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Two-photon driven Kerr quantum oscillator with multiple spectral degeneracies
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Kerr nonlinear oscillators driven by a two-photon process are promising systems to encode quantum infor-
mation and to ensure a hardware-efficient scaling towards fault-tolerant quantum computation. In this paper,
we show that an extra control parameter, the detuning of the two-photon drive with respect to the oscillator
resonance, plays a crucial role in the properties of the defined qubit. At specific values of this detuning, we
benefit from strong symmetries in the system, leading to multiple degeneracies in the spectrum of the effective
confinement Hamiltonian. Overall, these degeneracies lead to a stronger suppression of bit-flip errors. We also
study the combination of such Hamiltonian confinement with colored dissipation to suppress leakage outside of
the bosonic code space. We show that the additional degeneracies allow us to perform fast and high-fidelity gates
while preserving a strong suppression of bit-flip errors.
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I. INTRODUCTION

Superconducting quantum circuits are one of the most
promising and advanced platforms for the realization of quan-
tum processors, with the capability of solving intractable
problems for classical computers [1]. An artificial atom, e.g.,
the transmon qubit [2], is typically used to encode the infor-
mation. Because of its high error rates compared to what is
required to realize reliably useful algorithms, a large qubit
overhead is needed for quantum error correction and fault tol-
erance [3,4]. The use of more advanced qubits with some level
of intrinsic protection against decoherence could potentially
lead to an important reduction in such hardware complexity.

In this regard, encoding the qubit information in fancy
states of harmonic oscillators has recently attracted an increas-
ing interest. Indeed, benefiting from the infinite-dimensional
Hilbert space of a bosonic mode, we can delocalize the quan-
tum information in different parts of the harmonic oscillators
phase space and thus provide a first layer of protection.
Gottesman-Kitaev-Preskill (GKP) states [5], by encoding the
information in a two-dimensional grid of infinitely squeezed
states, could be concatenated with a smaller distance surface
code [6–9], compared to the ones needed for transmon qubits.
Cat qubits encode the quantum information in superpositions
of coherent states [10–12]. The bit-flip errors, which corre-
spond to a transition from one coherent state to the other, are
suppressed exponentially with their phase-space separation,
while the phase-flip errors only increase linearly [13]. This
tunable noise bias leads to important reductions of hardware
overhead for quantum error correction [14–16]. The recent
proposal of bias-preserving gates [17,18] has paved the way
towards hardware-efficient fault-tolerant and universal quan-
tum processors based on such qubits [19–21].
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Two approaches were considered so far to confine the
cat-states’ code space. One of these approaches is to use an en-
gineered two-photon dissipation whose only two steady states
are the cat states [12,22–25]. The other approach is to use a
Hamiltonian confinement, combining a squeezing drive with
Kerr nonlinearity [26–33]. The cat states are the degenerate
ground states of this Kerr Hamiltonian, protected by an energy
gap proportional to the Kerr nonlinearity.

In the dissipative approach, if the two-photon dissipa-
tion rate is faster than the typical error rates, any leakage
outside the code space is countered by the dynamical stabi-
lization induced by the dissipative mechanism, without the
encoded information leaking throughout this channel. This
can be seen as autonomous error correction. The resulting
exponential suppression of bit-flip errors was experimentally
demonstrated [13] and is expected to reach macroscopic
timescales in forthcoming experiments [34–36]. However, the
bias-preserving gates are typically slow and making them
faster than the dissipation timescale leads to an important
increase of phase-flip errors [17].

The Kerr effect is commonly used to introduce non-
linearity to quantum optical systems. Historically, it was
proposed as a mean to generate non-Gaussian states of light
such as superpositions of coherent states [37–39]. Combined
with pulse engineering techniques and relying on photon-
blockade phenomena, it was also exploited to engineer Fock
states [40–42] and multimode entangled states [43,44]. In
the context of bosonic quantum information processing, it
recently attracted broad attention as a means for confining
the dynamics of an oscillator to the two-dimensional manifold
of a cat qubit [26,31]. In the Kerr Hamiltonian approach, the
Hamiltonian dynamics makes it possible to perform gates in
fast timescales of the order of the Kerr nonlinearity, thanks
to the adiabatic theorem and the design of superadiabatic
pulses [45]. However, while the energy gap confines the cat-
qubit subspace, the leakage induced by mechanisms such as
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thermal excitation or photon dephasing is not countered by
any stabilization process. They could hence lead to significant
contributions in terms of bit-flip errors. Consequently, bit-flip
errors are suppressed at a slower rate when increasing the
number of encoding photons [46–48]. Finally, more recent
studies [47] showed that it is not straightforward to combine
the dissipative scheme with the Kerr Hamiltonian because
there is no sweet spot between the Kerr nonlinearity being
too small to benefit from faster gates or too large, which
compromises the exponential suppression of bit-flip errors.

Recently, the detuning of the squeezing drive with respect
to the Kerr resonator frequency was used as an additional
control knob to enhance the cat qubit performance [35,48].
In this paper, following the new bistability regimes discussed
in Ref. [49], we demonstrate that the preservation of locality
is significantly improved for specific values of this detun-
ing. Indeed, we will prove that, by appropriately choosing
the parameters of such a Hamiltonian in the aforementioned
bistable regimes, we can make sure that not only the two
ground states of the effective confinement Hamiltonian are
perfectly degenerate, but also that excited levels come in per-
fectly degenerate pairs. This degeneracy was also discussed
in Refs. [50,51] and used for preparing quasienergy states
of the driven system. This degeneracy implies that leakage
to such excited levels does not lead to nonlocal excursions
in phase space. The information remaining localized in the
phase space, it is hence possible to combine the Hamiltonian
confinement with an appropriate weak dissipative mechanism
to counter the leakage. The defined qubit would therefore ben-
efit from reasonably low-rate bit-flip errors, while the strong
Hamiltonian confinement enables fast bias-preserving gates.

Section II recalls why the Kerr Hamiltonian bit-flip prob-
ability is particularly sensitive to thermal excitations and
dephasing and how this can be related to the Hamiltonian
spectrum. It then introduces the new detuned Kerr Hamilto-
nian. We analyze its spectrum and explain why it provides a
better protection against incoherent perturbations. Section III
demonstrates the gain on phase-space locality compared to
regular Kerr cats with numerical master equation simulations.
Section IV presents the combination with a colored dissipa-
tion scheme to limit the leakage outside of the code space.
Section V presents the bias-preserving gates on this new
encoding.

II. SQUEEZED KERR OSCILLATOR AND MULTIPLE
DEGENERATE BISTABLE REGIMES

Cat qubits are encoded in a quantum harmonic oscillator
within the two-dimensional subspace defined by two coherent
states of opposite phase. The code space can be defined as
follows [10,12]:

|0〉c = 1√
2

(|+〉c + |−〉c) = |+α〉 + O(e−2|α|2 ),

|1〉c = 1√
2

(|+〉c − |−〉c) = |−α〉 + O(e−2|α|2 ), (1)

where |±〉c = N±(|α〉 ± |−α〉) with |α〉 a coherent state of
complex amplitude α and N± = [2(1 ± e−2|α|2 )]−1/2 is a

normalization constant. The states |+〉c and |−〉c are respec-
tively called even and odd cat states and are also denoted |C±

α 〉.
In an appropriate rotating frame, the Hamiltonian of the

two-photon squeezed Kerr oscillator reads [26]

Ĥ = Kâ†2â2 + ε2â†2 + ε∗
2 â2 = K (â†2 − α∗2)(â2 − α2), (2)

where K denotes the Kerr nonlinearity of the oscillator, ε2 the
two-photon drive, and ±α (α = √−ε2/K ) are the amplitudes
of the two coherent states that are also ground states of the
Kerr Hamiltonian. In Fig. 1(a) we plot the eigenenergies of
Hamiltonian (2). The two cat states are separated from the
rest of the spectrum by an energy gap approximately given
by 4K|α|2. We group the higher eigenstates by their photon-
number parity and denote them |φ±

n 〉 with e±
n their respective

energies. According to the quantum adiabatic theorem, the
energy gap protects the ground subspace against weak and
slow Hamiltonian perturbations.

However, incoherent perturbations due, for instance, to
thermal excitations or Markovian photon dephasing leak the
cat states to higher excited states. For instance, thermal excita-
tions leak |α〉 into |α, 1〉 = D̂(α)|1〉 up to first order, where D̂
is the displacement operator, and |α, 1〉 has a nonzero overlap
with all eigenstates {|φ±

n 〉}n�1. These higher eigenstates come
in nearly degenerate pairs but their nondegeneracy is enough
to generate a rather fast dephasing between odd and even
photon number parity subspaces. In the phase-space picture,
such dephasing can be seen as nonlocal excursions between
the left and right half planes. This ultimately breaks down the
protection of the Kerr cat qubit against bit-flip errors.

To capture the above nonlocal excursions in phase space,
let us consider the average value of the observable Ŝ =
sign(X̂ ) = sign(â + â†),

〈ψ |Ŝ|ψ〉 =
∫ ∞

0
|ψ (x)|2dx −

∫ 0

−∞
|ψ (x)|2dx. (3)

Following the calculations of the authors of Ref. [47], starting
from one of the cat-qubit computational states, the dynamics
of |〈Ŝ〉| is well approximated by exp(−�t ), with

� = κ1|α|2e−4|α|2 + κl e
−2|α|2 + κl

∑
n>0

λn

[
1 − sin(δn/κconf)

δn/κconf

]
.

(4)

Here, κl is the rate of leakage outside of the manifold
span{|C+

α 〉, |C−
α 〉}. Typically, taking a thermal excitation rate

nthκ1 (κ1 denoting the relaxation rate of the harmonic oscil-
lator), and possibly a Markovian photon dephasing rate of
κφ , the leakage rate is given by κl = nthκ1 + |α|2κφ . Further-
more, λn denotes the average overlap between |α, 1〉 and the
eigenstates of the driven Kerr Hamiltonian |φ±

n 〉. It reads λn =∑
± |〈α, 1|φ±

n 〉|2/2. Finally, δn is the energy level spacing be-
tween |φ−

n 〉 and |φ+
n 〉, δn = e−

n − e+
n , and κconf the dissipative

confinement rate of the cat manifold. In the absence of nonlin-
ear dissipative mechanisms [12] or colored dissipation [46],
κconf is simply given by κ1, the energy relaxation rate of the
harmonic oscillator.

The last term in Eq. (4) highlights the contribution of each
pair of nearly degenerate excited eigenstates to the nonlocal
excursion, leading in term to bit-flip errors on the cat qubits.
These excited pairs contribute to the bit-flip rate as soon as
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(a) (b) (c)

FIG. 1. (a) Energy levels of the Kerr Hamiltonian for |α|2 = 4, separated into two sets of even and odd photon-number parity states. The
two ground states encode the cat qubits, protected by an energy gap 4K|α|2 from coherent perturbations. (b) Energy levels of the detuned Kerr
Hamiltonian for 
 = 6 K and |α|2 = ε2/K = 4. The first four pairs of eigenstates are exactly degenerate. The ground states are no longer cat
states but are slightly deformed. Their mean photon number is given by n̄ > |α|2 for 
 > 0. (c) Spacing δn between the energy levels |φ+

n 〉
and |φ−

n 〉 for |α|2 = ε2/K = 4 as a function of the detuning 
. Both the energy level spacings and the detuning are in units of Kerr strength K .
When 
 = 2mK , the 2m + 2 first energy levels come in m + 1 pairs of exactly degenerate states.

their energy-level spacing δn is significant with respect to
κconf. For any n, the associated spacing δn converges to 0
when increasing the cat-qubit mean number of photons |α|2.
This leads to a staircase pattern in the decreasing bit-flip
error rate when increasing this mean number of photons. Such
a behavior was recently observed experimentally in a close
concordance with theory [48].

Assuming now that the squeezing drive is detuned with
respect to the Kerr resonator frequency, the Hamiltonian in
the drives rotating frame becomes

Ĥ
 = Kâ†2â2 + ε2â†2 + ε∗
2 â2 − 
â†â

= K (â†2 − α∗2)(â2 − α2) − 
â†â, (5)

where 
 is the detuning of the two-photon drive. Importantly,
for 
 = 2mK with m ∈ N a positive integer, this Hamiltonian
admits two degenerate ground states. Note that these func-
tioning points correspond to the nondissipative limit of the
bistable regimes discussed in Ref. [49] [(r1, r2) = (m, 2m) in
Fig. 3]. We denote the ground states of even photon-number
parity by |C+

α 〉m or |+〉m and odd parity by |C−
α 〉m or |−〉m, and

define

|0〉m = 1√
2

(|C+
α 〉m + |C−

α 〉m),

|1〉m = 1√
2

(|C+
α 〉m − |C−

α 〉m). (6)

Note that for m � 1, |0〉m and |1〉m are no longer coherent
states, but they remain located on distinct parts of the phase
plane. Figure 2 shows the Wigner representation of |0〉m for
increasing values of the detuning 
.

Figure 1(b) shows the eigenenergies of the Hamiltonian of
Eq. (5) for m = 3. The Hamiltonian admits m + 1 pairs of
perfectly degenerate energy levels. We group the higher eigen-
states by their photon-number parity and denote them |φ±

n 〉m

with e±
n,m their respective energy. For n � m, we denote by

|ψ0
n 〉m and |ψ1

n 〉m the corresponding degenerate states located

on the right- and left-hand side of the phase space. They read∣∣ψ0
n

〉
m

= 1√
2

(|φ+
n 〉m + |φ−

n 〉m),

∣∣ψ1
n

〉
m = 1√

2
(|φ+

n 〉m − |φ−
n 〉m). (7)

Figure 1(c) shows the energy level spacing δn between |φ+
n 〉

and |φ−
n 〉, as a function of the detuning. The combination

of two mechanisms are thus demonstrated. As 
 increases,
the mean number of photons in the cat states increases also
because the frequency of the two-photon drive approaches the
resonant frequency of higher transitions in the Kerr nonlinear
oscillator. Thus the energy level spacing δn between |φ+

n 〉 and
|φ−

n 〉 diminishes as it does when the strength of the two-photon
drive |ε2| increases. For 
 = 2mK with m ∈ N, the two-
photon drive frequency becomes resonant with the transition
|m〉 to |m + 1〉 of the Kerr nonlinear oscillator. As shown
by the peaks around 
 = 2mK , new bistability points appear
that include more and more pairs of degenerate eigenstates as

 increases. We can also note that the energy gap increases
between the first and second pair of degenerate eigenstates
when 
 increases, as it does when |ε2| increases. For the
rest of this paper, we will use |α|2 = |ε2/K| and n̄ = 〈a†a〉.
Note that n̄ �= |α|2 for 
 > 0 but rather n̄ ≈ |ε2/K| + 
/(2K )
because the detuning increases the number of photons in the
cavity. As it will become more clear in the next section, and

FIG. 2. Wigner functions of the states |0〉m for m = 0, 2, 4, 6,
and n̄ = 9. As 
 increases, the ground state of the detuned Kerr
Hamiltonian is further distorted from a coherent state.

042407-3



RUIZ, GAUTIER, GUILLAUD, AND MIRRAHIMI PHYSICAL REVIEW A 107, 042407 (2023)

according to Eq. (4), this is of particular interest to have
multiple degenerate states in the spectrum since the first m + 1
pairs of eigenstates will not contribute to bit-flip errors.

We conclude this section by noting that, for the particular
choices of detuning 
 = 2mK , the m + 1 pairs of degenerate
eigenstates can be calculated analytically by diagonalizing
two matrices of dimension m + 1. In what follows, we assume
that α is real. The first step is to displace the detuned Kerr
Hamiltonian by ±α,

H̃± = D̂(±α)Ĥ
D̂(∓α)

= K (â†2 ∓ 2αâ†)(â2 ∓ 2αâ) − 
(â† ∓ α)(â ∓ α),

where D̂ denotes the displacement operator. Evaluating this
displaced frame Hamiltonian on the nth Fock state |n〉 yields

H̃±|n〉 = [K (n − 1) + 4K|α|2 − 
]n|n〉
∓ [2Kn − 
]α

√
n + 1|n + 1〉

∓ [2K (n − 1) − 
]α
√

n|n − 1〉. (8)

For 
 = 2mK , the Hamiltonians H̃± map the finite-
dimensional Hilbert space spanned by the first m + 1 Fock
states to itself. This photon blockade was observed through a
similar calculation in Ref. [52] and used for preparing Fock
states with weak Kerr strengths. In other words, these Hamil-
tonians are block diagonals. Therefore, by diagonalizing the
associated block matrices of dimension (m + 1) × (m + 1),
we can calculate the (2m + 2) first eigenstates of the Hamil-
tonian Ĥ
 as being their displacements by ∓α. For instance,
for m = 1, this leads to

|0〉m=1 = cos(θ )|α〉 + sin(θ )|α, 1〉,
|1〉m=1 = cos(θ )|−α〉 − sin(θ )|−α, 1〉,∣∣ψ0

1

〉
m=1 = sin(θ )|α〉 − cos(θ )|α, 1〉,∣∣ψ1

1

〉
m=1 = sin(θ )|−α〉 + cos(θ )|−α, 1〉,

with

θ = arctan

(
2|α|

2|α|2 − 1 +
√

4|α|4 + 1

)
.

Furthermore the eigenenergies corresponding to each pair are
perfectly degenerate and the energy gap between the ground
and first excited subspaces is given by

e±
1,1 − e±

0,1 = 2K
√

1 + 4|α|4. (9)

III. PHASE-SPACE CONFINEMENT

In the previous section, we argued that the slow suppres-
sion of bit-flip errors in resonant Kerr cat qubits can be
explained through the nondegeneracy of excited energy-level
pairs in the driven Kerr Hamiltonian. We also saw that, for
specific choices of detuning 
 ∈ 2KN, the detuned Kerr
Hamiltonian remarkably admits m + 1 pairs of perfectly de-
generate eigenstates. One can guess that this change in the
spectrum should drastically improve the phase-space confine-
ment and therefore lead to a faster suppression of induced
bit-flip errors. To quantify this phase-space confinement, we
look at the average value of the observable Ŝ = sign(X̂ ) =

sign(â + â†). This observable is very close to the two-photon
dissipation conserved quantity JX = J+− + J−+ defined in
Ref. [12], and quantifies whether the state of the oscillator
state is located in the right or left half plane of phase space.

The simulations were performed as follows. We initialize
the system in the state |0〉〈0|m and let it evolve under the
master equation

˙̂ρ = −i[Ĥ
, ρ̂] + κ−D̂[â]ρ̂ + κ+D̂[â†]ρ̂ + κφD̂[â†â]ρ̂,

(10)
where κ− = κ1(1 + nth), κ+ = κ1nth, κ1 is the single-photon
loss rate, nth is the thermal population and κφ is the dephasing
rate. The excursions in phase space are quantified by 〈Ŝ〉t =
Tr[Ŝρ̂(t )]. By simulating the system over a long time of order
T = 100/κ1, we can fit the above quantity 〈Ŝ〉t to a single
exponential exp(−2�St ). For a strongly confined system, the
above excursion rate �S will be very small. The numerical
simulations were performed in the basis of Kerr eigenstates
with a truncation to 20 eigenstates. The simulation code was
written using the QUTIP package [53].

Figure 3 presents such simulations for κ1 = 10−3K, nth =
10−2, and κφ = 10−5K . The rate �S is evaluated as a func-
tion of n̄ = 〈â†â〉. We remind that n̄ > |ε2/K| for 
 > 0.
As expected, we benefit from a much stronger phase-space
confinement for 
 = 2mK , m � 1 compared to 
 = 0. Note,
however, that for a fixed low n̄, the phase-space excursions
can be faster when increasing 
. This is mainly due to the fact
that for large 
, the two-photon drive amplitude |ε2| becomes
too weak to separate the states |0〉m and |1〉m in phase space.
More precisely, for a fixed n̄, an optimal 
 can be found to
minimize the excursion rate �S: 
opt ≈ n̄K . Furthermore, this
optimized rate �S scales as e−γ n̄ with γ ≈ 0.65 (dashed line
in Fig. 3).

FIG. 3. Phase-space excursion rate �S, i.e., rate at which the ex-
pectation value 〈Ŝ〉 of the confinement observable Ŝ = sign(â + â†)
decays to zero. This rate is plotted as a function of n̄ = 〈â†â〉 for
κ1 = 10−3K , nth = 10−2, and κφ = 10−5K and for different detuning
values. As 
 = 2mK increases, more and more eigenstates come in
degenerate pairs and do not contribute to such phase-space excur-
sions. Thus the rate �S decreases and saturates at a lower value when
increasing n̄. For a fixed value of n̄, however, there is an optimal
choice of 
 that minimizes the rate �S: 
opt ≈ n̄K . The associated
optimal rate �

opt
S scales as e−γ n̄, with γ ≈ 0.65 (note that this value

corresponds to the specific values of κ1, nth, and κφ chosen).
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(a) (b)

(c) (d)

FIG. 4. Steady-state population of the eigenstates of the detuned
Kerr Hamiltonian for (a) 
 = 0K , (b) 
 = 4K and (c) 
 = 10K ,
and for n̄ = 10, κ1 = 10−3K , nth = 10−2 and κφ = 10−5K . Starting
from |0〉m, a time of the order of 1/κ1 is needed to reach this mixed
steady state. In the presence of thermal excitation or dephasing, all
eigenstates are populated following an exponential distribution that
does not significantly change with the detuning. However, under
the absence of these processes, and thus under the sole effect of
single-photon loss channel, only the degenerate pairs are populated.
In the later case, the populations of these degenerate eigenstates
reach a distribution close to the Boltzmann distribution of a thermal
state. (d) The effective mean number of excitations n̄ex of the mixed
steady state of the driven detuned Kerr under single-photon loss as a
function of the detuning and for different values of n̄.

The Kerr cat, on resonance or detuned, undergoes an
important amount of leakage due to thermal excitation and
dephasing, as can be seen on Figs. 4(a), 4(b), and 4(c) with
the red (dark gray) bar charts. The situation is, however, dif-
ferent when the system is only subject to single-photon loss.
In this case, the resonant Kerr cat has a very small leakage
because the coherent states are not affected by the annihilation
operator â. However the detuned Kerr cat states are no longer
perfect eigenstates of â. Thus, the single-photon loss induces
significant leakage to the other energy levels.

In Figs. 4(a), 4(b), and 4(c), the blue (light gray) bar charts
represent the population on the nth pair of eigenstates when
the detuned Kerr cat is only undergoing single-photon loss and
has reached a steady state. As it can be seen in these charts,
the single-photon loss only induces leakage to the eigenstates
in the degenerate part of the spectrum. Indeed, for the detuned
Kerr cats because the manifold Span {|ψ0

n 〉m}n∈[[0,m]] is equal
to the manifold Span {|α, n〉}n∈[[0,m]], which is stable under the
application of â, single-photon loss only populates the degen-
erate pairs of eigenstates. Interestingly, as it can be seen in
Figs. 4(b) and 4(c), this degenerate manifold reaches a mixed
state with an exponential distribution on degenerate pairs

close to a thermal state distribution with an effective nonzero
temperature. Figure 4(d) shows the effective mean number
of excitations n̄ex in this degenerate manifold. In particular,
we see that it increases very rapidly with 
. Note that this
mean excitation number does not depend on κ1. To work with
well-defined qubits for fault-tolerant quantum computation,
this leakage needs to be suppressed. This can be done through
the addition of dissipative processes refocusing the population
to the ground manifold of the detuned Kerr Hamiltonian.

IV. DETUNED KERR CATS WITH COLORED DISSIPATION

Bosonic qubits are often solely defined through their code
space, which is a two-dimensional subspace of an oscillator
infinite-dimensional Hilbert space. However, a full definition
of bosonic qubits should include a complete mapping from
the oscillator space to this code space to characterize any
leakage that may occur outside of it. Indeed, once readout
of the bosonic qubit is performed, it is important to be able
to associate any potential leakage out of code space to one
of the qubit computational states. For instance, in the case
of GKP qubits [5,54], the full oscillator space is mapped to
the qubit through a grid-like separation of phase space. Any
small displacement away from the code space would thus be
properly taken into account.

For cat qubits, such a mapping can be performed with
dissipative stabilization by associating any initial state to its
infinite-time steady state once reconverged to the cat-qubit
code space. As such, it is essential to have a process that
eliminates leakage to rigorously define cat qubits. For the
detuned Kerr cat qubit introduced in this paper, this dissipative
stabilization cannot be realized with the driven two-photon
dissipation D[â2 − α2] as the ground states of the Hamilto-
nian are not coherent states anymore, thus they are not dark
states of this dissipative superoperator. Instead, we show in
this section that the stabilization of detuned Kerr cat qubits
may be achieved with a colored dissipation.

The colored dissipation method introduced in Ref. [46]
consists in enabling precise frequency decays to bring back
leakage to the ground eigenspace of the detuned Kerr Hamil-
tonian. The full system can be modeled as follows:

d ρ̂

dt
= −i[Ĥ
 + Ĥcolor, ρ̂] + κ1(1 + nth )D̂[â]ρ̂

+ κ1nthD̂[â†]ρ̂ + κφD̂[â†â]ρ̂ + κ f D̂[ f̂M]ρ̂, (11)

where

Ĥcolor = gâ f̂ †
1 ei
 f t + J

M−1∑
j=1

f̂ j f̂ †
j+1 + H.c. (12)

is an interaction Hamiltonian between the Kerr cat mode â
and all filter modes f̂1, . . . , f̂M , with respective frequencies
ωa and ω f . Together with the dissipation of the last filter
mode in D[ f̂M], this Hamiltonian approximates an ideal band-
pass filter centered on the frequency ω f = ωa + 
 f , with half
bandwidth κ f = 2J [46].

The main point of this filter is to allow the relaxations
|φ±

n 〉m → |φ∓
n−1〉m to occur, thus countering the leakage from

the code space, while filtering out the transitions |φ±
n 〉m →

|φ∓
n 〉m that solely induce photon number parity jumps without
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(a) (b)

FIG. 5. (a) Thermal population of the eigenstates of the detuned
Kerr Hamiltonian for 
 = 10K for n̄ = 10, κ1 = 10−3K, nth = 10−2,
and κφ = 10−5K without colored dissipation (in red or dark gray)
and with colored dissipation (in blue or light gray). The colored
dissipation reduces the leakage by nearly three orders of magnitudes.
(b) Leakage out of the code space as a function of n̄ and for different
values of 
. The colored dissipation works regardless of the value of
the detuning.

reducing state leakage. Indeed, while the first kind of transi-
tion features an energy difference 
 f � 4Kn̄, the second kind
has a typical energy difference 
 f ≈ 0, where the equality is
verified within the exactly degenerate subspace of the detuned
Kerr Hamiltonian [see Fig. 1(b)]. Note in particular that all of
these transitions swap the cat-state parity, thus leakage elim-
ination with colored dissipation is performed while inducing
parity swaps. This is beneficial for certain gates, as it ensures
the correction of first-order nonadiabatic phase-flip errors (see
Ref. [46] for details).

Similarly as in Ref. [46], we set the filter detuning fre-
quency at the first excited to ground-state transition frequency,
i.e., 
 f ≈ 4Kn̄. We also set κ f = 2J = 
 f /5 and g = κ f /5
like for the regular colored Kerr cat, such that adiabatic elim-
ination of the ancillary filter modes can be performed. In the
limit of a large number of filter modes, this colored dissipa-
tion leads to an engineered dissipation rate κ1,eng = 4g2/κ f .
A notable difficulty in the design of this system is to filter
out the 
 f ≈ 0 transitions (in order not to induce persis-
tent phase-flip errors) while maintaining a maximum number
of higher-energy transitions. As such, it may be relevant to
feature multiple band-pass filters at various transition frequen-
cies, the so-called “colors.”

The population of the steady state of the detuned Kerr cat
is shown in Fig. 5(a), with (blue or light gray) or without
(red or dark gray) colored dissipation and for a fixed de-
tuning 
 = 10K , cat size n̄ = 10, in the presence of several
leakage-inducing dissipative terms such as thermal excitation
and dephasing. Several orders of magnitude of reduction in
the amount of leakage are therefore demonstrated once this
colored dissipation is added. In particular, the rate of this
colored dissipation, or the number of colors, can be adjusted
to further reduce leakage. The leakage reduction induced by
colored dissipation is shown in Fig. 5(b) as a function of the
mean number of photons n̄ and for different values of the
detuning 
.

Once a dissipative scheme stabilizing the two-dimensional
subspace (preventing state leakage to accumulate) is specified,

FIG. 6. Bit-flip error rate as a function of n̄ for different val-
ues of the detuning 
 and for n̄ = 10, κ1 = 10−3K, nth = 10−2, and
κφ = 10−5K . The transparent curves represent the phase-space ex-
cursion rate without colored dissipation (same as Fig. 3), and the
plain curves represent the bit-flip rate with colored dissipation. For a
fixed value of n̄, there is an optimal choice of 
 that minimizes the
rate �bit-flip. The associated optimal rate �

opt
bit-flip scales as e−γ n̄, with

γ ≈ 0.89 (note that this value corresponds to the specific values of
κ1, nth, and κφ chosen).

we may speak of a well-defined qubit. The logical Pauli op-
erators of the cat qubit are defined as Z = sign(â + â†) and
X = exp(iπ â†â). Note that, by reducing leakage, the colored
dissipation also reduces the bit-flip rate. This can be seen from
the rate of phase-space excursions �S that now corresponds
to the bit-flip error rate �bit-flip. Similar simulations to those
performed in the previous section, but now in the presence
of colored dissipation are provided in Fig. 6. In these simula-
tions, we let the system evolve from the state |0〉m under the
master equation (11) for a time of order 10/κ1, and fit 〈Z〉t =
〈Ŝ〉t to an exponential exp(−2�bit-flipt ). Figure 6(a) shows the
resulting bit-flip error rates for different values of n̄ and de-
tuning, with κ1 = 10−3K, nth = 10−2, and κφ = 10−5K . The
simulations were performed in the Kerr eigenstate basis with a
truncation of 14 eigenstates. Following Ref. [46], we assume
that there is, at most, one photon in all N filter modes, such
that they can all be simulated at once using a Hilbert space of
dimension N + 1.

Note that, for a small number of filter modes, the addition
of colored dissipation can induce additional phase-flip errors.
Thus, in practice, a certain number of modes are needed so
that the additional phase-flip errors become negligible com-
pared to those caused by the intrinsic single-photon loss. For
the parameters in our simulations, this level of filtering is
reached using three modes. In practice, one might want to
reduce the engineered colored dissipation rate κ1,eng to avoid
further phase-flip errors due to the absence of a perfect cutoff
or to limit the nonadiabatic gate errors introduced in the next
section. Increasing the detuning enables to reach an equiva-
lent bit-flip error rate, but for a weaker colored dissipation
rate.

V. BIAS-PRESERVING GATES

For a universal set of logical operations, it is required to be
able to prepare cat states in both |0〉c and |+〉c [17]. The prepa-
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ration of |+〉c can be achieved by adiabatically increasing both
the two-photon drive strength and detuning. The best adiabatic
path can be optimized in a similar way as Ref. [55], leading
to a preparation analogous to on-resonance Kerr cats. The
preparation of |0〉m can be achieved similarly, starting from
a coherent state stabilized with an on-resonance Kerr Hamil-
tonian, and adiabatically increasing the detuning. During this
preparation, the rate of bit-flip errors will be equivalent to the
on-resonance Kerr, and will then recover the rate described
in Fig. 6.

The implementation of bias-preserving gates on cat qubits,
as required for a universal set of fault-tolerant logical gates,
are achieved using two types of dynamics, so-called Zeno
and topological gates [12,17,18]. A Zeno gate typically makes
use of the quantum Zeno effect to perform a rotation of
an arbitrary angle θ around the Z axis by applying a weak
near-resonant drive. In the rotating frame of the two-photon
drive, such a Zeno gate can be modeled by the addition of the
Hamiltonian

ĤZ (t ) = εZ (t )(â† + â) (13)

to Eq. (5). Here, εZ (t ) represents a slowly varying modu-
lation of the driving field amplitude. A rotation around the
Z axis of the Bloch sphere is then realized with an angle
4
√

n̄
∫ T

0 εZ (t )dt , where T is the duration of the gate. Accel-
erating such a gate usually comes at the expense of additional
leakage out of the cat-qubit subspace due to nonadiabatic
effects. In the absence of decoherence, and by benefiting from
the adiabatic theorem with exponential accuracy [56], it is
possible to engineer pulses εZ (t ) where these higher-order
effects are carefully suppressed, thus reaching extremely fast
gates [45]. Two-qubit entangling gates (rotations around the
ZZ axis) can be performed in a similar manner [12]. These
gates rely on the protection provided by the Hamiltonian gap
and thus straightforwardly used in the context of detuned Kerr
cats, while preserving the better scaling of bit-flip-type errors.

We can distinguish two sources of phase-flip errors when
applying such a Zeno gate. The first one corresponds to those
induced by the undesired single-photon loss, with probabil-
ity pZ = n̄κ1T . The second one is nonadiabatic errors, with
probability pNA

Z , which are created because the gate induces
leakage out of the code space, and consequently, this leakage
is mapped to code-space errors after being removed by the
engineered dissipation process. Without dissipation, the nona-
diabatic errors can be exponentially suppressed with the gate
duration, using the superadiabatic pulse designs [45]. How-
ever, when combined with colored dissipation, the Z rotation
induces further nonadiabatic errors. The detuned Kerr cats
suffer from these nonadiabatic errors just as in the resonant
ones. However, for the same bit-flip error rate, the strength of
the colored dissipation of the detuned Kerr cats can be reduced
compared to the resonant ones, leading, therefore, to smaller
nonadiabatic error rates. For instance, as can be seen on Fig. 6,
at n̄ = 8 and for 
 = 10K , the bit-flip rate of the detuned
Kerr cats (even without colored dissipation) is smaller than the
bit-flip rate of the resonant one with colored dissipation. Note,
however, that the colored dissipation is still needed to counter
leakage and to work with well-defined qubits. Figure 7 shows
the reduction in nonadiabatic errors on a Z gate when reducing

FIG. 7. Nonadiabatic error probability pNA
Z for a Zeno π rotation

around the Z axis, realized with a Gaussian pulse εZ (t ) for n̄ = 8.
Here T is the gate duration and is expressed in units of 1/K . Without
dissipation, the nonadiabatic error probability can be reduced to as
low as 10−8 for gate times of order 1/K . But, with colored dissipation
of strength κ1,eng = K such nonadiabatic error probability saturates
above 10−2. Dividing by 10 the colored dissipation amplitude re-
duces the nonadiabatic error probability by approximately two orders
of magnitudes. pNA

Z is also plotted for different number of filter modes
in the colored dissipation, showing that it is not necessary to consider
more than three filter modes here.

the strength of the colored dissipation from κ1,eng = K to
κ1,eng = K/10.

The topological gates are based on a deformation of the
code space. Typically, a Pauli X gate is performed through a π

rotation of the phase space by rotating the two states confined
by the Kerr dynamics |α(t )〉=|αeiθ (t )〉 [with θ (T )=π ],
while applying a so-called feed-forward Hamiltonian
Ĥ (t ) = −θ̇ (t )â†â. Here, nothing in the dynamics is specific
to having coherent states as confined states, and therefore, the
Pauli X gate can be implemented in the exact same manner
for the detuned Kerr cats. Less trivially, the controlled-NOT

(CNOT) gate introduced in Ref. [18] can also be adapted to the
detuned Kerr cats. It consists in rotating the confinement of
the target qubit conditionally on the state of the control qubit
as well as applying a CNOT feed-forward Hamiltonian

Ĥ (t ) = K
(
â†2

c − α2
c

)(
â2

c − α2
c

) − 
â†
c âc − 
â†

t ât

+ K

[
â†2

t − α2
t e−2iθ (t )

(
α̃c − â†

c

2α̃c

)
− α2

t

(
α̃c + â†

c

2α̃c

)]

×
[

â2
t − α2

t e−2iθ (t )

(
α̃c − âc

2α̃c

)
− α2

t

(
α̃c + âc

2α̃c

)]

+ θ̇ (t )
2α̃c − â†

c − âc

4α̃c
⊗ (â†

t ât − n̄t ), (14)

with

α =
√

ε2/K, α̃ = 〈0|m(â† + â)|0〉m/2, (15)

where 
 = 2mK , θ (T ) = π , and âc and ât are the annihilation
operators of the control and target modes, respectively.
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VI. CONCLUSION

On the path towards a fault-tolerant quantum processor,
biased-noise qubits are promising candidates as they signifi-
cantly reduce the required overhead for error correction. By
focusing on the case of Kerr cat qubits [26,27,48], we show
in this paper that an extra control parameter, the detuning of
the the two-photon drive with respect to the Kerr oscillator’s
resonance, plays a central role in the structure of the spec-
trum of the confinement Hamiltonian. For particular choices
of detuning given by even multiples of the Kerr strength,
not only are the two encoding qubit states perfectly degen-
erate, but also the excited states come in perfectly degenerate
pairs. This strong symmetry significantly contributes to the
properties of the encoded qubits. By keeping the information
well confined in the left and right half planes of the phase
space, such a degenerate spectrum strongly suppresses the
phase-space excursions induced by leakage mechanisms such
as photon loss, thermal excitation, or photon dephasing. This
Hamiltonian confinement can then be safely combined with a
colored dissipation process countering the leakage and there-
fore leading to well-defined qubits. The degeneracy of the
spectrum ensures that even a weakly engineered dissipation
is enough to benefit from a strong suppression of bit-flip er-
rors. The weakness of the required dissipation provides room
for engineering fast high-fidelity bias-preserving gates, where
the information is not lost through the engineered dissipation
channel.

The analysis presented in this work is based on the effective
static Hamiltonian given in Eq. (5). One may legitimately
wonder whether this model is reasonable or not. Indeed,
within this effective theory, it would seem that arbitrarily
increasing the detuning of the squeezing drive would result in
an arbitrary number of pairs of excited states being perfectly
degenerate. In practice, however, a number of approximations
were made to obtain this effective dynamics; it would be in-
teresting to investigate how higher-order terms in the rotating
wave approximation (RWA) affect the benefits of the perfect
degeneracy of the eigenstates or to derive a more general the-
ory including beyond RWA effects, following the recent works
of the authors of Ref. [57]. However, even though the theory in
this paper does not include the study of such effects, during the
writing of this paper we were informed that the experimental
observations by our colleagues at Yale University [58] con-
firmed the improvement of the phase-space confinement prop-
erty for the specific detuning values mentioned in our paper.
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[41] W. Leoński and R. Tanaś, Possibility of producing the one-
photon state in a kicked cavity with a nonlinear Kerr medium,
Phys. Rev. A 49, R20(R) (1994).

[42] A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, Strongly
Interacting Photons in a Nonlinear Cavity, Phys. Rev. Lett. 79,
1467 (1997).
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