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Preparation for quantum simulation of the (1 4+ 1)-dimensional O(3)
nonlinear o model using cold atoms
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The (141)-dimensional (14-1D) O(3) nonlinear o-model is a model system for future quantum lattice
simulations of other asymptotically free theories, such as non-Abelian gauge theories. We find that utilizing
dimensional reduction can make efficient use of two-dimensional layouts presently available on cold-atom
quantum simulators. A different definition of the renormalized coupling is introduced, which is applicable to
systems with open boundary conditions and can be measured using analog quantum simulators. Monte Carlo and
tensor network calculations are performed to determine the quantum resources required to reproduce perturbative
short-distance observables. In particular, we show that a rectangular array of 48 Rydberg atoms with existing
quantum hardware capabilities should be able to adiabatically prepare low-energy states of the perturbatively
matched theory. These states can then be used to simulate nonperturbative observables in the continuum limit

that lie beyond the reach of classical computers.

DOI: 10.1103/PhysRevA.107.042404

I. INTRODUCTION

Future quantum simulations of Abelian and non-Abelian
quantum field theories (QFTs), such as quantum chromody-
namics (QCD), and descendant effective field theories will
be important in developing robust predictive capabilities of
the dynamics in a variety of physical systems of importance
in high-energy and nuclear physics, ranging from the early
universe, to highly inelastic processes in particle colliders, to
the evolution of extreme astrophysical environments. Beyond
the capabilities of classical computation, these challenges can
only be addressed using yet-to-be-engineered quantum com-
puters of sufficient capability [1,2]. During the last decade,
rapid advances in the control of coherence and entangle-
ment in the laboratory have led to the deployment of the
first generation of quantum computing platforms, built around
superconducting qubits [3-7], trapped ions [8], and neutral
atoms [9-12]. These can be operated in a digital manner,
where a universal gate set is used to emulate a specific Hamil-
tonian, or an analog manner, where the system is tuned to
natively implement a target Hamiltonian, or as quantum an-
nealers [13—15]. While digital quantum simulation platforms
are universal in the sense that they can simulate an arbitrary
Hamiltonian, the difficulties of implementing quantum gates
have so far limited digital quantum simulations to relatively
small systems. In contrast, analog quantum simulations have
been performed with larger systems, but are limited by the
native Hamiltonian of the experimental platform. Recent work
has indicated that error rates on some analog simulation plat-
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forms are low enough for potential quantum advantages in
physically interesting systems to be within reach [16]. In
particular, cold-atom systems have been used to simulate the
dynamics of quantum systems in regimes that are difficult for
classical computers to simulate [17,18].

With the emerging potential of quantum computers, and
the known limitations of classical computing, a growing
effort is underway to develop efficient mappings of QFTs
onto quantum computers, and the time evolution of an array
of initial conditions. The asymptotic freedom of SU(2) and
SU(3) gauge theories enables spatial lattice calculations to
be perturbatively close to the continuum, and systematically
correctable, as has long been used for lattice QCD classical
simulations. Traditional lattice mappings of gauge theories,
such as Kogut-Susskind [19], have led to first calculations of
modest systems in low dimensions in U(1) [20-26], SU(2)
[27-30], and SU(3) [31-35], and estimates of resource re-
quirements, along with improved understandings about how
to move forward. These advances have also driven the devel-
opment of new and different encodings of QFTs onto finite
discrete degrees of freedom [20-22,24—148].

Interestingly, the O(3) nonlinear sigma model (NLoM) in
1 4+ 1 dimensions is a theory of interacting scalar particles
that is asymptotically free and can support a topologically
nontrivial ground state (vacuum). Because of these qualitative
similarities with QCD, it serves as a useful test bed for the
development of computational methods for QCD. A number
of mappings of the O(3) NLo M suitable for quantum simula-
tion have been introduced, including the Heisenberg comb,
fuzzy sphere, angular momentum truncations and D-theory
[132,149-153]. Previous work has shown that at lowest trun-
cation, the fuzzy sphere regularization reproduces the O(3)
NLoM [154], while the angular momentum truncation re-
quires a larger local Hilbert space to do so [155]. The D-theory
mapping with periodic boundary conditions (PBC) has been
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shown in a number of works to reproduce the O(3) NLoM,
both with and without a 6 term [132,152,153]. However,
present-day analog simulators, including arrays of cold atoms,
only support open boundary conditions (OBC).

A central ingredient in lattice simulations of asymptotically
free QFTs is the perturbative matching between the continuum
and the lattice at short distances (compared to the scale at the
theory becoming nonperturbative). In this work, it is shown
that it is possible to perform this matching for the O(3) NLoM
on existing analog quantum simulators. A definition of the
renormalized coupling in the O(3) NLo M that is suitable to
be used with OBC is introduced and implemented using ten-
sor network simulations to compute the step-scaling function
in the D-theory mapping. The step-scaling function is then
matched to perturbative results at short distances (ultraviolet),
and the results of Monte Carlo calculations at long distances
(infrared), allowing for the minimum number of qubits re-
quired to reproduce continuum physics of the O(3) NLoM
(to a given level of precision) to be determined. Tensor-
network simulations indicate that asymptotic freedom and
nonperturbative dynamics beyond the capabilities of classical
computers in the O(3) NLoM can be potentially simulated
with current cold-atom experimental configurations.

II. MAPPING D-THEORY TO QUBIT REGISTERS
The 1 + 1D O(3) NLoM is defined by the action

S = 2ig dt dx 9,¢(x, 1) - 0" (x, 1), (1)
where (Z(x, t) is a vector of three scalar fields subject to the
constraint <]3(x, t)- (5()(, t) = 1. This constraint is responsible
for transforming the free-boson action in Eq. (1) into an inter-
acting asymptotically free QFT.

This theory has been extensively studied using classical
Monte Carlo (MC) methods using a straightforward dis-
cretization of the above continuum action,

Su=—3G3 . @)
&
where the sum is over all nearest-neighbor sites i, j on a
square Euclidean space-time lattice.
Simulating this theory on a quantum computer requires
a truncation of the field, and the D-theory formulation pro-
vides a natural mapping onto qubit degrees of freedom and
an intrinsic truncation utilizing dimensional reduction. In this
mapping, spin-% degrees of freedom are placed on a two-
dimensional (2D) rectangular lattice of length L, sites in the
x direction and L, sites in the y direction and coupled through
an antiferromagnetic Heisenberg interaction, i.e.,

ﬁD = Jx Z gx,y ' §x+l,y + ]y Z gx,y : §x,y+l . (3)
X,y X,y

To obtain the 1+1D O(3) NLoM, we choose J,, J, such that
the 2D model is in a massless (symmetry broken) phase when
L,, L, — oo. With this choice of parameters, the continuum
limit of the NLoM is obtained in the limit L, > L, > 1, as
has been demonstrated in several previous works for J, =
Jy [132,152,153,156,157]. This has enabled classical Monte

Carlo studies of the O(3) NLoM at finite density [156] and
with a 6 term [132] without a sign problem. In the isotropic
(Jx = J,) D-theory approach, each even L, corresponds to a
fixed coupling, and as the correlation length grows exponen-
tially in Ly, this corresponds to a coarse set of lattice spacings.
A more refined set of lattice spacings can be explored by
varying J,/J,. In the regime J,/J, < 1, dimensional reduction
should still occur, while the correlation length is reduced.

Determining the lattice spacing (in physical units) in
any simulation of a QFT requires matching one or more
dimensionful quantities calculated in lattice units to the corre-
sponding experimentally or theoretically determined quantity.
Such determinations have associated systematic errors due
to the finite volume, imprecise input parameters, and other
effects—see, for example, Ref. [158]. For the O(3) NLo M,
the renormalized coupling can be used to set the length
scale. Typically, Monte Carlo studies of the O(3) NLoM have
been performed in a Euclidean space-time with PBC, and the
renormalized coupling g(L) is defined in terms of two-point
space-time correlation functions projected onto momentum
modes [159]. This definition is somewhat problematic for our
present purposes because quantum simulation platforms do
not have direct access to Euclidean space-time correlation
functions, and, further, it is more natural to implement OBC
(for which momentum modes are no longer noninteracting
eigenstates) on current platforms. Previous work has explored
renormalized couplings defined in terms of energy gaps with
OBC [154]. However, this is resource intensive to extract in
practice on hardware, as it requires accurate preparation of
both the ground state and first excited state and measurements
of their energies. In this work, we introduce a different def-
inition of g(L), given in terms of spatial correlations, that
recovers the traditional definition in the perturbative regime,
and which can be practically implemented in quantum simu-
lations. Explicitly, g(L) is defined by

gy L1 (G
8= 2\/L sin (2”—L) <G1 1)’ “)

where Gy and G are the largest and second-largest eigenval-
ues of the vacuum correlation matrix, Gy, »,, defined by

wac2 — Z(_l)x1+y|+xz+yz W S)Zél,ylS)Z(.z,yz ), (5)

Yi,)2

where |) is the vacuum state of the Hamiltonian in Eq. (3),
and .SA’;V is the z component of the spin operator at site (x, y).
Recently, another method to extract the running coupling on
quantum platforms for 2+1D quantum electrodynamics was
proposed in Ref. [148], albeit with PBC.

To show that the continuum physics of the O(3) NLoM can
be recovered on a quantum device, we compute a universal
step-scaling function, F(z), defined as

8L 8bare)
E(L, gbare) '

where z = g(L, gbare)- Here, we emphasize that the bare cou-
pling guare is kept fixed on the right-hand side. In the limit
z — 0, F;(z2) probes infrared (IR) physics, and in the z — oo
limit, F;(z) probes ultraviolet (UV) physics. Therefore, if a lat-
tice regularization reproduces the entire step-scaling function,

Fy(z) =+ (6)
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FIG. 1. The step-scaling function F% (z) for the coupling in
Eq. (4) computed by varying %‘ for the nearest-neighbor (NN) D-
theory Hamiltonian for going from a lattice of size 6 x L, sites
to 8 x L, sites. The black line is a fit to results of Monte Carlo
calculations using the traditional lattice regularization. The dashed
blue line is the perturbative result [159].

it can be said to reproduce the continuum physics of the O(3)
NLoM. Any lattice regularization should be able to bridge the
gap between perturbative UV physics and the nonperturbative
IR physics. For simulations of asymptotically free theories,
it is essential to match the lattice theory to the continuum
theory (UV) with as few computational resources as possi-
ble, as the resulting nonperturbative IR physics emerges at
parametrically larger length scales. To determine the size of
lattices required to reproduce the O(3) NLo M, density matrix
renormalization group (DMRG) calculations were performed
using the C++ ITENSOR library [160,161] to obtain the vac-
uum state of the Hamiltonian in Eq. (3) for lattices of size
6 x L, and 8 x L, with OBC [161-164]. The renormalized
couphngs defined by Eq. (4) were used to compute F;(z)
with s = 3. Note that while traditionally F;(z) is computed
for s = 2, any value of s may be used in principle, and we
have used s = ‘3—‘ to reduce the classical computing overhead.
Different points on the F4 (z) curve, shown in Fig. 1, were

W

computed by varying 3 L in the range 0.1 < J < 1.3. At the

lower end of the perturbatlve regime, z < 0.55, F,(z) is repro-
duced sufficiently well with L, = 6, 8 lattice sites, provided
a large transverse direction L, = 8 is used. This indicates
that perturbative matching between the continuum and lattice
O(3) NLoM theories can be accomplished with as few as 64
qubits on a quantum device. While the D-theory Hamiltonian
with nearest-neighbor couplings is natural to consider, some
quantum simulation platforms, such as cold atoms, have long-
range couplings. For example, arrays of Rydberg atoms with
an s-wave coupling are described by a Hamiltonian with the
form

AR = Z ’(t))? —i—ZA s+ 3 L)

i<j | Xi — X ]|6 '
where 71; is the Rydberg-state occupation of atom i, X; is
the position of atom i, and X; couples the ground state of
atom i to its excited Rydberg state [9,10]. €2;(¢) specifies the
strength of the driving field at atom i, and A;(t) specifies a
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FIG. 2. The step-scaling function computed by varying Z—f for the

rif, D-theory Hamiltonian for going from a lattice of size 6 x L, sites
to 8 x L, sites.

local detuning. By identifying the excited-state occupation
number with the z component of a spin, it can be seen that
this system is described by an Ising Hamiltonian with long-
range interactions and time-dependent external fields. Due to
this native encoding of the Ising model, Rydberg atoms have
been used in a number of studies to perform analog quantum
simulations of the Ising model [17,18,165,166]. As we have
shown in previous works, the Ising model with a strong trans-
verse and longitudinal field can reproduce the dynamics of the
Heisenberg model, and time-dependent external fields can be
used to adiabatically prepare ground states of the Heisenberg
model with long-range interactions [167,168]. In particular,
by arranging atoms in a rectangular lattice and identifying the
number operator of the atom at site (x, y), 71, ) with a staggered
z component of a spin operator, i.e., 7y, = + (—1)+82 vy’
it is possible to engineer a Heisenberg Hamlltoman

A D6 (=1)tatytatn
H”® =
3
X1,Y1,%2,)2 [a)zc(xl - x2)2 + af()’l - )’2)2]
th)’] 'gxz,yz ’ (8)

where a, , are the lattice spacings in the x, y directions. The
staggered identification of the number operator with the spin
operator is necessary to ensure that the state with all atoms in
their ground state, in which the system will begin in a quantum
simulation, corresponds to a state with staggered spins that
is adiabatically connected to the ground state of Eq. (8). The
staggering identification also makes the long-range interac-
tions frustration free. Note that the Hamiltonian implemented
on hardware will differ from that of Eq. (8) by a sign, but
due to time-reversal symmetry this does not present an issue.
This Hamiltonian is equivalent to the Hamiltonian in Eq. (3),
with the addition of long-range frustration-free Heisenberg
interactions. Therefore, it is expected that a, , can be tuned
so that dimensional reduction occurs and the low-energy de-
grees of freedom are described by the 1 + 1D O(3) NLoM.
To verify this, the step-scaling function for the vacuum state
of this Hamiltonian was computed using DMRG, with the
results shown in Fig. 2, where Z—: was varied in the range

< (2)° < 1.3. The step-scaling function computed with
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FIG. 3. The step-scaling function computed for L, = 6, 12, 18,
and 24 sites with the & D-theory Hamiltonian with L, = 6 sites.
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L, = 6 reproduces the perturbative function over a range of
parameters well into the perturbative regime, demonstrating
that, for this range of couplings, the UV physics of the O(3)
NLoM is correctly reproduced. It is interesting to note that
L, = 6 with nearest-neighbor couplings only is not able to
reproduce the step-scaling function as precisely in this region,
and in this sense, the ris coupling effectively implements an
“improved” Hamiltonian that enables more precise matching
with fewer qubits. However, L, = 6 appears to be an optimum
in this case, since L, = 8 has again larger systematic errors for
this L,.

With controlled matching to the continuum theory, non-
perturbative IR physics of the O(3) NLoM is expected to
be able to be simulated by keeping the Hamiltonian param-
eters Jy, Jy, L, fixed while increasing the lattice size L,. To
demonstrate that this procedure reproduces the IR correctly,
F;(z) was computed with DMRG for lattices with larger L,
and L, = 6, as shown in Fig. 3. F% (z) is correctly recovered

in the nonperturbative regime as the lattice size is increased
(when compared with the results of classical Monte Carlo cal-
culations), over a wide range of anisotropy 0.45 < (a,/ax ) <
0.95.

To match at scales further into the UV, lattices with larger
L, must be used. However, when L, > L, it is possible for
dimensional reduction to fail and the 1+ 1D O(3) NLocM
may not be reproduced, as is found for L, = 8, where the re-
sults overshoot the Monte Carlo and perturbative step-scaling
functions, as shown in Fig. 2. This can be remedied by using
lattices with larger L,. In Fig. 4, Fy3(z) from 12 x 8 to 16 x 8
lattices with the rif, D-theory Hamiltonian is shown, which
correctly reproduces the known result over a larger range than
with the L, = 6, rlﬁ D-theory Hamiltonian. This demonstrates
how larger correlation lengths may be accessed, and hence the
approach to the continuum limit.

III. QUANTUM SIMULATIONS OF O(3) NLeM USING
RYDBERG ATOMS

Arrays of cold atoms are a promising platform for quan-
tum simulation, and as shown above, modest lattice sizes of
6 x 6 and 8 x 6 are sufficient to reproduce the UV physics
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FIG. 4. F,/3(z) computed by varying % for the ,% D-theory
Hamiltonian for going from a lattice of size 12 x 8 sites to 16 x 8
sites.

of the O(3) NLoM and demonstrate asymptotic freedom.
This provides an opportunity for a first attempt at perform-
ing quantum simulations of nonperturbative (IR) dynamics
of the O(3) NLoM. To do so will require the preparation
of a low-energy state with respect to the Hamiltonian in
Eq. (8). The adiabatic spiral [168] can be used to adiabat-
ically prepare the ground state of this Hamiltonian on an
array of cold atoms. To understand the quantum resources
required to adiabatically prepare states with energy that is
sufficiently low to reproduce low-lying physics of the O(3)
NLoM, we performed time-dependent variational principle
(TDVP) simulations of the adiabatic spiral using the C++
ITENSOR library [160,161,169—171]. Details of these calcula-
tions can be found in the Appendix. The classical simulations
we performed assumed a rectangular array of ’Rb atoms,
with Cs = 5.42 x 10° MHz um®, with a vertical lattice spac-
ing of 11 um, and a selection of horizontal lattice spacings
to probe different couplings. We assumed a maximum Rabi
frequency of Q2 = 25 MHz, and a maximum coherence time
of 4 us. The initial state of the system with all atoms in their
ground state corresponds to a Neel state that is degenerate due
to a symmetry under reflection of the spins. This degeneracy
can be split by evolving with a global detuning term that
is turned off during the course of the adiabatic evolution
to apply an energy penalty. The initial size of the energy
penalty was variationally optimized so that the renormalized
coupling of the prepared state matched the vacuum state. The
specific energy penalties and horizontal lattice spacings that
we used are shown in Tables I and II. Results for the step
scaling obtained from these simulations are shown in Fig. 5,
where the uncertainties are derived from a sample of 5000
shots in computing the renormalized coupling for each lattice
configuration.

These simulations show that an ideal cold-atom quan-
tum simulator with only 48 atoms can correctly recover the
UV physics of the O(3) NLoM with sufficient precision. To
perform this quantum simulation in reality would require a
rectangular array of 8’Rb atoms with a global driving field
and a staggered detuning term. The parameters used in these
simulations are close to those that have been implemented
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TABLE I. Energy of the ground states prepared using the adia-
batic spiral. The left column shows the lattice spacing used for the
tensor network simulations of a 6 x 6 lattice. The center column
shows the energy penalty used to match the vacuum renormalized
coupling. The right column shows the energy of the state prepared
by the adiabatic spiral in units of the Hamiltonian energy gap.

ay (um) Energy penalty (MHz) Final energy (A)
12.5 0.44 2.81
12.1 0.52 2.90
11.8 0.56 343
11.1 0.49 4.64

in previous cold-atom experiments [17,18,165,166,172].
Therefore, it is anticipated that analog quantum simulations
of the O(3) NLoM should soon be within reach. Due to the
similarity to previous cold-atom experiments, it is expected
that these simulations can be performed with a high degree
of fidelity. Scaling to larger systems will require the same
pulse sequences applied to larger arrays of atoms. This is
not expected to present an issue, as larger arrays of Rydberg
atoms have been utilized in experiments [17,18,165] and the
techniques used to simulate Heisenberg evolution have been
shown to scale to large systems [167]. Note that while the
simulations performed here are for arrays of ®’Rb atoms,
similar calculations could be performed using different atomic
species, such as Cs [173,174].

Reproducing the step-scaling curve shows that O(3)
NLoM physics is actually being reproduced on the quantum
simulator and is the first step towards achieving a quantum
advantage in the simulation of the O(3) NLoM. Once an
approximate vacuum state has been prepared on quantum
hardware, particle wave packets can be excited by varying a
local detuning or driving term. By exciting multiple particles
in this manner, scattering in the O(3) NLoM can be directly
simulated. Alternatively, all of this can also be done at a
nonzero 6, by moving the atoms from a rectangular array
into a staggered array [132]. Using dynamical reconfiguration
of atoms, this could even be done dynamically, simulating a
quench of the 6 term. Rapidly turning on 6 would correspond
to a rapidly changing axion field, [175,176] and has been
shown to generate a dynamical quantum phase transition in
the context of lattice gauge theories [26,177]. Both of these

TABLE II. Energy of the ground states prepared using the adia-
batic spiral. The left column shows the lattice spacing used for the
tensor network simulations of a 8 x 6 lattice. The center column
shows the energy penalty used to match the vacuum renormalized
coupling. The right column shows the energy of the state prepared
by the adiabatic spiral in units of the Hamiltonian energy gap.

ax (um) Energy penalty (MHz) Final energy (A)
12.5 0.3 4.52
12.1 0.4 4.56
11.8 0.46 5.43
11.1 0.45 7.52
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FIG. 5. Results for F;/3(z) computed in a TDVP simulation of a
rectangular array of 8’Rb atoms assuming 5000 shots are used.

calculations involve real-time dynamics that have exponen-
tially scaling computational costs on classical computers, and
their successful simulation on a quantum computer could
represent a true quantum advantage of scientific relevance to
high-energy physics.

Note that these problems on the lattice sizes simulated in
this section are within the reach of classical computers. Also,
a true quantum advantage in simulations of the 1+1D O(3)
NLo M will need to be performed with a choice of parameters
that are outside the reach of perturbation theory. Based on
Fig. 3, performing these simulations on a lattice of size 18 x 6
with (ay/a,)® = 0.45 is a potential candidate for quantum
advantage. A lattice of this size is outside the reach of state
vector simulation and lies in the nonperturbative region of
the step-scaling curve. The DMRG calculations to produce
Fig. 3 required a bond dimension of 2000 to converge, and
simulating scattering dynamics or a 6 quench will involve
an exponentially growing bond dimension beyond this. Note,
however, that some tensor networks more suited to two dimen-
sions such as PEPS may be able to perform this calculation
with a lower bond dimension. Regardless, a simulation on this
lattice size will be in a regime that is difficult for classical
computers and would represent a first chance at seeing a
quantum advantage.

IV. DISCUSSION

A challenging path lies ahead for the quantum simulation
of physical systems of importance in high-energy and nuclear
physics. Both Abelian and non-Abelian gauge theories must
be mapped efficiently onto quantum computers, and it remains
to be determined which of the known frameworks, if any,
will evolve toward providing robust predictive capabilities.
For strong interactions, asymptotic freedom has been key in
enabling nonperturbative classical calculations with lattice
QCD of near-static quantities, and much of the associated
technology will translate across to quantum simulations. In
this work, we have studied a different asymptotically free field
theory. By developing new methods and performing classical
simulations, we have shown that present-day analog quantum
simulators have the potential to perform quantum simula-
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tions of nonperturbative dynamics within this QFT with fully
quantifiable uncertainties. A definition of the renormalized
coupling for the 1+1D O(3) NLoM with OBC was developed
to enable the first perturbative matching of lattice calculations
on quantum simulators to the continuum. It is expected that
this will enable the use of quantum simulators to compute
quantities of interest in the continuum limit of the 141D O(3)
NLo M. Additionally, this definition was used to determine the
minimal number of qubits required for a quantum computer
to reproduce continuum physics. Remarkably, a cold-atom
quantum simulator only needs a rectangular array of 48 atoms
to begin to quantitatively reproduce nonperturbative dynamics
within the O(3) NLoM. Cold atoms have been previously
used to simulate larger systems, and tensor network simu-
lations suggest that existing cold-atom experiments should
be capable of demonstrating the asymptotic freedom of the
O(3) NLoM. We have also shown that the long-range cou-
pling present in cold-atom quantum simulators enables them
to make contact with the continuum physics of the O(3)
NLoM with fewer qubits than mappings that are restricted
to nearest-neighbor couplings. This is the first concrete ex-
ample of an “improved” Hamiltonian that reduces the qubit
count required for a quantum simulation of a lattice field the-
ory to rigorously simulate continuum physics with controlled
uncertainties.

While the 141D O(3) NLo M does not describe any of the
fundamental forces in nature, it does share a number of qual-
itative aspects with QCD, so these simulations will provide
valuable insights into how to perform quantum simulations of
standard model physics. Our calculations correctly recover the
classically computed step-scaling function, and demonstrate
that the continuum O(3) NLoM is being matched, within
tolerances, to lattices, and provides new and valuable further
steps toward rigorously extracting information about a con-
tinuum QFT from quantum computers. Once matching has
been performed, a quantum computer can be used to simulate
nonperturbative quantities in the theory that are beyond the
reach of classical computers, including scattering and frag-
mentation, and 6 quenches. Further, the D-theory mapping
studied in this work has the potential to be used to simulate
the O(3) NLoM in 2 + 1 dimensions by making use of 3D
cold-atom arrays which have recently been experimentally
demonstrated [11].
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APPENDIX: RYDBERG ATOM SIMULATION

The Hamiltonian describing the evolution of a rectangular
array of Rydberg atoms is

A= )

3
X1,Y1,X2,)2 [a/%(xl - x2)2 + a)%(YI - y2)2]

R Qv (1) A
+ Z Ax,y(t)nx,y + Z 2\ Xx.y,
X,y X,y

Co My y1 Mxy yy

(AL)

where 7., is the Rydberg occupation number, A, ,(¢) is
a position-dependent detuning term, €2, ,(¢) is a position-
dependent driving term, a, is the horizontal lattice spacing,
and a, is the vertical lattice spacing. As presented in the
main text, the Rydberg number operator can be identified with
a staggered spin operator, i.e., 7,y = % + (—1)"”S’§’y, such
that the state with all atoms in their ground state corresponds
to a Néel state. With this identification, the adiabatic spiral
introduced in Ref. [168] can be used to prepare a low-energy
state of the Hamiltonian in Eq. (8), by using

Avy(t) = (=1)PQp + hP<1 - %)

1 Cs
"2 5
(i [ = x2)% + a2y — y2)?]

(1) =2 QD[% + % sin (n%)],

(A2)

where hp is an initial energy penalty, 2p specifies the final
strength of the driving field, and T is the total time used for
the adiabatic state preparation. For our calculations, we have
used Qp = %225 MHz, T = 3.83 us, and hp is presented in
Tables I and II. Performing a measurement on a Rydberg atom
simulator requires the drive field to be turned off, which we
simulated by quenching €, () to zero over a time interval
of 0.1 us. We assumed that a combined time of 0.07 us was
required to turn the detuning on and off.

The adiabatic spiral described here was simulated with
tensor networks. This was done with the C++ ITENSOR library
with OPENBLAS as the backend to parallelize the linear algebra
operations [161]. The state of the system was represented
with a matrix product states (MPS) tensor that wound through
the 2D lattice. Time evolution was performed by discretizing
AR (1) into 200 time-independent steps and evolving with
one-site TDVP [169,170]. Before each step, the bond dimen-
sion was increased using the global Krylov method [171], with
a maximum allowed bond dimension of 550.
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