
PHYSICAL REVIEW A 107, 042402 (2023)

Tomographic completeness and robustness of quantum reservoir networks
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Quantum reservoir processing offers an option to perform quantum tomography of input objects by postpro-
cessing quantities, obtained from local measurements, from a quantum reservoir network that has interacted with
the former. We develop a method to assess a tomographic completeness criterion for arbitrary quantum reservoir
architectures. Furthermore, we propose a figure of merit that quantifies their robustness against imperfections.
Measured quantities from the reservoir nodes correspond to effective observables acting on the input objects,
and we provide a way to retrieve them. Finally, we present examples of quantum tomography for demonstration.
Our general method offers guidance in optimizing implementations of quantum reservoir processing.
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I. INTRODUCTION

Quantum neural networks (QNNs) have surfaced as a form
of artificial neural network constructed with quantum sys-
tems [1]. The goal is normally to carry out either classical
tasks with superiority compared to classical neural networks
(CNNs), or quantum tasks that are impossible with CNNs.
For example, see the recent works that proposed QNNs with
different architectures and machine learning techniques [2–6].
Granted that extreme controls over quantum systems are ex-
pensive resources, an alternative that relaxes this condition is
worth exploring. Inspired by a CNN architecture known as
reservoir computing [7,8], where one does not require controls
over the network itself, quantum versions have been recently
proposed for solving both classical tasks [4], such as time
series prediction [9] or pattern prediction [10], and quan-
tum tasks [5], such as quantum state tomography [11–13],
quantum process tomography [14], quantum state preparation
[15,16], quantum operations [17], and quantum metrology
[18] (see Ref. [19] for a review).

In the area of classical tasks, quantum reservoir computers
are understood to benefit from nonlinearity [20,21], the large
size of the quantum Hilbert space [22–24], and they show
enhanced performance at phase transition boundaries [25,26].
Their physical realization has been considered using nuclear
spins [27] or Rydberg atoms [28], and the general proofs of
their universality have been established [29–32]. However, the
mechanism by which quantum reservoirs process quantum in-
formation in quantum tasks is less well understood, and there
are no obvious figures of merit of a given quantum reservoir,
at least before looking at the results from a testing set of data.
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Here we will focus on the use of quantum reservoir pro-
cessing (QRP) to perform quantum state tomography. In this
task, an input quantum state interacts with quantum systems
forming the quantum reservoir network (QRN), which un-
dergo dynamical evolution before the state of network nodes
is measured (possibly at specific times). The objective is to
reconstruct the input quantum state via linear combinations
of the measured quantities, which can be seen as the appli-
cation of a trained output processing layer within the QRP
architecture. By identifying the action of the QRN as a linear
map acting on the input quantum state, we find that the out-
put layer of the QRP essentially inverts this map. However,
while the linear map corresponding to the action of the QRN
maps a quantum state to readily observable quantities, the
inverse map maps these quantities to a representation of the
input quantum state (e.g., elements of its density matrix).
In practice, the inverse map is learned through training with
known input-output examples in a procedure known as ridge
regression. We show that this procedure is indeed equivalent
to forming the inverse map.

Having established clearly the formal mechanism of QRP
for quantum tomography, we present a way to assess whether
a QRP is tomographically complete (i.e., able to estimate
the state of an input object completely) based on the map.
Furthermore, we access its robustness in the presence of a
range of imperfections, including quantum noises, fluctuation
of system parameters, and measurement errors. We identify
the condition number of the QRN map as a key figure of merit
that quantifies its robustness in the presence of the considered
imperfections. Note that this figure of merit is also a property
of the QRN itself and is independent of the training procedure
or any testing data. Consequently, this introduces a quantita-
tive way of comparing different QRN architectures without
benchmarking different input states at the testing level.

To complete the picture, we show how to relate the mea-
sured quantities obtained from the QRN nodes to effective
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FIG. 1. An input object with dimension d , whose state is ρin,
interacts with quantum reservoir nodes for a time τ . The general dy-
namics is represented by a completely positive and trace-preserving
map �. At time τ , simple quantities are measured from the reservoir
nodes {X l}L

l=1, which will be postprocessed via a trained output layer.
The final output is an estimate of the input state ρest.

observables acting on the input quantum states. For demon-
stration, we test our method for simple cases, where we model
one- and two-qubit tomography. We note that the method
developed in this paper is general, and it may be used for gen-
eral QNNs aimed at recognizing properties of input quantum
states.

II. THE GENERAL FRAMEWORK

Quantum tomography with QRP (see Fig. 1) generally in-
corporates (i) to-be-measured input objects, (ii) a QRN whose
nodes are made of interacting quantum systems, and (iii) an
output layer that includes postprocessing the measured quan-
tities from the QRN nodes. The signature of this platform
is that it is versatile and experimentally friendly. In particu-
lar, it can allow processing input objects of any dimension,
having random or less-controlled quantum systems as the
QRN, and simpler measurements (only local) conducted on
the QRN nodes. The last part could provide a better alternative
compared to direct measurements, especially those requiring
conditional or correlation measurements. The scheme is also
particularly useful for cases in which the to-be-measured ob-
jects are not accessible for direct measurements.

To write the general formalism of the scheme described
above, let us start with the input objects. An object with
dimension d has d2 − 1 independent parameters, which one
can use to reconstruct its state ρin. We shall refer to an ideal
tomography, where all the parameters {Y m}d2−1

m=1 (or simply Y ,
written in a vector form) can be estimated with QRP, as sat-
isfying the tomographic completeness criterion. The analysis
presented in this paper holds for any parametrization of the
input state.

The dynamics of the whole system evolves the initial state
ρ(0) = ρin ⊗ ρQRN(0) to ρ(τ ) for a time τ . In general, we take
the evolution as a completely positive and trace-preserving
(CPTP) map acting on the initial state, i.e., ρ(τ ) = �[ρ(0)].
This includes dynamics such as that described within the
Lindblad master equation normally assumed for QRP propos-
als [19].

After obtaining the state of the QRN at τ , ρQRN(τ ) =
trin(ρ(τ )), where trin denotes the partial trace with respect
to the input object, one then performs the simpler local
measurements on the QRN nodes. Let us write the mea-
sured observables in a vector form X , where the lth element
reads X l = tr(ρ(τ )1d ⊗ X̂l ) = trQRN(ρQRN(τ )X̂l ), with l =
1, 2, . . . , L, and X̂l is an operator acting on a QRN node.
The role of the output layer is to combine the measured

observables linearly to estimate d2 − 1 parameters of ρin. In
particular,

Y est = WX + C, (1)

where the weight matrix W and bias vector C are obtained
via training. This completes the tomography, where one ends
up with an estimated state ρest(Y est ). The training can be
performed with known sets of input-output {Y , X} with ridge
regression [19], see Appendix A for more detail.

Having described the general framework, we emphasize
that not all quantum reservoir architectures satisfy the tomo-
graphic completeness criterion, i.e., Eq. (1) does not always
work as Y may not equal WX + C. Below we provide a
universal way to assess this criterion.

III. TOMOGRAPHIC COMPLETENESS CRITERION

It is apparent that each observable X l is a linear function of
the elements of ρQRN(τ ), whose elements are obtained linearly
from those of ρ(τ ). The latter is also obtained linearly from
ρ(0) as the dynamics is an action of a CPTP map. This means
that X and Y can be written as

X = MY + V , (2)

where M is an effective map and V is a constant vector.
For a given choice of parametrization, a QRN architecture

(that governs the dynamics), and measured QRN observables,
Eq. (2) always holds and it is quite straightforward to compute
the effective map M and vector V numerically. It is the center
for the analyses presented in this paper, from which one can
assess the tomographic completeness criterion and robustness
of the scheme.

A QRP satisfies the tomographic completeness criterion if
the following requirement holds:

det(M†M) �= 0. (3)

The statement above is justified as follows. First, from Eqs. (1)
and (2), we write Yest = W (MY + V ) + C. We stress here
that M and V are fixed and given by a particular QRN archi-
tecture, while W and C are optimized via training. An ideal
outcome, i.e., perfect state reconstruction Yest = Y , is given
if W = M+ and C = −M+V . Here, M+ = (M†M)−1M†

is a left Moore-Penrose pseudoinverse of the map M such
that M+M = 1. This necessitates the existence of the left
pseudoinverse, which is essentially the invertibility of M†M,
and therefore, Eq. (3). We note an immediate consequence of
Eq. (3) is that L � d2 − 1. This follows as det(M†M) = 0
for any rectangular map M having fewer rows than columns
(L < d2 − 1). For the minimum case of L = d2 − 1, we have
a square map M, and the condition for an ideal outcome
reduces to det(M) �= 0.

In real situations, where the QRN is not controlled, the
dynamics is treated as a black box. In this case, one guesses
Eq. (1), where the weights and biases of the output layer
(W and C) are obtained from training; see Appendix A. It is
important to note that similar training can also be performed to
obtain M and V of Eq. (2), which is guaranteed to hold. This
allows one to assess the tomographic completeness criterion
and the figure of merit for robustness, as we shall show below,
without the need for testing data.
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IV. ROBUSTNESS

Once a QRP satisfies the tomographic completeness cri-
terion, we can now discuss its robustness. In experiments,
imperfections may come from quantum noises such as en-
ergy decay, dephasing, and depolarizing noise; fluctuations of
the system parameters such as coupling strengths, pumping
strengths, etc.; and measurement errors from finite measure-
ment instances. Quantum noises cause loss of information
regarding the input objects. The fluctuation in dynamical pa-
rameters translates to a fluctuating effective map M, which
causes inconsistencies in the input-output relation; see Eq. (2).
Furthermore, finite measurements cause errors on the mea-
sured QRN observables, which contribute to inaccuracies in
the estimated state ρest(X ); see Eq. (1).

We can use the condition number of the effective map as a
figure of merit that quantifies the robustness of a QRP against
general imperfections, i.e.,

η ≡ ||M|| ||M+||, (4)

where || · || denotes the Euclidean norm. For a linear equation,
such as Eq. (2), the condition number characterizes the accu-
racy of the solution Y with respect to perturbations (errors) in
the map δM or observables δX with δ � 1; see Refs. [33,34].
In particular, if η is small (close to unity), the map M is
well conditioned and the perturbations will translate to small
errors in the solution. On the other hand, high η leads to
perturbations causing high errors in the solution. In our case,
δX incorporates measurement errors, while δM incorporates
those coming from fluctuations of the system parameters. We
note that bounds exist on the relative error in the solution
in terms of that of the map or the observables, where the
condition number is shown as an important factor [34].

Furthermore, Eq. (4) can be written as η =
�max(M)/�min(M), where �max(min)(·) denotes the
maximum (minimum) singular value of a matrix. The
loss of information induced by quantum noises is reflected in
the weaker dependence of X with respect to Y ; see Eq. (2).
This results in smaller elements of the effective map M,
which in turn causes �min(M) to decrease (more dominant),
and therefore it increases η. This completes the justification
for the figure of merit in Eq. (4). We also note that the
determinant of the map can be used as a figure of merit; see
Appendix B for details.

V. EFFECTIVE MEASUREMENT PICTURE

From a quantum information perspective, as one expects,
the tomographic process with QRP can be interpreted as ef-
fective measurements directly targeted at the input objects. To
illustrate this point, let us start with

X l = tr(ρ(τ )1d ⊗ X̂l ) = trin(ρinẐeff,l ), (5)

where Ẑeff,l is the corresponding effective observable acting
on the input objects, and the steps are justified as fol-
lows. By explicitly writing the dynamics and initial state,
we have tr(ρ(τ )1d ⊗ X̂l ) = tr(�[ρin ⊗ ρQRN(0)]1d ⊗ X̂l ) =
tr(ρin ⊗ ρQRN(0)�̃[1d ⊗ X̂l ]), where in the second equality
we switch from a Schrödinger to a Heisenberg picture, with
the evolution performed on the observable instead with a map

�̃. Next, we carry out the partial trace with respect to the QRN
nodes to (in principle) arrive at Eq. (5).

Alternatively, one can numerically retrieve the effective
observable Ẑeff,l that is a result of QRN observable X̂l from
the effective map M and constant vector V , with the help
of Eq. (2), as follows. First, note that all complete param-
eters of the input state are basically measured observables
that one can obtain through tomographically complete mea-
surements, should direct measurements on the input objects
be possible. These parameters can be written as {Y m}d2−1

m=1 =
{trin(ρinŶm)}d2−1

m=1 , where Ŷm is the corresponding measurement
observable for Y m. From Eq. (2), the lth QRN observable
reads

X l =
∑

m

Ml,mY m + V l

= trin

(
ρin

(∑
m

Ml,mŶm + 1dV l

))
, (6)

where we have used Y m = trin(ρinŶm). Therefore, the effective
observable can be written as Ẑeff,l = ∑

m Ml,mŶm + 1dV l . It
is clear that having at least d2 − 1 independent rows of M is
essential for the QRP scheme as it allows the effective observ-
ables to be tomographically complete for estimating ρin. We
note that this is equivalent to the requirement in Eq. (3).

VI. EXEMPLARY QUANTUM TOMOGRAPHY

Now, we provide demonstrations with simple models to
gain insight of QRP. First, suppose we have two interacting
qubits, where one is assigned as the input and the other as the
QRN; see Fig. 2(a). Let us take the Hamiltonian as

Ĥ/h̄ = w1σ̂
z
1 + w2σ̂

z
2 + K12(σ̂+

1 σ̂−
2 + σ̂+

2 σ̂−
1 ) + P2σ̂

x
2 , (7)

where the subscripts indicate the subsystem, σ̂+(−) is the rais-
ing (lowering) operator, K12 is the hopping type interaction,
w1,2 is the frequency, and P2 is the coherent pump. We have
used σ̂ x,y,z to denote the Pauli matrices.

Let us also consider a decay mechanism affecting the
second qubit to illustrate a loss of information. In par-
ticular, the dynamics follows the Lindblad master equa-
tion ρ̇ = −i[Ĥ , ρ]/h̄ + (γ2/2)L(ρ, σ̂−

2 ), where L(ρ, σ̂−
2 ) =

2σ̂−
2 ρσ̂+

2 − {σ̂+
2 σ̂−

2 , ρ}, γ2 denotes the strength of the decay,
and the state is initialized as ρ(0) = ρin ⊗ |0〉〈0|. For simu-
lations, as one QRN realization, we take random dynamical
parameters {w1,w2, K12, P2, 5γ2} ∈ [1, 2] × 
, where 
 is
the overall strength in units of frequency.

For the parametrization, let us take {Y m}3
m=1 =

{ρin(1, 1), Re(ρin(1, 2)), Im(ρin(1, 2))} from which one
can reconstruct ρin completely. To demonstrate one
of the advantages of the scheme, we will utilize
time-multiplexing. In particular, we take {X l}3

l=1 =
{tr(ρ(τ1)σ̂ z

2 ), tr(ρ(τ2)σ̂ z
2 ), tr(ρ(τ3)σ̂ z

2 )}. One can now follow
our method and retrieve the effective map M.

Next, we test the performance of the scheme by generating
random input states {ρin,n}Ntest

n=1; see Appendix C for details.
Each of the input states is evolved, after which one obtains
the corresponding measured QRN observables {X l}3

l=1. To
incorporate errors coming from finite measurement instances,
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(a)

(c1)

(b1)

(b2)

(b3)

(c2)

FIG. 2. (a) Illustration of the setup, where a QRN observable
is seen as an effective measurement on the input. Panels (b1)–(c2)
represent results from an exemplary realization of QRN parameters.
(b1) The figure of merit η = ||M|| ||M+|| without decay. The insets
show the direction of the effective observables. (b2) The correspond-
ing tomographic errors, taking into account measurement errors. (b3)
Similar to (b2) with the addition of fluctuations of the dynamical pa-
rameters. (c1) The figure of merit with decay. (c2) The corresponding
tomographic errors. Dashed lines represent overall trend. Black dots
denote minimum η and the corresponding error �̄.

we update each observable as X l → X l + εl , where εl is sam-
pled from a normal distribution with zero mean and standard
deviation ξ . Note that from the central limit theorem, we have
ξ ∝ 1/

√
S, where S is the number of measurement instances.

In what follows, we take ξ = 10−3. Knowing {X l}3
l=1, one

estimates the input state by utilizing Eq. (1). As a quan-
tity to represent tomographic estimation error, we use � =∑

m |Y m − Y est,m|/(d2 − 1). Furthermore, for one QRN real-
ization we test Ntest = 100 randomly generated input states,
for which the average error is denoted as �̄.

The simulation results are presented in Figs. 2(b1)–2(c2)
for an exemplary realization of QRN parameters. For ease of
demonstration, we have taken a constant time interval, i.e.,
τn = nτ . First, panel (b1) shows the figure of merit η without
decay, i.e., γ2 = 0. Note that as we have L = d2 − 1 = 3 and
that det(M) �= 0 for most of τ (shown in the SM), this QRN
architecture satisfies the tomographic completeness criterion
most of the time. Furthermore, we have indicated with a black
dot the minimum η, for which the QRP is most robust. For
performance test, we plotted the tomographic errors in panel
(b2), where we have incorporated measurement errors. One
can see that �̄ follows the trend of the figure of merit η,
confirming the quality of the latter.

Next, we incorporated imperfections coming from fluc-
tuations of the dynamical parameters. We evolved each of
the initial states during testing by adding random strengths
ν ∈ [−1, 1] × 10−2 × 
 to the QRN parameters. The tomo-

graphic errors are plotted in panel (b3), showing similar
behavior to panel (b2) except for an overall increasing trend
(dashed line). As the dynamics runs for longer time, the fluc-
tuations on the dynamical parameters result in stronger error
of the effective map, and at some point the assumption δ � 1
for the effective map M + δM is no longer valid. In this case,
η still provides a good figure of merit for 3|ν|τ � 1.

We now include the energy decay γ2 in the dynamics,
which directly affects the effective map, and hence η; see
panel (c1). The loss of information in the system causes
weaker elements of M, resulting in the increasing overall
trend (dashed line). The corresponding tomographic errors
during testing are plotted in panel (c2). One can see that the
error �̄ is anticipated by the figure of merit η, including the
overall increasing trend (dashed line).

After computing the effective map, we also com-
puted the corresponding effective measurement operators
{Ẑeff,1, Ẑeff,2, Ẑeff,3}. Note that the elements of ρin are related
to measurements of Pauli matrices, i.e., Y 1 = tr(ρin(σ̂ z

1 +
12)/2), Y 2 = tr(ρin(σ̂ x

1 /2)), and Y 3 = tr(ρin(−σ̂
y
1 /2)). Con-

sequently, the rows of M are vectors representing measure-
ments, seen from the Bloch sphere. For example, see the
insets of Fig. 2(b1), showing the vectors when η is low (left)
and high (right). The relative angles between these vectors,
for which η is minimum for the scenario described in panel
(b1) with time interval τ ∈ [0, 3]/
, are �12 = 87◦ ± 19◦,
�23 = 82◦ ± 10◦, and �13 = 90◦ ± 19◦, where we performed
the test over 50 different QRN realizations. In the ideal case,
it is expected that the angles are 90◦, corresponding to orthog-
onal measurements.

We also performed simulations for two-qubit tomography;
see Appendix D for details.

VII. DISCUSSION

It is important to note that for any QRP satisfying the
tomographic completeness criterion, the tomographic error
� → 0 in the limit of no measurement errors and fluctua-
tions of dynamical parameters, i.e., ξ → 0 and ν → 0. This
is because the effective map M+ exists such that the input
parameters can be obtained exactly given the measured QRN
observables, as written in Eq. (1). This is still true in the
presence of quantum noises such as energy decay, dephasing,
and depolarization affecting the involved quantum systems as
long as their strengths are constant.

The experimentally friendly platform of quantum reservoir
processing makes it attractive for physical implementations.
Possibilities for qubits as the QRN nodes include Rydberg
atoms [35,36], fermionized photons [37], optically trapped
atoms [38], and superconducting qubits [39,40]. We also note
that the QRN can be constructed from bosonic modes, e.g.,
with coupled cavities [41]. We anticipate that the method
developed in this paper can be used in all the cases above
and that it would help to design architectures satisfying the
tomographic completeness criterion and optimize robustness
against imperfections.

VIII. CONCLUSION

We have shown the origin of quantum reservoir processing
for quantum state tomography. We developed a method to test

042402-4



TOMOGRAPHIC COMPLETENESS AND ROBUSTNESS OF … PHYSICAL REVIEW A 107, 042402 (2023)

whether a quantum reservoir architecture satisfies the tomo-
graphic completeness criterion, where the system can estimate
arbitrary states of input objects completely. Furthermore, we
proposed a figure of merit that quantifies the robustness of a
given architecture against general imperfections, e.g., quan-
tum noises, fluctuations of the dynamical parameters, and
measurement errors. This allows a quantitative comparison
of different architectures, without the need for benchmarking
different input states at the testing level. We interpreted the
action of performing measurements on the QRN nodes as
effective measurements on the input objects, and we provided
a way to retrieve the latter. Finally, we demonstrated our
methods for simple cases of one- and two-qubit tomography.
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APPENDIX A: TRAINING WITH RIDGE REGRESSION

Here we present details to obtain the weights W and biases
C of the output layer. First, let us assume that the QRP we
consider satisfies the tomographic completeness criterion. We
start with Eq. (2) in the main text, which always holds, and
we use −M+V = C. Then, we can write Y = M+X + C or
equivalently

[C M+]

[
1
X

]
= Y . (A1)

The goal is essentially to find the left matrix, which contains
the weights and biases of the output layer, i.e., [C W].

This is done with ridge regression by using known sets of
input and output {Y (n), X (n)}Ntr

n=1, where we have used (n) as
the label, and Ntr denotes the number of sets. We define a
matrix of inputs Y and outputs X as

Y = [Y (1) Y (2) · · · Y (Ntr )],

X =
[

1 1 · · · 1
X (1) X (2) · · · X (Ntr )

]
. (A2)

The ridge regression formula then reads

[C W] = YX T (XX T + φ1)−1, (A3)

where φ is the regularization coefficient.
We note that for the performance test in Fig. 2 in the main

text, the weight and biases of the output layer are directly
computed from the effective map M and constant vector
V , i.e., W = M+ and C = −M+V . Next, this output layer
is used in testing, from which we present the tomographic
estimation errors. In practice, the weight and biases of the
output layer are obtained from training data, as explained in
this section. To demonstrate this, let us consider the setup
of Fig. 2(b2) in the main text with time-multiplexing con-
stant τ = 1.9/
. We generated Ntr = 10 training data, i.e.,
the input and corresponding output {Y (n), X (n)}10

n=1, where we

Overfitting

Underfitting

FIG. 3. Tomographic estimation errors from the training data
for the setup of Fig. 2(b2) in the main text (τ = 1.9/
) against
regularization coefficient φ.

have used a larger measurement error strength ξ = 10−2 for
better demonstration. Training with ridge regression is per-
formed to obtain the weight and biases of the output layer; see
Eq. (A3) above. For different regularization coefficients, we
computed the corresponding tomographic estimation errors
from the training data; see Fig. 3 showing a typical trend. In
particular, small φ results in overfitting, whereas large φ leads
to underfitting. The minimum error is referred to as a sweet
spot, which gives the chosen φ in practice.

APPENDIX B: DETERMINANT OF THE MAP

Here, we provide an alternative figure of merit representing
the robustness of QRP against general imperfections. Re-
call the requirement of having L � d2 − 1 in the main text.
First, let us assume a square map M, which is the case
when L = d2 − 1. In this case, the tomographic completeness
criterion is det(M) �= 0. For the strict case of L > d2 − 1,
one can still form a square map M by choosing d2 − 1 of
the L observables (the order does not matter), and form the
linear equation as in Eq. (2) in the main text. There are
L!/(d2 − 1)!(L − d2 + 1)! possibilities from which one can
choose, and to satisfy the tomographic completeness criterion,
at least one choice should give det(M) �= 0.

Now, recall that the absolute value of the determi-
nant of a linear map represents the ratio of the volume
of the changes in X and Y est, i.e., ∂X 1 · · · ∂X d2−1 =
|det(M)| ∂Y est,1 · · · ∂Y est,d2−1. First, it is immediately appar-
ent that errors in X (finite measurements) will result in small
errors when estimating Y est for higher values of |det(M)|.
Second, the loss of information caused by quantum noises
is reflected in the weaker dependence of X with respect to
Y ; see Eq. (2) in the main text. In other words, we will
have smaller coefficients or elements of the effective map M,
making |det(M)| smaller. Last but not least, suppose we have
a map M + δM, where the last term is a result of fluctua-
tions of the system parameters and δ � 1. The solution for
Eq. (1) now reads Y ′

est ≈ M−1(1 − δMM−1)(X − V ), where
we have used a first-order approximation for (M + δM )−1,
and Y ′

est denotes the new estimated vector. By simplifying fur-
ther, we have Y ′

est − Y est ≈ M−1(−δMY est ). Consequently,
a small change in the estimated vector as a result of the
fluctuation term is given when |det(M)| is high. Therefore,

ζ ≡ |det(M)| (B1)
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(b)

(a)

FIG. 4. Determinant of the map as a figure of merit for one-qubit
tomography. (a) ζ for the case of Fig. 2(b1) in the main text. (b) ζ for
the case of Fig. 2(c1) in the main text.

quantifies the robustness of QRP against general imperfec-
tions. We note that ζ quantifies robustness in the opposite
way to that of η. In particular, higher values of ζ would imply
a more robust QRP architecture.

For one-qubit tomography, we present the quantity ζ in
Figs. 4(a) and 4(b), respectively, for the case of Figs. 2(b1)
and 2(c1) in the main text. For two-qubit tomography, we
present ζ in Figs. 5(a) and 5(b), respectively, for the case of
Figs. 6(a1) and 6(b1). One can see that the tomographic errors
behave opposite to the corresponding ζ . It can also be seen
that ζ accounts for the overall increasing or decreasing trend
of the tomographic errors with respect to 
τ (dashed lines).

APPENDIX C: RANDOM INPUT STATES

The random input states used at the testing level are gen-
erated as follows. First, we generate a d × d matrix G, where
d is the dimension of the input object. Each element of G is
taken as

Gi j = 2(α + iβ ) − (1 + i), (C1)

where α and β are sampled from a normal distribution with
zero mean and standard deviation of 1. Next, a Hermitian
matrix is generated as

H = G + G†, (C2)

which one can use to generate an input state,

ρin = H2

tr(H2)
. (C3)

APPENDIX D: TWO-QUBIT TOMOGRAPHY

Here we show that it is possible to perform tomography on
two-qubit input states by using a single-qubit QRN. The setup
takes the following Hamiltonian:

Ĥ/h̄ = w1σ̂
z
1 + w2σ̂

z
2 + w3σ̂

z
3 + K13(σ̂+

1 σ̂−
3 + σ̂+

3 σ̂−
1 )

+K23(σ̂+
2 σ̂−

3 + σ̂+
3 σ̂−

2 ) + P3σ̂
x
3 , (D1)

where the subscripts {1, 2} indicate the input qubits, while 3
indicates the QRN qubit. To demonstrate loss of information,
suppose that the QRN qubit undergoes energy decay with a
rate γ3. The dynamics follows,

ρ̇ = − i

h̄
[Ĥ , ρ] + γ3

2
L(ρ, σ̂−

3 ), (D2)

with the initial state taken as ρ(0) = ρin ⊗ |0〉〈0|. Similar to
the one-qubit tomography in the main text, we randomize the
parameters as {w1,w2,w3, K13, K23, P3, 5γ3} ∈ [1, 2] × 
.

Furthermore, as the parametrization for the input state and
measured QRN observables we use

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρin(1, 1)
ρin(2, 2)
ρin(3, 3)

Re(ρin(1, 2))
Im(ρin(1, 2))
Re(ρin(1, 3))
Im(ρin(1, 3))
Re(ρin(1, 4))
Im(ρin(1, 4))
Re(ρin(2, 3))
Im(ρin(2, 3))
Re(ρin(2, 4))
Im(ρin(2, 4))
Re(ρin(3, 4))
Im(ρin(3, 4))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tr(ρ(τ )σ̂ z
3 )

tr(ρ(2τ )σ̂ z
3 )

tr(ρ(3τ )σ̂ z
3 )

tr(ρ(4τ )σ̂ z
3 )

tr(ρ(5τ )σ̂ z
3 )

tr(ρ(6τ )σ̂ z
3 )

tr(ρ(7τ )σ̂ z
3 )

tr(ρ(8τ )σ̂ z
3 )

tr(ρ(9τ )σ̂ z
3 )

tr(ρ(10τ )σ̂ z
3 )

tr(ρ(11τ )σ̂ z
3 )

tr(ρ(12τ )σ̂ z
3 )

tr(ρ(13τ )σ̂ z
3 )

tr(ρ(14τ )σ̂ z
3 )

tr(ρ(15τ )σ̂ z
3 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (D3)

respectively. The latter uses time-multiplexing with
a constant interval τ , giving a total duration of
15τ .

(a)

(b)

FIG. 5. Determinant of the map as a figure of merit for two-qubit tomography. (a) ζ for the case of Fig. 6(a1). (b) ζ for the case of
Fig. 6(b1).
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(a1)

(a2)

(a3)

(b1)

(b2)

FIG. 6. Exemplary two-qubit tomography with a single-qubit QRN. (a1) The figure of merit η = ||M|| ||M+|| for dynamics without
decay. (a2) The corresponding tomographic errors, where we take into account measurement errors with ξ = 10−3. (a3) Tomographic errors
with the addition of fluctuations of dynamical parameters. (b1) The figure of merit, where the QRN qubit experiences loss of information from
energy decay. (b2) The corresponding tomographic errors with energy decay. Dashed lines indicate overall trend.

We present our results for an exemplary realization of
the dynamical parameters in Figs. 6(a1) and 6(b2). First, we
calculate the figure of merit for the case in which there is
no energy decay (γ3 = 0) in panel (a1). For a performance
test, we plotted the tomographic errors in panel (a2), where
each point is an average over 100 random input states. Here,
the measurement errors are taken into account with ξ = 10−3.
Next, we added fluctuations ν ∈ [−1, 1] × 10−2 × 
 to the
system parameters, and we plotted the corresponding tomo-

graphic errors in panel (a3). One can see the expected increas-
ing overall trend (dashed line) that is explained in the main
text. Since the time-multiplexing is performed 15 times, η

computed in panel (a1) still provides a good figure of merit for
15|ν|τ � 1. Finally, we incorporate the energy decay of the
QRN qubit; see panel (b1) for the figure of merit and (b2) for
the corresponding tomographic errors. The increasing overall
trend of the errors is directly predicted by the increasing trend
of the figure of merit; see the dashed lines in both panels.
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