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Quantum mutual information not only displays the mutual information in the system but also demonstrates
some quantum correlation beyond entanglement. We explore here two alternatives of the multipartite quantum
mutual information (MQMI) based on the von Neumann entropy according to the framework of the complete
measure of the multiparticle quantum system. We show that these two MQMIs are complete and are monogamous
on pure states, and one of them (we call it type-1) is not only completely monogamous but also tightly complete
monogamous, while the other one (we call it type-2) is not. Moreover, we present another two MQMIs by
replacing the von Neumann entropy with the Tsallis q-entropy from the former two ones. It is proved that one of
them displays some degree of “completeness” as a measure of the multiparticle quantum system, but the other
one is not even non-negative and thus it cannot be an alternative of MQMI. We also discuss the triangle relation
for these three alternatives of MQMI. It is shown that the triangle inequalities hold for the former two MQMIs as
that of entanglement measure but the later one fails. We thus can conclude that the type-1 von Neumann entropy
MQMI is a “fine” measure of multipartite quantum correlation.
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I. INTRODUCTION

Quantum correlation, such as entanglement [1], Einstein-
Podolsky-Rosen steering [2,3], quantum discord [4,5], etc.,
has been shown to be an essential resource to achieve quantum
advantages in various nonclassical information processing
tasks [1,6–12]. One of the foremost issues in this area is
to understand and quantify the various forms of quantum
correlations, especially for the multiparticle quantum system.
Consequently, a series of multipartite entanglement measures
[13–18], multipartite quantum discord [19–21], and multipar-
tite quantum mutual information (MQMI) [22,23] have been
proposed.

From the information-theoretical point of view, another
crucial issue for multiparticle quantum systems is the distri-
bution of the correlation up to the given measure. The first
contribution in this connection is the monogamy relation of
entanglement [24], which states that, unlike classical cor-
relations, if two parties A and B are maximally entangled,
then neither of them can share entanglement with a third
party C. Entanglement monogamy has many applications not
only in quantum physics [25–27] but also in other area of
physics, such as no-signaling theories [28,29], condensed
matter physics [30–32], statistical mechanics [25], and even
black-hole physics [33]. Particularly, it is the key feature that
guarantees quantum key distribution is secure [24,34]. The
fundamental matter in this context is to determine whether
a given measure of quantum correlation is monogamous. In-
deed, intense research has been undertaken in this direction.
It has been proved that almost all the bipartite entanglement

*guoyu3@aliyun.com

measures so far are monogamous [28,35–43]. However, these
monogamy relations discussed via the bipartite measures
(e.g., the entanglement measures) display certain drawbacks:
only the relations among A|BC, AB, and AC are revealed, and
the global correlation in ABC and the correlation contained in
part BC are missing [44], where the vertical bar indicates the
bipartite split across which we measure the (bipartite) correla-
tion. In addition, the correlation between any partitions or any
subsystem(s) with the coarsening relation cannot be compared
with each other thoroughly by means of the bipartite measure.
To address such a subject, the so-called complete multipartite
measures and the complete monogamy relation has been ex-
plored for multipartite systems [45–47]. In such a context, a
measure of multipartite correlation should be complete in the
sense that the distribution of the correlation could be depicted
exhaustively [45–47].

It has been shown that many complete multipartite
entanglement measures are completely monogamous; i.e.,
any tripartite state (we take the tripartite case here) that
satisfies [45]

E (ABC) = E (AB) (1)

implies E (AC) = E (BC) = 0, which is equivalent to the as-
sertion that

Eα (ABC) � Eα (AB) + Eα (AC) + Eα (BC) (2)

holds for any state for some α > 0 whenever E is continuous,
where E is a tripartite entanglement measure. In Ref. [46],
with the same strategy as the complete multipartite entan-
glement measure established in Ref. [45], the concept of
complete multipartite quantum discord is investigated and is
proved that the mulitipartite quantum discord is completely
monogamous if it is complete.
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The mutual information, originally defined for the classical
system, i.e., the reciprocal information that is common to or
shared by two or more parties, has an authoritative stand in
the arena of information theory. Quantum mutual information
is well defined for bipartite quantum systems, i.e.,

I (A : B) = S(A) + S(B) − S(AB)

= S(AB‖A ⊗ B) � 0, (3)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy
and S(ρ‖σ ) = Tr(ρ log2 ρ − ρ log2 σ ) is the quantum relative
entropy, S(X ) := S(ρX ), and ρA,B = TrB,AρAB is the reduced
state of ρAB. It reflects the total correlation between the two
subsystems [48]. It can be generalized into the multipartite
case in different ways [22,23]. A natural n-party quantum
mutual information (QMI) defined in the literature is

I (A1 : A2 : · · · : An)

:=
n∑

k=1

S(Ak ) − S(A1A2 · · · An)

= S(A1A2 · · · An‖A1 ⊗ A2 ⊗ · · · ⊗ An). (4)

Another alternative is [23]

I ′(A1 : A2 : · · · : An)

:=
n∑

k=1

S(Ak ) − (n − 1)S(A1A2 · · · An)

= S[(A1A2 · · · An)⊗n−1‖A1 ⊗ A2 ⊗ · · · ⊗ An], (5)

where X denotes the subsystems complementary to those
of X . It is clear that I � 0 and I ′ � 0 and that I (A1 :
A2 : · · · : An) = 0 [or I ′(A1 : A2 : · · · : An) = 0] if and only if
ρA1A2···An is a product state, since the relative entropy is non-
negative and S(ρ‖σ ) = 0 iff ρ = σ . I coincides with I ′ for
n = 2 and this is the trivial case. Any nonproduct state con-
tains some quantum correlation [49,50], and furthermore it
seems that the mutual information increases when the entan-
glement increases [23]. So the QMI displays some quantum
correlation beyond entanglement in the system, and thus it
can be also regarded as a measure of some kind of quantum
correlation.

The main purpose of this paper is to investigate whether
the MQMI is a well-defined multipartite measure from
the strategy in Refs. [45–47]. Namely, whether the MQMI
is complete, monogamous, and completely monogamous.
Throughout this paper, we let HA1A2···An be an n-partite Hilbert
space with finite dimension and we let SX be the set of density
operators acting on HX . ρX (sometimes ρX ) denotes the state
in SX .

The rest of this paper is arranged as follows. In Sec. II,
we review the notion of the coarser relation for multipar-
tite partition of multiparticle states, which is convenient for
discussing the complete measure of multipartite quantum cor-
relation. Section III discusses whether the MQMIs I and I ′
are complete with the same spirit as the complete multipartite
entanglement measure and the complete multipartite quantum
discord put forward in the literature. In Sec. IV, we show
that I is completely monogamous but I ′ is not, and that they
are monogamous only on pure states. In Sec. V we establish

the mutual information in terms of the Tsallis q-entropy and
explore the complete monogamy accordingly. Furthermore,
we explore the triangle inequality for these different MQMIs
and the relation with entanglement in Sec. VI. Finally, we
conclude with some discussions in Sec. VII.

II. COARSER RELATION OF MULTIPARTITE PARTITION

We recall the coarser relation of multipartite partition
proposed in Ref. [47]. Let X1|X2| · · · |Xk be a k-partition of
A1A2 · · · Am, i.e., Xs = As(1)As(2) · · · As( f (s)), s(i) < s( j) when-
ever i < j, and s(p) < t (q) whenever s < t for any possible
p and q, 1 � s, t � k. For instance, partition AB|C|DE is a
3-partition of ABCDE . Let X1|X2| · · · |Xk and Y1|Y2| · · · |Yl be
two partitions of A1A2 · · · An or a subsystem of A1A2 · · · An.We
denote by [47]

X1|X2| · · · |Xk �a Y1|Y2| · · · |Yl , (6)

X1|X2| · · · |Xk �b Y1|Y2| · · · |Yl , (7)

X1|X2| · · · |Xk �c Y1|Y2| · · · |Yl (8)

if Y1|Y2| · · · |Yl can be obtained from X1|X2| · · · |Xk by
(a) discarding some subsystem(s) of X1|X2| · · · |Xk ,
(b) combining some subsystems of X1|X2| · · · |Xk ,
(c) discarding some subsystem(s) of some subsystem(s)

Xk , provided that Xk = Ak(1)Ak(2) · · · Ak( f (k)) with f (k) � 2,
respectively. For example, A|B|C|D �a A|B|D �a B|D,

A|B|C|D �b AC|B|D �b AC|BD, A|BC �c A|B, and
A|BC �c A|C.

Furthermore, if X1|X2| · · · |Xk � Y1|Y2| · · · |Yl , we denote
by �(X1|X2| · · · |Xk − Y1|Y2| · · · |Yl ) [47] the set of all the
partitions that are coarser than X1|X2| · · · |Xk and either ex-
clude any subsystem of Y1|Y2| · · · |Yl or include some but
not all subsystems of Y1|Y2| · · · |Yl . We take the five-partite
system ABCDE for example: �(A|B|CD|E − A|B) = {CD|E ,
A|CD|E , B|CD|E , A|CD, B|CD, B|C|E , B|D|E , A|D|E ,
A|C|E , A|E , B|E , A|C, A|D, B|C, B|D, C|E , D|E}.

III. COMPLETENESS OF MUTUAL INFORMATION

In Ref. [45], the complete multipartite entanglement mea-
sure is defined. With the same spirit in mind, we discuss the
completeness of the MQMI as a measure of the multipartite
quantum system. For more clarity, we recall the definition
of the complete multipartite entanglement measure at first.
A multipartite entanglement measure E (n) is called a unified
multipartite entanglement measure if it also satisfies the uni-
fication condition [45]: i.e., E (n) is consistent with E (k) for
any 2 � k < n. The unification condition should be compre-
hended in the following sense [45]:

E (n)(ρA1A2···Ak ⊗ ρAk+1···An )

= E (k)(ρA1A2···Ak ) + E (n−k)(ρAk+1···An ), (9)

E (n)(ρA1A2···An ) = E (n)(ρAπ (1)Aπ (2)···Aπ (n) ) (10)

for any ρA1A2···An ∈ SA1A2···An and any permutation π , and

E (k)(X1|X2| · · · |Xk ) � E (l )(Y1|Y2| · · · |Yl ) (11)
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for any ρA1A2···An ∈ SA1A2···An whenever X1|X2| · · · |Xk �a

Y1|Y2| · · · |Yl , where X1|X2| · · · |Xk and Y1|Y2| · · · |Yl are two
partitions of A1A2 · · · An or a subsystem of A1A2 · · · An.
E (n) is called a complete multipartite entanglement measure
[45] if it satisfies both the unification condition above and
Eq. (11) holds for all ρ ∈ SA1A2···An whenever X1|X2| · · · |Xk �b

Y1|Y2| · · · |Yl additionally. For instance, E (n)
f is a complete

multipartite entanglement measure, and there do exist uni-
fied multipartite entanglement measures that are not complete
[45]. For the coarser relation of type (c), it is automatically
true for any entanglement measure; i.e., Eq. (11) holds for all
states that obey the coarser relation �c, since the partial trace
is a specific LOCC (local operation and classical communica-
tion) and entanglement is nonincreasing under LOCC.

With this scenario in mind, we now begin to investigate the
completeness of the MQMIs I and I ′. It is clear that

I (A1 : A2 : · · · : An) = I (Aπ (1) : Aπ (2) : · · · : Aπ (n) )

and

I ′(A1 : A2 : · · · : An) = I ′(Aπ (1) : Aπ (2) : · · · : Aπ (n) )

for any ρA1A2···An ∈ SA1A2···An and any permutation π . Analo-
gous to Eq. (9), we can prove that

I (A1 : A2 : · · · : An)

= I (A1 : · · · : Ak ) + I (Ak+1 : · · · : An) (12)

whenever I (A1A2 · · · Ak : Ak+1 · · · An) = 0; i.e., ρA1A2···An =
ρA1A2···Ak ⊗ ρAk+1 ··· An equivalently. In fact, I (A1:A2:· · ·:An) =∑n

i=1 SAi − SA1A2···An = ∑n
i=1 SAi − SA1A2···Ak − SAk+1 :···: An =

I (A1 : · · · : Ak ) + I (Ak+1 : · · · : An), which is straightforward,
where SX := S(X ). For I ′, we take n = 4 for example.
If I ′(AB : CD) = 0 (i.e., ρABCD = ρAB ⊗ ρCD), then
I ′(A : B : C : D) = SABC + SBCD + SABD + SACD − 3SABCD =
[(SAB + SC ) + (SB + SCD) + (SA + SCD) + (SAB + SD)] −
3(SAB + SCD) = (SA + SB − SAB) + (SC + SD − SCD) =
I ′(A : B) + I ′(C : D). In general, we can get

I ′(A1 : A2 : · · · : An)

= I ′(A1 : · · · : Ak ) + I ′(Ak+1 : · · · : An) (13)

for any state with I ′(A1A2 · · · Ak : Ak+1 · · · An) = 0. As
Eqs. (9), (12), and (13) point out, if there is no mutual
information between subsystem A1A2 · · · Ak and subsystem
Ak+1 · · · An, then the global mutual information contained
only in the system A1A2 · · · Ak and the system Ak+1 · · · An

independently. Henceforward, we say the measure is additive
if it satisfies relations such as Eqs. (9), (12), and (13). Namely,
mutual information and the complete multipartite entangle-
ment measure are additive.

We now discuss whether I and I ′ are decreasing under
coarsening of the system. Namely, whether the counterparts
of Eq. (11) for I and I ′ are valid under the coarser relations
�a, �b, and �c.

Proposition 1. Let X1|X2| · · · |Xk and Y1|Y2| · · · |Yl be two
partitions of A1A2 · · · An or subsystems of A1A2 · · · An. If
X1|X2| · · · |Xk � Y1|Y2| · · · |Yl , then

I (X1 : X2 : · · · : Xk ) � I (Y1 : Y2 : · · · :Yl ) (14)

and

I ′(X1 : X2 : · · · : Xk ) � I ′(Y1 : Y2 : · · · :Yl ) (15)

hold for any ρA1A2···An ∈ SA1A2···An .
The proof for Proposition 1 is provided in Appendix A.

Proposition 1 indicates that I and I ′ are well-defined complete
measures in the sense of Refs. [45–47]. Henceforward, we call
such a measure a complete measure. Under this framework,
the mutual information between different subsystems can be
compared with each other in a clear hierarchic structure sense,
from which we can discuss the distribution of the correspond-
ing quantity thoroughly and comprehensively.

IV. COMPLETE MONOGAMY OF I

Having discussed the underlying concept of the complete
MQMI, we now restrict attention to present the definition of
the complete monogamy for MQMI with the same essence as
that of the complete monogamy of the multipartite entangle-
ment [45,47] and the complete monogamy of the multipartite
quantum discord [46]. Let J = I or J = I ′. With the notations
aforementioned, (i) we call J is monogamous if it satisfies
the discorrelated condition; i.e., for any state ρ ∈ SABC that
satisfies

J (A : BC) = J (A : B), (16)

we have that

J (A : C) = 0. (17)

(ii) J is said to be completely monogamous if it satisfies
the complete discorrelated condition; i.e., for any state ρ ∈
SA1A2···An that satisfies

J (X1|X2| · · · |Xk ) = J (Y1|Y2| · · · |Yl ), (18)

we have that

J (�) = 0 (19)

holds for all � ∈ �(X1|X2| · · · |Xk − Y1|Y2| · · · |Yl ), where
X1|X2| · · · |Xk and Y1|Y2| · · · |Yl are arbitrarily given partitions
of A1A2 · · · Am or subsystems of A1A2 · · · Am, and where
X1|X2| · · · |Xk �a Y1|Y2| · · · |Yl . (iii) J is said to be tightly com-
plete monogamous if we replace �a by �b in the above item
(ii), and the counterpart of Eq. (18) is called the tightly com-
plete discorrelated condition instead.

In such a sense, according to the proof of Theorem 1 in
Ref. [42], (i) if J is monogamous, then there exists α > 0 such
that

Jα (A : BC) � Jα (A : B) + Jα (A : C)

holds for any state in SABC , where α is related to the dimension
of HABC . We observe here that I and I ′ are continuous func-
tions since the von Neumann entropy is continuous. (ii) If J is
completely monogamous, then (we take n = 3 for example)

Jα (A : B : C) � Jα (A : B) + Jα (A : C) + Jα (B : C)

holds for any state in SABC with α as above. (iii) If J is tightly
complete monogamous, then

Jα (A : B : C) � Jα (A : BC) + Jα (B : C)
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holds for any state in SABC for some α > 0 as above. We
are now ready to present the first main result of this arti-
cle, which shows that the MQMI I is a nice measure of
quantumness, but another alternative I ′ is not, since it is
neither completely monogamous nor tightly complete monog-
amous. For the reader’s convenience, we put the proof in
Appendix B �.

Theorem 1. (i) I is monogamous only on pure states. (ii) I
is not only completely monogamous but also tightly complete
monogamous. (iii) I ′ is neither completely monogamous nor
tightly complete monogamous.

Theorem 1 indicates that complete monogamy does not
imply monogamy in general, although the measure is a
complete one.

In Ref. [42], we showed that the Markov quantum state
satisfies the disentangling condition

E (A|BC) = E (AB) (20)

for any bipartite entanglement monotone E . Hereafter, we
always assume that E is a bipartite entanglement monotone.
Thus, from the proof of Theorem 1, it turns out that

(i) I (A : BC) = I (A : B) implies E (A|BC) = E (AB) and
E (C|AB) = E (CA);

(ii) I ′(A : B : C) = I (A : B) implies E (A|BC) =
E (B|AC) = E (AB) and E (C|AB) = E (CA) = E (CB).

In general, we can prove that

I ′(A1 : A2 : · · · : An) = I ′(A1 : A2 : · · · : Ak )

implies

E (Ai|Ai ) = E (Ai|AiAn) = E (Ai|AiAi1 Ai2 · · · Ail An)

and

E (An|An) = E (An|AiAn) = E (An|AiAi1 Ai2 · · · Ail An)

for any is �= i, 1 � i � k, and l < n − 2. That is, the discor-
related condition and the complete discorrelated condition of
MQMI are closely related to the disentangling condition of
entanglement.

V. COMPLETE MONOGAMY OF THE MQMI
VIA THE TSALLIS ENTOPY

In this section, we explore the mutual information deduced
by the Tsallis entopy. The Tsallis q-entropy Sq is defined
by [51]

Sq(ρ) = 1 − Trρq

q − 1
, q > 0, q �= 1.

Sq is subadditive when q > 1 [52]; i.e.,

Sq(AB) � Sq(A) + Sq(B), q > 1, (21)

for any ρAB ∈ SAB, where ρA,B = TrB,AρAB. If we replace the
von Neumann entropy with Sq in Eqs. (4) and (5), we get

Iq(A1 : A2 : · · · : An)

:=
n∑

k=1

Sq(Ak ) − Sq(A1A2 · · · An) (22)

and

I ′
q(A1 : A2 : · · · : An)

:=
n∑

k=1

Sq(Ak ) − (n − 1)Sq(A1A2 · · · An), (23)

respectively. It is straightforward that

Iq(A1 : A2 : · · · : An) � 0, q > 1. (24)

In Ref. [45], we proved that, for any bipartite state ρAB ∈ SAB,
1 + Tr(ρ2

AB) = Tr(ρ2
A) + Tr(ρ2

B) if and only if ρAB = ρA ⊗ ρB

with min{Rank(ρA), Rank(ρB)} = 1. Thus, the equality for
q = 2 in Eq. (24) holds if and only if ρA1A2···An is a product
state where, at most, one of the reduced states ρAi has a rank
greater than 1. I ′

q(A1 : A2) = Iq(A1 : A2) � 0 for any bipartite
state. However,

I ′
q(A1 : A2 : · · · : An) � 0 (25)

in general when n > 2 due to the fact that Sq is not strongly
subadditive [53], i.e.,

Sq(AB) + Sq(BC) � Sq(ABC) + Sq(B), q > 0, q �= 1,

in general.
By definition, Iq and I ′

q are symmetric under permu-
tation of the subsystems. We next show that Iq is addi-
tive while I ′

q is not. If Iq(A1A2 · · · Ak : Ak+1 · · · An) = 0,
then Sq(A1A2 · · · Ak ) + Sq(Ak+1 · · · An) = Sq(A1A2 · · · An),
which yields

Iq(A1 : A2 : · · · : An)

= Iq(A1 : A2 : · · · : Ak ) + Iq(Ak+1 : · · · : An). (26)

But I ′
q does not obey such a equality. In order to see this, we

take ρABCD = ρABC ⊗ ρD, with

ρABC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 1
4 0 1

4 0 0 0

0 0 0 1
4 0 1

4 0 0

0 0 1
4 0 1

4 0 0 0

0 0 0 1
4 0 1

4 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ρD =
(

1
2 0

0 1
2

)
. (27)

It follows that

ρAB =

⎛
⎜⎜⎜⎝

0 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 0

⎞
⎟⎟⎟⎠,

ρAC = ρBC = ρCD =

⎛
⎜⎜⎜⎝

1
4 0 0 0

0 1
4 0 0

0 0 1
4 0

0 0 0 1
4

⎞
⎟⎟⎟⎠.
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Short computation gives

I ′
q(AB : CD) = Sq(AB) + Sq(CD) − Sq(ABCD) = Sq(CD) − Sq(ABCD)

= 1

q − 1
(1 − 41−q ) − 1

q − 1
(1 − 41−q ) = 0,

but
1

q − 1
{I ′

q(A : B : C : D) − [Iq(A : B) + Iq(C : D)]}

= 1

q − 1

{
[(1 − 21−q ) + (1 − 81−q ) + (1 − 21−q) + (1 − 81−q ) − 3(1 − 41−q )] − [4(1 − 21−q) − (1 − 41−q )]

}
= 1

q − 1
(41−q + 21−q − 1 − 81−q ) = 1

q − 1
(21−q − 1)(1 − 41−q )

> 0

for any q > 1. From the subadditivity of Sq, the following is
straightforward.

Proposition 2. Let X1|X2| · · · |Xk and Y1|Y2| · · · |Yl be two
partitions of A1A2 · · · An or subsystems of A1A2 · · · An. If
X1|X2| · · · |Xk �a,b Y1|Y2| · · · |Yl , then

Iq(X1 : X2 : · · · : Xk ) � Iq(Y1 : Y2 : · · · :Yl ) (28)

holds for any ρA1A2···An ∈ SA1A2···An .
However, one can readily check that Iq may increase under

the coarsening relation of type (c). That is, Iq displays some
degree of “completeness” as a multipartite measure but I ′

q
fails.

Notice that there is another approach of MQMI, which is
defined by (we take n = 3 and 4 for example) [23,54,55]

I ′′(A : B : C)

= SA + SB + SC − (SAB + SAC + SBC ) + SABC (29)

and

I ′′(A : B : C : D) = SA) + SB + SC + SD

− [SAB + SAC + SBC + SAD + SBD + SCD]

+ [SABC + SBCD + SACD + SABD] − SABCD.

I ′′(A : B : C) can be negative [54,55] and thus it is not a
good alternative of MQMI. We now consider this quantity by
replacing S with Sq (for example, the case of n = 3), i.e.,

I ′′
q (A : B : C) = Sq(A) + Sq(B) + Sq(C)

− [Sq(AB) + Sq(AC) + Sq(BC)]

+ Sq(ABC). (30)

Take the three-qubit state ρ = 1
2 |GHZ〉〈GHZ| + 1

16 I , one can
easily get I ′′

q (A : B : C) < 0 whenever q = 1
2 . In addition, for

the state ρABCD = ρABC ⊗ ρD in Eq. (27), we have I ′′
q (A : B :

C : D) < 0 whenever q = 2. Namely, this approach is not
valid for the Tsallis q-entropy MQMI, either.

We next explore the complete monogamy and monogamy
of Iq. Let X1|X2| · · · |Xk and Y1|Y2| · · · |Yl be two par-
titions of A1A2 · · · An or subsystems of A1A2 · · · An. If
X1|X2| · · · |Xk �a,b Y1|Y2| · · · |Yl and

Iq(X1 : X2 : · · · : Xk ) = Iq(Y1 : Y2 : · · · :Yl ),

we can easily get that

Iq(�) = 0 (31)

holds for all � ∈ �(X1|X2| · · · |Xk − Y1|Y2| · · · |Yl ). In partic-
ular, for q = 2, � is a product state where at most one of
the reduced states has a rank greater than 1. We thus get the
following result.

Theorem 2. (i) Iq is monogamous on pure states. (ii) Iq

is not only completely monogamous but also tightly com-
plete monogamous under the coarsening relation of types (a)
and (b).

Proof. We only need to check item (i). For pure state, Iq

reduces to the Tsallis q-entropy of entanglement, where the
Tsallis q-entropy of entanglement is defined by [45]

E (n)
q (|ψ〉) = 1

2

[
Sq(A1) + Sq(A2) + · · · + Sq(An)

]
, q > 1,

for the pure state |ψ〉 ∈ HABC , and then is defined by
the convex-roof extension for mixed states. Thus Iq is
monogamous on pure states since the Tsallis q-entropy of
entanglement is monogamous [43]. �

It is worth mentioning that Iq is monogamous iff
Sq(AB) + Sq(BC) = Sq(ABC) + Sq(B) implies Sq(AC) =
Sq(A) + Sq(C). We remark here that this is not true.
Taking [56]

ρABC = p|000〉〈000| + (1 − p)|111〉〈111|, (32)

we get Sq(AB) + Sq(BC) = Sq(ABC) + Sq(B), but Sq(AC) <

Sq(A) + Sq(C). Comparing with I and I ′, as a measure of
mutual information, Iq is nicer than I ′

q, but worse than I .
For 0 < q < 1, Sq is neither subadditive nor superadditive
[51] [superadditive refers to Sq(AB) � Sq(A) + Sq(B)], so we
cannot define the associated mutual information whenever
0 < q < 1. The Rényi α-entropy, i.e.,

Rα (ρ) := (1 − α)−1 ln(Trρα ), 0 < α < 1,

is the same since it is not subadditive [57] either. We call I
and Iq the type-1 MQMIs, I ′ and I ′

q the type-2 MQMIs, and
I ′′ and I ′′

q the type-3 MQMI. Together with Proposition 1 and
Theorem 1, we find out that the type-1 MQMI is nicer than
the type-2 MQMI for characterizing the mutual information
as a measure of multipartite correlation, and the type-3 MQMI
cannot be an alternative indeed.
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TABLE I. Comparing of I , I ′, I ′′, Iq, I ′
q, and I ′′

q . M, CM, TCM, and TI signify the measure is monogamous, completely monogamous, tightly
complete monogamous, and satisfies the triangle inequality, respectively. “�a,b,c” denotes the MQMI is nonincreasing under the coarsening
relation “�a,b,c”. “−−” means the item is senseless or unknown.

MQMI Entropy Non-negative Symmetric Additivity �a �b �c M CM TCM TI

I S � � � � � � Pure states � � �
I ′ S � � � � � � Pure states × × ×
I ′′ S × � — — — — — — — —
Iq Sq, q > 1 � � � � � × Pure states �a �b ×
I ′
q Sq, q > 1 × � × × × × Pure states × × ×

I ′′
q Sq, q > 1 × � — — — — — — — —

aIt is completely monogamous under the coarser relation �a,b.
bIt is tightly complete monogamous under the coarser relation �a,b.

Let us further remark that, for q = 2, Sq is the linear en-
tropy, which can be regarded as a measure of purity [58]. In
fact, Sq reflects the degree of purity for any q > 0. Hence,
MQMI is, indeed, a measure of the multipartite “mutual
purity.”

VI. TRIANGLE RELATION OF QMI

The first triangle relation for entanglement is the concur-
rence triangle for the three-qubit pure state [59,60]:

C2
A|BC � C2

AB|C + C2
B|AC . (33)

Very recently, we have shown that such a triangle relation is
generally true [61]. Let E be a continuous bipartite entangle-
ment measure. Then there exists 0 < α < ∞ such that [61]

Eα (A|BC) � Eα (B|AC) + Eα (AB|C) (34)

for all pure states |ψ〉ABC ∈ HABC with fixed dim HABC = d <

∞. Let E (3) be a continuous unified tripartite entanglement
measure. Then [61]

Eα (A|B|CD) � Eα (A|BD|C) + Eα (AD|B|C) (35)

for all |ψ〉ABCD ∈ HABCD with α as above. Here we omit
the superscript (3) of E (3) for brevity. Let E be a continu-
ous bipartite entanglement measure that is determined by the
eigenvalues of the reduced state. Then [61]

Eα (AB|CD) � Eα (AC|BD) + Eα (AD|BC) (36)

for all |ψ〉ABCD ∈ HABCD with α as above. For mutual in-
formation I and I ′, we have the triangle relation below
analogously (the proof is given in Appendix C).

Proposition 3. The MQMIs I and I ′ admit the following
triangle relations:

I (A : BC) � I (B : AC) + I (AB : C) (37)

for any state in SABC , and

I (AB : CD) � I (AC : BD) + I (AD : BC), (38)

I (A : B : CD) � I (A : BD : C) + I (AD : B : C), (39)

I ′(A : B : CD) � I ′(A : BD : C) + I ′(AD : B : C) (40)

hold for any state in SABCD, but Iq fails.
That is, the von Neumann entropy MQMI reflects the

same triangle relation as that of entanglement. We now also
conclude that the von Neumann entropy MQMI sounds nicer
than that of Tsallis entropy. For more clarity, we list all the
properties of these measures so far in Table I. We close this
section with the following inequalities which reveal the rela-
tion between entanglement and the mutual information.

Proposition 4. Let ρ be any state in SA1A2···An . Then

I (ρ) + S(ρ) � 2E (n)
f (ρ) (41)

and

Iq(ρ) + Sq(ρ) � 2E (n)
q (ρ), (42)

and the equality holds iff ρ is a pure state.
Proof. We assume with no loss of generality that n = 3.

For any given ρ ∈ SABC , let

E (3)
f (ρ) =

∑
i

pi
[
E (3)

f (|ψi〉〈ψi|)
]

= 1

2

∑
i

pi
[
S
(
ρA

i

) + S
(
ρB

i

) + S
(
ρC

i

)]
,

where ρX
i = TrX̄ |ψi〉〈ψi|. It follows that

I (ρ) + S(ρ) − 2E (n)
f (ρ) = S(ρA) + S(ρB) + S(ρC ) −

∑
i

pi
[
S
(
ρA

i

) + S
(
ρB

i

) + S
(
ρC

i

)]
= S(ρA) −

∑
i

piS
(
ρA

i

) + S(ρB) −
∑

i

piS
(
ρB

i

) + S(ρC ) −
∑

i

piS
(
ρC

i

)
� 0
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since S is concave. Notice additionally that S is strictly con-
cave [62], and the equality is immediate. Applying the same
strategy for the Tsallis q-entropy, we get the second inequality
and the equality makes sense for pure states in light of the
strict concavity of the Tsallis q-entropy. �

That is, the sum of the mutual information and the total
entropy acts as an upper bound of entanglement. It can be
interpreted as the QMI referring more quantum correlation
than entanglement. We also need to note that E (n)

f (ρ) � S(ρ)

and E (n)
q (ρ) � S(ρ) for pure states but E (n)

f (ρ) < S(ρ) and
E (n)

q (ρ) < S(ρ) for any separable mixed state, namely, entan-
glement and the global entropy are incomparable.

VII. CONCLUSIONS AND DISCUSSIONS

The completeness is a basic requirement for any multi-
partite measure of correlation. We have shown that the two
types of MQMI via the standard von Neumann entropy are
complete measures, and the type-1 MQMI via the Tsallis
q-entropy demonstrates some weak completeness while the
type-2 MQMI via the Tsallis q-entropy is not complete any
more. Moreover, we have proven that the type-1 MQMI is
not only completely monogamous but also tightly complete
monogamous, but the type-2 MQMI fails. We have also found

that the von Neumann entropy MQMI obeys the triangle rela-
tion which is the same as that of the entanglement measure.

We thus conclude that the von Neumann entropy is better
than all the other versions of entropy from such a point of
view, and the type-1 von Neumann entropy MQMI represents
the same quality as that of the complete measure of mul-
tipartite entanglement since both of them are complete and
completely monogamous. Despite the fact the type-1 MQMI
we proposed is completely monogamous and tightly com-
plete monogamous, it is monogamous only on pure states.
This indicates that monogamy and complete monogamy may
be independent of each other. However, it remains an open
problem whether there exists a MQMI which is not only
completely monogamous and tightly complete monogamous
but also monogamous. We conjecture that the answer is no.
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APPENDIX A: PROOF OF PROPOSITION 1

Proof. It is clear that

I (A : B : C) − I (A : B) = (SA + SB + SC − SABC ) − (SA + SB − SAB) = SAB + SC − SABC � 0

since S is subadditive, and

I ′(A : B : C) − I ′(A : B) = (SAB + SBC + SAC − 2SABC ) − (SA + SB − SAB)

= (SAB + SBC − SABC − SB) + (SAB + SAC − SABC − SA) � 0

since S is strongly subadditive (i.e., SAB + SBC � SABC + SB for any state). In general,

I (A1 : A2 : · · · An) − I (A1 : A2 : · · · An−1) = SA1A2···An−1 + SAn − SA1A2···An � 0,

and

I ′(A1 : A2 : · · · An) − I ′(A1 : A2 : · · · An−1) =
n−1∑
i=1

(
SAi

+ SAn
− SA1A2···An − SAiAn

)
� 0.

That is, both I and I ′ are nonincreasing under the coarsening relation of type (a).
Similarly, in light of the subadditivity and the strong subadditivity of the von Neumann entropy, we can obtain Eqs. (14) and

(15) under the coarsening relation of types (b) and (c). For example, we can get I ′(AB : CD : EF ) � I ′(AB : C : E ) due to the
subadditivity and the strong subadditivity of the von Neumann entropy. In fact,

I ′(AB : CD : EF ) − I ′(AB : C : E ) = (SABCD + SABEF + SCDEF − 2SABCDEF ) − (SABC + SABE + SCE − 2SABCE )

= (SABCD + SABEF + SCDEF + 2SABCE ) − (SABC + SABE + SCE + 2SABCDEF )

= [(SABCD + SABCE ) + (SABEF + SABCE ) + SCDEF ] − (SABC + SABE + SCE + 2SABCDEF )

� [(SABC + SABCDE ) + (SABE + SABCEF ) + SCDEF ] − (SABC + SABE + SCE + 2SABCDEF )

= [SABCDE + (SABCEF + SCDEF )] − (SCE + 2SABCDEF )

� [SABCDE + (SCEF + SABCDEF )] − (SCE + 2SABCDEF )

= (SABCDE + SCEF ) − (SCE + SABCDEF ) � 0.

This completes the proof. �
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APPENDIX B: PROOF OF THEOREM 1

Proof. (i) If I (A : BC) = I (A : B), then SAB + SBC − SB −
SABC = 0. According to Theorem 6 in Ref. [63], such a state
ρABC is precisely the state that saturates the strong subaddi-
tivity of the von-Neumann entropy (i.e., the Markov state).
For such states, the state space of system B, HB, must have
a decomposition into a direct sum of tensor products HB =⊕

j HBL
j ⊗ HBR

j , such that ρABC admits the form

ρABC =
⊕

j

q jρ
ABL

j ⊗ ρBR
j C, (B1)

where q j is a probability distribution [63]. However,
ρABC �= ρAB ⊗ ρC whenever ρABL

j �= ρA ⊗ ρBL
j or ρBR

j C �=
ρBR

j ⊗ ρC . That is, I (A : BC) = I (A : B) cannot guarantee
I (A : C) = 0 if ρABC is a mixed state, but it is true for pure
states since it is reduced to 2E f for pure states and E f is
monogamous [43].

(ii) If I (A : B : C) = I (A : B), then SAB + SC = SABC ,
which implies that ρABC = ρAB ⊗ ρC . Hence, I (A : C) =
I (B : C) = 0. If I (A : B : C : D) = I (A : B : C), then SABC +
SD = SABCD, which leads to ρABCD = ρABC ⊗ ρD. Thus, I (A :
D) = I (B : D) = I (C : D) = 0. Similarly, I (A : B : C : D) =
I (A : B) implies ρABCD = ρAB ⊗ ρC ⊗ ρD. In general,

I (A1 : A2 : · · · : An) = I
(
Ak1 : Ak2 : · · · Akm

)
(m < n, ki �= k j whenever i �= j, 1 � ki � n)

implies

ρA1A2···An = ρAk1 Ak2 ···Akm ⊗ ρAkm+1 ⊗ · · · ⊗ ρAkn ,

and therefore

I (Ak1 Ak2 · · · Akm : Akm+1 : · · · : Akn ) = 0.

This yields I (�) = 0 for any � ∈ �(A1|A2| · · · |An − Ak1 |Ak2 | · · · |Akm ). Namely, I is completely monogamous.
One can readily check that I (A : B : C : D) = I (A : BCD) implies ρBCD is a product state [i.e., I (B : C : D) = 0] and I (A :

B : C : D) = I (AB : CD) implies ρAB and ρCD are product states [i.e., I (A : B) = I (C : D) = 0]. In general,

I (A1 : A2 : · · · : An) = I
(

Ak(1)
1

Ak(1)
2

· · · Ak(1)
s

: Ak(2)
1

Ak(2)
2

· · · Ak(2)
t

: · · · : Ak(l )
1

Ak(l )
2

· · · Ak(l )
r

)

implies

I
(
Ak(p)

1
: Ak(p)

2
: · · · : Ak(p)

q

) = 0

for any 1 � p � l and q ∈ {s, t, . . . , r}, where
Ak(1)

1
· · · Ak(1)

s
|Ak(2)

1
· · · Ak(2)

t
| · · · |Ak(l )

1
· · · Ak(l )

r
is an l-partition of

A1A2 · · · An up to some permutation of the subsystems. That
is, I is tightly complete monogamous.

(iii) We assume that I ′(A : B : C) = I (A : B), i.e., S(AB) +
S(AC) + S(BC) − 2S(ABC) = S(A) + S(B) − S(AB). Since
S(AB) + S(AC) � S(ABC) + S(A) and S(AB) + S(BC) �
S(ABC) + S(B), we get S(AB) + S(AC) = S(ABC) + S(A)
and S(AB) + S(BC) = S(ABC) + S(B). If the state Hilbert
spaces HA and HB have decompositions into a direct sum of
tensor products as

HA =
⊕

j

HAL
j ⊗ HAR

j , HB =
⊕

j

HBL
j ⊗ HBR

j ,

such that

ρABC =
⊕

j

q jρaL
j
⊗ ρaR

j bL
j
⊗ ρbR

j
⊗ ρc j , (B2)

it is easily checked that S(AB) + S(AC) = S(ABC) + S(A)
and S(AB) + S(BC) = S(ABC) + S(B). However, I (B : C) >

0 and I (A : C) > 0 provided that ρci �= ρc j whenever i �= j.
Thus I ′ is not completely monogamous.

If I ′(A : B : C) = I (A : BC), we get S(AB) + S(AC) =
S(ABC) + S(A). That is, ρBAC admits the form as Eq. (B1),
which reveals that ρBC is not necessarily a product state.

Therefore, I ′ is not tightly complete monogamous. Together
with Proposition 1, the proof is completed. �

APPENDIX C: PROOF OF PROPOSITION 3

Proof. It is easy to derive from the subadditivity and the
strong subadditivity of the von Neumann entropy that

I (B : AC) + I (AB : C) − I (A : BC)

= (SB + SAC − SABC ) + (SAB + SC − SABC )

− (SA + SBC − SABC )

= (SAB + SAC − SABC − SA) + (SB + SC − SBC )

� 0,

I (AC : BD) + I (AD : BC) − I (AB : CD)

= (SAC + SBC + SAD + SBD) − (SAB + SCD + SABCD)

� (SABC + SC + SABD + SD) − (SAB + SCD + SABCD)

= (SABC + SABD − SABCD − SAB) + (SC + SD − SCD)

� 0,

I (A : BD : C) + I (AD : B : C) − I (A : B : CD)

= (SAD + SBD + 2SC ) − (SABCD + SCD)

� (SABD + SD + 2SC ) − (SABCD + SCD)

� (SABD + SCD + SC ) − (SABCD + SCD)

= SABD + SC − SABCD

� 0,
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and

I ′(A : BD : C) + I ′(AD : B : C) − I ′(A : B : CD) = (2SABD + SAC + SBC ) − (2SABCD + SAB)

� (SABCD + SA + SABD + SBC ) − (2SABCD + SAB)

� SABC + SABD − SABCD − SAB

� 0.

For Iq, by the invalidation of the strong subadditivity of the Tsallis q-entropy, the proof is completed. �
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