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Relativistic transformations of quasi-monochromatic paraxial optical beams
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A monochromatic plane wave recorded by an observer moving with respect to the source undergoes a Doppler
shift and spatial aberration. We investigate here the transformation undergone by a generic, paraxial, spectrally
coherent quasimonochromatic optical beam (of finite transverse width) when recorded by a moving detector.
Because of the space-time coupling intrinsic to the Lorentz transformation, the monochromatic beam is converted
into a propagation-invariant pulsed beam traveling at a group velocity equal to that of the relative motion
and which belongs to the recently studied class of “space-time wave packets.” We show that the predicted
transformation from a quasimonochromatic beam to a pulsed wave packet can be observed even at terrestrial
speeds.
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An observer moving with respect to an optical source
emitting a monochromatic plane wave (MPW) records a
Doppler-shifted MPW [1–4]. What are the changes observed
by a detector moving with respect to a source emitting instead
a generic monochromatic optical beam (i.e., a transversely
localized field)? Previously tackled questions regarding rel-
ativistic transformations of optical fields have sometimes
revealed surprising answers. For example, Terrell [5] and
Penrose [6] showed that the length of an object in an image
captured by an instantaneous shutter does not depend on the
observer’s velocity, thus disabusing the physics community of
the notion of a “visible” Lorentz contraction [7]. Recently,
it was shown that angular-momentum-carrying optical fields
exhibit exotic effects in a frame moving orthogonally to the
optical axis, including an optical analog of the relativistic
spin Hall effect [8,9], transverse orbital angular momentum
and spatiotemporal vortices [10,11], and relativistic spin-orbit
interactions [12].

We analyze here the transformation of monochromatic and
quasimonochromatic paraxial generic beams when recorded
by an observer moving with respect to the source along the
beam axis. Because the Lorentz transformation introduces
space-time coupling [13,14] into the optical field, it converts
a strictly monochromatic beam in one frame into a finite-
bandwidth pulsed beam in any other frame. Previous studies
[15,16] focused on Lorentz transformations yielding so-called
focus-wave modes (FWMs) [17] and X -waves [18], which are
propagation-invariant pulsed beams [19,20]. However, FWMs
and X -waves require exorbitant bandwidths for their char-
acteristics to deviate observably from a conventional pulsed
beam [21]. The Lorentz transformation of light emitted by an
optical dipole (which is not paraxial) [16,22] corresponds to
the so-called Mackinnon wave packet [23], which is yet to be
realized.

Recently, a new class of propagation-invariant pulsed
fields denoted “space-time wave packets” (STWPs) has been
pursued [24–29], which has proven more accessible exper-
imentally. In contrast to FWMs and X -waves, STWPs can
be synthesized with narrow bandwidths within the paraxial

regime and have been shown to display a host of unique char-
acteristics including tunable group velocity [30], self-healing
[31], and anomalous refraction [32] (see [21] for a review of
this emerging area). Here we show that STWPs result from the
Lorentz transformations of generic, paraxial, monochromatic,
or spectrally coherent quasimonochromatic optical beams. In
other words, an observer in relative motion with respect to
such beams will record an STWP of the kind only recently
synthesized in the laboratory via spatiotemporal spectral mod-
ulation [21]. Moreover, the group velocity of the induced wave
packet is the relative velocity between the source and detector
[33,34].

We first provide a physically intuitive picture that un-
derpins the conversion of generic, strictly monochromatic
paraxial beams (regardless of the details of the spatial beam
structure) into ideal propagation-invariant STWPs in terms of
their representation on the surface of the spectral light-cone.
In particular, we identify the impact of the transverse spa-
tial beam width on the temporal pulse-width of the induced
wave packet via the angular-dependent Doppler shift. Next,
we extend our analysis to more realistic quasimonochromatic
paraxial beams and show that the departure from monochro-
maticity imposes a maximum propagation distance on the
generated STWP before the onset of diffractive spreading,
which in turn determines a minimum relative observer ve-
locity for these effects to be detectable. Finally, we suggest
a road map for experiments based on the relative motion of
ultranarrow-linewidth optical sources and detectors and exam-
ine the potential for observing such effects at terrestrial speeds
with currently available lasers.

To set the stage for analyzing the Lorentz transformation
of optical beams, we first examine the case of MPWs in one
transverse dimension x (without loss of generality); see Fig. 1.
An MPW at frequency ω emitted by a source S at rest in the

inertial frame O(x, z, t ) is Doppler-shifted to ω′ =
√

1−β

1+β
ω

in the frame O′(x′, z′, t ′) moving at a velocity v = βc along
the common z axis [Fig. 1(a)]. An MPW traveling in O at an
angle ϕ with the z axis is transformed in O′ to a frequency
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FIG. 1. A MPW emitted in the rest frame O is Doppler-shifted in
the frame O′ moving along the +z axis. (b) An off-axis MPW in O is
Doppler-shifted and undergoes an angular rotation in O′. (c) The on-
axis MPW is Doppler-shifted along the light line kz = ω/c (kx = 0)
in the Fourier domain, whereas (d) an off-axis MPW is shifted along
a fixed-kx hyperbola on the light-cone surface.

ω′ = γ (1 − β cos ϕ)ω traveling at an angle ϕ′ =
cos−1 [ cos ϕ−β

1−β cos ϕ
] (the Doppler spatial aberration [3]), where

γ = 1/
√

1 − β2 [Fig. 1(b)].
These changes can be visualized on the surface of

the spectral light-cone [29,35]. The wave vector �k =
(kx, kz ) for an MPW in O is represented by a point on
the surface k2

x + k2
z = ( ω

c )2, where kx = ω
c sin ϕ and kz =

ω
c cos ϕ. The Lorentz-transformed wave-vector components
are k′

x = kx, k′
z = γ (kz − βω/c), and ω′ = γ (ω − cβkz ). Be-

cause k′2
x + k′2

z = ( ω′
c )2, the structure of the light-cone itself is

Lorentz-invariant so that the points corresponding to MPWs
in O and O′ can be represented on the same surface. The
MPW in Fig. 1(a) corresponds to a point on the light-line

kx = 0, along which its Doppler-shifted counterpart in O′ is
displaced [Fig. 1(c)]. In contrast, the point representing the
off-axis MPW in O [Fig. 1(b)] is displaced in O′ along a
constant-kx hyperbola [Fig. 1(d)].

Now consider a generic monochromatic beam of transverse
width �x emitted by the source S in O [Fig. 2(a)], which is
a superposition of plane waves (spatial bandwidth �kx ∼ 1

�x )
all at the same frequency ωo but traveling at different angles
ϕ with the z axis [36,37]. The spectral support for the beam
is a circle k2

x + k2
z = k2

o at the intersection of the light-cone
with a horizontal isofrequency plane ω = ωo [Fig. 2(b)]; here
ko = ωo/c. We write the field as E (x, z; t ) = ei(koz−ωot )ψ (x, z),
where ψ (x, z) is a slowly varying envelope of angular
spectrum

ψ (x, z) =
∫

dkxψ̃ (kx )eikxxei(kz−ko )z; (1)

here the spatial spectrum ψ̃ (kx ) = ∫
dx ψ (x, 0)e−ikxx is the

Fourier transform of the initial profile ψ (x, 0).
Applying the Lorentz transformation between the coor-

dinates (x′, z′, t ′) and (x, z, t ): x = x′, z = γ (z′ + βct ′), and
t = γ (t ′ + βz′/c), the transformed field E ′(x′, z′; t ′)
= E (x, z; t ) takes the form [15,33]

E ′(x′, z′; t ′) = E [x′, γ (z′ + βct ′); γ (t ′ + βz′/c)]

= ei(k′
oz′−ω′

ot ′ )ψ[x′, γ (z′ + vt ′)], (2)

where ω′
o = γ (1 − β )ωo is the Doppler-shifted carrier fre-

quency and k′
o = ω′

o/c. It is clear from Eq. (2) that the field
in O′ corresponds to a propagation-invariant pulsed beam
traveling at a group velocity ṽ = −v. The on-axis pulse-width
�T ′ of this propagation-invariant wave packet is dictated
by the Rayleigh range zR of the monochromatic beam in
O: �T ′ = zR/(γ v).

An intuitive physical picture is based on the field repre-
sentation in the spectral domain. Because the Doppler shift
depends on the relative velocity v and angle ϕ, the MPWs
in O undergo different spectral shifts in O′ [Fig. 2(c)] and

FIG. 2. Lorentz transformation of a monochromatic beam. (a) A monochromatic beam in O is a superposition of plane waves of the
same frequency ωo traveling in different directions, and (b) its spectral support on the light-cone is an isofrequency circle. (c) In the moving
frame O′, each plane wave undergoes an angle-dependent Doppler shift. (d) The spectral support for the field in (c) is the intersection of the
light-cone with a plane that makes an angle θ with the k′

z axis.
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FIG. 3. (a) Spatiotemporal spectrum of paraxial STWPs in O′ for
different observer velocities β. (b) Dependence of the STWP central
frequency ω′

o (black solid curve, left axis) and bandwidth |�	′| (red
dashed curve, right axis) on β, normalized to the frequency ωo of the
monochromatic beam in O having �kx = 0.1ko.

the associated points along the circle on the light-cone in
O are displaced in O′ differently along constant-kx hyper-
bolas [Fig. 2(d)]. Consequently, a finite bandwidth �ω′ is
induced in the initially monochromatic beam whose coher-
ence guarantees that the space-time-coupled field in O′ is
pulsed [Fig. 2(c)]. The spectral support is transformed from
a horizontal circle in O into a tilted ellipse in O′ [34] at
the intersection of the light-cone with the plane k′

z − k′
o =

(ω′ − ω′
o)/(c tan θ ), which is parallel to the kx axis, but makes

an angle θ with the k′
z axis, where tan θ = −β [Fig. 2(d)]. The

linear relationship between k′
z and ω′ indicates a dispersion-

free wave packet traveling rigidly in O′ without diffraction
at a group velocity ṽ = c tan θ = −v [30,38]. This disper-
sion relationship is identical to the dispersion relationship
characteristic of STWPs [21,38]. Thus, a generic diffracting
monochromatic beam in the rest frame O is transformed
into a propagation-invariant STWP in the moving frame O′.
In the paraxial regime �kx � ko, the ellipse in O′ can be

approximated by a parabola 	′(k′
x ) = ck′2

x
2k′

o(1−cot θ ) [Fig. 3(a)],
where 	′ = ω′ − ω′

o [38]. The initially monochromatic beam
acquires a bandwidth �	′ = 1

2γ |β|ωo( �kx
ko

)2 via space-time
coupling. Although �	′ is independent of the sign of β

(i.e., it is symmetric with respect to approaching or receding
observers), the carrier frequency ω′

o in contrast is highly asym-
metric around β = 0 [Fig. 3(b)]. Such a field corresponds to a
so-called subluminal “baseband” STWP [21,29], which have
been recently synthesized with group velocities in the range
0.07c < ṽ < c [30,39]. It will, of course, be challenging to
produce such STWPs via relative motion between a source
and detector.

Crucially, these conclusions are independent of the partic-
ular beam structure. As a generic example, take a monochro-

matic Gaussian beam at ωo in O with ψ̃ (kx ) ∝ exp{− k2
x

2(�kx )2 }.
The time-resolved intensity I (x, z; t ) = |E (x, z; t )|2 at any ax-
ial plane z is, of course, independent of time [Figs. 4(a)
and 4(b)]. Consequently, a “fast” detector recording I (x, z; t )
or a “slow” detector capturing the time-averaged intensity
I (x, z) = ∫

dt I (x, z; t ) both reveal the same spatial Gaussian
envelope in O [Fig. 4(c)].

In O′, the spatiotemporal spectrum is ψ̃ (k′
x, ω

′) =
ψ̃ (k′

x )δ[	′ − 	′(k′
x )], leading to an envelope

ψ (x′, z′; t ′) =
∫∫

dk′
xd	′ ψ̃ (k′

x,	
′)ei[k′

xx′+(k′
z−k′

o )z−	′t ′], (3)

FIG. 4. (a) Spatiotemporal intensity profile I (x, z; t ) at the axial
plane z = 0 and (b) at z = 3zR in the rest frame O. (c) The time-
averaged intensity I (x, z) in O. (d) Spatiotemporal intensity profile
I (x′, z′; t ′) at z′ = 0 and (e) at z′ = 3zR in O′. (f) The time-averaged
intensity I (x′, z′) in O′.

which is propagation invariant ψ (x′, z′; t ′) = ψ (x′, 0; t ′ −
z′/̃v) = ψ (x′, z′ − ṽt ′; 0), with ṽ = c tan θ = −v. That is, the
roles of time and the axial coordinate z′/̃v are interchanged:
the spatial profile along z for a monochromatic beam in O
[Fig. 4(c)] is now observed in time at a fixed axial plane in
O′ [Figs. 4(d) and 4(e)]. This phenomenon was predicted in
[33] and called “diffraction in time” (which is distinct from
“time-diffraction” [40–42]) and verified experimentally in
[34]. The invariance of kx in frames moving along z guarantees
that �x is invariant. The time-averaged intensity I (x′, z′) =
Io + IST(x′) [43] is now independent of z′ and takes the form
of a constant pedestal Io atop of which is a Gaussian profile
IST(x′) = ∫

dk′
x|ψ̃ (k′

x )|2ei2k′
xx′

[Fig. 4(f)].
For example, for a Gaussian beam of transverse size wo ( 1

e

width) and zR = 1
2 kow

2
o yields an on-axis (x = 0) pulse-width

�T ′ = kow
2
o

2γ v
. For λo = 2.4 µm, �x = 2wo = 40 µm (zR ∼

0.5 mm), relative motion at v = 0.8c results in �T ′ ∼ 4 ps
(�λ′ ∼ 0.25 nm) at λ′

o = 800 nm. The pulse-width is reduced
to �T ∼ 250 fs when the beam width is reduced to �x = 10
µm (�λ′ ∼ 4 nm).

Recently, STWPs were synthesized in the laboratory with
ṽ ∼ c starting from generic pulsed beams [21]. We inquire
here whether relative motion at terrestrial velocities v � c
between a quasimonochromatic source and a detector can lead
to the observation of ultraslow STWPs. To investigate this
possibility, we first drop the monochromaticity assumption
that guarantees the formation of a detectable STWP for any
v via idealized space-time coupling δ[	′ − 	′(k′

x )]. Rather, a
realistic field is inevitably quasimonochromatic of linewidth
δ	 in O, corresponding to a pulse of width δT ∼ 1

δ	
trav-

eling at a group velocity c in free space. When transformed
in O′ into an STWP, the precise delta-function correlation
δ[	′ − 	′(k′

x )] is relaxed to g[	′ − 	′(k′
x )], where g(·) is a

narrow spectral function whose width corresponds to a spec-
tral uncertainty δ	′ = γ (1 − β )δ	 [39,43].

In the paraxial regime, the field in O can be separated into
a product of spatial and temporal envelopes

E (x, z; t ) = ei(koz−ωot )ψx(x, z)ψt (t − z/c), (4)
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FIG. 5. Schematic of a potential test of relativistic transformations of a quasimonochromatic beam. (a) A beam from a stationary laser
(�x = 100 µm, ωo

2π
= 200 THz, δ	

2π
= 300 Hz) is recorded by moving observers. (b) A walking observer at v = −1.4 m/s (≈5 km/h) does

not detect any change in the beam (|v| < vmin = 40 m/s). (c) A faster observer at v = −90 m/s detects a propagation-invariant STWP of
pulsewidth �T ′ ≈ 0.5 ms traveling at a group velocity ṽ = 90 m/s (≈320 km/h), having a spatiotemporal spectral structure 	′ = 	′(k′

x ).
(d) An even faster observer at v = −450 m/s (≈1600 km/h) observes an STWP of pulse-width �T ′ ≈ 0.1 ms.

where ψx(x, z) represents the spatial diffractive dynamics at
the carrier frequency ωo and ψt (t ) = ∫

d	ψ̃ (	)e−i	t is a
plane-wave pulse representing the temporal dynamics. The
transformed field in O′ is

E ′(x′, z′; t ′) = E [x′, γ (z′ + βct ′); γ (t ′ + βz′/c)]

= ei(k′
oz′−ω′

ot ′ )ψx[x′, γ (z′ + vt ′)]ψ

× [γ (1 − β )(t ′ − z′/c)]. (5)

This result corresponds to the formulation of STWPs with
finite spectral uncertainty [39]. The transformed optical
field separates into two terms. The first term ψ[x′, γ (z′ +
vt ′)] corresponds to an ideal propagation-invariant STWP
of pulse-width �T ′ traveling at a group velocity ṽ = −v,
whereas the second term ψt [γ (1 − β )(t ′ − z′/c)] represents a
plane-wave pulse of width δT ′ = δT

γ (1−β ) traveling at c, which
we term the “pilot envelope” [39]. Crucially, the Doppler-
induced STWP pulse-width �T ′ is independent of the pilot
envelope width δT ′.

The spectral uncertainty δ	 in O sets a minimum relative
velocity vmin between source and detector that is required for
a detectable STWP

vmin ∼ 2c

(
δ	

ωo

)/(
�kx

ko

)2

= ko
(�x)2

δT
∼ zR

δT
, (6)

where δT ∼ 1/δ	 is the pulse-width of the field in O.
This minimal requirement on the relative velocity can be

understood from several perspectives. The spectral uncer-
tainty δ	 is the finite bandwidth of the spectral support for the
quasimonochromatic field on the light-cone [Fig. 2(b)]. The
Doppler-induced bandwidth �	′ results in an on-axis pulse-
width �T ′ ∼ 1

�	′ that is independent of the initial linewidth.
To produce a detectable STWP, the spectral tilt angle θ must
produce a new spectral support on the light-cone that is
distinguishable from the initial spectrum. This requires that
�	′ > δ	′, which sets a minimal θ , and hence a mini-
mal relative velocity. A different perspective is gleaned from
consideration of the maximum propagation distance of an
STWP Lmax ∼ c

δ	′|1−cot θ | [39,43]. Observing the STWP in
O′ requires that Lmax be larger than the axial pulse length
v�T ′ = zR

γ
, thereby leading to the result in Eq. (6). Indeed,

the field resulting from the Lorentz transformation of a quasi-
monochromatic field separates into the product of two distinct

pulses of finite duration and different group velocities, which
walk off after a propagation distance Lmax corresponding
to the STWP diffraction-free length [39]. For the STWP
pulsewidth to be shorter than that of the pilot envelope �T ′ <

δT ′ requires that cδT >
1−β

|β| zR.
In our simulations, we use a Gaussian pulsed beam whose

spatiotemporal intensity profile in O is

I (x, z; t ) ∝ wo

w(z)
exp

[
− 2x2

w(z)2
− 2(t − z/c)2

δT 2

]
, (7)

where w(z) = wo

√
1 + (z/zR)2, δT is the initial pulse-width

[37], and ωo
2π

= 200 THz (λo ≈ 1550 nm). The field in O′ is

I ′(x′, z′; t ′) ∝ wo

w(γ [z′ + vt ′])

× exp

[
− 2x′2

w2(γ [z′ + vt ′])

−2(γ [1 − β][t ′ − z′/c])2

δT 2

]
. (8)

Alternatively, one may calculate the field in the spectral
domain (kx, kz, ω) and then propagate it along z using the
Fourier-transform split-step method [44,45], which yields
similar results to the physical-space calculations.

We illustrate in Fig. 5 the consequences of Eq. (6) start-
ing from a quasimonochromatic beam with �x = 100 µm
(Rayleigh range zR ≈ 5 mm) and spectral linewidth δ	

2π
=

300 Hz (δT = 1 ms in O) [Fig. 5(a)], which is observed by
a moving detector [Figs. 5(b) to 5(e)]. From Eq. (6), βmin =
1.3×10−7 or vmin ≈ 140 km/h, so that an observer at v =
−5 km/h (|v| < vmin) records a conventionally diffracting
quasimonochromatic beam [Fig. 5(b)]. However, an ob-
server at v = −320 km/h (|v| > vmin) records an STWP with
�T ′ ∼ 0.5 ms, Lmax ≈ 10 mm, and ṽ = 320 km/h [Fig. 5(c)].
An even faster observer moving at v = −1600 km/h detects
an STWP of shorter pulsewidth �T ′ ∼ 100 µs and longer
propagation distance of Lmax ≈ 50 mm [Fig. 5(d)].

Narrowing the linewidth to δ	
2π

= 3 Hz reduces the thresh-
old to vmin ≈ 1.4 km/h, and recording an STWP becomes
accessible to a walking observer, whereas the flying observer
records an STWP traveling freely for Lmax = 5 m. Alter-
natively, vmin can be reduced more effectively by reducing
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FIG. 6. On-axis intensity profile I (x′ = 0, z′; t ′) of a 100-µm-
wide beam and 1-ms pulse duration observed in O′ by (a) a stationary
observer or observers moving towards the source at (b) v=−30 m/s,
(c) −90 m/s, and (d) −450 m/s.

the transverse beam width due to the quadratic dependence
βmin ∝ (�x)2.

We plot in Fig. 6 the on-axis intensity profiles I (x′ =
0, z′; t ′) with increasing v at δ	

2π
= 300 Hz, which can be

viewed as world lines for the pulsed-field peak in O′. In O, the
long temporal extent of ∼1 ms (corresponding to a length of
∼300 km) combined with the short axial extent �z = 2zR =
10 mm renders the wave-packet peak effectively “stationary,”
even though the underlying field travels at c [Fig. 6(a)]. As
the observer moves towards the source, the detected STWP
can become significantly shorter than 1 ms when v � vmin,
resulting in an STWP peak moving at a group velocity ṽ = −v

[Figs. 6(b) to 6(d)] and propagation invariant within a 1-ms
interval [Fig. 6(d)].

We consider here a model in which the laser spectrum
is coherent. However, the narrow-linewidth spectra of real-
istic laser sources are largely incoherent, corresponding to
continuous-wave radiation rather than pulsed [46–48]. The
coherent model utilized here can be obtained by modulating
the source at a rate higher than its initial linewidth to produce
a train of pulses each of which is described by this model.
The Lorentz transformation of a continuous-wave laser source
with a spectrally incoherent linewidth requires a different
analysis [49,50], which will be reported elsewhere. Further-
more, our analysis was restricted to one transverse dimension,

which has the advantage of showing a clear structure (the
pedestal Io) emerging as a result of space-time coupling.
Incorporating both transverse dimensions does not change the
conclusions except that the pedestal is replaced with a 1

r decay
in intensity (r is the radial coordinate) [51–53]. In addition,
the scalar field analysis can be extended to polarized fields
without altering our main findings [54].

Although our strategy does not provide a more stringent
test of special relativity compared to previous approaches
[55–59], it may provide a simpler and more convenient testbed
at terrestrial speeds in light of the current availability of
ultranarrow-linewidth lasers ( δ	

2π
< 300 Hz) and high-speed

cameras (>1000 frames/s). Although the Doppler shift is
prohibitively difficult to detect at small β, the changes in the
spatiotemporal structure of the field can be readily captured.
Moreover, the results reported here may lead to new function-
alities for so-called space-time metasurfaces by elucidating
what can be achieved at low-speed moving devices [60–63].
Other areas in optical physics that explore the ramifications of
relativistic transformations and may benefit from our results
include photonic time crystals [64,65] and reflection and re-
fraction from moving surfaces [66–71].

In summary, we analyzed a generic quasimonochromatic
optical beam observed in an axially moving frame, showing
that the transformed field is a propagation-invariant wave
packet of finite pulse-width traveling at subluminal group
velocities. Moreover, an intuitive physical picture provides
the constraint on the relative velocity between the source and
detector required to observe the predicted phenomena. Our
analysis reveals that current technology allows for such a test
to be carried out at terrestrial speeds.

Note added. Recently, a preprint appeared that reaches
conclusions similar to ours [72].
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