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Bell-nonlocality quantifiers and their persistent mismatch with the entropy of entanglement
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For some commonly used nonlocality quantifiers, the maximally nonlocal state may not coincide with the
maximally entangled state, what became known as the anomaly of nonlocality. More recently, nonanomalous
quantifiers have been defined, for which maximal entanglement and maximal nonlocality do coincide. In this
work we investigate in detail how these quantifiers behave for nonmaximal-resource states and show that some
mismatch remains between the studied figures of merit. Besides the nonlocal volume (a quantifier that counts
the volume of the set of behaviors accessible to a specific state that gives rise to nonlocality), we present
an alternative quantity referring to states and based on behaviors, the trace-weighted nonlocal volume. The
construction is based on the nonlocal volume integral, but weighted by a quantifier of nonlocality for behaviors
(the shortest distance between the behavior and the local set). Although in all investigated scenarios the anomaly
is not present, the nonlocality quantifiers as compared to the entropy of entanglement are inversely related for
some set of states within some Bell scenarios. In the investigated situations this phenomenon occurs when
the considered states go through a change of rank. This fact is discussed in general and illustrated through
computations for the (2,3,2) scenario.
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I. INTRODUCTION

Quantum nonlocality is an eccentric phenomenon when
viewed through the eyes of a classical observer. Bell non-
locality is a consequence of entanglement and implies that
the statistics of certain measurements performed on spatially
separated entangled quantum systems cannot be explained by
local hidden-variable models [1]. The debate around quantum
nonlocality started during the development of the mathemat-
ical foundations of quantum theory [2] and gained the status
of a theorem mainly with the works of Bell [1]. Besides its
importance in foundations of quantum theory, Bell nonlocality
has been raised to the status of a physical resource due to
its intimate relationship with quantum information science,
where it is necessary to enhance our computational and in-
formation processing capabilities in a variety of applications
[3,4].

Since nonlocality has been identified as a resource, it is es-
sential to formulate resource theories of nonlocality, allowing
not only for operational interpretations but also for the precise
quantification of nonlocality. Given its pervasive importance,
the resource theory of entanglement [5] is arguably the most
well understood and vastly explored and thus has become the
archetypal example for the development of resource theories
of other quantum phenomena [6–12]. Entanglement is a nec-
essary ingredient for Bell nonlocality, but they refer to truly
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different resources [4], as there are entangled states that can
only give rise to local correlations [13].

Recently, several nonlocality quantifiers for behaviors have
been proposed [4,8,14–30] and a proper resource theory
of nonlocality for behaviors has been developed [8,29]. Of
special importance to this work is the nonlocality quan-
tifier based on the trace distance presented in Ref. [31],
which measures the l1 distance between a given behavior and
the local polytope. It is shown in this reference that, for the
(2, 2, d ) scenario, the maximum numerical violation of the
Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality
grows with d and likewise the maximum value of the trace
distance follows the same trend.

We also have several examples of nonlocality quantifiers
for a resource theory where the objects are quantum states
[15,19,23,32–34]. Different measures will have different op-
erational meanings and do not necessarily have to agree on
the ordering for the amount of nonlocality. For instance,
a natural way of quantifying nonlocality is the maximum
violation of a specific Bell inequality allowed by a given
quantum state. However, we might also be interested in quan-
tifying the nonlocality of a state by the amount of noise (e.g.,
detection inefficiencies) it can stand before becoming local
[32,35,36]. Interestingly, these two measures can be inversely
related as demonstrated by the fact that in the Clauser-Horn-
Shimony-Holt (CHSH) scenario [37] the resistance against
detection inefficiency increases as the entanglement of the
state decreases [15], also reducing the violation of the CHSH
inequality.

A curious feature of quantifiers based on Bell inequalities
is that the highest violation value is not always achieved by
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the maximally entangled state, a property known as anomaly
of nonlocality [32]. This is a counterintuitive property since it
was initially expected that more entanglement would lead to
more nonlocality, at least for maximum-resource states. This
observation led to the investigation of whether the anomaly
was a property of this specific quantifier or if it was a manifes-
tation of the fact that nonlocality and entanglement are distinct
resources. With this purpose, the authors of [23] proposed
a nonlocality quantifier called volume of violation, which
counts the volume of the set of measurements that give rise to
violation of the chosen inequality when applied to this state.
This quantifier removes the anomaly for qutrits and ququarts,
since in this case maximally entangled states are maximally
nonlocal (with respect to the volume of violation). In Ref. [24]
the authors analyzed several scenarios, including up to five
qubits and different entangled states. They showed that the
probability of violation increases as we increase the number
of measurements and the maximum violation for these dimen-
sions is obtained by the maximally entangled state. Several
properties of these quantifiers were proven in Ref. [38].

The disadvantage of the volume of violation is that it
focuses on one inequality and for scenarios with more than
two parties, measurements, or outcomes it is known that there
are many nonequivalent families of Bell inequalities. Hence,
a single inequality cannot capture the entire structure of the
set of local behaviors. For example, considering only a single
CGLMP inequality, the anomaly of nonlocality reappears for
d > 7 [34].

Another nonlocality quantifier was proposed to solve this
problem. The definition is similar to the definition of the
volume of violation, but it takes the entire space of behaviors
into consideration: It counts the volume of the set of mea-
surements that give rise to nonlocal behaviors when applied
to this state. The maximum nonlocal volume is obtained with
the maximally entangled state for dimensions up to d = 10
[39], which indicates that the quantifiers based on the volume
have a greater relevance when calculated over the polytopes
than considering a specific inequality. Recently, a quantifier
based on both the volume of violation and noise resistance
was studied, where these two quantities are combined [40],
and an experiment based on this combination has also been
performed [41].

However, the nonlocal volume does not completely remove
the anomaly of nonlocality. It was shown in Ref. [24] that
this quantifier exhibits a weak anomaly for qutrits: The max-
imum volume is achieved for the maximally entangled state,
but the nonlocal volume is not a monotonic function of the
state’s entanglement. We suggest that the appearance of this
nonmonotonicity, despite the coincidence of the maxima, is
an unavoidable manifestation of the intrinsic inequivalence
between entanglement and nonlocality.

In this paper we investigate the relation between nonlo-
cality and entanglement for families of pure states. While
nonseparability is quantified with the entropy of entan-
glement, we use two figures of merit to investigate Bell
nonlocality, namely, the nonlocal volume and an analogous
quantity where the integration is weighted by the trace dis-
tance [31] (we call it the trace-weighted nonlocal volume).
Initially, we reproduce some results in previous works for
the scenarios (2,2,2) and (2,3,2). We also verify whether this

measure of nonlocality satisfies the properties listed in [38].
Finally, we use these quantities to study the weak anomaly
of nonlocality reported in [24] and show that some mismatch
between entanglement and nonlocality remains, far from the
maximally entangled and maximally nonlocal state. Particu-
larly when the estate smoothly passes from a lower to a higher
rank, the entropy of entanglement always increases whereas
the employed nonlocality quantifiers may decrease slightly.
Although the relation between entanglement and nonlocality,
for arbitrary Bell scenarios and states, is a complex problem
with several open questions, we hope that the present work
may help in the understanding of some features of the general
problem.

II. PRELIMINARIES: GEOMETRY OF
THE SET OF BELL CORRELATIONS

We consider a bipartite Bell scenario in which Alice
and Bob perform measurements labeled by variables Ax

and By, obtaining measurement outcomes described by vari-
ables a and b, respectively. The description of Alice’s and
Bob’s outcomes is given by a set of probability distributions
p(a, b|x, y), called a behavior, that gives the probability of
outcomes a and b given inputs x and y.

The fact that Alice and Bob are spatially separated and can-
not communicate with each other implies that the statistics of
a measurement on one part is independent of the measurement
choice of the other. These assumptions imply a set of linear
constraints known as nonsignaling conditions

p(a|x) =
∑

b

p(a, b|x, y) =
∑

b

p(a, b|x, y′), (2.1)

an analogous expression being valid for the marginal p(b|y),
regarding summations over a, for inputs x and x′. A stronger
constraint on the description of the experiment is that the
statistics of Alice and Bob be consistent with the assumption
of local causality, which implies that the probability distribu-
tions can be decomposed as

p(a, b|x, y) =
∑

λ

p(λ)p(a|x, λ)p(b|y, λ). (2.2)

For this type of behavior, correlations between Alice and Bob
are mediated by the variable λ that thus suffices to compute the
probabilities of each of the outcomes, that is, p(a|x, y, b, λ) =
p(a|x, λ), and similarly for b. The behaviors that can be de-
composed in this way are called local behaviors.

Bell’s theorem [1] states that Alice and Bob can perform
measurements in a entangled quantum state to generate be-
haviors that cannot be decomposed in the form (2.2). These
can be obtained by local measurements Mx

a and My
b on distant

parts of a bipartite state ρ that, according to quantum theory,
can be described by

p(a, b|x, y) = Tr
[(

Mx
a ⊗ My

b

)
ρ
]
. (2.3)

In general, the set of local behaviors L is a strict subset of
the quantum behaviors Q that in turn is a strict subset of
nonsignaling behaviors NS .

The local set is a polytope and hence any local behavior can
be written as a convex sum of a finite set of extremal points.
If we represent a behavior p(a, b|x, y) as a vector p with
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|x||y||a||b| components, the condition (2.2) can be written
succinctly as p = A · λ, with λ a probability vector over the set
of variables λ, with components λi = p(λ = i), and A a matrix
indexed by i and the multi-index variable j = (x, y, a, b) with
Aj,i = δa, fa (x,λ=i)δb, fb(y,λ=i), where fa and fb are deterministic
functions that give the values of measurements x and y when
λ = i. Thus, checking whether p is local amounts to a simple
feasibility problem that can be written as the linear program
[4,24,25,42,43]

min
λ∈Rm

v · λ

subject to p = A · λ,

λi � 0,∑
i

λi = 1, (2.4)

where v represents an arbitrary vector with the same dimen-
sion m = |x||a||y||b| as the vector representing the variable λ.

Since the local set is a polytope, alternatively, it can be
characterized by a finite number of facet-defining Bell in-
equalities. Hence, testing membership in L can be done by
testing if the behavior satisfies all the facet-defining Bell in-
equalities for that scenario. Although this is equivalent to the
linear program (LP) formulation, it cannot be done in practice
because finding the set of all facet-defining Bell inequalities
is an extremely hard problem [44].

A. Quantifying nonlocality of a behavior

The LP (2.4) can be slightly modified to define a nonlo-
cality quantifier based on the trace distance [31] between two
probability distributions q = q(x) and p = p(x):

D(q, p) = 1

2

∑
x

|q(x) − p(x)|. (2.5)

To quantify nonlocality we use the distance between the prob-
ability distribution generated in a Bell experiment and the
closest classical probability. We are then interested in the
trace distance between q(a, b, x, y) = q(a, b|x, y)p(x, y) and
p(a, b, x, y) = p(a, b|x, y)p(x, y), where p(x, y) is the prob-
ability of the inputs that we choose to fix as the uniform
distribution, that is, p(x, y) = 1

|x||y| .
We define the quantifier QNL(q) for the nonlocality of

behavior q = q(a, b|x, y) as

QNL(q) = 1

|x||y| min
p∈L

D(q, p)

= 1

2|x||y| min
p∈L

∑
a,b,x,y

|q(a, b|x, y) − p(a, b|x, y)|. (2.6)

This is the minimum trace distance between the distribution
under testing and the set of local distributions. Geometrically,
it can be understood as how far we are from that set with
respect to the �1-norm, as shown in Fig. 1.

B. Quantifying nonlocality of a quantum state

We now address the problem of quantifying nonlocality
of a quantum state ρ. Since from ρ we can generate many
different nonlocal behaviors p, this is not a trivial problem.

q

p∗

d

L

NS

FIG. 1. Schematic drawing of a distribution q ∈ NS and d =
QNL (q), the distance (with respect to the �1 norm) from q to the
closest local distribution p∗ ∈ L.

One way of defining a nonlocality quantifier for quantum
states is to maximize the degree of violation of a Bell in-
equality over all possible measurements for Alice and Bob
and to associate a greater numerical violation with a greater
degree of nonlocality. This association has generated some
debatable conclusions. For example, using the usual measure,
the so-called anomaly of nonlocality appears [32,45]. Con-
sider the CGLMP inequality in the (2,2,3) scenario [46] and a
two-qutrit system with the state

|ψ (γ )〉 = 1√
2 + γ 2

(|00〉 + γ |11〉 + |22〉). (2.7)

For the maximally entangled state γ = 1, the optimal choice
of measurements leads to a value of the CGLMP function
equals to 4(2

√
3+3)

9 � 2.873 [46]. However, the authors in [32]
found that, for the very same choice of settings, another state
gives a higher violation. Specifically, the violation of the

CGLMP inequality equal to 1 +
√

11
3 � 2.915 is obtained for

the nonmaximally entangled state with γ =
√

11−√
3

2 � 0.792.

This fact is known as anomaly of nonlocality.
In Ref. [23] the authors presented an alternative measure

to quantify nonlocality, called volume of violation. While the
previous measure takes only the settings that lead to the max-
imum violation, the volume of violation takes into account
all the settings that produce a violation of a Bell inequality.
For the calculation of this quantity, for a particular state, we
perform an integration in the region that leads to the violation
of a fixed Bell inequality [45]. In general, we can write

VI (ρ) = 1

VT

∫
�

dnx, (2.8)

where � is the set of measurement choices for Alice and
Bob that lead to a violation of the inequality I for state ρ

and VT = ∫
	

dnx is the volume of the set 	 of all possible
measurement choices for Alice and Bob. Note that dnx will
display the format that gives equal weights to any setting.
Thus, state ρ is more nonlocal than state σ if and only if
VI (ρ) > VI (σ ). Also, if for state ρ the volume of violation is
VI (ρ) = 0, we say that state ρ is local with respect to the given
inequality. Following the same reasoning, VI (ρ) = 1 indicates
that ρ is maximally nonlocal with respect to that inequality.
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This measure uses the relative volume of measurement
choices that lead to violation of a particular Bell inequality to
quantify nonlocality. Hence, VI (ρ) has a direct interpretation:
It corresponds to the probability of violating a particular Bell
inequality with state ρ when the measurement configuration
is chosen randomly.

The volume of violation is a measure of nonlocality with
many good properties, as already reported in Ref. [23]. Never-
theless, VI (ρ) does not take into account all the measurement
configurations that lead to nonlocal behaviors, but only the
ones that lead violations of a particular Bell inequality. Except
for the simplest scenario (2,2,2), there are many nonequivalent
families of Bell inequalities and hence VI (ρ) gives only a
lower bound to the relative volume of measurement choices
that lead to nonlocality.

In Ref. [24] the authors considered a modification of the
volume of violation, called nonlocal volume, replacing the
violation of a Bell inequality by membership of the cor-
responding behavior in the polytope of local correlations.
Hence, the nonlocal volume takes into account all the set-
tings that produce a nonlocal behavior, which is in general
strictly larger than the set of behaviors violating a single Bell
inequality. For the calculation of this quantity, for a particular
state, we perform an integration in the region � of the set
of measurement setups that lead to a nonlocal behavior. In
general, we can write

V (ρ) = 1

VT

∫
�

dnx, (2.9)

where VT is defined as before. Again we consider an integra-
tion that gives equal weights to any setting.

III. BALANCED CLASS OF QUANTIFIERS

Now we are in a position to define a hybrid class of
figures of merit, which corresponds to a merge of the non-
local volume and some nonlocality quantifier for individual
behaviors. This amounts to an integration over the set of
measurement choices that give a nonlocal behavior but using
a nonlocality quantifier Q defined in the set of behaviors as a
weight in the integral

VQ(ρ) = 1

VT

∫
�

Q(x)dnx, (3.1)

where Q(x) is the quantifier Q for the behavior generated by
the state and measurement settings x and � and VT are defined
as before. We consider only faithful quantifiers: Q(p) > 0 if
and only if p /∈ L.

This quantifier, which we call Q-weighted nonlocal vol-
ume, can be interpreted in a similar way. As the nonlocal
volume, it takes into account all the settings that produce
a nonlocal behavior for state ρ, but it sums with a higher
weight the behaviors that are more nonlocal according to the
quantifier Q. In particular, we are interested in the nonlocality
quantifier for states obtained when we choose Q = QNL,

VNL(ρ) = 1

VT

∫
�

QNL(x)dnx, (3.2)

where QNL(x) is the trace distance for the behavior generated
by the state and measurement settings x. We call this quantifier
trace-weighted nonlocal volume.

A. Properties

In Ref. [38] the authors showed that the nonlocal volume is
invariant under local unitaries and that it is strictly positive for
entangled bipartite states. The proofs can be slightly modified
to show that these properties are also true for VQ.

Theorem 1. VQ is invariant under local unitaries.
Proof. Let ρ ′ = U1 ⊗ U2ρU †

1 ⊗ U †
2 , where U1 and U2 are

local unitaries for subsystems 1 and 2, respectively. The
behavior generated with measurements {Mi} and {Ni} and
state ρ is equal to the behavior generated with measurements
{U †

1 MiU1} and {U †
2 NiU2} and state ρ ′. Hence, the sets � are

the same for ρ and ρ ′, which implies that VQ(ρ) = VQ(ρ ′). �
Theorem 2. If Q is a continuous function, for all pure bi-

partite entangled states, in a scenario with at least two choices
of two-outcome measurements, VQ is strictly positive, that is,
VQ(|ψ〉) = 0 if and only if |ψ〉 is a product state.

Proof. Since |ψ〉 is entangled, we know from [47] that there
exist measurements {Mi} and {Nj} in the simplest scenario
(2,2,2) such that the corresponding behavior is nonlocal. By
continuity of the probabilities p(ab|xy) as a function of the
measurements and continuity of Q as a function of p, there
is a ball around {Mi} and {Nj} such that, for any choice of
measurements inside this ball, Q is strictly positive. Since we
are integrating a strictly positive function over a set that is of
measure larger than zero, this implies that VQ(|ψ〉) > 0.

On the other hand, if |ψ〉 is separable, every behavior
generated with |ψ〉 is local and hence Q(x) = 0 for every x
and VQ(|ψ〉) = 0. �

It is also easy to see that VQ(ρ) is always upper bounded by
V (ρ) for any Q satisfying 0 � Q � 1. In fact, if Q is faithful,
we can write

VQ(ρ) = 1

VT

∫
	

Q(x)dnx (3.3)

and

V (ρ) = 1

VT

∫
	

χ (x)dnx, (3.4)

where χ is the characteristic function of the nonlocal set, that
is,

χ (p) =
{

1 if p /∈ L
0 if p ∈ L.

(3.5)

If p is local and Q is faithful, Q(p) = χ (p) = 0. If p is non-
local, Q(p) � 1 = χ (p), which implies that Q(p) � χ (p) for
all p and hence VQ(ρ) � V (ρ) for all ρ.

Reference [38] also showed that the nonlocal volume goes
to 1 in the limit where both parties have an infinite number of
measurements. The proof in this case cannot be easily mod-
ified to show that this is also true for VQ. Numerical results
in Fig. 2 indicate that if we choose Q = QNL, VNL seems
to increase monotonically with the number of measurements
n, which would be the desired behavior. However, it is not
possible to claim its limit as n goes to infinity is 1 based
on this evidence only. Since VQ is always smaller than the
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FIG. 2. Trace-weighted nonlocal volume for the maximally en-
tangled two-qubit state as a function of the number of measurements
each part can execute in the Bell scenario, i.e., scenarios of the type
(2, n, 2). In this figure we normalized the (2,2,2) result to unity.

nonlocal volume, we cannot discard the possibility that VQ

goes to a as n goes to infinity, with 0 < a < 1. Whether or
not this property holds for VNL is an open problem.

B. Revisiting simple scenarios

In this section we test the quantifier VNL, analyzing its per-
formance when compared to previous results in the literature.
Behaviors are determined to be nonlocal in our simulations for
trace distances with magnitude larger than 10−8. We start by
checking the effect of the weight on the nonlocal volume for
the simplest situation, the (2,2,2) scenario. The local set in this
case has a simple structure, since there is only one family of
Bell inequalities, and we expect that the plots for the entropy
of entanglement, the nonlocal volume, and the Q-weighted
nonlocal volume all have the same comportment if Q is a
continuous faithful nonlocality quantifier for behaviors. We
consider the family of states parametrized by

|ψ (α)〉 = α|00〉 +
√

1 − α2|11〉 (3.6)

and plot the nonlocal volume (red dotted line), the trace-
weighted nonlocal volume (blue solid line), and the entropy
of entanglement (black dashed line) in Fig. 3(a). For both the
nonlocal volume and the trace-weighted nonlocal volume, the
maximum nonlocality is attained at the maximally entangled
state. We can also see that the weighted version is smaller than
or equal to the nonweighted version considering a normaliza-
tion using the maximum value for each curve.

The next interesting case is the (2,2,3) scenario (two parts
sharing two qubits with three measurements per part). In
Fig. 3(b) the weighted and the nonweighted versions are com-
pared with the entropy of entanglement for the same qubit
states, Eq. (3.6). Despite the more complex scenario, the same
qualitative features are observed as compared to the CHSH
scenario.

Now we get to the scenario in which the anomaly was
first observed. Since the nonlocal volume has been shown
to be nonanomalous, we only compare VNL and the entropy
of entanglement for the family of states given in (2.7) (see

FIG. 3. In blue (solid line) our quantifier lies below its non-
weighted version in red (dotted line), as expected, while maintaining
the point of maximum, which coincides with the maximum of the
dashed curve representing the entropy of entanglement, for (a) the
CHSH scenario and (b) the (2,2,3) scenario (also known as the 3322
scenario).

Fig. 4). For this family of states, we see that the maximum
nonlocality is achieved by the maximally entangled state, as
in the previous scenarios with qubits. The same behavior is
observed for the nonweighted version, as shown in Ref. [24].
However, in general, VNL, as is the case for V , is not a mono-
tonic function of the entropy of entanglement. This property
is known as weak anomaly of nonlocality. Some persistent
nonmonotonicity among several kinds of nonlocality mea-
sures and the entropy of entanglement S should in fact be
expected. If it were possible to define a nonlocality quantifier
corresponding to a convex function of S, for all states and
scenarios, one would be forced to conclude that entanglement
and Bell nonlocality would after all be the same resource. This
would be hardly acceptable.

It is probably a reasonable conjecture to state that it is
not possible to define a measure of nonlocality MN which is
a monotonic function of the entropy of entanglement S for
all Bell scenarios and arbitrary pure quantum states. As we
saw, however, it is possible to provide quantifiers for which
maximum-resource states do coincide. In the remainder of
this work, we investigate how the arguably necessary weak
anomaly manifests for these quantifiers. We will see that by
pushing the mismatch between nonlocality and entanglement
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FIG. 4. The maximum of the trace-weighted nonlocal volume
(blue solid line) is reached at the state exhibiting the maximum
entanglement entropy (black dashed line).

away from maximum-resource states, the effect shows up for
lower entanglement in the range of parameters corresponding
to a continuous change of rank, when the state ceases (starts)
to have a component in some subspace of H.

IV. WEAK ANOMALY OF NONLOCALITY
AND RANK TRANSITION

Still in the same system of qutrits, we consider the GHZ(α)
states parametrized as

|GHZ(α)〉 = sin(α)|00〉 + cos(α)√
2

(|11〉 + |22〉). (4.1)

Interestingly, nonlocality does not increase monotonically
with α for small values of this parameter. Figure 5 shows
the weighted and nonweighted versions of nonlocal volume
as a function of α. The inset shows what is happening close
to the local minima, emphasizing the different behavior of the
quantifiers. While the entropy of entanglement S (not shown)

FIG. 5. Weak anomaly from the perspective of the nonlocal vol-
ume and trace-weighted nonlocal volume. We see how the weight
compresses the normalized curve slightly. The close-up view of the
region containing the local minima shows that each quantifier attains
the minimum at a different angle (bold ticks).

grows monotonically until the maximally entangled state is
attained, both the nonlocality quantifiers considered here are
decreasing functions of α, between α = 0 and some small
αcritical. As in the previous cases, they reach the peak at the
maximally entangled state, but have a shallow local minimum
for some small α. Note that the passage from α = 0 to α > 0
corresponds to the transition between the rank-2 maximally
entangled state (|11〉 + |22〉)/

√
2 to the rank-3 state approx-

imately equal to α|00〉 + (1 − α2)(|11〉 + |22〉)/
√

2. On the
one hand, the state becomes full rank, but, on the other hand, it
becomes a less symmetric state. This compromise has distinct
effects on the entropy of entanglement and on the nonanoma-
lous nonlocality measures addressed here.

The local minima are reached for different values of α

for the weighted and nonweighted versions (αcritical ≈ 6o for
V and αcritical ≈ 8o for VNL). This shows that the detailed
structure of the weak anomaly is not an intrinsic characteristic
of the scenario, but is dependent on the quantifier.

To investigate further how entanglement and nonlocality
can behave differently, we study how these quantities change
when we go from a lower-rank state to a full-rank state. We
first show that the entropy of entanglement never decreases in
this situation.

Theorem 3. The entropy of entanglement always increases
when making a continuous transition from a lower-rank state
|ψ〉 to a higher-rank state |ψ ′〉.

Proof. We will consider the higher-rank state to be full
rank; the extension of the proof to the general case described
above is immediate. Let |ψ〉 ∈ H = H(A) ⊗ H(B), dim H =
D. Suppose that the rank of |ψ〉 is smaller than

√
D, so its

Schmidt decomposition reads

|ψ〉 =
d−1∑
i=0

αi|ii〉, (4.2)

where
∑d−1

i=0 |αi|2 = 1 and d <
√

D, leading to the
entropy of entanglement: E = −∑d−1

i=0 |αi|2 log2 |αi|2
Ebits. Consider now another state |ψ ′〉 which is
full rank rank(|ψ ′〉) = √

D, |ψ ′〉 ∝ δ|φ〉 + |ψ〉, where

|φ〉 = ∑√
D−1

i=d βi|ii〉,
∑√

D−1
i=d |βi|2 = 1, and δ ∈ C. Using

that 〈φ|ψ〉 = 0,

|ψ ′〉 = 1√
1 + |δ|2

(δ|φ〉 + |ψ〉),

whose entropy of entanglement is given by

E ′ = − |δ|2
1 + |δ|2

√
D−1∑
i=d

|βi|2 log

( |δ|2|βi|2
1 + |δ|2

)

− 1

1 + |δ|2
d−1∑
i=0

|αi|2 log

( |αi|2
1 + |δ|2

)
.

Thus

E ′ = 1

1 + |δ|2 [−|δ|2 log |δ|2 + |δ|2Eφ

+ |δ|2 log(1 + |δ|2) + E + log(1 + |δ|2)].
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FIG. 6. Trace-weighted nonlocal volume for different families of
states as a function of α; a family in this case is labeled by the value
of its β parameter in GHZ(α, β ). Lighter curves stand for greater
entanglement between states |11〉 and |22〉.

Now we take |δ|2 � 1,

E ′ → (1 − |δ|2)[−|δ|2 log |δ|2 + |δ|2Eφ

+ E + |δ|2 + O(|δ|4)].

Since −(|δ|2 log |δ|2)/|δ|2 → ∞ when δ → 0, the leading-
order expression is E ′ ∼ (1 − |δ|2)[−|δ|2 log |δ|2 + E ]. So
pure-state bipartite entanglement always increases when we
make a continuous change from a lower-rank state |ψ〉 to a
higher-rank state |ψ ′〉. In addition, the leading-order entan-
glement gain is independent of the “direction” from which the
new subspace is visited (independent of |φ〉 and of Eφ):

�E = E ′ − E ∼ −|δ|2 log |δ|2 > 0 (4.3)

for |δ|2 small. �
As we already know, nonlocality can behave differently

when changing from a low-rank to a higher-rank state. Fig-
ure 6 shows an investigation within regions of states with
partial entanglement between states |11〉 and |22〉 in the GHZ
state with an extra parameter:

|GHZ(α, β )〉 = sin(α)|00〉 + cos(α)√
2

(β|11〉

+
√

1 − β2|22〉). (4.4)

It is clear that for β = 1, the state with α = 0 is separable
and thus Bell local. Therefore, by continuity, there must be
some finite interval ending at β = 1 for which all Q-weighted
nonlocal volumes become increasing functions of α, restoring,
for this particular scenario and these states, the monotonicity
between nonlocality and entanglement. Notice in Fig. 6 that
the minimum of the anomaly moves towards zero degree as
we increase the value of β, i.e., as we consider a starting point
closer to a rank-1 state (|11〉). Somewhere between β = 1 and
β = 0.925 the weak anomaly shows up again. This is again
related to a change in the state’s rank.

This illustrates how the relation between entanglement and
nonlocality is complex, depending on many aspects of the

scenario and on the tools we use to quantify these properties.
Although this may appear counterintuitive at first sight, since
nonlocality is a consequence of entanglement, we stress that
entanglement and nonlocality are indeed different resources,
which supports the conjecture that they cannot be described by
figures of merit which are monotonic functions of each other,
in general.

V. CONCLUSION

The contribution of this work is twofold. First, we have
provided an alternative way of quantifying nonlocality of
states based on the Bell nonlocality of behaviors. The key
difference from preceding quantities was the introduction of
a quantifier of nonlocality to weight each contribution from
each behavior in the nonlocal volume. An additional degree of
freedom was then introduced. Here we explored it by consid-
ering the simplest possibility among the ones at our disposal in
the literature when the question is how to compare two quan-
tum probability distributions: the trace distance. We proved
that this quantifier has several good properties, including its
formulation in terms of a linear programming.

Second, we used two nonanomalous nonlocality quantifiers
to investigate the persistent weak anomaly. For the situations
addressed here this phenomenon arises in the neighborhood
of a change in the rank of the state. The local minimum for
nonlocality with the trace-weighted nonlocal volume occurs
at a different state as compared to the minimum for the non-
weighted version. We conjecture that this nonmonotonicity,
despite the coincidence of the maxima, is an unavoidable man-
ifestation of the intrinsic inequivalence between entanglement
and nonlocality. If no anomaly remains, that is, if nonlocality
increases monotonically with entanglement, in general, we
would conclude that nonlocality and entanglement are equiv-
alent resources, which we know not to be true.

It is a topic for further investigation how the behavior of
the weighted version would be for different quantifiers Q and
whether we can prove that every nonlocality quantifier for
states exhibits some kind of anomaly. Moreover, its robustness
against noisy systems also remains to be tested.

It should also be noted that in the integral defining the non-
local volume, we considered projective measurements only.
The next natural generalization would be to consider the set
of positive-operator-valued measures (POVMs), but two diffi-
culties appear. First, there is no natural definition of uniform
measure for POVMs, which makes the quantifier strongly
dependent on the choice of measure we choose to sample
the measurements. Second, numerical results show that the
probability of finding a nonlocal behavior when sampling over
the set of POVMs is very small. In fact, in the first attempt
we made, using Neumark’s dilation theorem and the Haar
measure in the set of unitaries in the larger Hilbert space,
typically a nonlocal behavior was observed in one out of
10 × 106 settings for the (2,2,2) scenario (even for the maxi-
mally entangled state), a simulation which, in addition, takes
much more time to execute.

It would be interesting to know whether it is possible to
define a quantifier of nonlocality that presents the monotonic-
ity of the weighted nonlocal volume with entanglement for
projective measurements. However, we consider that this is
too strong a constraint, probably not possible to fulfill.
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