TXY
model on the 〈〈EA1A2〉〉d -〈EA1A2:B〉d plane using negativity,
where the numerical data is found to be well-fitted to Eq. (92)
with λ0 = 0.014, λ1 = 0.520, λ2 = 1.065, and λ3 = −0.617,
where errors � 10−3 are neglected. This indicates that the
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FIG. 9. Disordered 1D quantum spin models. Variations of 〈EA1A2:B〉d [(a), (d)] and 〈〈EA1A2 〉〉d [(b), (e)] as functions of 〈g〉 for the TXY
model [(a), (b)] and the XXZ model [(d), (e)] with different system sizes. (c), (f) Scatter plots of the ground states in 1D TXY model (c), and
1D XXZ model (f) in an external field on the (〈EA1A2:B〉d , 〈〈EA1A2 〉〉d ) plane. The variations of 〈〈EA1A2 〉〉d as a function of 〈EA1A2:B〉d are fitted to
Eq. (92) for both the 1D TXY model and the 1D XXZ model. In the case of the TXY model, γ is taken to be 0.5, while for the XXZ model,
� = 0.5. For all cases, σg = 0.05. In this figure, we have used negativity to quantify entanglement. All quantities plotted in all figures are
dimensionless.

relation between 〈EA1A2〉 and EA1A2:B for the TXY model is
qualitatively robust against disorder in the field. Also, vary-
ing σg in the range 0.01 � σg � 0.1 only changes the fitting
parameters negligibly. Similar analysis is performed for the
XXZ model in an external field to arrive at a similar conclu-
sion, where the data corresponding to negativity is presented
in Figs. 9(d)–9(f). Also, similar to the ordered case, all of these
results remain qualitatively unchanged with a change in the
entanglement measure.

V. CONCLUSIONS AND OUTLOOK

In this paper, we investigate dependence of the gain in the
entanglement through localization over a group of qubits in
a multiqubit system via single-qubit projection measurements
on the rest of the qubits on the amount of loss in bipartite
entanglement during these measurements. We probe a number
of paradigmatic N-qubit pure states, namely, the generalized
GHZ, generalized W, Dicke, and the gD states. We derive an-
alytical bounds for the generalized GHZ and the generalized
W states. We show that the gain is always equal to the loss
in the former, while in the latter, lower and upper bounds

of localizable entanglement can be derived in terms of the
bipartite entanglement present in the system prior to the mea-
surement process. In the case of the Dicke and the gD states,
a combination of analytical and numerical investigations re-
veal that the localizable entanglement tend to be equal to a
component of the lost bipartite entanglement when the num-
ber of qubits increases. Modifications of these results, when
the system is subjected to single-qubit Markovian and non-
Markovian phase-flip channels, are also discussed. We extend
our study to the ground states of the 1D quantum spin models,
namely, the TXY model and the XXZ model in an external
field, and numerically demonstrate a cubic dependence of the
localizable entanglement over the bipartite entanglement in
the ground state prior to measurement, where measurement
is restricted to one qubit only, and the entanglement is always
computed in the 1:rest bipartition. This dependence is shown
to be qualitatively robust even in the presence of disorder in
the field strength.

A number of possible avenues of future research emerge
from this paper. Within the orbit of results reported in this
paper, it is important to understand how the results obtained
in the case of the pure states are modified when different types
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of noise that commonly occur in experiments [102,103], such
as the bit-flip, depolarizing, and amplitude-damping [62,63]
noise, are present in the system. However, investigating such
noise channels may present new challenges in deriving the
appropriate bounds, if any, on localizable entanglement. Also,
in the case of the 1D quantum spin systems considered in this
paper, it would be interesting to see the effect of the presence
of disorder in the spin-spin interaction strengths along with a
disordered field-strength. In addition, a plethora of quantum
spin models are important from the perspective of quantum
information theory [31,32], and it would be interesting to
investigate whether a specific relation between the localized
and the lost entanglement, similar to the one in the case of
the models described in this paper, exist in the ground states
of these models in the presence and absence of disordered
interactions, as well as in situations where the system is made
open by allowing an interaction with the environment [104].
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APPENDIX A: ENTANGLEMENT MEASURES

Here we define the entanglement measures used in this
paper. The amount of entanglement between two partitions A
and B of a bipartite quantum state ρAB can be quantified by a
bipartite entanglement measure [1,2]. In this paper, for both
pure as well as mixed states, we focus on negativity [81–85]
as a bipartite entanglement measure, which is defined as

Eneg
A:B = ∥∥ρTB

AB

∥∥− 1, (A1)

which corresponds to the absolute value of the sum of negative
eigenvalues, λ, of ρ

TB
AB, given by

Eneg
A:B = 2

∣∣∣∣∣∣
∑
λi<0

λi

∣∣∣∣∣∣. (A2)

Here, |||| = Tr
√

† is the trace norm of the density operator
, computed as the sum of the singular values of . The
matrix ρ

TB
AB is obtained by performing partial transposition of

the density matrix ρAB with respect to subsystem B. Since
we only focus on negativity throughout this paper, we discard
the superscript from Eneg

A:B , and denote the negativity between
partitions A and B by EA:B. One can also define the logarithmic
negativity [89] LA:B over the same partitions A : B as

LA:B = log2(EA:B + 1). (A3)

In the case of a pure bipartite state ρAB, the entanglement
over bipartition A : B can also be quantified by the von Neu-
mann entropy [1,2,82,90,91] of the reduced density matrix
ρA = TrB(ρAB) as

S = −ρA log2 ρA = −
∑

λ

λ log2 λ, (A4)

where {λ} are the eigenvalues of ρA.

APPENDIX B: SINGLE- AND TWO-QUBIT
MEASUREMENTS

We first consider the single-qubit measurement (n = 1) in
an N-qubit gW state, where [see Eq. (22)]

f 0
0 = a1e−iφ sin

θ

2
, f 1

0 = −a1e−iφ cos
θ

2
, (B1)

f 0 = cos
θ

2
, f 1 = sin

θ

2
, (B2)

and

p0 = a2
1 sin2 θ

2
+ cos2 θ

2

N−1∑
i=1

a2
1+i,

p1 = a2
1 cos2 θ

2
+ sin2 θ

2

N−1∑
i=1

a2
1+i, (B3)

such that 〈ψk|ψk〉 = 1 for k = 0, 1. On the other hand, in the
case of two-qubit projection measurements (n = 2) on an N-
qubit gW state, the postmeasured states are of the form given
in Eq. (22), with the coefficients f k

0 ’s and f k’s as

f 0
0 = a1e−iφ1 sin

θ1

2
cos

θ2

2
+ a2e−iφ2 cos

θ1

2
sin

θ2

2
, f 1

0 = a1e−iφ1 sin
θ1

2
sin

θ2

2
− a2e−iφ2 cos

θ1

2
cos

θ2

2
,

f 2
0 = −a1e−iφ1 cos

θ1

2
cos

θ2

2
+ a2e−iφ2 sin

θ1

2
sin

θ2

2
, f 3

0 = −a1e−iφ1 cos
θ1

2
sin

θ2

2
− a2e−iφ2 sin

θ1

2
cos

θ2

2
, (B4)

and

f 0 = cos
θ1

2
cos

θ2

2
, f 1 = cos

θ1

2
sin

θ2

2
, f 2 = sin

θ1

2
cos

θ2

2
, f 3 = sin

θ1

2
sin

θ2

2
. (B5)

The probabilities of obtaining the measurement outcome k = 0, 1, 2, 3 are given by

p0 = a2
1 sin2 θ1

2
cos2 θ2

2
+ a2

2 cos2 θ1

2
sin2 θ2

2
+ cos2 θ1

2
cos2 θ2

2

N−2∑
i=1

a2
2+i,

p1 = a2
1 sin2 θ1

2
sin2 θ2

2
+ a2

2 cos2 θ1

2
cos2 θ2

2
+ cos2 θ1

2
sin2 θ2

2

N−2∑
i=1

a2
2+i,
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p2 = a2
1 cos2 θ1

2
cos2 θ2

2
+ a2

2 sin2 θ1

2
sin2 θ2

2
+ sin2 θ1

2
cos2 θ2

2

N−2∑
i=1

a2
2+i,

p3 = a2
1 cos2 θ1

2
sin2 θ2

2
+ a2

2 sin2 θ1

2
cos2 θ2

2
+ sin2 θ1

2
sin2 θ2

2

N−2∑
i=1

a2
2+i. (B6)

For a three-qubit state belonging to the W class [see
Eq. (50)], measurement on qubit 1 can be described in a way
similar to that for the three-qubit gW state, with f k

0 (k = 0, 1)
given by

f 0
0 = a0 cos

θ

2
+ a1e−iφ sin

θ

2
,

f 1
0 = a0 sin

θ

2
− a1e−iφ cos

θ

2
, (B7)

and f k (k = 0, 1), given by

f 0 = cos
θ

2
, f 1 = sin

θ

2
(B8)

and

p0 =
∣∣∣∣a0 cos

θ

2
+ a1e−iφ sin

θ

2

∣∣∣∣
2

+ (a2
2 + a2

3

)
cos2 θ

2
,

p1 =
∣∣∣∣a0 sin

θ

2
− a1e−iφ cos

θ

2

∣∣∣∣
2

+ (a2
2 + a2

3

)
sin2 θ

2
. (B9)

APPENDIX C: THREE-QUBIT GW STATES
WITH COMPLEX COEFFICIENTS

Here, we present the crucial steps for computing the local-
izable entanglement over qubits 2 and 3 in a three-qubit gW
state |ψ〉 = a1|100〉 + a2|010〉 + a3|001〉 [Eq. (19) with N =
3] with complex coefficients a1, a2, and a3, via a measure-
ment on qubit 1. The postmeasured states |ψk〉 [Eq. (22)] are
given by |ψk〉 = ck

0|00〉 + ck
1|01〉 + ck

2|10〉, k = 1, 2, such that
|ck

0|2 + |ck
1|2 + |ck

2|2 = 1, where the forms of ck
i , i = 0, 1, 2,

k = 1, 2 are given in Sec. II B. The state |ψk〉〈ψk|, upon partial
transposition, becomes⎡

⎢⎢⎢⎢⎣

∣∣ck
0

∣∣2 ck
1ck∗

0 ck
0ck∗

2 ck
1ck∗

2

ck
0ck∗

1

∣∣ck
1

∣∣2 0 0

ck
2ack∗

0 0
∣∣ck

2

∣∣2 0
ck

2ck∗
1 0 0 0

⎤
⎥⎥⎥⎥⎦, (C1)

having the eigenvalues

λ0 = −∣∣ck
1

∣∣∣∣ck
2

∣∣,
λ1 = ∣∣ck

1

∣∣∣∣ck
2

∣∣,
λ2 = 1

2

(
1 −

√
1 − 4

∣∣ck
1

∣∣2∣∣ck
2

∣∣2),
λ3 = 1

2

(
1 +

√
1 − 4

∣∣ck
1

∣∣2∣∣ck
2

∣∣2), (C2)

among which only λ0 is negative. Therefore, 〈Ek
23〉 = |ck

1||ck
2|.

On the other hand, partial transpose of the state |ψ〉〈ψ | with
respect to the bipartition 1 : 23 followed by a diagonalization

leads to the nonzero eigenvalues

λ0 = |a1|2,
λ1 = −|a1|

√
|a2|2 + |a3|2,

λ2 = |a1|
√

|a2|2 + |a3|2,
λ3 = |a2|2 + |a3|2, (C3)

leading to E1:23 = |a1|
√

|a2|2 + |a3|2. Replacing ck
i as per def-

inition in terms of ai in 〈E23〉 and using E1:23, one can arrive
at Propositions II and III and the corresponding corollaries.

APPENDIX D: SPECIFIC EXAMPLES

In this Appendix, we demonstrate a number of results
discussed in Secs. II and III using specific examples.

a. Upper bound for gW states. Consider the cases of N =
3, 4, for which the family of states providing the upper bound
of 〈EA1A2〉 in the case of gW states with real coefficients can
be written as

|�3〉 = a|100〉 +
√

1 − a2

2
(|010〉 + |001〉), (D1)

|�4〉 = a|1000〉 +
√

1 − a2

2
|0100〉 + b|0010〉

+
√

1 − a2 − 2b2

2
|0001〉, (D2)

where a, b are real numbers. The behavior of 〈EA1A2〉 as a func-
tion of a, b is shown in Figs. 2(a) and 2(b). Also, 〈EA1A2〉 for
the state |�3〉 provides an upper bound for 〈EA1A2〉 correspond-
ing to all three-qubit gW states with complex coefficients.
This is demonstrated by the 〈EA1A2〉 values corresponding to
106 Haar uniformly generated three-qubit gW states lying
below the upper bound.

b. Maximum bipartite entanglement for gW states. The line
EA1A2:B = 1 corresponds to the family of states given by

∑
i∈B

a2
i =

(
4
∑
i∈A

a2
i

)−1

. (D3)

Specifically, for a three-qubit system, this family is given by

|�3〉 =
√

1

2
|100〉 + a|010〉 +

√
1

2
− a2|001〉, (D4)

while for N = 4, n = m = 1,

|�4〉 =
√

1

2
|1000〉 + a|0100〉 + b|0010〉

+
√

1

2
− a2 − b2|0001〉. (D5)
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