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Exceptional points (EPs) are degeneracies of non-Hermitian systems, where both eigenvalues and eigenvectors
coalesce. Classical and quantum systems exhibiting high-order EPs have recently been identified as fundamental
building blocks for the development of novel, ultrasensitive optoelectronic devices. However, arguably one of
their major drawbacks is that they rely on nonlinear amplification processes that could limit their potential
applications, particularly in the quantum realm. In this work, we show that high-order EPs can be designed
by means of linear, time-modulated, chain of inductively coupled RLC (where R stands for resistance, L for
inductance, and C for capacitance) electronic circuits. With a general theory, we show that N coupled circuits
with 2N dynamical variables and time-dependent parameters can be mapped onto an N-site, time-dependent,
non-Hermitian Hamiltonian, and obtain constraints for PT symmetry in such models. With numerical calcu-
lations, we obtain the Floquet exceptional contours of order N by studying the energy dynamics in the circuit.
Our results pave the way toward realizing robust, arbitrary-order EPs by means of synthetic gauge fields, with
important implications for sensing, energy transfer, and topology.
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I. INTRODUCTION

The past two decades have witnessed a Cambrian explo-
sion of several experimental and theoretical investigations on
non-Hermitian Hamiltonian systems that satisfy the so-called
parity-time (PT ) symmetry condition [1–5]. Owing to the
antilinear PT symmetry, the spectrum of such Hamiltonians
changes from real to complex-conjugate pairs as the degree of
anti-Hermiticity is increased. The coherent, nonunitary evolu-
tion generated by the non-Hermitian Hamiltonian means that
the norm of a state oscillates in the PT -symmetric region,
where the spectrum is real, and grows exponentially in the
PT -broken region, where amplifying (and decaying) eigen-
modes are present. The study and analysis of PT -symmetric
systems across the parameter domain have triggered impor-
tant theoretical predictions and experimental demonstrations
in disparate areas of physics, optics, and photonics [6–9].
Specifically, the nontrivial phenomena across the PT transi-
tion have captured a great deal of attention. This is, in part,
because the exceptional-point degeneracy—in contrast with
the traditional Hermitian degeneracy—is a potentially good
candidate for sensing small disturbances due to a perturbing
potential [10–16].

For Hermitian Hamiltonians, however, even when
two eigenvalues become degenerate, two orthonormal
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eigenvectors remain. Exceptional points (EPs) are thus
non-Hermitian singularities where two or more eigenvectors
also coalesce [17–19]. The number of eigenvectors n that
collapse at the non-Hermitian degeneracy defines the order
of the EP, and we call it EPn. The most common case is an
EP2, where a pair of eigenvalues become degenerate, and
EPs of order greater than two are traditionally referred to
as high-order EPs [20–23]. The literature on the design and
realization of high-order EPs has greatly contributed to the
development of this research field, most of them aimed at
enhancing the response of open physical systems [24,25]
because the dimensionless mode-splitting �ω in response to
a dimensionless perturbation δ � 1 at an EPn is given by
�ω(δ) ∝ δ1/n � δ. Put simply, the sensitivity to perturbations
increases as the order of the EP increases. For instance, a 1%
perturbation results in a 1% response in a Hermitian system,
a 10% response at an EP2, and a 30% response at an EP3.

Recent theoretical and experimental studies have focused
on diverse PT -symmetric platforms to realize EPs of ar-
bitrary order. Examples include waveguide arrays [7,9,26],
microcavities [13,14,27], optomechanical systems [28–30],
quantum optical circuits [31,32], coupled acoustic res-
onators [33–35], and electronic circuits [12,36–39]. The latter,
in recent years, have emerged as a powerful platform for sim-
ulating topological and non-Hermitian phenomena [40–42].
In particular, we have shown that both gain and loss can be
implemented in a single LC oscillator by means of complex,
synthetic gauge fields, thereby creating static and Floquet
EP2 landscape [43]. Extending this approach to higher-
dimensional EPs is, however, nontrivial.
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FIG. 1. Schematic representation of the equivalence between sites and electronic circuits in a tight-binding lattice model. The top row
shows PT -symmetric perfect-state-transfer lattice with N = 2, 3, 5 sites, respectively. Its Hamiltonian HN (γ ) = κJy + iγ Jz is N dimensional.
Bottom row shows N inductively coupled RLC circuits with 2N dynamical variables, exhibiting synthetic gain and loss by means of time-
dependent inductance within each RLC box. Note that, for the sake of clarity, we have labeled the voltage V1, current I1 and current Ix1 present
in the capacitor, inductor and coupling inductor, respectively, of the first RLC circuit (left panel). This labeling can be generalized to the whole
circuit by drawing the corresponding voltages and currents for each oscillator.

In this work, we show through analytical and numerical
methods that it is possible to engineer high-order EPs in
an inductively coupled RLC-circuit tight-binding lattice. We
use the Jy array—a tight-binding lattice with nonuniform
couplings that has equidistant eigenvalues [44–46]—along
with a gain-loss profile that mimics the Jz array to realize
higher-order EPs [19]. Specifically, we implement the non-
trivial features of PT symmetry with synthetic gain and loss
through the temporal variation of the inductances in each
oscillator [38,39,43]. Our results suggest that dynamically
tunable synthetic electronics, with PT symmetry imple-
mented through a complex gauge field, can be used to simulate
higher-order EPs.

The paper is organized as follows. In Sec. II we present
the formalism that maps the Kirchoff-law equations for cur-
rents and voltages in a chain of N inductively coupled RLC
oscillators into a Schrodinger-like equation with a Ne ≡
(3N − 1)-dimensional Hamiltonian, and show how a time-
dependent, nonunitary change of basis can lead to gain and
loss. In Sec. III we demonstrate that the time modulation of
specific components of those oscillators can create EPN con-
tours. Section IV provides a brief discussion and conclusions.
The explicit forms of the Hamiltonians for N = 3, 4, 5 are
given in the Appendix.

II. THE MODEL

Let us consider a set of N RLC circuits connected by (N −
1) coupling inductors (Fig. 1). Their dynamics are governed
by the following first-order equations [47]:

dVn

dt
= 1

Cn

[
−Vn

Rn
− In − Ix,n + Ix,n−1

]
, (1a)

dIn

dt
= 1

Ln
Vn, (1b)

dIx,n

dt
= 1

Lx,n
(Vn − Vm). (1c)

These equations arise from the Kirchhoff laws. Here, Vn(t )
is the voltage in the capacitor Cn, In(t ) is the current across

the inductor Ln, Rn is the resistance in the nth oscillator, Lx,n

denotes the inductor coupling the nth RLC box to the (n+1)th
box, and Ix,n(t ) is the current flowing across it. We can write
the Ne ≡ (3N − 1) Eqs. (1a)–(1c) in a compact form as

i
d

dt
|φ(t )〉 = H (t ) |φ(t )〉 , (2)

where the Ne-dimensional “state vector” is

|φ(t )〉 = (V1, . . . ,VN , I1, . . . , IN , Ix,1, . . . , Ix,N−1)T , (3)

H (t ) is a non-Hermitian, Ne × Ne matrix with purely
imaginary entries. To specify its general structure,
we define ancillary matrices C = diag(C1, . . . ,CN ),
L = diag(L1, . . . , LN ), GRC = diag(1/R1C1, . . . , 1/RNCN ),
and Lx = diag(Lx,1, . . . , Lx,N−1). Additionally, we also define
an N × (N − 1), almost skew-symmetric matrix S with
entries Sab = δab − δa,b+1. In terms of these matrices, H can
be written as

H = i

⎡
⎣−GRC −C−1 −C−1S

L−1 0 0
L−1

x S† 0 0

⎤
⎦. (4)

Since the state vector |φ(t )〉 has entries with different
engineering dimensions, so does the matrix H . To clarify
its underlying symmetry properties, it is useful to consider
the “square-root-of-energy” basis. The energy in the N-node
circuit is given by

E (t ) = 1

2

N∑
n=1

[
CnV

2
n + LnI2

n

] + 1

2

(N−1)∑
m=1

Lx,mI2
x,m,

= 〈φ(t )|A|φ(t )〉, (5)

where the positive, Ne-dimensional bilinear-form matrix
is given by A = diag(C,L,Lx )/2. We define |ψ (t )〉 =
A1/2(t )|φ(t )〉 so that norm of |ψ (t )〉 encodes the circuit en-
ergy, 〈ψ (t )|ψ (t )〉 = E (t ). Note that all entries in the state
vector |ψ (t )〉 have units of

√
Joules. It is straightforward to
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show that |ψ (t )〉 satisfies a Schrödinger-like equation,

i
d

dt
|ψ (t )〉 = (H0 + 	) |ψ (t )〉 = Hcir(t )|ψ (t )〉, (6)

where the effective circuit Hamiltonian Hcic = H0 + 	 has
two components. The first component H0 is given by

H0 =
√

AH
1√
A

= i

⎡
⎢⎣

−GRC −W − 1√
C
S 1√

Lx

W 0 0
1√
Lx
S† 1√

C
0 0

⎤
⎥⎦,

(7)

where W = diag(ω1, . . . , ωN ) is a diagonal matrix with fre-
quencies of individual oscillators ωk = 1/

√
CkLk . When there

is no dissipation in each RLC circuit, i.e., GRC = 0, the matrix
H0 becomes Hermitian and the corresponding unitary evolu-
tion of the state |ψ (t )〉 signals the conservation of total energy
in the circuit. When GRC > 0, this anti-Hermitian piece of H0

encodes the Joule dissipation.
The second component of Hcir corresponds to a complex

gauge potential given by [43]

	(t ) = i
1√
A

d

dt

√
A = i

d

dt
ln

√
A(t ). (8)

Traditionally, “gauge potential” denotes the change in the
Hamiltonian (or Lagrangian) resulting from spatiotemporal
variation in the change of basis. In its most common man-
ifestation, when the wave function of a charged particle is
multiplied by a phase factor, ψ (x) → ψ ′(x) ≡ exp[ie

∫ x A ·
dr/(h̄c)]ψ (x), the momenta get a correction, −ih̄∇ →
−ih̄∇ − eA/c, that is the logarithmic derivative of the unitary
Ux,x′ = δx,x′ exp[ie

∫ x A · dr/(h̄c)] for the change ψ → ψ ′.
If the change of basis matrix

√
A(t ) is unitary, as is typ-

ically the case, its spatiotemporal variations give rise to a
Hermitian 	(t ) since the logarithm of a unitary matrix is an
anti-Hermitian matrix. However, as our change of basis matrix
A = diag(C,L,Lx )/2 is not unitary and always real, it leads
to an anti-Hermitian, gain-loss gauge term 	(t ), as defined in
Eq. (8).

The parity operator exchanges the node n with its
mirror symmetric node ā = N + 1 − a. Therefore, it is
given by P = diag(
N ,
N ,−
N−1) where 
k = 
−1

k =



†
k is the antidiagonal matrix of size k with unit entries.

The time-reversal operator, in addition to the complex-
conjugation operation ∗, reverses the sign of each current:
T = diag(1N ,−1N ,−1N−1)∗. Thus, the antilinear PT oper-
ator is given by the following Ne-dimensional, block-diagonal
matrix,

PT = diag(
N ,−
N ,
N−1)∗ = U∗, (9)

where U denotes the Ne-dimensional real, unitary matrix. By
imposing the constraint that H0 is PT symmetric, we get


NGRC
N = −GRC = 0, (10)


NW
N = W , (11)


N
1√
C
S

1√
Lx

= 1√
C
S

1√
Lx


N−1. (12)

Equivalently, these conditions mean no resistive losses, ωa =
ωā, and CaLx,a = CāLx,ā. Similarly, requiring PT symmetry
for the anti-Hermitian potential implies PAP = A or equiva-
lently, Ca = Cā, La = Lā, and Lx,a = Lx,N−a.

Next, we outline the mapping of this Ne-dimensional dy-
namical system onto an N-dimensional tight-binding model.
Since H0 has purely imaginary entries, for a PT -symmetric
Hamiltonian, the unitary U in Eq. (9) anticommutes with
it. Therefore, the eigenvalues of H0 occur in pairs ±εa, or
equivalently, it has a chiral symmetry. It also follows, most
clearly from Eq. (7), that H0 has (N − 1) linearly dependent
columns and therefore (N − 1) eigenvalue zeros. This com-
bination of chiral symmetry and zero modes is instrumental
to mapping the Ne = (3N − 1) dimensional system onto an
N-dimensional model. These arguments remain valid when
a PT -symmetric complex gauge potential 	 is added, and
therefore, the PT -symmetric circuit Hamiltonian Hcirc of size
Ne can always be mapped onto a PT -symmetric tight-binding
model with N sites.

The canonical model with an EP of order N is H (γ ) =
κJx + iγ Jz where Jx, Jz are N-dimensional representations of
SU(2) [19,21,44,48]. However, because we have a classical
system with a purely real state vector, we use its counter-
part with purely imaginary entries, HN (γ ) = κJy + iγ Jz. In
such tight-binding lattice, the Hermitian coupling between ad-
jacent sites is given by Jy(a, a + 1) = i

√
a(N + 1 − a)/2 =

−Jy(a + 1, a). Now, to connect the Jy matrix elements to
our coupled electrical circuits model, we use the expression
for the effective, dimensionless tunneling amplitude between
two inductively coupled circuits, Jeff = M2/2

√
1 + M2 where

M2 = L/Lx [49].
Similarly, to create the gain-loss term iγ (t )Jz the inductors

La(t ) within each circuit are modulated while keeping the
capacitors and coupling inductors static across the array. Since
Jz = diag(s, s − 1, . . . ,−s) where s = (N − 1)/2 is the spin
associated with the N-dimensional representation, using the
modulation,

La(t ) ≡ L0e fa (t ) = L0e(N+1−2a)
∫ t

0 γ (t ′ )dt ′
, (13)

leads to a complex synthetic gauge potential 	 =
iγ (t )diag(0N , Jz, 0N−1). This temporal variation means
the inductors in mirror-symmetric positions are varied in an
inverse manner, La(t )Lā(t ) = L2

0 = const. Therefore, when
inductance increase at site a, indicating gain, is balanced
by inductance decrease at its mirror symmetric site ā,
indicating loss, and PT symmetry can be created without real
amplifying or Joule-heating elements. The exponent function
f (t ) = ∫

γ (t ′)dt ′ in Eq. (13) allows us to create arbitrary,
balanced gain-loss profiles.

The choice of f (t ) is informed by the ability to dy-
namically modulate the synthetic inductances in real time
by using electronic circuits [43]. Creating a static gain-loss
term requires inductances that either grow or decay exponen-
tially [43]. However, Floquet EP contours of the same order
also emerge by periodic variations [43,49,50]. For simplicity,
we consider the square-wave function,

f (t ) =
⎧⎨
⎩

α 0 � t � T/4,

−α T/4 < t < 3T/4,

α 3T/4 < t � T,

(14)
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FIG. 2. Square-wave periodic function with modulation fre-
quency 
. (a) For N = 2, the time-dependent inductances are
given by L1(t ) = L0e f (t ). (b) The complementary, L2(t ) = L0e− f (t ) =
L2

0/L1(t ).

where T is the period and 
 = 2π/T defines the modulation
frequency. For example, when N = 2, the two inductances
satisfy e−α � L1,2(t )/L0 � eα (Fig. 2). Since the inductance
in each RLC box varies with time, the Hamiltonian H0 also
acquires time dependence through the matrix W of frequen-
cies ωa(t ) = 1/

√
La(t )Ca.

The PT phase diagram of this system can be ob-
tained via two methods. The first uses the nonunitary time
evolution operator GF (T ) to calculate the equivalent non-
Hermitian, PT -symmetric Floquet Hamiltonian GF (T ) ≡
exp[−iHF (α,
)T ] [50]. The second, experimentally friendly
approach is to obtain the time-dependent circuit energy E (t ),
Eq. (5), and compare its growth over sufficiently long time
intervals τ and 2τ . To quantify it, we define a dimensionless
ratio [43,49]:

μ = ln

{
max [E (0 � t � 2τ )]

max [E (0 � t � τ )]

}
. (15)

In the PT -symmetric phase with time-periodic dynamics,
max E (t ) will be the same over the two intervals, and there-
fore μ = 0 denotes the PT -symmetric phase. On the other
hand, in the PT -broken phase with exponentially amplifying
modes, Eq. (15) provides a linear-in-τ metric that indicates the
average amplification μ > 0. The PT transition is accompa-
nied by a vanishing energy gap and divergent period on the
PT -symmetric side of the boundary. Therefore, at any finite
τ , this approach leads to some smearing of the EP contours.
In the following section, we present the results of such an
analysis.

III. RESULTS

For numerical analysis, we use experimentally accessible
and viable circuit parameters [43]: resistance R0 = 1 k
, in-
ductance L0 = 0.01 H, and capacitance C0 = 100 µF. Thus,
the isolated oscillator frequency is ω0/(2π ) = 159.15 Hz,
and the isolated oscillator RC-decay rate, 1/R0C0 = 10 Hz,
is much smaller than the natural frequency, thereby justifying
the approximation GRC ≈ 0. The coupling inductances are
set to Lx1 = 0.5L0 for N = 2 oscillators, Lx1 = Lx2 = 0.5L0

for N = 3 oscillators, and Lx1 = Lx4 = 0.67L0, Lx2 = Lx3 =
0.5L0 for N = 5 as necessitated by the nonuniform matrix
elements of the Jy array. We use α � 0.4, meaning the in-
ductances span 0.67L0 � La(t ) � 1.5L0, a range that can be
dynamically achieved in the synthetic circuits [43,49].

The left-hand panel in Fig. 3 shows the numerically com-
puted μ(α,
) for N = 5 [Fig. 3(a)], N = 3 [Fig. 3(b)],
and N = 2 [Fig. 3(c)] over a modulation-frequency window

/(2π ) from 300 to 600 Hz. The dark regions with μ = 0
denote the PT -symmetric phase, where the circuit energy
E (t ) undergoes bounded oscillations. They are punctuated by
bright, triangular, PT -symmetry broken regions (μ > 0) that
occur down to vanishingly small non-Hermiticity α � 1 at
specific frequencies [43,49,50]. These regions are separated
by EP contours with order N .

We analyze the dynamics at the EPs by monitoring how fast
the circuit energy E (t ) increases when the system is parked
at the EPs (shown by blue, left and purple, right circles with
white boundaries) along α = {0.2, 0.3, 0.4} lines. The center
panel in Fig. 3 shows normalized energies E (t )/Emax (solid
lines) and their respective stroboscopic results (black-dashed
lines) at α = 0.4 [Fig. 3(d)], α = 0.3 [Fig. 3(e)], and α = 0.2
[Fig. 3(f)] when the system is parked on the blue, left-hand
side EPs. Figures 3(g)–3(i) show corresponding results when
the system is parked on the purple, right-hand side EPs. In
each case, it can be seen that E (t )/Emax follows a power-law
dependence on t with an exponent that increases with the
order of the EP. This result is independent of the degree of
non-Hermiticity α or the location—left or right—of the EP
contour. The large fluctuations in the nonstroboscopic data for
E (t ) also hint at the asymmetric dependence of E (t ) on the
EP location at a fixed α [43].

Since the system with N has an N th order EP, we expect
the unnormalized energy to grow as E (t ) ∝ t2(N−1) at long
times. To confirm this, Fig. 4 shows the system’s energy vs
time on a log-log scale for α = 0.2 at right-hand side EPs. The
slopes obtained from straight-line fits to the log-log data are
in agreement with the prediction that the power-law exponent
for an EP of order N is given by 2(N − 1) [21,43].

Some comments concerning the potential challenges in im-
plementing electrical circuits of Fig. 1 are in order. One could
try to construct coupled LC oscillators using passive compo-
nents. However, this approach is typically constrained by the
substantial damping coefficient in the inductor, which results
in rapid energy dissipation, thereby impeding the detection
of the desired effects. Furthermore, the implementation of
time-dependent parameters often requires fluctuations in the
physical properties of the circuit elements, which may not
always be feasible.

A better potential option is to construct active electrical
networks consisting of resistors, capacitors, and operational
amplifiers. These elements can be interconnected in a specific
way to synthesize differential equations. Interestingly, it has
recently been shown that a single LC oscillator with both gain
and loss can be implemented by means of active electrical
networks with temporal modulation of their parameters [43].
One significant benefit of this approach is the potential to
utilize analog multipliers to replace physical components
that represent system parameters. This configuration allows
the parameter values to be determined by external voltage
sources, so the features of parameter modulation dependent
on the waveform of the external signal.

In an ideal scenario, analog multipliers can be constructed
using operational amplifiers and diodes. However, it is im-
portant to note that diodes are temperature dependent and
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FIG. 3. High-order EP contours in the (α,
) plane. (a)–(c) μ(α,
) in the frequency window from 
/(2π ) = 300–600 Hz is obtained
using τ = 100 ms. The EP contours, separating regions from light windows, are clearly seen, with EPs along the α = {0.2, 0.3, 0.4} lines
shown as blue (left) and purple (right) solid circles. (d)–(f) Normalized energy E (t )/Emax for blue EPs on the left-side contour shows power
law in time growth, with an exponent determined by N , but independent of α. Results for two, three, and five oscillators are shown in green
(upper), red (middle), and yellow (lower) lines, respectively; overlaid black-dashed lines show stroboscopic results. (g)–(i) Corresponding
results for the purple EPs on the right-side contour, shown with the same conventions, are quantitatively similar.

their characteristics can vary significantly from one diode to
another, even within the same manufacturing batch. Conse-
quently, it is important to consider integrated devices that
include internal compensations for temperature variations so
as to create stabilized multiplication operations. Another po-
tential challenge in the implementation of electronic circuits
for engineering high-order exceptional points is unavoidable
losses present in electronic circuits. As one might expect, the
energy of each individual oscillator in the presence of losses
(or resistance) decays exponentially, with a rate γ = 1/(RC).
Experimental studies [47,49] have shown that the total resis-
tance of the circuit can be quantified, thus making it feasible
to design circuits that facilitate the observation of the sought-
after effects. In order to minimize poor contacts and high
variability in passive components, it is convenient to mount
and solder electronic devices on a printed circuit board and
use components with minimal tolerance. A stabilized voltage
source to power the electronic circuit should also be used in
order to prevent fluctuations in the bias voltage applied to the

operational amplifiers. This is important because the output of
these devices is sensitive to the bias voltage.

Finally, we conclude this section by remarking that a sig-
nificant feature of using electronic circuits is that the energy
history of the system can be traced by experimentally moni-
toring the temporal evolution of voltages and currents through
an oscilloscope. As depicted in Fig. 4, one can thus use that
information to determine the order of the exceptional point by
quantifying the rate at which the system’s energy grows.

IV. CONCLUSION

From their start in quantum theory and mathematical
physics, non-Hermitian, PT -symmetric models are now stud-
ied across the board in fields as widely varied as minimal
quantum systems or a single LC oscillator. This veritable
cornucopia of experimental realizations has also invited de-
tailed comparison of seemingly different models. Here, we
have analyzed one such model, an array of N inductively
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FIG. 4. Energy increase at the EPs. Unnormalized circuit energy
E (t ) on a log-log scale at long times shows linear behavior with a
slope that depends on the order N of the EP. The results are for α =
0.2, purple (right-hand side) EPs. Similar results are obtained, with
appropriate long-time windows, for left- and right-side EP contours
for all α. For the representative data shown, the power-law exponents
are 2.62, 4.83, and 8.08, for N = 2, N = 3, and N = 5, respectively.

coupled RLC circuits with dynamic parameters to show that
energy dynamics in it is generated by a (3N − 1)-dimensional
non-Hermitian Hamiltonian, and through general formalism,
spelled out the constraints that make such Hamiltonian have
chiral and PT symmetry. We have then shown that this model,
with 2N dynamical variables, can be mapped onto an N-
dimensional tight-binding lattice that can support an EP of
order N .

By implementing the gain and loss through a periodic
variation of the inductances in the RLC units, we have nu-
merically mapped out the Floquet PT -phase diagram for two,
three, and five oscillator chains, all of which show EP con-
tours at vanishingly small non-Hermiticities. By tracking the
circuit’s energy, we are able extract the order of EP by looking

at the power-law-in-time exponent for the E (t ) increase. Our
results will be useful for realizing robust, arbitrary-order EPs
by means of complex gauge fields in dynamically modulated
synthetical oscillator networks.
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APPENDIX: EXPLICIT HAMILTONIAN EXPRESSIONS
FOR TWO, THREE, AND FIVE OSCILLATOR CIRCUITS

1. Two coupled RLC oscillators

For two coupled RLC oscillators, |φ(t )〉 = (V1,V2, I1,

I2, Ix1)T and the 5 × 5 matrix H (t ) with purely imaginary
entries is given by

H (t ) = i

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1
C1R1

0 − 1
C1

0 − 1
C1

0 − 1
C2R2

0 − 1
C2

1
C2

1
L1(t ) 0 0 0 0

0 1
L2(t ) 0 0 0

1
Lx1

− 1
Lx1

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A1)

To generate balanced gain-loss through the temporal modu-
lation of the inductors, we use L1(t ) = L0e f (t ) and L2(t ) =
L0e− f (t ), and set C1,2 = C0, Lx1 = 0.5L0, and R1,2 = R0. With
γ (t ) = df /dt , the circuit Hamiltonian can be written as

Hcir(t ) = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
C0R0

0 − ω0
e f (t )/2 0 − ω0√

0.5

0 − 1
C0R0

0 − ω0
e− f (t )/2

ω0√
0.5

ω0
e f (t )/2 0 γ (t )

2 0 0

0 ω0
e− f (t )/2 0 − γ (t )

2 0
ω0√
0.5

− ω0√
0.5

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(A2)

2. Three coupled RLC oscillators

For three coupled RLC oscillators, |φ(t )〉 = (V1,V2,V3, I1, I2, I3, Ix1, Ix2)T , and the 8 × 8 matrix H (t ) with purely imaginary
entries is given by

H (t ) = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
C1R1

0 0 − 1
C1

0 0 − 1
C1

0

0 − 1
C2R2

0 0 − 1
C2

0 1
C2

− 1
C2

0 0 − 1
C3R3

0 0 − 1
C3

0 1
C3

1
L1(t ) 0 0 0 0 0 0 0

0 1
L2

0 0 0 0 0 0

0 0 1
L3(t ) 0 0 0 0 0

1
Lx1

− 1
Lx1

0 0 0 0 0 0

0 1
Lx2

− 1
Lx2

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A3)

042219-6



GENERATING HIGH-ORDER EXCEPTIONAL POINTS IN … PHYSICAL REVIEW A 107, 042219 (2023)

To maintain PT symmetry and generate balanced gain and loss, we use Lx1 = Lx2 = 0.5L0, L1(t ) = L0e f (t ), L2 = L0, and
L3(t ) = L0e− f (t ). The resulting circuit Hamiltonian becomes

Hcir(t ) = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
C0R0

0 0 − ω0
e f (t )/2 0 0 − ω0√

0.5
0

0 − 1
C0R0

0 0 −ω0 0 ω0√
0.5

− ω0√
0.5

0 0 − 1
C0R0

0 0 − ω0
e− f (t )/2 0 ω0√

0.5
ω0

e f (t )/2 0 0 γ (t ) 0 0 0 0

0 ω0 0 0 0 0 0 0

0 0 ω0
e− f (t )/2 0 0 −γ (t ) 0 0

ω0√
0.5

− ω0√
0.5

0 0 0 0 0 0

0 ω0√
0.5

− ω0√
0.5

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A4)

3. Five coupled RLC oscillators

For N − 5, the 14-dimensional state vector is |φ(t )〉 = (V1,V2,V3,V4,V5, I1, I2, I3, I4, I5, Ix1, Ix2, Ix3, Ix4)T and the 14-
dimensional, purely imaginary matrix H (t ) becomes

H (t ) = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
C1R1

0 0 0 0 − 1
C1

0 0 0 0 − 1
C1

0 0 0

0 − 1
C2R2

0 0 0 0 − 1
C2

0 0 0 1
C2

− 1
C2

0 0

0 0 − 1
C3R3

0 0 0 0 − 1
C3

0 0 0 1
C3

− 1
C3

0

0 0 0 − 1
C4R4

0 0 0 0 − 1
C4

0 0 0 1
C4

− 1
C4

0 0 0 0 − 1
C5R5

0 0 0 0 − 1
C5

0 0 0 1
C5

1
L1(t ) 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
L2(t ) 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
L3

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
L4(t ) 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
L5(t ) 0 0 0 0 0 0 0 0 0

1
Lx1

− 1
Lx1

0 0 0 0 0 0 0 0 0 0 0 0

0 1
Lx2

− 1
Lx2

0 0 0 0 0 0 0 0 0 0 0

0 0 1
Lx3

− 1
Lx3

0 0 0 0 0 0 0 0 0 0

0 0 0 1
Lx4

− 1
Lx4

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A5)

To create PT -symmetric circuit with balanced gain and loss, we use Lx1 = 0.67L0 = Lx4, Lx2 = 0.5L0 = Lx3. The time-
dependent inductors vary as L1,5(t ) = L0e±2 f (t ), L2,4(t ) = L0e± f (t ), and L3 = L0. This leads to a 14 × 14 circuit Hamiltonian
with purely imaginary entries,

Hcir(t ) = i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
C0R0

0 0 0 0 − ω0
e f (t ) 0 0 0 0 − ω0√

0.67
0 0 0

0 − 1
C0R0

0 0 0 0 − ω0
e f (t )/2 0 0 0 ω0√

0.67
− ω0√

0.5
0 0

0 0 − 1
C0R0

0 0 0 0 −ω0 0 0 0 ω0√
0.5

− ω0√
0.5

0

0 0 0 − 1
C0R0

0 0 0 0 − ω0
e− f (t )/2 0 0 0 ω0√

0.5
− ω0√

0.67

0 0 0 0 − 1
C0R0

0 0 0 0 − ω0
e− f (t ) 0 0 0 ω0√

0.67
ω0

e f (t ) 0 0 0 0 2γ (t ) 0 0 0 0 0 0 0 0

0 ω0
e f (t )/2 0 0 0 0 γ (t ) 0 0 0 0 0 0 0

0 0 ω0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ω0
e− f (t )/2 0 0 0 0 −γ (t ) 0 0 0 0 0

0 0 0 0 ω0
e− f (t ) 0 0 0 0 −2γ (t ) 0 0 0 0

ω0√
0.67

− ω0√
0.67

0 0 0 0 0 0 0 0 0 0 0 0

0 ω0√
0.5

− ω0√
0.5

0 0 0 0 0 0 0 0 0 0 0

0 0 ω0√
0.5

− ω0√
0.5

0 0 0 0 0 0 0 0 0 0

0 0 0 ω0√
0.67

− ω0√
0.67

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A6)
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