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Randomized measurements constitute a simple measurement primitive that exploits the information encoded
in the outcome statistics of samples of local quantum measurements defined through randomly selected bases.
In this work we exploit the potential of randomized measurements in order to probe the amount of entanglement
contained in multiparticle quantum systems as quantified by the multiparticle concurrence. We further present a
detailed statistical analysis of the underlying measurement resources required for a confident estimation of the
introduced quantifiers using analytical tools from the theory of random matrices. The introduced framework is
demonstrated by a series of numerical experiments analyzing the concurrence of typical multiparticle entangled
states as well as of ensembles of output states produced by random quantum circuits. Finally, we examine the
multiparticle entanglement of mixed states produced by noisy quantum circuits consisting of single- and two-
qubit gates with nonvanishing depolarization errors, thus showing that our framework is directly applicable in
the noisy intermediate-scale regime.
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I. INTRODUCTION

The multiparticle entanglement content of composite quan-
tum states of many, possibly interacting particles plays a
central role in the development of novel quantum tech-
nologies, ranging from quantum communication protocols
to quantum computing architectures [1–4]. For instance,
multiparticle entanglement has been shown to enhance the
performance of anonymous conference key agreement [5] and
act as a resource in quantum metrology [6], and it is believed
to be a crucial ingredient in quantum computation algorithms
outperforming analogous classical counterparts [7]. However,
determining a state’s content of multiparticle entanglement
becomes increasingly difficult with growing particle number
due to the large dimension and immense complexity of the
underlying multiparticle Hilbert space [8,9].

Methods for the characterization of multiparticle properties
vary strongly in terms of the required measurement resources
as well as their assumptions about the states under consider-
ation [10]. While tomographic tools assume very little about
the considered quantum states, they become impractical for
rather small system sizes [11]. In contrast, witness operators
allow for an efficient certification of multiparticle properties,
such as structures of entanglement or the states’ fidelities,
but their successful implementation relies heavily on the
knowledge of the investigated quantum states [9,12,13]. Other
compromises between these two extreme strategies allow us to
lower the required measurement resources by either invoking
specific prior information about the sparsity of the involved
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density operators [14,15] or accepting limited precision re-
quirements of the targeted observables [16].

A promising approach in this regard is based on so-called
randomized measurements where the underlying quantum
state is read out in randomly selected local measurement bases
and system properties are inferred via appropriate statisti-
cal averages [17–42] (see Fig. 1). In this way it has been
shown to be possible to extract a number of relevant proper-
ties of the underlying many-body states such as structures of
multiparticle entanglement [25,26,37,38], subsystem purities
[30,31], fidelities with respect to given target states or other
quantum devices [18,34], or interference signatures of indis-
tinguishable particles [23,24]. Furthermore, the underlying
measurement resources for a statistically significant verifica-
tion of the aforementioned properties have been investigated,
promising advantages particularly in the noisy intermediate-
scale regime [35,38,43–45].

In this work we use locally randomized measurements in
order to directly extract information about the amount of en-
tanglement in terms of the multiparticle concurrence [46–51],
a quantifier for multiparticle entanglement. In particular, we
derive an exact formula for the multiparticle concurrence of
pure states, as well as for an appropriate lower bound in
the case of mixed states, from second moments of the out-
comes of random measurements. Furthermore, we analyze
in detail the measurement resources required for a statis-
tically confident estimation of the involved quantities by
analyzing the respective variances. We apply the developed
toolbox to evaluate the multiparticle entanglement of typi-
cal multiparticle states and ensembles of states produced by
different classes of random quantum circuits (see Fig. 1). Fi-
nally, we investigate the multiparticle entanglement of mixed
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FIG. 1. Random quantum circuit consisting of N qubits. The
qubits are initialized in the ground state |0〉⊗N and subsequently
manipulated with gates drawn from the universal gate set Iuni =
{H, T,CX } which are applied to randomly selected qubits. The result-
ing output state of the computation is analyzed using a randomized
measurement protocol consisting of randomly drawn local unitary
transformations Ui complemented with a measurement in the com-
putational basis of N qubits.

states produced by noisy quantum circuits consisting of gates
prone to nonvanishing depolarization errors.

The paper is structured as follows. In Sec. II we introduce
the paradigm of randomized measurements and show how it
enables a measurement of the concurrence of pure multiparti-
cle quantum states and of a suitable lower bound in the case of
mixed states. In Sec. III we discuss the statistical estimation
of the involved quantities based on finite samples of ran-
domized measurements and in particular analyze the involved
statistical error through evaluation of the variances of the
respective estimators. In Secs. IV and V we demonstrate the
introduced protocols through numerical simulations of typical
examples of multiparticle entangled states and ensembles of
states produced by random quantum circuits, respectively. We
summarize our work in Sec. VI and give a brief outlook for
future work.

II. PROBING MULTIPARTICLE ENTANGLEMENT
WITH RANDOMIZED MEASUREMENTS

A. Randomized measurements and moments
of random correlations

To start with we introduce briefly the framework of
randomized measurements as a diagnostic tool for the char-
acterization of multiparticle quantum systems. For reasons of
generality we consider in this section a collection of N d-
dimensional quantum systems (qudits), each described by a
local Hilbert space H = Cd . The quantum state of the total
multiparticle particle system is then described by a density
operator � acting on the N-particle Hilbert space H⊗N .

A random measurement of the N-particle state � is then
described through a set of randomly drawn local bases
{Bn}n=1,...,N , each defined as Bn = {Un|sn〉}s=0,...,d−1 with
a random transformation Un picked uniformly from the
unitary group U(d ), i.e., according to the Haar measure, where
{|sn〉}s=0,...,d−1 denotes the computational basis of the nth

qudit. The outcome of a single measurement run in such a
random basis is then labeled by a string s = (s1, . . . , sN ) of
length N containing values sk = 0, . . . , d − 1 and the associ-
ated outcome probability reads PU (s) = tr(�U |s〉〈s|U †), with
U = U1 ⊗ · · · ⊗ UN .

The idea behind randomized measurement protocols is
now to regard appropriate combinations of the popula-
tion probabilities PU (s) = tr(�U |s〉〈s|U †) in such a way
that, upon averaging them uniformly over the local unitary
group U(d )⊗N , they provide insights about the properties
of the quantum state �. For instance, it has been shown in
Refs. [30,31] that the state’s purity can be obtained as

tr(�2) = dN
∑
s,s′

(−d )−D(s,s′ )EU [PU (s)PU (s′)], (1)

where D(s, s′) = #{i ∈ {1, . . . , N}|si �= s j} denotes the Ham-
ming distance between two computational basis states |s〉 =
|s1, . . . , sN 〉 and |s′〉 = |s′

1, . . . , s′
N 〉 and

EU [· · · ] =
∫

U(d )
dη(U1) · · ·

∫
U(d )

dη(Uk ) · · · (2)

denotes the average with respect the local Haar measures η

over the local unitary group U(d )⊗N .
Analogously, we can associate a random measurement

of a single qudit with an observable OU = UOU †, where
U ∈ U(d ) and O denotes a traceless observable diagonal in
the computational basis with outcomes {oi}i=0,...,d−1. For in-
stance, for qubits (d = 2) a standard choice of the observable
O is given by the Pauli matrix σz, leading to the random Pauli
matrix σui , with [ui] j = tr(σ jUiσzU

†
i ). One round of such a

random measurement of N qudits thus allows one obtain the
correlation functions〈

O(i1 )
Ui1

· · ·O(ik )
Uik

〉 =
∑

s

osi1
· · · osik

PU (s), (3)

with a subset A = {i1, . . . , ik} ⊂ {1, . . . , N} of the N qudits of
cardinality k. Note that Eq. (3) amounts to a classical postpro-
cessing of the outcome probabilities PU (s), which simplifies
significantly in the case of binary observables (os = ±1),
where one has to consider overall only two cases, namely,
those where the parity of the outcomes is either even or odd
[38]. Repeating the above measurement strategy many times
for randomly selected choices of Ui then results in a distribu-
tion of values which encodes the correlations properties of the
state � and is characterized by the moments

R(t )
A =

∫
U(d )

dη(U1) · · ·
∫

U(d )
dη(Uk )

〈
O(i1 )

U1
· · ·O(ik )

Uk

〉t
, (4)

where t is a positive integer.
The moments (4) have been previously shown to be good

candidates for the characterization of multiparticle correla-
tions [21,25,26,37,38]. In particular, it was shown that the
combination of moments of different order leads to an im-
proved sensitivity in the sense that a larger class of states
can be detected [25,26,37]. Furthermore, it is often useful to
combine moments evaluated on different subsets A of qudits
in order to obtain more information about the underlying state
(see Refs. [31,33,37,42,52]). For instance, the purity formula
(1) can be expressed as a sum over second-order reduced
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moments of all subsets of qudits, yielding

tr(�2) = 1

dN

∑
A⊂{1,...,N}

(d2 − 1)|A|R(2)
A (�), (5)

where R(2)
∅ ≡ 1, with ∅ denoting the empty set. In this spirit

we will proceed in the following and show that the multi-
particle entanglement content, as quantified by multiparticle
concurrence, can be assessed via such a randomized measure-
ment protocol.

B. Multiparticle concurrence from randomized measurements

The multiparticle concurrence of an N-qudit pure state
|ψ〉 ∈ H⊗N was introduced in Refs. [46–48] and can be ex-
pressed as

CN (|ψ〉) = 2

√√√√1 − 1

2N

∑
A⊆{1,...,N}

tr
(
�2

A

)
, (6)

where �A = trAc (|ψ〉〈ψ |), with Ac = {1, . . . , N} \ A, denotes
the reduced density matrix of the pure state |ψ〉 with respect to
the subsystem associated with the subset A of the N qudits. In
Appendix A 1 we show that CN (|ψ〉) can be inferred through
the quantity

CN (|ψ〉) = 2

√
1 − dN (d + 1)N

2N
EU

[
P2

U (s)
]
, (7)

where EU [· · · ] denotes the average over the ensemble of local
unitary transformations U = U1 ⊗ · · · ⊗ UN , with Ui ∈ U(d ),
with respect to the local Haar measures on U(d ). Hence, we
have found an expression of the multiparticle concurrence
(6) that involves only quantities accessible via randomized
measurements and thus avoids the evaluation of the purities of
all possible partitions of the N involved subsystems. We note
that the expression (7) was noted previously in Refs. [53,54].
Alternatively, we can express the concurrence in terms of the
moments (4) (see Appendix A 1 for more details), yielding

CN (|ψ〉) = 2

√√√√1 −
∑

A⊂{1,...,N}

∑
A′⊂A

(d2 − 1)|A′|

2N d |A| R(2)
A′ . (8)

Further, generalizations of Eq. (7) to the case of mixed
states usually involve a convex roof construction of the form
C(�) = inf {pk ,|φk〉}

∑
k pkC(|φk〉), where the infimum has to be

taken over all possible decompositions � = ∑
k pk|φk〉〈φk|,

which is hard to evaluate in practice. This problem can be
partially circumvented by considering an appropriate lower
bound of the mixed state concurrence CN (�) as has been
derived in Refs. [49–51], leading to the expression

CN (�) �
√

tr(� ⊗ �VN ), (9)

with

VN = 4[P+ − P+ ⊗ · · · ⊗ P+ − (1 − 21−N )P−], (10)

where P+ (P−) denotes the projector onto the (anti)symmetric
subspace of the twofold tensor copy space (Cd )⊗N ⊗ (Cd )⊗N

and similarly P+ (P−) of the individual qudit subspaces. We
note that the bound (9) performs best in the weakly mixed

regime [55] and it is directly accessible via randomized mea-
surements. In Appendix A 1 we thus show that the lower
bound (9) can be expressed as

CN (�)2 � 4

2N
− 22−N dN (d + 1)NEU

[
P2

U (s)
]

+
(

4 − 4

2N

)
dN

∑
s,s′

(−d )−D(s,s′ )EU [PU (s)PU (s′)],

(11)

with the Hamming distance D(s, s′). Note that the last term
in Eq. (11) can be identified as the purity of � [see Eq. (1)]
according to the randomized measurement framework intro-
duced in Refs. [28–30]. Again, we can express Eq. (11)
equivalently in terms of the moments (4) by combining
Eqs. (1) and (8), leading to

CN (�)2 � 2(1 − 21−N )

×
∑

A⊂{1,...,N}

{ ∑
A′⊂A

3|A′|

2|A| R
(2)
A′ + 2 × 3|A|

2N
R(2)

A

}
.

(12)

Note that an evaluation of the concurrence or its lower bound
through finite samples of randomized measurements using
Eq. (7) or (11), or equivalently using Eq. (8) or (12), requires
the definition of appropriate unbiased estimators which come
with a nonvanishing statistical error (see Sec. III).

C. Exact evaluation with quantum designs

The above-introduced formulas for the evaluation of the
multiparticle concurrence based on randomized measurement
also provide the starting point for the derivation of exact
expressions, allowing us to determine the concurrence based
on a finite number of measurement settings. To do so, we
exploit the concept of unitary designs which provide finite sets
of unitary matrices that are inequivalent to Haar random ones
as long as one is concerned with statistical moments of some
finite order.

Formally, a unitary t-design is a set of unitary matrices
{Uk|k = 1, . . . , K (t )} ⊂ U(d ), with cardinality K (t ) [56] such
that

1

K (t )

K (t )∑
k=1

Pt ′,t ′ (Uk ) =
∫

U(d )
Pt ′,t ′ (U )dη(U ), (13)

for all homogeneous polynomials Pt ′,t ′ ∈ H (t ′, t ′), with t ′ �
t , and where η(U ) denotes the normalized Haar measure on
U(d ). We note that Pr,s(U ) is an element of the set of all
homogeneous polynomials H (r, s), with support on the space
of unitary matrices U(d ), which is of degree at most r and
s in each of the matrix elements of U and their complex
conjugates, respectively. While the existence of unitary de-
signs has been proven [57], no universal strategy for their
construction in the case of an arbitrarily given t is known.
However, a number of approximate unitary designs, for which
the property (13) is accordingly relaxed, have been introduced
in the literature [58–60]. In the remainder of this paper we will
restrict ourselves to the particular case of the Clifford group
C(d ) ⊂ U(d ), which has been shown to constitute a unitary
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3-design [61,62]. The Clifford group consists in general of
all unitary matrices that map the multiqudit Pauli group onto
itself. In the case of a single qubit this amounts to |C(2)| = 24
elements, which can be generated from the Hadamard gate H
and the phase gate S = ei(π/4)σz .

Now, noting that the second power of the correlation func-
tion (3) is a polynomial of degree 2 in the entries of the local
random unitary matrices Un ∈ U(d ) and their complex conju-
gates allows us to replace the average over the local unitary
groups U(d ) in Eq. (4) with an average over all elements of
the respective Clifford groups C(d ), yielding

R(2)
A = 1

|C(d )||A|

|C(d )|∑
α1,...,αk=1

〈
O(i1 )

Uα1
· · ·O(ik )

Uαk

〉2
. (14)

Equation (14) is a general formula that allows one to calcu-
late the second moment for general local dimension d and
arbitrary subsystems A. If one is interested in the specific
case of systems of qubits, i.e., d = 2, we can further use that
the Clifford group has the property to map the multiqubit
Pauli group onto itself and thus each of the observables O(i)

Uα

becomes equal to ±σ (i)
α , where σ (i)

α denotes the αth Pauli
matrix acting on qubit i of the total N-qubit system. All in all,
Eq. (14) thus simplifies to a sum over the squared elements of
the correlations tensors T (A)

α1,...,αk
= 〈σ (i1 )

α1
, . . . , σ (ik )

αk
〉, leading to

R(2)
A = 1

3|A|

3∑
α1,...,αk=1

(
T (A)

α1,...,αk

)2
. (15)

Hence, in order to determine the moments R(2)
A exactly it

suffices to measure all elements of the correlation tensors
T (A) which can be directly extracted from the full correlation
tensor Tα1,...,αN = 〈σα1 ⊗ · · · ⊗ σαN 〉, with α j = x, y, z, which
consists of 3N elements.

In conclusion, as the pure state concurrence (8) and the
corresponding lower bound (12) are simple functions of the
second moments R(2)

A , we can use Eq. (15) to measure
them directly using 3N measurement settings. Such a direct
measurement, however, becomes impractical as soon as one
reaches system sizes of several tens of qubits where, due to the
exponential scaling 3N , the required number measurements
becomes too large. In the latter regime it can be favorable
to estimate the concurrence approximately using randomized
measurements at the expense of a nonzero statistical error.
In the next section we will analyze this statistical error and
discuss the scaling of the required number of measurement
settings, as well as the required number of projective measure-
ments per individual measurement setting, in order to reach an
estimate with a predefined accuracy.

III. STATISTICAL ESTIMATION OF THE
MULTIPARTICLE CONCURRENCE

A. Unbiased estimators of Eqs. (7) and (11)

In experiments randomized measurement protocols can
only be realized with finite samples of measurements.
Consequently, an estimation of the randomized population
probabilities contained in Eqs. (7) and (11), i.e., EU [P2

U (s)]
and EU [PU (s)PU (s′)], will involve a finite statistical error.

Furthermore, in practice one also needs to estimate the
population probabilities PU (s) based on finitely many rounds
of projective measurements.

In the following we will assume that one round of ran-
domized measurements consists of a sample of M random
measurement bases, each of which undergoes a finite number
K of projective measurements. The latter allow us to estimate
the PU (s), its second powers P2

U (s), as well as cross terms of
the form PU (s)PU (s′) for each individual choice of random
measurement bases defined by the local unitary transforma-
tion U = U1 ⊗ · · · ⊗ UN . In order to do so we first introduce
an unbiased estimator of the population probability PU (s),
which reads P̃U (s) = Y (s)/K , where Y (s) denotes a random
variable distributed according to the multinomial distribution
defined by the distribution {PU (s)}s with K independent trials.
Given P̃U (s), it is straightforward to derive appropriate estima-
tors for its monomials (see Appendix B 1 for details), yielding

P̃(2)
U (s) = P̃(s)[KP̃(s) − 1]

K − 1
, (16)

P̃(1,1)
Ui

(s, s′) = K

K − 1
P̃(s)P̃(s′). (17)

Given this set of unbiased estimators of the involved
population probabilities, we can go one step further and
introduce statistically sound estimators of the relevant quan-
tities contained in Eqs. (7) and (11), namely, EU [P2

U (s)] and
EU [PU (s)PU (s′)], leading to

P2
U (s) = 1

M

M∑
i=1

P̃(2)
Ui

(s), (18)

PU (s)PU (s′) = 1

M

M∑
i=1

P̃(1,1)
Ui

(s, s′). (19)

The estimators (18) and (19) thus reflect the fluctuations
resulting from both finite M and K leading to a nonzero statis-
tical error. In order to determine the latter, different strategies
can be pursued, one of which consists in a straightforward
statistical approach exploiting the measurement data produced
form either real or numerical experiments (see Fig. 2). In this
way it is possible to investigate the statistical error of the
involved estimators for systems of limited size and for specific
targeted quantum states [28–31]; however, it is in general
not possible to extrapolate the statistical effects to systems
consisting of larger particle number. Alternatively, one can
evaluate the statistical error analytically based on the given
properties of the estimators’ distributions, an approach that
we will pursue further in Sec. III B.

Before moving on to the analysis of the statistical errors of
Eqs. (18) and (19) we note that the squared averaged popula-
tion probability EU [P2

U (s)] no longer depends on the bit string
s. Hence, when estimating EU [P2

U (s)] it can be advantageous
to consider an unbiased estimator that includes also an average
over the subsets I ⊂ {0, 1}N of observed bit strings s. For
instance, instead of Eq. (18) we can use

X̃ = 1

|I|M
∑
s∈I

M∑
i=1

P̃(2)
Ui

(s), (20)
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(a) (b) (c)

FIG. 2. (a) Plot of the variance of the estimator of the squared population probabilities for five qubits as a function of the number M of
sampled local measurement bases, with K = 10 (upper blue circles) and K = 102 (lower red circles). The left plot corresponds to a random
product state, the middle one to the GHZ state, and the right plot to a Haar random state. For the latter, the error bar marks the standard
deviation of 100 averaged Haar random states. Solid lines correspond to the analytical result obtained via an exact average with respect to the
Haar measure. (b) Plot of the same variance as a function of the number of projective measurements K with M = 10 and 102. (c) Plot of the
same variance as a function of the number N of qubits with M = 102 and 103.

which is also an unbiased estimator for the squared av-
eraged population probability EU [P2

U (s)] = Emulti,U [X̃ ]. This
procedure is particularly relevant for an increasing number
of qubits N , in which case the probability of observing one
particular bit string can become vanishingly small.

B. Analysis of the statistical errors

In order to analyze the statistical error of the estimators
(18)–(20) we first have to evaluate their respective variances.
For instance, in the case of Eq. (18) this yields

Var[P2
U (s)] = 1

M2

M∑
i=1

Var
[
P̃(2)

Ui
(s)

]
, (21)

with

Var
[
P̃(2)

Ui
(s)

] = 1

(K − 1)2

{
(5 − 3K )EU

[
P4

U (s)
]

+ 4(K − 2)EU
[
P3

U (s)
] + 2EU

[
P2

U (s)
]}

,

(22)

which shows that the underlying error depends on the
higher-order randomized population probabilities EU [P2

U (s)],
EU [P3

U (s)], and EU [P4
U (s)], which in turn are independent of

the choice of the bit string s. In Fig. 2 we present a comparison
between the numerically and analytically estimated values of
the variance (21) for a number of exemplary quantum states
(see Appendix B 1 for details on the calculations). We find
that the variance decays for all states inversely with M, as
expected from the central-limit theorem, while its dependence
on K reaches a plateau after an initial decay. All in all, we
find that the numerical results agree very well with the an-
alytical predictions also for varying number of qubits [see
Fig. 2(c)].

In Fig. 3 we present similar results for the estimator (19).
Note that in this case the symbolic expression of the re-
spective variance [see Eq. (B12) in Appendix B 1] is more
complicated as it depends on the cross terms EU [Pt

U (s)Pk
U (s′)],

with t, k = 1, 2, which themselves depend on the Hamming

distance D(s, s′). For this reason, we calculate the variance
for all values of s and s′ and present the average over the
respective values in Fig. 3. As for the variance of Eq. (18),
we find good agreement with the analytical predictions for the
states under consideration.

Given the analytical expression of the variance (21), it is
straightforward to derive a confidence interval for the esti-
mators (18) and (19) for the target state under consideration
and a given number of measurements M and K . To do so,
we use the two-sided Cantelli inequality (see Refs. [63]),
yielding

Pr
[∣∣P2

U (s) − E
[
P2

U (s)
]∣∣ � δ

]
�

2 Var
[
P̃(2)

Ui
(s)

]
Var

[
P̃(2)

Ui
(s)

] + δ2
, (23)

which, by requiring that the confidence 1 − Prob(|R̃(t ) −
R(t )| � δ) of this estimation is at least γ , leads to the follow-
ing minimal two-sided error bar:

δerr =
√

1 + γ

1 − γ
Var

[
P̃(2)

Ui
(s)

]
. (24)

In order to do the final step of deriving a suitable error bar
on the estimate of the concurrence, we have to propagate the
respective error (24) through the square root contained in the
expression (7). This can be done up to first order in δerr using
the standard rule for the propagation of uncertainties, leading
to

δC = ∂C

∂EU
[
P2

U (s)
]δerr + O

(
δ2

err

)
. (25)

Now we are in the position to determine the required num-
ber of measurements MK as well as their ratio M/K in order
to estimate the concurrence up to an error of δC . To do so,
we fix a desired relative error of 10% for the concurrence
and determine the optimal values of M and K such that δC

fulfills this error requirement. In practice, this is done by
analytically evaluating δC for a number of values of M and
K chosen from the range of values 101, . . . , 1016. In Fig. 4
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(a) (b)

FIG. 3. (a) Plot of the variance of the estimator (19) for five qubits averaged over all combinations of s and s′ and as a function of the
number M of sampled local measurement bases with K = 10 (upper blue circles) and K = 102 (lower red circles). The left plot corresponds
to a random product state, the middle one to the GHZ state, and the right plot to a Haar random state. Solid lines correspond to the analytical
result obtained via an exact average with respect to the Haar measure. (b) Plot of the same variance as a function of the number of projective
measurements K with M = 10 and 102.

we present the results of this procedure as a function of the
number N of involved qubits. Note that this can be done
efficiently due to the analytical estimates of the variance (21)
and can, in principle, be carried out for an arbitrary number N

(a)

(b)

FIG. 4. Plot of (a) the total number of measurements MK and
(b) the corresponding optimal ratio M/K required for an estimation
of the concurrence with a relative error of at most 10% as a function
of the number of qubits for a GHZ state (blue solid line) and a Haar
random state (yellow dashed line). The red dash-dotted line shows
the respective results for the estimation of the concurrence of a Haar
random state using the estimator (20).

of qubits. Previous studies of this type focusing on estimations
of the purity were bounded to values of N � 10 as they relied
on numerical estimates of the underlying statistical errors
[28–31].

We also note that the exact analytical assessment of
the statistical error of the estimator (20) is more involved
because the sum over s leads to many cross terms in the
respective variance. However, in the particular case of Haar
random states we can circumvent this problem because
correlations between different bit strings of Haar random
states are with increasing N exponentially suppressed [64,65].
Making use of this fact allows us to evaluate the underlying
variance and obtain an estimate of the respective statistical er-
ror (see Appendix B 1 for details). As an example we included
the results of the latter calculation in Fig. 3, showing that it
can lead to an improvement as long as the dimension of the
overall Hilbert space is small compared to the number K of
individual projective measurements per random measurement
setting.

IV. APPLICATIONS TO TYPICAL MULTIPARTICLE
ENTANGLED STATES

Having analyzed in detail the measurement resources re-
quired for the evaluation of Eqs. (7) and (11) in the preceding
section, we move on and investigate how the introduced ran-
domized measurement protocol performs in practice. In this
respect, we use the methods introduced in Sec. II in order
to characterize the multiparticle entanglement properties of
examples of typical multiparticle entangled states and investi-
gate the observed performance in the presence of noise in the
form of gate errors.

A. Analytical results for pure states

To begin with, we will summarize some important ana-
lytical expressions of the concurrence for several examples
of multiparticle states and discuss their respective asymp-
totic behavior in the limit of large particle numbers. We note
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that the analytical expressions for the concurrence of pure
Greenberger-Horne-Zeilinger (GHZ) states of N qubits can
be easily derived from the fact that all its reduced states are
maximally mixed states of rank 2 and thus have a purity of 1

2
[47,48], leading to

CN (|GHZN 〉) = 21−N/2
√

2N−1 − 1, (26)

which yields
√

2 in the limit N → ∞.
Furthermore, we derive in the following also an analytical

expression for the concurrence of Haar random pure states
of N qubits. In order to do so we first note that a pure Haar
random state reads |ψ〉 = U |0〉⊗N , with U ∈ U(2N ) picked
uniformly according to the Haar measure. Hence, the resulting
concurrence of the output state is a polynomial functions of
the unitary transformation U whose average over the unitary
group can be evaluated using the well-known expression

∫
U(d )

Ui1, j1 · · ·Uit , jt U
∗
ĩ1, j̃1

· · ·U ∗
ĩt , j̃t

dU

=
∑

π,σ∈St

δi1,ĩπ (1)
· · · δit ,ĩπ (t )

δ j1, j̃σ (1)
· · · δ jt , j̃σ (t )

Wgd (π−1σ ),

(27)

where the sum runs over the elements of the symmetric group
St and Wgd denotes the so-called Weingarten function which
depends on the structure of the permutation π−1σ and the
dimension d [66,67]. Doing so with the square of the con-
currence (7) leads to the expression

Eψ [CN (ψ )2] = 4 − 8(1 + d )N

2N (1 + dN )
, (28)

where we used the notation Eψ [· · · ] to denote the analytical
average over U and thus over the Haar random state |ψ〉. We
emphasize that the square root of Eq. (28) provides also a good
approximation of the average Eψ [CN (ψ )] already for moder-
ate numbers of N due to the concentration of the concurrence
around its mean value (see Fig. 5). The latter is a direct conse-
quence of the concentration of measure phenomena occurring
for samples of Haar random quantum states in Hilbert space
of growing dimension [68,69].

Using Eq. (28), we find that the average concurrence for
Haar random multiqubit states converges to 2 if the number
of qubits N goes to infinity. Hence, while GHZ states yield a
larger concurrence for small qubit numbers, i.e., N = 2, 3, 4,
the concurrence of Haar random states generally increases
faster for large qubit numbers and finally also reaches a larger
asymptotic value C∞(|Haar∞〉) > C∞(|GHZ∞〉). Finally, the
question remains whether 2 is also the global maximum of
the concurrence in the limit N → ∞. To answer this question
we make the hypothetical assumption that all subsystems of
a pure N-qudit state are maximally mixed and thus all the
corresponding purities contained in Eq. (6) become minimal.
Hence, we find that all the purities are equal to 1/dA, where
dA denotes the dimension of the respective subsystem under
consideration. In the case of a system of qubits we thus have
dA = 2|A| and summing over all possible subsystems leads to

(a)

(b)

FIG. 5. (a) Histogram of the values of the multiparticle concur-
rence (6) evaluated for samples of 103 Haar random states for N = 2
(violet, left) to N = 8 (red, right) qubits. (b) Plot of the mean values
associated with the distributions presented above as a function of the
number of qubits N (blue triangles). As a comparison, the analytical
law (28) for the mean value of the concurrence for Haar random
states is shown (blue solid line), as well as the overall upper bound of
the maximum of the concurrence presented in Eq. (29) (black dashed
line).

the formula

2

√√√√1 − 1

2N
−

N−1∑
k=0

(N
k

)
2N+k

= 21−N
√

1 + 4N − 2N − 3N , (29)

which provides an upper bound of the global maximum of the
concurrence (6). Note that the asymptotic value of Eq. (29) in
the limit N → ∞ is also 2, while for each finite N it is strictly
larger than Eq. (28).

B. Influence of noise on multiparticle entanglement

Given the statistical analysis of the required measurement
resources for an estimation of the multiparticle concurrence
(7), we are now in the position to apply these insights in
practice. We first do so in the case of pure GHZ as well as Haar
random states and compare the results to the analytical expres-
sions presented in Sec. IV A. Figures 6(a) and 6(b) present
numerical estimates of the concurrence with the measurement
resources M and K chosen in such a way that the resulting
statistical errors remain below 10% and 5% of the absolute
value of the concurrence, respectively. While the fluctuations
of the resulting estimates are apparent, one clearly observes
that they remain below the anticipated relative error bounds
of 10% and 5%.

In a further analysis we estimate the lower bound of the
multiparticle concurrence of noisy versions of the respective
pure states with randomized measurements using Eq (11).
In order to stay close to experimental implementations us-
ing noisy intermediate-scale quantum (NISQ) devices, we
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FIG. 6. Numerical estimation of (a) and (b) the multiparticle
concurrence (7) and (c) and (d) its lower bound (11) of GHZ states
(blue circles) and Haar random states (red triangles) as a function
of the number of qubits N . The values of M and K are chosen in
order to reach a relative error of (a) 10% and (b) 5% according to the
analysis presented in Sec. III. While solid and dashed lines present
the corresponding analytical predictions for pure states, black circles
and triangles indicate the respective true values of the concurrence’s
lower bound obtained via Eq. (9). Note that red triangles and the
corresponding error bars have been obtained from samples of 30
Haar random states. Also shown are the noise-prone cases where the
states are produced by a quantum circuits consisting of single- and
two-qubit gates inflicted with local depolarizing errors of (c) 0.01%
and (d) 0.1%. In order to approximate mixed Haar random states,
we used random quantum circuits containing 500 randomly sampled
gates from a universal gate set (see Fig. 1 and Sec. V).

produce the respective GHZ and Haar random states with
simulated quantum circuits consisting of series of single- and
two-qubit gates for which we assume local depolarizing errors
with error probabilities ε1 and ε2, respectively. However, if
the latter are chosen too large, the resulting output states will
be considerably mixed and the associated lower bound of the
concurrence very small or even zero. Hence, in order to pro-
duce states with a reasonable fidelity, i.e., such that the lower
bound of the concurrence is above zero, the magnitude of ε1

and ε2 should not be to large. We can roughly estimate the
resulting fidelities of the final output states by summing up the
effects of all single- and two-qubit gate errors as ε = 1 − (1 −
ε1)#1-qu (1 − ε2)#2-qu , where #1-qu and #2-qu denote the total num-
bers of applied single- and two-qubit gates, respectively. The
estimated overall accumulated error when producing GHZ
states of N qubits is thus given by 1 − (1 − ε1)(1 − ε2)N−1

as it requires the application of exactly N − 1 controlled-
NOT (CNOT) gates and only a single Hadamard gate. Hence,
the number of required two-qubit gates grows linearly with
the number of involved qubits and the overall accumulated
error remains below 10% even for two-qubit gate errors of
about 1%.

The Haar random states, however, can only be approxi-
mated by a series of gates that are chosen randomly from a
universal set of gates (in Sec. V A we discuss one possible way
of doing so) and thus one has to find a tradeoff between the

required randomness one wants to achieve and the total error
inflicted by the executed gate operations. If we assume that
the latter circuits consist of overall ngates, with twice as many
single- as two-qubit gates, we accumulate an overall error
of 1 − (1 − ε1)ngates2/3(1 − ε2)ngates/3. Furthermore, we need to
apply at least ngates > 500 gates in order to reach a sufficient
amount of randomness in the case of N = 9 qubits. Taking
these competing factors into account, we estimate that for
the errors ε1 = 0.01% and ε2 = 0.1% the overall accumulated
error does not exceed 20% and thus a reasonable fidelity of the
respective Haar random state is reached.

We thus simulated the respective circuits with the above
error rates and estimated the concurrence using Eq. (11).
The results are presented in Figs. 6(c) and 6(d). Note that for
the simulation of Eq. (11) in Figs. 6(c) and 6(d) we used the
same measurement numbers M and K that have been used for
the respective pure states in order to reach relative errors of
10% and 5%, respectively. Even though this is only a rough
estimate, the obtained results agree well with the exact values
of the concurrence’s lower bound (9), which are also depicted
in Fig. 6. Motivated by this result, we move on and apply
the respective protocols for estimating the concurrence other
multiparticle entangled states produced by different classes of
random quantum circuits.

V. APPLICATIONS TO THE CHARACTERIZATION
OF RANDOM QUANTUM CIRCUITS

A. Random quantum circuits

In the following we consider quantum circuits which are
defined through sequences of unitary gates that are drawn
randomly from a predetermined gate set I and applied to
randomly selected subsets of qubits (see Fig. 1 and 7). In
particular, we prepare the initial state of the N qubits in the
ground state |0〉⊗N and apply exactly T randomly drawn gates,
i.e., T can be considered as a discrete-time parameter which
also denotes the total count of quantum gates that have been
applied. Note that selection of gates from the set I as well
as the choice of qubits to which they are applied is entirely
random. The N-qubit output state of such a random quantum
circuits consequently depends on the number of applied gate
operations T and the properties of the gate set I under consid-
eration. We will regard three distinct types of gate sets which
have fundamentally different properties concerning their uni-
versality and classical simulability and study the entanglement
that is produced by them.

With the goal of performing universal quantum computa-
tion in mind, one usually considers universal gate sets, i.e.,
sets which allow one to approximate any N-qubit unitary
transformation with arbitrary precision ε [1]. One of the most
famous universal gate sets consists of the two-qubit CNOT

gate CX , the Hadamard gate H , and the T = exp(−iσzπ/8)
gate and we refer to it in the following as Iuni [1] (see
Fig. 1). A random quantum circuit consisting of gates from
Iuni is expected to approximate an overall Haar random uni-
tary transformation over N qubits once a threshold time T ∗
is reached. The universal gate set Iuni has also been used to
approximate Haar random states in Sec. IV. Also note that
noisy variants of such universal random circuits are at the
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70

77

71

FIG. 7. Representation of (a) matchgate and (b) IQP circuits
together with the matrix representation of the native gate operations
M and D2, respectively. The table summarizes the properties of the
types of random quantum circuits considered. The second column in-
dicates whether the respective gate set gives rise to universal quantum
computations. The third column summarizes the complexity of the
circuits showing whether or not the circuit is classically simulatable
and under which conditions. Strong and weak indicate whether it is
possible to classically simulate the circuits output probabilities or to
classically sample from it, respectively. One and many say whether
the task involves a single qubit or many qubits.

heart of the first demonstrations of quantum computational
advantages based on cross-entropy benchmarking [3].

In the following we will investigate the entanglement prop-
erties of other so-called restricted classes of quantum circuits,
i.e., circuits produced by gate sets that are in general not
universal. A famous example of such a restricted class of
quantum circuits is that consisting of so-called Clifford trans-
formations which are generated by the set IClif = {CX , H, P =
exp(−iσzπ/4)}. The latter are, by virtue of the Gottesman-
Knill theorem, always classically simulatable when initiated
in the state |0〉⊗N and read out in the computational basis [1].
Another class of quantum circuits that is known to be effi-
ciently simulatable are so-called nearest-neighbor matchgate
circuits [see Fig. 7(a)]. Matchgates are two-qubit gates that
consist of two single-qubit gates with equal determinants that
act on the even- and odd-parity subspace of the two qubits,
respectively [70,71]. Matchgate (MG) circuits on N qubits
have also been shown to be equivalent to a system of non-
interacting fermions in one dimension which is governed by
interactions of at most quadratic order in the fermion creation
and annihilation operators [72]. In the random circuit model
we generate in each time step a random matchgate and apply
it to a random pair of nearest-neighbor qubits. Lifting the
nearest-neighbor restriction of matchgates circuits promotes
them to the realm of universal for quantum computation [70].

FIG. 8. Numerical estimation of (a) and (b) the multiparticle con-
currence (7) and (c) and (d) its lower bound (11) of output states of
random IQP (green pentagons) and MG (orange diamonds) circuits.
The noiseless cases with (a) M and (b) K are chosen in order to reach
a relative error of (a) and (c) 10% and (b) and (d) 5% according to
the analysis for Haar random states presented in Sec. III. The IQP
circuits consist of N (N − 1)/2 diagonal gates and the MG circuits of
150 randomly sampled nearest-neighbor matchgates. Error bars are
obtained by resampling the respective states 30 times. Also shown
are (c) and (d) the cases where we assumed that each two-qubit gate
used to produce the respective states has a local depolarizing error
of 0.1%. Black symbols indicate the respective true values of the
concurrence’s lower bound obtained via Eq. (9).

Finally, we consider the class of commuting quantum
circuits which are made up of gates diagonal in the compu-
tational basis [see Fig. 8(b)]. The latter become nontrivial
if the qubits are initiated and read out in local bases that
are orthogonal to the computational bases, e.g., {|xi〉⊗N }N

i=1,
with xi = ±. Due to the commuting property of the diagonal
gates, there is not a natural time ordering of gates for a given
circuit and thus the resulting class of circuits is referred to as
instantaneous quantum polynomial-time (IQP) circuits. The
IQP circuits do not allow for universal quantum computation
but they are known to be in general hard to simulate classically
[73,74]. Specific designs of IQP circuits deal with diagonal
gates of the form Wr = diag{eiφ1 , . . . , eiφ2r }, with independent
and uniformly sampled φi ∈ [0, 2π ), which act on a subset
of r qubits and are applied to all combinations of r qubits
in random order [75,76]. In particular, we will consider IQP
circuits with r = 2 which consist of precisely N (N − 1)/2
diagonal gates. For the former type, i.e., r = 2, a restriction to
gates acting only on nearest-neighbor qubits once again makes
the circuits classically simulatable [77].

B. Numerical results

As a last application we use three of the aforementioned
random circuits to test our randomized measurement proto-
cols on further examples of multiparticle entangled states.
So far, we have considered random circuits consisting of the
universal gate set Iuni = {H, T,CX } in order to approximate
Haar random states (see Sec. IV B). Here we focus on two
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examples of random circuits produced by restricted gates sets,
i.e., nearest-neighbor matchgates and IQP circuits (see Fig. 7).
The corresponding gate sets IMG and IIQP are nonuniversal and
also classically simulatable but in some cases can produce
more entanglement than the aforementioned universal set Iuni,
for which reason they provide an appropriate test case for our
randomized measurement protocol.

We start by the noiseless cases presented in Figs. 8(a)
and 8(b), where we estimated the concurrence of samples of
output states of the above-mentioned random circuits. To do
so, we used in all three cases the same measurement resources
M and K as determined for Haar random states of the same
number of qubits. We find that even though IMG and IIQP

produce very different ensembles of states, the resulting con-
currence agrees well, i.e., within one standard deviation, with
the respective analytically determined values using Eq. (6).
However, we find that IMG and IIQP circuits lead in general
to larger fluctuations of the concurrence as compared to Iuni.
Note that the former have been analyzed by resampling the
concurrence of the corresponding random circuit 100 times
in order to numerically determine the underlying standard
deviation, as shown in Fig. 8.

Finally, we consider the same random circuits but with
error-prone gates simulated by additional local depolarizing
channels with the same single- and two-qubit error probabili-
ties as used also in Sec. IV B, i.e., ε1 = 0.01% and ε2 = 0.1%.
The results for estimating the concurrence’s lower bound of
the respective output states are presented in Figs. 8(c) and
8(d). Again we find that using the same measurement re-
sources as for the corresponding noiseless cases, one achieves
good agreement with the corresponding exact values. How-
ever, in comparison to the noiseless cases, the resulting
estimates do not fluctuate more, which might be explained by
the increased mixing of local subsystems. The more the one-
qubit reduced states are mixed the less they fluctuate over the
local unitary ensembles while performing randomized mea-
surements on them. Hence, this indicates that protocols based
on randomized measurements might be relevant candidates
for characterization of entanglement in close to random, noisy
quantum circuits in the intermediate regime.

VI. CONCLUSION

In this article we investigated how to estimate the entangle-
ment content, as measured by the multiparticle concurrence,
of many-body quantum systems employing protocols based
on randomized measurements. We formulated schemes for
measuring the multiparticle concurrence of pure states as well
as a corresponding lower bound in the case of mixed states.
In addition, we analyzed in detail the occurring statistical
error when estimating the involved quantities with appropriate
unbiased estimators and derived exact scaling laws of the re-
quired measurement resources for estimating the concurrence
of an important subclass of multiparticle entangled states.

We demonstrated the introduced protocols by numerically
analyzing the multiparticle concurrence of the aforementioned
class of quantum states as well as for ensembles of output
states of different classes of random quantum circuits, such
as matchgate and IQP circuits. Finally, we investigated the
influence of noise in terms of single- and two-qubit gate

errors on the multiparticle entanglement of the states under
consideration and thereby showed that the obtained results on
the required measurement resources prove useful in the noisy
intermediate-scale regime. However, we also show that the
required measurement resources strongly depend on the un-
derlying class of quantum states under consideration, showing
that a detailed statistical analysis was justified.

All in all, the outlined randomized measurement protocols
are promising tools for the analysis of multiparticle entan-
glement in NISQ devices. Nevertheless, the measurement
resources required for an estimation of the concurrence with a
reasonably small statistical error increase quickly when reach-
ing regimes of large particles numbers, i.e., beyond N ≈ 30,
rendering the presented protocols impractical. Hence, while
moving towards larger and larger particle numbers of NISQ
devices with improved quality one has to develop alternative
tools that deal with the aforementioned problem. A possible
solution in this direction is to exploit more information about
the actual quantum states under investigation, e.g., the fact
that they are likely contained in a subspace of limited qubit
excitations or entanglement content. Alternatively, one might
employ more involved nonlocal measurement schemes on an
extended Hilbert space [48,51] in order to analyze its multi-
particle entanglement in a more efficient manner.
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APPENDIX A: MULTIPARTICLE CONCURRENCE
FROM RANDOMIZED MEASUREMENTS

1. Derivation of Eqs. (7) and (11)

The concurrence of a pure N-qudit state |ψ〉 ∈ Cd is de-
fined as [47,48]

CN (|ψ〉) = 2

√√√√1 − 1

2N

∑
A⊆{1,...,N}

tr
(
�2

A

)
, (A1)

where �A = trĀ(|ψ〉〈ψ |), with Ā = {1, . . . , N} \ A, denotes
the reduced density matrix of the pure state |ψ〉 with respect
to the subsystem associated with the subset A ∈ {1, . . . , N}.
Note that the sum in Eq. (A1) runs over all subsets including
the empty set for which we have �∅ = 1. In the following
we will show that one can evaluate Eq. (A1) using locally
randomized measurements. To do so, we regard the population
probabilities

PU (s) = tr(U�U †|s〉〈s|), (A2)

where |s〉 = |s1, . . . , sN 〉, with si = 1 . . . d , denotes an arbi-
trary element of the computational basis of N qudits and
U = U1 ⊗ · · · ⊗ UN , with Ui ∈ U(d ), a randomly drawn local
unitary transformation. Further, upon averaging the square of
Eq. (A2) over the U ’s with respect to the local Haar measure
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on each of the individual qudit subspaces we find

EU [PU (s)2] = EU [tr(�U |s〉〈s|U †)2]

= tr{�⊗2EU [(U |s〉〈s|U †)⊗2]}

= tr

(
�⊗2

N⊗
i=1

EUi

[
U ⊗2

i |si〉〈si|⊗2U †
i

⊗2])

=
(

D(2)
d

2

)N

tr[�⊗2(P+ ⊗ . . . ⊗ P+)]. (A3)

In the last line of Eq. (A3) we used for t = 2 the relation

EU (d )[U
⊗t |s〉〈s|⊗tU †⊗t

] = D(t )
d P+, (A4)

where P+ denotes the projector on the symmetric subspace of
(Cd )⊗t and D(t )

d = t!(d − 1)!/(t + d − 1)! the inverse of its
dimension. For t = 2 we can write P+ = (1 + S)/2, where S
denotes the SWAP operator on (Cd )⊗2. Using the latter and the
fact that tr(S�⊗2) = tr(�2) in Eq. (A3) allows us to arrive at
the expression

P(s)2 =
(

D(2)
d

2

)N

tr

(
N∏

i=1

(Si + I)�⊗2

)

=
(

D(2)
d

2

)N ∑
α

tr�2
α (A5)

and thus shows that the concurrence (A1) can be expressed as

CN (|ψ〉) = 2

√√√√1 − dN (d + 1)N

4N

∑
s∈{0,1}N

EU
[
P2

U (s)
]
. (A6)

Further, we note that the lower bound of the multiparticle
concurrence for mixed states [given in Eq. (9)] can be ex-
pressed as a combination of purities evaluated on subsystems
A ⊂ {1, . . . , N} of the N-party space, as

C(�) � 21−N/2
√

1 −
∑

A⊆{1,...,N}
tr
(
�2

A

) + (4 − 22−N )tr(�2).

(A7)

Hence, using Eq. (A6) together with the well-known formula
for the purity in terms of randomized measurements [30], i.e.,

tr(�2) = dN
∑
s,s′

(−d )−D(s,s′ )PU (s)PU (s′), (A8)

where D(s, s′) denotes the Hamming distance [as explained
after Eq. (11)], we directly arrive at the expression (11) for
the lower bound (A7) in terms of randomized population
probabilities

CN (�)2

� 22−N − 22(1−N )
∑

A⊆{1,...,N}
tr
(
�2

A

) + (4 − 22−N )tr(�2)

= 22−N − 22(1−N )dN (d + 1)N
∑

s∈{0,1}N

EU [PU (s)2]

+ (4 − 22−N )dN
∑
s,s′

(−d )D(s,s′ )EU [PU (s)PU (s′)]. (A9)

2. Multiparticle concurrence as a function of the moments (4)

We further note that Eqs. (A6) and (A9) can alternatively
be expressed as a function of the moments (4), introduced in
Sec. II A. To do so, we remind the reader of the representation
of N-particle quantum states in terms of its sector lengths,
along the lines of Refs. [37,52]. First, we note that a state �

can always be expressed as

� = 1

dN

d2−1∑
i1,...,iN =0

ci1,...,iN λi1 ⊗ · · · ⊗ λiN , (A10)

where λ0 is the identity and λi are the Gell-Mann ma-
trices, normalized such that λi = λ

†
i , tr(λiλ j ) = dδi j , and

tr(λi) = 0 for i > 0. The real coefficients ci1···iN are given by
ci1···iN = tr(�λi1 ⊗ · · · ⊗ λiN ) = 〈λi1 ⊗ · · · ⊗ λiN 〉. The state �

can be represented by

� = 1

dN
(1⊗n + Â1 + Â2 + · · · + ÂN ), (A11)

where the Hermitian operators Âk , with k = 1, . . . , N , denote
the sum of all terms coming from the basis elements with
weight k,

Âk (�) =
d2−1∑

i1,...,iN =0,
w(λi1 ⊗···⊗λiN )=k

ci1···iN λi1 ⊗ · · · ⊗ λiN , (A12)

where the weight w(λi1 ⊗ · · · ⊗ λiN ) is equal to the number
of nonidentity Gell-Mann matrices in the product λi1 ⊗ · · · ⊗
λiN . Now we can define sector lengths as

Ak (�) = 1

dn
tr[Âk (�)2] =

d2−1∑
i1,...,iN =0,

w(λi1 ⊗···⊗λiN )=k

c2
i1···iN . (A13)

Physically, the sector lengths Ak quantify the amount of k-
body quantum correlations. Note that A0 = α0···0 = 1 due to
tr(�) = 1. The sector lengths Ak can be associated with the
purity of �:

tr(�2) = 1

dN

d2−1∑
i1,...,iN =0

c2
i1···iN = 1

dN

N∑
k=0

Ak (�). (A14)

Further, as shown in Refs. [21,37], the sector lengths (A14)
are directly related to the moments (4) evaluated on the re-
spective qudit sectors

1

(d2 − 1)k
Ak (�) =

∑
|A|=k

R(2)
A (�), (A15)

where A = {i1, . . . , ik} ⊂ {1, . . . , N} with cardinality k.
Hence, using Eq. (A14), the purity can be expressed as a sum
of the second-order moments evaluated on all possible subsets
A, as

tr(�2) = 1

dN

N∑
k=0

(d2 − 1)k
∑
|A|=k

R(2)
A (�)

= 1

dN

∑
A⊂{1,...,N}

(d2 − 1)|A|R(2)
A (�). (A16)
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Finally, it is straightforward to express the pure-state concur-
rence (6) as a function of second-order moments by invoking
Eq. (A16):

CN (|ψ〉) = 2

√√√√1 −
∑

A⊂{1,...,N}

∑
A′⊂A

(d2 − 1)|A′|

2N d |A| R(2)
A′

= 2

√√√√(
1 − 1

2N

)
−

∑
A�{1,...,N}

∑
A′⊂A

(d2 − 1)|A′ |

2N d |A| R(2)
A′ .

(A17)

Note that in Eq. (A17) we used that for pure states the purity
of the total state is one which eliminates several summands,
in particular, also those which are of cardinality |A| = N .

Evaluating Eq. (A17) for the special cases N = 2, 3 and
d = 2 leads to

C2(|ψ〉) =
√

1 − 3

2

(
R(2)

1 + R(2)
2

)
,

C3(|ψ〉) = 1√
2

(
15

4
− 3

(
R(2)

1 + R(2)
2 + R(2)

3

)

− 32

4

(
R(2)

12 + R(2)
23 + R(2)

13

))1/2

. (A18)

Furthermore, for mixed states, we can analogously use
Eq. (A16) to derive an expression of the lower bound (9) in
terms of second moments only, yielding

CN (�)2= 2 − 22−N

×
∑

A⊂{1,...,N}

(
1

2|A|
∑
A′⊂A

3|A′|R(2)
A′ + 2

2N
3|A|R(2)

A

)
.

(A19)

APPENDIX B: EVALUATION OF STATISTICAL
UNCERTAINTIES

1. Unbiased estimators and their variance

In an experiment one can estimate the population prob-
abilities PU (s) (in the following we will sometimes drop
the subscript U unless it is required by the context) only
from a finite number K of projective measurements. Then
the corresponding statistical estimator is given by P̃(s) =
Y (s)/K , where Y (s) is the absolute frequency with which
the bit string s appears. Hence, the random variable Y (s) is
distributed according to a multinomial distribution with prob-
abilities {P(s)}s∈{0,1}N and K trials. Exploiting this fact, one
can find unbiased estimators P̃(k)(s) for the kth power of the
population probability P(s)k by making the ansatz P̃(k)(s) =∑k

i=0 αi[Ỹ (s)/K]
i

with the condition that Emulti[P̃(k)(s)] =
P(s)k . For the three lowest orders this results in

P̃(2)(s) = P̃(s)[KP̃(s) − 1]

K − 1
= P̃(s)

KP̃(s) − 1

K − 1
, (B1)

P̃(3)(s) = P̃(s)[KP̃(s) − 1][KP̃(s) − 2]

(K − 1)(K − 2)

= P̃(2)(s)
KP̃(s) − 2

K − 2
, (B2)

P̃(4)(s) = P̃(s)[KP̃(s) − 1][KP̃(s) − 2][KP̃(s) − 3]

(K − 1)(K − 2)(K − 3)

= P̃(3)(s)
KP̃(s) − 3

K − 3
, (B3)

and similarly for products of population probabilities
P(s)P(s′), with s �= s′, we obtain

P̃(1,1)(s, s′) = Y (s)Y (s′)
K (K − 1)

= K

K − 1
P̃(s)P̃(s′). (B4)

Moreover, also the expectation value EU [· · · ] taken with re-
spect to the local measurement settings can only be estimated
based on finite samples of measurement bases, which finally
leads to the definition of the unbiased estimators reported in
Eqs. (18) and (19).

Further, we have to investigate the variance of the estima-
tors (18) and (19) in order to get a handle on their associated
statistical error. We start with the calculation of the variance
of Eq. (18), which reads

Var
[
P2

U (s)
] = 1

M2

M∑
i=1

Var[P̃(2)
Ui

(s)]

= 1

M
EU,multi

[[
P̃(2)

Ui
(s)

]2] − EU [P(s)2]2, (B5)

where we used that individual samples of local unitary trans-
formations Ui are independent and identically distributed. In
order to further evaluate the expression (B5) we have to ex-
ploit the moments of the multinomial distribution

Emulti[P̃
(2)(s)] = 1

K2
Emulti[Y (s)2]

= 1

K
[(K − 1)P(s)2 − P(s)], (B6)

Emulti[P̃
(3)(s)] = 1

K2
[(K − 1)(K − 2)P(s)3

+ 3(K − 1)P(s)2 + P(s)], (B7)

Emulti[P̃
(4)(s)] = 1

K3
[(K − 1)(K − 2)(K − 3)P(s)4

+ 6(K − 1)(K − 2)P(s)3

+ 7(K − 1)P(s)2 + P(s)], (B8)

leading to

EU,multi[[P̃(2)(s)]2]

= EU,multi

[
K2P̃(s)4 − 2KP̃(s)3 + P̃(s)2

(K − 1)2

]
(B9)

= EU [K2Emulti[P̃(s)4] − 2KEmulti[P̃(s)3] + Emulti[P̃(s)2]]
(K − 1)2

= EU [(K − 2)(K − 3)P(s)4 + 4(K − 2)P(s)3 + 2P(s)2]

K (K − 1)
.

(B10)
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Now we can write the variance as

Var
[
P2

U (s)
] = 1

MK (K − 1)

{
(K − 2)(K − 3)EU

[
P4

U (s)
]

+ 4(K − 2)EU
[
P3

U (s)
] + 2EU

[
P2

U (s)
]}

− EU
[
P2

U (s)
]2

M
. (B11)

An analogous calculation can be applied in the case of the
estimator (19), leading to the expression for its variance

Var[PU (s)PU (s′)]

= 1

MK (K − 1)
((K − 2)(K − 3)EU

[
P2

U (s)P2
U (s′)

]
+ (K − 2)

{
EU

[
P2

U (s)PU (s′)
] + EU

[
PU (s)P2

U (s′)
]}

+ EU [PU (s)PU (s′)]) − 1

M
EU [PU (s)PU (s′)]2. (B12)

We note that all the (cross) moments contained in Eqs. (B11)
and (B12) can be evaluated using the expression

EU
[
Pt

U (s)Pk
U (s′)

] = DN
d,t tr

(
�⊗t

N⊗
i=1

{
P(i)

+ , si = s′
i

A(i)
t,k, si �= s′

i

})
,

(B13)

where P(i)
+ denotes the projector onto the symmetric subspace

[see Eq. (A4)] acting on the ith particle and A(i)
t,k is defined as

A(i)
t,k = Eui

[
u⊗(t+k)

i |0〉〈0|⊗t ⊗ |1〉〈1|⊗k (u†
i )⊗(t+k)

]
. (B14)

Note that from Eq. (B13) it becomes clear that the variance
(B12) depends on the Hamming distance between the bit
strings s and s′.

In conclusion, we see that the information about the sta-
tistical error of the estimators (18) and (19) is encoded in
the (cross) moments (B13). In the following we will evaluate
these quantities exactly for a set of typical multiparticle states,
i.e., the N-qubit ground state, the GHZ state, and the Haar
random states, and derive symbolic expressions that hold for
an arbitrary number of particles N .

2. Variance of typical multiparticle states

a. Product state

For a random N-qubit product state we have �⊗t =⊗N
i=1 |ϕi〉〈ϕi|⊗t , leading directly to the expressions

EU
[
Pt

U (s)
] = DN

d,t tr

(
N⊗

i=1

|ϕi〉〈ϕi|⊗t
N⊗

i=1

P(i)
+

)

= DN
d,t

N∏
i=1

tr(|ϕi〉〈ϕi|⊗t P(i)
+ )

= DN
d,t tr(|0〉〈0|⊗t P+)N , (B15)

which can be evaluated easily using Eq. (27).

b. GHZ state

For the N-qubit GHZ state we have

� = 1

2

∑
i,i′

(δi,0δi′,0 + δi,0δi′,1 + δi,1δi′,0 + δi,1δi′,1)|i〉〈i′|,

(B16)

which can be directly used to analytically evaluate the expec-
tation value of the higher-order population probabilities

EU
[
Pt

U (s)
] = DN

d,t

2t
{([P+]0,...,0,0,...,0)N + ([P+]0,...,1,0,...,0)N

+ · · · + ([P+]1,...,1,1,...,1)N }. (B17)

where [P+]i,i′ denotes the respective matrix element (i, i′) of
the projector P+. Analogously, we find for the cross terms

EU [Pt
U (s)Pk

U (s′)]

= DN
d,t

2t
{([P+]0,...,0,0,...,0)N−D(s,s′ )([At,k]0,...,0,0,...,0)D(s,s′ )

+ ([P+]0,...,1,0,...,0)N−D(s,s′ )([At,k]0,...,1,0,...,0)D(s,s′ ) + · · ·
+ ([P+]1,...,1,1,...,1)N−D(s,s′ )([At,k]1,...,1,1,...,1)D(s,s′ )}.

(B18)

c. Haar random states

Finally, for Haar random states we evaluate the expected
average variance as

E
[
Var

[
P2

U (s)
]] = 1

MK (K − 1)

{
(K − 2)(K − 3)Eψ,U

[
P4

U (s)
]

+ 4(K − 2)Eψ,U
[
P3

U (s)
] + 2Eψ,U

[
P2

U (s)
]}

− 1

M
E
[
EU

[
P2

U (s)
]2]

, (B19)

which can be evaluated straightforwardly using Eq. (27). As
EU [P2

U (s)] does not depend on the specific bit string under
consideration, to improve the statistics in a real experiment
one can also average over all different bit strings that were
observed, i.e., I = {s1, . . . , s|I|} ⊂ {0, 1}N , by considering the
estimator introduced in Eq. (20). Here, in general |I| � K
as maximally K different bit strings can be measured during
K projective measurements. As for N qubits the maximal
number of different possible bit strings is given by 2N , we will
estimate the number of different bit strings that occurred by
|I| = min(2N , K ), which is a rough estimate justified for the
specific choice of Haar random states. Having this in mind,
we consider the variance of the estimator (20), yielding

Var
[
P2

U

] = 1

M2

M∑
i=1

1

|I|2
∑
s,s′

Cov
[
P̃2

U (s), P̃2
U (s′)

]

= 1

M2

M∑
i=1

1

|I|2
(∑

s

Var
{[

P̃2
U (s)

]
i

}

+
∑
s�=s′

Cov
[(

P̃2
U (s), P̃2

U (s′)
)

i

])
. (B20)

In general, the term Cov[P̃2
U (s), P̃2

U (s′)] is difficult to evaluate
analytically. However, for Haar random states the correlations
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between the probabilities of different outcomes s and s′ are ex-
ponentially small in the number of qubits [64,65]. Therefore,

in the case of Haar random states and large system sizes it is
well justified to approximate the variance as

Var
(
P2

U

) ≈ 1

M

1

|I|Var
[
P2

U (s)
]
. (B21)

Similarly for the product term, we can also determine the expected variance

Eψ [Var[PU (s)PU (s′)]] = 1

MK (K − 1)
((K − 2)(K − 3)Eψ,U

[
P2

U (s)P2
U (s′)

] + (K − 2){Eψ,U
[
P2

U (s)PU (s′)
] + Eψ,U

[
PU (s)P2

U (s′)
]}

+ Eψ,U [PU (s)PU (s′)]) − 1

M
Eψ [EU [PU (s)PU (s′)]2]. (B22)

Here Eψ,U [Pn
U (s)Pm

U (s′)] can be evaluated once again using Eq. (27). However, note that Eψ [Var[PU (s)PU (s′)]] depends explicitly
on the specific bit strings s and s′.
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Rep. 415, 207 (2005).
[49] L. Aolita and F. Mintert, Phys. Rev. Lett. 97, 050501 (2006).
[50] F. Mintert and A. Buchleitner, Phys. Rev. Lett. 98, 140505

(2007).
[51] L. Aolita, A. Buchleitner, and F. Mintert, Phys. Rev. A 78,

022308 (2008).
[52] N. Wyderka and O. Gühne, J. Phys. A: Math. Theor. 53, 345302

(2020).
[53] S. Ohnemus, M.Sc. thesis, Albert-Ludwigs-Universität

Freiburg, 2021, available at https://doi.org/10.6094/UNIFR/
227071.

[54] Z. Liu, P. Zeng, Y. Zhou, and M. Gu, Phys. Rev. A 105, 022407
(2022).

[55] A. Borras, A. P. Majtey, A. R. Plastino, M. Casas, and A.
Plastino, Phys. Rev. A 79, 022112 (2009).

[56] C. Dankert, M.Sc. thesis, University of Waterloo, 2005.

[57] P. D. Seymour and T. Zaslavsky, Adv. Math. 52, 213
(1984).

[58] F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, Phys.
Rev. Lett. 116, 170502 (2016).

[59] Y. Nakata, C. Hirche, M. Koashi, and A. Winter, Phys. Rev. X
7, 021006 (2017).

[60] J. Haferkamp, F. Montealegre-Mora, M. Heinrich, J. Eisert, D.
Gross, and I. Roth, Commun. Math. Phys. 397, 995 (2023).

[61] Z. Webb, Quantum Inf. Comput. 16, 1379 (2016).
[62] H. Zhu, R. Kueng, M. Grassl, and D. Gross, arXiv:1609.08172.
[63] K. D. Schmidt, Maßund Wahrscheinlichkeit (Springer, Heidel-

berg, 2011).
[64] N. Ullah, Nucl. Phys. 58, 65 (1964).
[65] D. Petz and J. Réffy, Period. Math. Hung. 49, 103 (2004).
[66] B. Collins and P. Sniady, Commun. Math. Phys. 264, 773

(2006).
[67] D. Weingarten, J. Math. Phys. 19, 999 (1978).
[68] M. Ledoux, The Concentration of Measure Phenomenon

(American Mathematical Society, Providence, 2001).
[69] M. Tiersch, F. de Melo, and A. Buchleitner, J. Phys. A: Math.

Theor. 46, 085301 (2013).
[70] R. Jozsa and A. Miyake, Proc. R. Soc. A 464, 3089

(2008).
[71] D. J. Brod and A. M. Childs, Quantum Inf. Comput. 14, 901

(2014).
[72] B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 65, 032325

(2002).
[73] D. Shepherd and M. J. Bremner, Proc. R. Soc. A 465, 1413

(2009).
[74] M. J. Bremner, R. Josza, and D. Shepherd, Proc. R. Soc. A 467,

459 (2011).
[75] Y. Nakata and M. Murao, Eur. Phys. J. Plus 129, 152 (2014).
[76] R. O. Vallejos, F. de Melo, and G. G. Carlo, Phys. Rev. A 104,

012602 (2021).
[77] K. Fujii and T. Morimae, New J. Phys. 19, 033003 (2017).

042406-15

https://doi.org/10.1103/PhysRevA.106.L010402
https://doi.org/10.22331/qv-2020-11-19-47
http://arxiv.org/abs/arXiv:2211.09610
http://arxiv.org/abs/arXiv:2211.09614
http://arxiv.org/abs/arXiv:2212.07894
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.22331/q-2021-03-16-413
https://doi.org/10.1103/PhysRevLett.92.167902
https://doi.org/10.1103/PhysRevLett.93.230501
https://doi.org/10.1016/j.physrep.2005.04.006
https://doi.org/10.1103/PhysRevLett.97.050501
https://doi.org/10.1103/PhysRevLett.98.140505
https://doi.org/10.1103/PhysRevA.78.022308
https://doi.org/10.1088/1751-8121/ab7f0a
https://doi.org/10.6094/UNIFR/227071
https://doi.org/10.1103/PhysRevA.105.022407
https://doi.org/10.1103/PhysRevA.79.022112
https://doi.org/10.1016/0001-8708(84)90022-7
https://doi.org/10.1103/PhysRevLett.116.170502
https://doi.org/10.1103/PhysRevX.7.021006
https://doi.org/10.1007/s00220-022-04507-6
http://arxiv.org/abs/arXiv:1609.08172
https://doi.org/10.1016/0029-5582(64)90522-X
https://doi.org/10.1023/B:MAHU.0000040542.56072.ab
https://doi.org/10.1007/s00220-006-1554-3
https://doi.org/10.1063/1.523807
https://doi.org/10.1088/1751-8113/46/8/085301
https://doi.org/10.1098/rspa.2008.0189
https://doi.org/10.1103/PhysRevA.65.032325
https://doi.org/10.1098/rspa.2008.0443
https://doi.org/10.1098/rspa.2010.0301
https://doi.org/10.1140/epjp/i2014-14152-9
https://doi.org/10.1103/PhysRevA.104.012602
https://doi.org/10.1088/1367-2630/aa5fdb

