
PHYSICAL REVIEW A 107, 042218 (2023)

Spectral stabilizability

Tomasz Linowski ,1,* Łukasz Rudnicki ,1,2 and Clemens Gneiting 3,4

1International Centre for Theory of Quantum Technologies, University of Gdansk, 80-308 Gdańsk, Poland
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Decoherence represents a major obstacle towards realizing reliable quantum technologies. Identifying states
that can be upheld against decoherence by purely coherent means, i.e., stabilizable states, for which the
dissipation-induced decay can be completely compensated by suitable control Hamiltonians, can help to optimize
the exploitation of fragile quantum resources and to understand the ultimate limits of coherent control for this
purpose. In this work, we develop conditions for stabilizability based on the target state’s eigendecomposition,
both for general density operators and for the covariance matrix parametrization of Gaussian states. Unlike
previous conditions for stabilizability, these spectral conditions are both necessary and sufficient and are typically
easier to use, extending their scope of applicability. To demonstrate its viability, we use the spectral approach to
derive upper bounds on stabilizability for a number of exemplary open system scenarios, including stabilization
of generalized Greenberger-Horne-Zeilinger (GHZ) and W states in the presence of local dissipation and
stabilization of squeezed thermal states under collective damping.
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I. INTRODUTION

Uncontrolled influences of an environment generically de-
teriorate quantum resources, and carefully prepared quantum
states rapidly lose their desired features, such as coherence
and entanglement. As a consequence, this decoherence [1,2]
renders these states less useful for practical tasks such as
quantum information processing [3–5]. However, while the
influence of the environment is inevitable, it can be manip-
ulated or counteracted.

A generic and widely applicable class of open quantum
systems can be described by memoryless, i.e., Markovian,
environments. The evolution of the system can then be mod-
eled by the Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)
equation (also known as Lindblad equation) [6,7], which is
governed by two objects: the Hamiltonian, which describes
a coherent (unitary) evolution similar to closed systems, and
the dissipator, which encodes the (incoherent) decoherence
effects induced by the environment. Excluding dissipative
engineering, where one assumes (partial) control over the
environment and hence the dissipator [8–11], manipulating
the Hamiltonian remains the only alternative to counteract
decoherence [12,13]. Given a desired target state, the goal is
then to identify a Hamiltonian such that the time derivative of
the initial state vanishes. For a fixed dissipator, this is possible
only for a specific set of states, denoted stabilizable states
[14].

The framework of stabilizability comes equipped with a
set of geometric conditions [14,15] that allow one to test
whether a given state is stabilizable without the, often hard
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if not impossible, necessity to identify the respective control
Hamiltonian. However, these geometric conditions, too, have
features that render them sometimes impractical. First, they
are, in general, only necessary, implying that, while they
can be used to disprove a state’s stabilizability, they cannot
prove it. Second, except for low-dimensional systems (e.g., a
single qubit or a qutrit), they assume the form of high-order
polynomials in the density operator, which can make them
challenging to solve even numerically [16].

In this work, we return to the first principles of stabiliz-
ability and exploit that the unitary evolution generated by the
Hamiltonian can counteract the dissipation only if the dissipa-
tor leaves the initial state’s eigenvalues unchanged. Based on
the state’s eigendecomposition, we then derive an alternative
set of spectral conditions for stabilizability. These conditions
are both necessary and sufficient, and they are only linear
in the state’s eigenvalues, regardless of the dimension of the
state space. As we show, these properties distinguish the spec-
tral conditions especially for the generic task of stabilizing
a (pure) target state component against noise in an overall
(unavoidably) mixed stabilizable state.

Our results apply both to the general framework of stabi-
lizability [14] and to its extension to the covariance matrix
[15], which is typically used in studies of Gaussian continuous
variables (CV) systems. In the latter case, we extend the stabi-
lizability framework to the recently discussed [17] evolution
stemming from unitary Lindblad operators, which describes,
e.g., scattering phenomena. We demonstrate the viability of
the spectral stabilizability conditions with a number of explicit
examples.

This article is organized as follows. In Sec. II, we briefly re-
capitulate the general concept of stabilizability. In Sec. III, we
rederive stabilizability in terms of the target state’s spectrum.
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The spectral conditions are then used by us in Sec. IV to de-
rive fundamental limits on stabilizability of (resourceful) pure
constituents in noisy mixed systems, with explicit demonstra-
tion using the N-qubit W and Greenberger-Horne-Zeilinger
(GHZ) states. In Sec. V, we introduce the covariance matrix
and discuss the respective geometric stabilizability conditions.
The spectral approach is then extended to the covariance ma-
trix in Sec. VI. We conclude in Sec. VII.

II. STABILIZABILITY

We begin with a brief summary of the stabilizability frame-
work. Let us consider an arbitrary state ρ̂ evolving under the
GKLS (Lindblad) equation [6,7,18]

d ρ̂

dt
= − i

h̄
[Ĥ, ρ̂] + γ D(ρ̂), (1)

where t denotes time, Ĥ is the system Hamiltonian, which
is responsible for the unitary evolution, and D is the dissi-
pator, which encodes the effects of the interaction with the
environment. Finally, γ denotes the dissipation rate (which we
introduce to keep the dissipator dimensionless). The dissipator
has the general form

D(ρ̂) =
∑

j

(
L̂ j ρ̂L̂†

j − 1

2

{
L̂†

j L̂ j, ρ̂
})

, (2)

where L̂ j are the Lindblad operators.
We say that a state is stabilizable with respect to a given

dissipator if there exists a Hamiltonian that is capable to
counteract the effects of the dissipation. In other words, the
state is stabilizable with respect to the dissipator D, if, for this
particular dissipator and state, one can find a Hamiltonian Ĥ
such that the state becomes stationary:

− i

h̄
[Ĥ , ρ̂] + γ D(ρ̂) = 0. (3)

Crucially, one can often determine whether such a Hamilto-
nian exists without having to actually know it. In [14], the
following necessary conditions for stabilizability of a state ρ̂

were derived:

0 = Tr[ρ̂kD(ρ̂)] for all k ∈ {1, . . . , d − 1}, (4)

where d denotes the dimension of the Hilbert space. For states
that do not exhibit degenerate eigenvalues, these conditions,
which we call geometric due to their independence of one’s
choice of basis, are also sufficient. As one can observe, the
conditions are also independent of the Hamiltonian. Still,
given a stabilizable state ρ̂, one can recover the stabilizing
Hamiltonian as [14]

Ĥ = ih̄γ

d−1∑
l,l ′=0
λl �=λl′

〈ψl |D(ρ̂)|ψl ′ 〉
λl − λl ′

|ψl〉〈ψl ′ |, (5)

where {λl , |ψl〉} is the state’s eigendecomposition.
The major advantage of the stabilizability framework lies

in the fact that, for a fixed dissipator, one can optimize over
the set of stabilizable states to determine the most resourceful
ones with respect to a given task. For example, due to its

usefulness in, e.g., quantum computation [19,20], stabilizing
entanglement was considered in [14,16].

Irrespectively of the usefulness of the concept of sta-
bilizability, application of the geometric conditions (4) is
restricted, mainly for two reasons. To start with, the conditions
are in general not sufficient, meaning that there can exist
states which satisfy the conditions while not being stabiliz-
able. Furthermore, the conditions are often not suitable for
practical computations, as for d-dimensional systems they
take the form of polynomial equations of up to dth degree
in the density operator.

In the following, we explain how both these obstacles can
be overcome by approaching stabilizability from a spectral
perspective.

III. SPECTRAL APPROACH TO STABILIZABILITY

To circumvent the problems of the geometric approach
to stabilizability, we return to the main idea behind the
framework and reinterpret it in the following way: Since the
Hamiltonian can only generate a unitary evolution, which can
never alter the state’s eigenvalues, a necessary condition for
the state to be stabilizable is for the time evolution induced by
the dissipator to leave its initial eigenvalues invariant [14,15].

In other words, a state ρ̂ may be stabilizable only if the
GKLS evolution in the absence of the Hamiltonian

d ρ̂(t )

dt
= γ D[ρ̂(t )], ρ̂(0) = ρ̂ (6)

has a solution of the form

ρ̂(t ) =
d−1∑
i=0

λi(t )|ψi(t )〉〈ψi(t )|, dλi(t )

dt

∣∣∣∣
t=0

= 0. (7)

The remaining drift of the pure constituents |ψi(t )〉〈ψi(t )| at
t = 0 may, at least in principle, be counteracted by adding
an appropriate Hamiltonian to the equation, yielding a truly
stationary state. We will now show that this single necessary
assumption for stabilizability is also sufficient for it, and thus
equivalent to it. At the same time, we will derive a new set of
spectral conditions for stabilizability.

We begin by observing that Eq. (6) must be valid in any
orthonormal basis, including the one given by the eigende-
composition of the time-evolved state:

〈ψi(t )|d ρ̂(t )

dt
|ψ j (t )〉 = γ 〈ψi(t )|D[ρ̂(t )]|ψ j (t )〉, (8)

where i, j ∈ {0, . . . , d − 1}. Evaluating this at t = 0 and us-
ing Eq. (7), we get

λ j〈ψi|d|ψ j〉
dt

+ λi
d〈ψi|

dt
|ψ j〉 = γ 〈ψi|D(ρ̂ )|ψ j〉. (9)

Here and throughout the rest of the derivation we omit writ-
ing the time dependence explicitly: it is assumed that all the
quantities are evaluated at t = 0.

Let us consider what happens in the particular case where
|ψi〉 and |ψ j〉 correspond to the same eigenvalue λi = λ j .
Then, the above equation reduces to

λ j
d

dt
(〈ψi|ψ j〉) = γ 〈ψi|D(ρ̂)|ψ j〉. (10)
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The left-hand side vanishes due to the orthonormality of the
basis. Therefore, if the state is to be stabilizable, we must
necessarily have

0 = 〈ψi|D(ρ̂)|ψ j〉 (11)

for all i, j such that λi = λ j .
However, crucially, it turns out to be also a sufficient con-

dition for stabilizability: a straightforward calculation shows
that, provided Eq. (11) is fulfilled, Eq. (3) holds with the
input Hamiltonian (5), i.e., this Hamiltonian stabilizes the
state: ρ̂(t ) = ρ̂(0) = ρ̂. Consequently, Eq. (11) is equivalent
to stabilizability of the state ρ̂.

We summarize this in the form of a proposition.
Proposition 1 (Spectral conditions for stabilizability). Let

{λ j, |ψ j〉} be the eigendecomposition of the state ρ̂. The state
ρ̂ is stabilizable with respect to the dissipator D if and only if

0 = 〈ψi|D(ρ̂)|ψ j〉 for all i, j such that λi = λ j . (12)

Let us discuss this result.
Comparing the spectral conditions to their geometric coun-

terpart (4), we find that the former assume knowledge of the
eigendecomposition of the state. While this may represent a
difficulty if we want to test the stabilizability of a given state,
we observe that, from a practical point of view, the geometric
approach shares this obstacle in some ways. On the one hand,
we need to know the spectrum of the state in order to decide
if the geometric conditions are not only necessary but also
sufficient. On the other hand, the state’s eigendecomposition
is required in order to determine the counteracting control
Hamiltonian according to (5).

Nonetheless, in principle, the spectral conditions can be
solved without having to know the eigendecomposition of the
state: it is straightforward to see that Eq. (12) is equivalent
to [21]

0 = TrD(ρ̂)X̂ for all X̂ such that [X̂ , ρ̂] = 0. (13)

The set of all such X̂ can always be easily found even for large
d since [X̂ , ρ̂] = 0 is a linear equation for the matrix elements
of X̂ . While this offers an interesting and potentially useful re-
formulation, solving the actual conditions (13) is typically not
easier than finding the eigendecomposition of the state in the
first place. Moreover, such “commutator” approach lacks the
immediate physical interpretation of the spectral perspective,
which is why in the following we focus on the latter.

We remark that the spectral stabilizability conditions can
be refined further. To this end, we observe that Eq. (12) is
equivalent to the vanishing of the dissipator D(ρ̂) on all the
eigenspaces of the target state. In particular, this means that
in the degenerate subspaces (but only there), where the state’s
eigendecomposition is not uniquely defined, we are free to
choose eigenstates |ψ̃ j〉 such that D(ρ̂)|ψ̃ j〉 ∝ |ψ̃ j〉 [this is
always possible since D(ρ̂) is a Hermitian operator]. The
off-diagonal conditions (corresponding to i �= j) are then by
definition satisfied, and we are left only with the diagonal
(i = j) ones:

0 = 〈ψ̃ j |D(ρ̂)|ψ̃ j〉 for all j ∈ {0, . . . , d − 1}. (14)

This shows that the number of stabilizability conditions for-
mally matches the dimension of the Hilbert space. In practical

applications, however, it may be preferable to avoid an ad-
ditional diagonalization step and to resort to the agnostic
conditions (12).

The spectral approach possesses three potential advantages
compared to the original, geometric one. First, while the origi-
nal conditions are in general only necessary for stabilizability,
the spectral conditions are both necessary and sufficient. Sec-
ond, they are only linear in the state’s eigenvalues, which
makes the generic problem of finding stabilizable states di-
agonal in a given basis particularly easy. Third, as we will
elaborate in the examples, the spectral approach allows us
to directly address the stabilizability of desired, resourceful
target state components in an overall mixed state.

We note that it is straightforward to show that for nonde-
generate states, the spectral conditions (12) are equivalent to

0 = �λ · �Fk for all k ∈ {1, . . . , d − 1}, (15)

where the jth component of each of the vectors �Fk is defined
as

(Fk ) j := Tr[|ψk〉〈ψk|D(|ψ j〉〈ψ j |)]. (16)

Suppose we are interested in stabilizable states diagonal in
some basis |ψ j〉 (we will discuss several examples for this
case below). Equation (15) implies that the eigenvalues of
all such states can be found as the vectors �λ orthogonal to
the “dissipative fluxes” �Fk . This again reinforces the idea that
eigenvalues of a stabilizable state must be invariant under the
action of the dissipator.

Let us remark that Eq. (15) is reminiscent of, and gen-
eralizes, the stabilizability condition for a single qubit [14],
which, when expressed in terms of the Bloch representation,
reads as

0 = �r · �Fqubit, (17)

where r j := Trρ̂ σ̂ j is the qubit’s Bloch vector, σ̂ j are the Pauli
matrices, and the Bloch-picture dissipative flux is given by

(Fqubit ) j = Tr[σ̂ jD(ρ̂ )]. (18)

The following examples are meant to illustrate the advan-
tages of the spectral approach in conceptually simple settings.
The application of the spectral conditions to more complex,
practical problems follows in the next section.

Example 1 (Damping of a qubit). The goal of our first ex-
ample is to clarify whether the maximally mixed state of a
two-level system (i.e., d = 2),

ρ̂mix = 1
2 1̂2, (19)

is stabilizable under amplitude damping

L̂ = |0〉〈1|, (20)

where the excited state decays into the ground state.
In this case, we obtain

D(ρ̂mix) = − 1
2 σ̂3, (21)

with σ̂3 = |0〉〈0| − |1〉〈1| being the Pauli z matrix. Conse-
quently, the state ρ̂mix fulfills the geometric conditions (4) for
stabilizability, which in this case reduce to just one equation:

Tr[ρ̂mixD(ρ̂mix)] = − 1
4 Trσ̂3 = 0. (22)
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In other words, the geometric conditions do not exclude the
stabilizability of the maximally mixed state.

Let us now evaluate the corresponding spectral conditions
(12). To this end, we first note that the considered state (19)
is degenerate, which leaves us to choose a basis. In the eigen-
basis of the dissipator (21) it is enough to test only one of the
diagonal conditions, yielding

〈0|D(ρ̂mix)|0〉 = −〈1|D(ρ̂mix)|1〉 = 1
2 �= 0, (23)

which unambiguously clarifies that the maximally mixed state
is not stabilizable under amplitude damping. Note that there
is no contradiction since the geometric conditions are not
sufficient for stabilizability of degenerate states.

It is instructive to evaluate the spectral conditions in a basis
that does not diagonalize the dissipator (21), e.g., the eigenba-
sis of σ̂1 = |+〉〈+| − |−〉〈−|, with |±〉 = 1√

2
(|0〉 ± |1〉). One

then finds that

〈+|D(ρ̂mix)|+〉 = 〈−|D(ρ̂mix)|−〉 = 0, (24)

that is, the diagonal conditions alone can in general not ex-
clude stabilizability of the state (19). Only the off-diagonal
conditions

〈+|D(ρ̂mix)|−〉 = 〈−|D(ρ̂mix)|+〉 = 1
2 �= 0 (25)

deliver the relevant information for this basis choice.
Example 2 (Damping of diagonal states). For our second

example, we move to an infinitely dimensional Hilbert space
and consider a natural generalization of the qubit damping
operator (23) given by the annihilation operator: L̂ = â. Phys-
ically, such dissipation may describe the spontaneous loss of
particles in the system due to leakage into the environment.
The model is commonly used to emulate the presence of
simple noise in the system.

For simplicity, we restrict ourselves to states which are
diagonal in the number basis, i.e.,

ρ̂c =
∞∑
j=0

λ j | j〉〈 j|. (26)

Such states include, e.g., thermal states of the harmonic oscil-
lator.

Making use of the original conditions (4), we find that, for
the problem at hand, stabilizable states must fulfill

0 =
∞∑
j=0

λk
j[( j + 1)λ j+1 − jλ j] for all k ∈ N+. (27)

Solving this infinite hierarchy of equations or proving that it
has no solutions is a difficult task, unless special assumptions
are made.

For example, one can show that the equation has no solu-
tions for finite-rank, nondegenerate states. To this end, we can
rewrite Eq. (27) as a matrix equation

0 = M�v, (28)

where Mk j := λk
j and v j := ( j + 1)λ j+1 − jλ j . By construc-

tion, M is a Vandermonde matrix, with det M = ∏
l<l ′ (λl −

λl ′ ) [14]. Obviously, if the eigenvalues are nondegenerate,
this determinant is nonzero and, hence, at least in the case

of finite-rank states, the equation holds only if �v = 0, i.e.,

0 = ( j + 1)λ j+1 − jλ j for all j ∈ N. (29)

This hierarchy has no nontrivial solutions. The condition for
j = 0 implies λ1 = 0. In turn, the condition for j = 1 implies
λ2 = 0, and so on. Therefore, the only solution is λ j = δ j0,
which corresponds to the vacuum state ρ̂c = |0〉〈0|.

However, if eigenvalue degeneracy is not a priori excluded,
the argument with the Vandermonde matrix is not applicable.
On the other hand, it is straightforward to calculate the corre-
sponding spectral stabilizability conditions

0 = 〈i|D(ρ̂c)| j〉 for all i, j such that λi = λ j . (30)

It is easy to show that the diagonal conditions (i = j) are
equivalent to Eq. (29), while the off-diagonal conditions van-
ish per definition, as D(ρ̂c) is diagonal in the number basis
|i〉. This implies that the vacuum state is the only state in
the family (26) which is stabilizable with respect to damping,
regardless of eigenvalue degeneracy and the rank of the state.

As seen, whereas the original necessary conditions let us
characterize the family of stabilizable states only for a certain
subclass of states, the spectral conditions let us characterize it
in the general case (and with less effort). We remark that the
case of L̂ = â†, i.e., spontaneous particle production, can be
treated in a similar fashion, yielding no stabilizable states.

IV. STABILIZING RESOURCEFUL PURE CONSTITUENTS
OF NOISY MIXTURES

As discussed above, the spectral approach to stabilizability
is the most useful when the target state’s eigenstructure is
at least partially known. This includes the important class of
problems where the task is to stabilize some resourceful pure
eigenstate |P〉 of a generically mixed quantum state

ρ̂P := pP |P〉〈P| + (1 − pP )σ̂P , (31)

where pP ∈ [0, 1] and σ̂P represents an unknown “noise”
state orthogonal to |P〉. Note that, by definition, σ̂P |P〉 = 0,
however, σ̂P is otherwise unconstrained.

We now wish to answer the following question: Assuming
that ρ̂P evolves under some dissipative GKLS evolution, what
is the maximum value of pP , for which ρ̂P may be stabilized?

Valuable information is obtained by considering just one of
the spectral conditions (12), namely, the one associated solely
with |P〉:

0 = 〈P|D(ρ̂P )|P〉
= 〈P|[pPD(|P〉〈P|) + (1 − pP )D(σ̂P )]|P〉. (32)

Solving for pP , we obtain

pP = 〈P|D(σ̂P )|P〉
〈P|D(σ̂P )|P〉 − 〈P|D(|P〉〈P|)|P〉 . (33)

As we will now show through examples of N-qubit maximally
entangled states, the right-hand side of the above equation can
be upper bounded by simple functions of N , leading to mean-
ingful restrictions on stabilizability of the state |P〉 inside the
mixture (31). Let us emphasize again that a similar reasoning
cannot be easily applied to the geometric approach, due to its
uniform treatment of the system’s eigenstates.
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Example 3 (Generalized GHZ state in a damped multiqubit
system). As our first choice for |P〉, we pick the general-
ized Greenberger-Horne-Zeilinger (GHZ) state, an N-qubit
maximally entangled state useful, e.g., in quantum computing
[22–24]:

|�〉 := 1√
2

(|01, . . . , 0N 〉 + |11, . . . , 1N 〉). (34)

Note that the GHZ state is typically denoted by |GHZ〉, how-
ever, we use |�〉 to shorten notation. As for the dissipator, we
assume local dampings:

L̂ j = |0 j〉〈1 j |, j = 1, . . . , N. (35)

Here, the index j refers to the fact that L̂ j acts only on the
jth qubit, leaving the remaining qubits unaffected. Such local
dissipation generically acts adversely to entanglement.

Substituting P = � into Eq. (33), we obtain

p� = 〈�|D(σ̂�)|�〉
〈�|D(σ̂�)|�〉 − 〈�|D(|�〉〈�|)|�〉 . (36)

The right-hand side depends only on two quantities:
〈�|D(σ̂�)|�〉 and 〈�|D(|�〉〈�|)|�〉. By direct calculation,
we find that the latter equals

〈�|D(|�〉〈�|)|�〉 = −1. (37)

Note that this immediately implies that |�〉 itself is not stabi-
lizable. To determine the former, we use the fact that, for any
states ρ̂1, ρ̂2 and any dissipator,

Trρ̂1D(ρ̂2) = TrD̃(ρ̂1)ρ̂2, (38)

where [cf. Eq. (2)]

D̃(ρ̂) =
∑

j

(
L̂†

j ρ̂L̂ j − 1

2
{L̂†

j L̂ j, ρ̂}
)

. (39)

Applied to the case at hand, we obtain

〈�|D(σ̂�)|�〉 = Trσ̂�D̃(|�〉〈�|) = Trσ̂�χ̂, (40)

where

χ̂ = 1

N

N∑
j=1

|01, . . . , 1 j, . . . , 0N 〉〈01, . . . , 1 j, . . . , 0N | (41)

formally describes a density operator. Substituting Eqs. (37)
and (40) into the condition (36) and rearranging yields

p� = Trσ̂�χ̂

1 + Trσ̂�χ̂
. (42)

It is easy to show that, if σ̂ is a density operator and Â is
Hermitian, then Trσ̂ Â can be upper bounded by the largest
eigenvalue of Â [25]. In the case at hand, it immediately
follows from Eq. (41) that all eigenvalues of χ̂ are equal to
1/N and hence

p� � 1

N + 1
. (43)

We observe that, as N grows, p� approaches zero, increas-
ingly limiting stabilizability of the GHZ state in the mixture.
Note, however, that the decay of p� indicated in (43) may
be algebraic, in contrast to the exponential decay 1/2N of the

fraction of � in the maximally mixed state, which can serve
as a reference.

As a special case, let us consider two qubits, or N = 2,
where the generalized GHZ state reduces to the Bell state
|�+〉, known, e.g., from quantum teleportation protocols
[19,26,27],

|�〉 −−→
N→2

|�+〉 := 1√
2

(|00〉 + |11〉). (44)

In this case, we obtain p� � 1
3 , and the respective fidelity with

the Bell state |�+〉 is then

F�+ (ρ̂�+ ) = 〈�+|ρ̂�+|�+〉 � 1
3 . (45)

In contrast, if the stabilizable fidelity with |�+〉 is opti-
mized directly (again under local damping), it was previously
found [12] that the fidelity can reach

F�+ (ρ̂fid) = 〈�+|ρ̂fid|�+〉 = (3 +
√

5)/8 ≈ 0.65, (46)

where

ρ̂fid = 1

1 + ϕ2

(
1

4
1̂4 + ϕ2|00〉〈00| + ϕ

2
|00〉〈11| + ϕ

2
|11〉〈00|

)

(47)

and ϕ = (1 + √
5)/2 is the golden ratio. While F�+ (ρ̂fid) is

significantly larger than F�+ (ρ̂�), it is important to realize
that |�+〉 is not an eigenstate of ρ̂fid, and hence the higher
fidelity compared to ρ̂� does not reflect an increased capabil-
ity to harness and deploy ρ̂fid for tasks that require the Bell
state |�+〉. Indeed, even the separable pure state |00〉 achieves
F�+ (|00〉〈00|) = 1

2 , although it is entirely dysfunctional in
tasks that require entanglement. This example may serve to
demonstrate that the spectral stabilization developed here,
quantified by the eigenvalue p�, provides the arguably most
precise assessment of to what extent a desired target state can
be stabilized in the presence of dissipation.

Example 4 (Generalized W state in a damped multiqubit
system). For comparison, let us consider a similar scenario as
in the previous example, but with the GHZ state replaced by
the generalized W state:

|W 〉 := 1√
N

N∑
j=1

|01, . . . , 1 j, . . . , 0N 〉. (48)

Similarly to the GHZ state, the W state is also maximally
entangled, albeit in an inequivalent way [22].

Proceeding in a complete analogy to the previous example,
we obtain

pW = Trσ̂W ζ̂
1

N−1 + Trσ̂W ζ̂
, (49)

where

ζ̂ = 1

N

N∑
j=1

|ζ j〉〈ζ j | (50)

is formally a density operator, with

|ζ j〉 := 1√
N − 1

N∑
k=1
k �= j

|01, . . . , 1 j, . . . , 1k, . . . , 0N 〉. (51)
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Trσ̂W ζ̂ can again be upper bounded by the largest eigenvalue
of ζ̂ . This time, however, the |ζ j〉 are not mutually orthogonal
and therefore the eigenvalues of ζ̂ cannot be simply read off
from Eq. (50). Instead, we observe that√

2

N (N − 1)

N−1∑
j=1

N∑
k= j+1

|01, . . . , 1 j, . . . , 1k, . . . , 0N 〉 (52)

is an eigenstate of ζ̂ with eigenvalue 2/N . Based on our
findings for N � 13, we conjecture that this eigenvalue is
always the largest: for N ∈ {2, 3, 4} this is obvious, for N ∈
{5, . . . , 10} we checked it by an explicit calculation, while for
N ∈ {11, 12, 13} we checked it numerically [28].

Assuming the conjecture holds, we have

pW � 2N − 2

3N − 2
, (53)

which approaches the positive value of 2
3 with growing N .

Comparing this to the analogous result (43) for the GHZ state,
we can see that the W state appears significantly more robust
against noise, in agreement with previous findings [29].

Once again, it is instructive to consider the two-qubit case,
for which the W state reduces to another Bell state

|W 〉 −−→
N→2

|�+〉 := 1√
2

(|01〉 + |10〉). (54)

In this case, according to Eq. (53) the probability pW is
bounded from above by 1

2 . As it is easy to check, this value
is obtained by the noise state σ̂W = |11〉〈11|. The fidelity

F�+ (ρ̂�+ ) = 〈�+|ρ̂�+|�+〉 (55)

between the corresponding two-qubit state [Eq. (31) with P =
�+ and σ̂�+ = |11〉〈11|] and the Bell state |�+〉 equals F̄�+ =
1
2 , reproducing the result from [14].

Let us remark that, so far, the best-known stabilizing
Hamiltonians achieve at most F̄W = 1

2 (i.e., pW = 1
2 ), not

only for two qubits, but for all N [14]. We leave it to future
analysis to identify Hamiltonians (if existing) that approach
the potentially superior limit capacity (53).

V. GAUSSIAN STATES AND THE COVARIANCE MATRIX

In principle, the framework of stabilizability, as defined
above, can be applied to arbitrary quantum systems, including
continuous-variable (CV) ones. However, in practice, espe-
cially when dealing with Gaussian states, CV systems are
often more easily described not by their (typically complex)
density operators, but by their low-order correlation functions,
conveniently collected in the covariance matrix (see below for
definitions). Consequently, in such cases, it is the covariance
matrix that is stabilized.

In this section, we briefly summarize the notion of co-
variance matrix, its evolution, and stabilizability. The spectral
approach to the latter is discussed by us in the next section.

A. Symplectic picture

Let us consider an N-mode Hilbert space H = ⊗N
k=1 Hk

equipped with N pairs of mode quadratures x̂k, p̂k , as well as

the vector

�̂ξ := (x̂1, p̂1, . . . , x̂N , p̂N )T . (56)

Since the mode quadratures form a basis of operators acting
in the N-mode Hilbert space, the state of the system can be
fully described [30] by the complete (n = 1, . . . ,∞) set of
nth-order correlation functions (correlations) of the form〈

ξ̂l1 . . . ξ̂ln

〉
:= Tr

(
ρ̂ ξ̂l1 . . . ξ̂ln

)
, (57)

which we also call nth moments for short. In many studies,
especially those involving Gaussian states, i.e., states with
Gaussian characteristic functions [31–33], it is enough to con-
sider only the first and second moments. The advantage is that,
in contrast to the infinitely dimensional density operator, the
first two moments are completely described by a finite number
of degrees of freedom [34].

The first moments contain solely local information, and as
such are irrelevant from the point of view of stabilizing most
quantum resources such as, e.g., entanglement or purity of N-
mode states. Being concerned predominantly with practical
applications of stabilizability, in the remainder of this work,
we assume that the first moments vanish.

The second moments are conveniently collected in the
2N × 2N covariance matrix through the mean values (57) of
the quadratures’ anticommutators:

Vkk′ := 1
2 〈{ξ̂k, ξ̂k′ }〉 . (58)

Any valid covariance matrix has to be positive and fulfill the
Heisenberg uncertainty principle:√〈

x̂2
k

〉 − 〈x̂k〉2
√〈

p̂2
k

〉 − 〈p̂k〉2 � h̄

2
, (59)

where k ∈ {1, . . . , N}, equivalent to [31]

V + i

2
J � 0. (60)

Here, J is the 2N × 2N symplectic form, defined in terms of
the canonical commutation relations as

Jkk′ := − i

h̄
[ξ̂k, ξ̂k′ ] (61)

and explicitly equal to

J =
N⊕

k=1

J2, J2 :=
[

0 1
−1 0

]
, (62)

where J2 is an ordinary 2 × 2 matrix. Note that J fulfills the
characteristic properties

JT = J−1 = −J, J2 = −12N . (63)

The symplectic form defines the symplectic group Sp(2N,R)
consisting of matrices K of size 2N × 2N , such that [35]

KJKT = J. (64)

The pair (V, �ξ ) defines the symplectic picture (also known
as the covariance matrix picture) of quantum states. All the
standard notions known from the density operator picture
translate in a natural way to the symplectic picture. In par-
ticular, just like any density operator can be diagonalized by
a unitary operation and is then described by its eigenvalues,
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any covariance matrix can be diagonalized by a symplectic
operation and is then described by its symplectic eigenvalues

1/2 � ν1 � · · · � νN . (65)

The symplectic eigenvalues come in pairs, i.e., the
diagonalized covariance matrix reads as Vdiag =
diag(ν1, ν1, . . . , νN , νN ). They can be computed from the
eigenvalues of the matrix

Ṽ := JV. (66)

In the case of Gaussian states, the symplectic picture is equiv-
alent to the density operator description. In the case of other
states, it describes a subset of the system’s degrees of freedom.

B. Time evolution

It is well known that the structure-preserving evolution of
Gaussian states is governed by Hamiltonians that are second-
degree polynomials in mode quadratures:

Ĥ = 1
2
�̂ξT G�̂ξ, (67)

where G is a 2N × 2N , real, symmetric matrix. Similarly, the
set of Gaussian states is preserved if the Lindblad operators
are assumed to be linear in the mode quadratures, or linear for
short:

L̂ j = �c j · �̂ξ, �c j ∈ C2N . (68)

However, the type of operations routinely accessible in
current experiments on CV systems can be used to manipulate
not only Gaussian states, but also their convex combinations.
Indeed, resource theories of non-Gaussianity [36,37], which
are built around the set of operations available in contempo-
rary CV experiments, put Gaussian states and their convex
combinations on equal footing.

For this reason, in addition to linear Lindblad operators
typically assumed in studies of Gaussian systems, we also
consider the subclass of Lindblad operators of the form

L̂ j = √
κ jÛ j, (69)

where Ûj are unitary operators, κ j � 0, and
∑

j κ j = 1. Here,
it is assumed that the unitaries have quadratic generators, i.e.,
they can be written as

Ûj = e−iĥ j (70)

with ĥ j being a Hermitian polynomial of at most second
degree in quadrature operators.

While such Lindblad operators do not preserve the set
of Gaussian states, they preserve the set of their convex
combinations [17], making them fully compatible with the
resource-theoretic perspective. From the physical point of
view, unitary Lindblad operators constitute a natural model of
random noise in the system, with special emphasis on random
scattering [38–40].

Computing the time derivative of the covariance matrix
and assuming that the system evolves according to the GKLS
equation with Hamiltonian (67) and either linear (68) or uni-
tary (69) Lindblad operators, one can obtain the corresponding

equation for the covariance matrix [8,10,17]

d

dt
V = JGV − V GJ + D(V ). (71)

Here, the first two terms are responsible for the Hamiltonian
evolution, while the symplectic-picture dissipator is equal to

D(V ) = γLDL(V ) + γUDU (V ),

DL(V ) = J Im(C†C)V + V Im(C†C)J − J Re(C†C)J,

DU (V ) =
∑

j

κ j
(
KjV KT

j − V
)
, (72)

where γL, γU are dissipation rates, DL comes from linear
Lindblad operators and DU from their unitary counterparts.
Here, Re(C†C) and Im(C†C) denote the real and imaginary
parts of the matrix C†C, with C defined by the vectors from
Eq. (68) as

Cjk := (�c j )k . (73)

Furthermore, Kj are 2N × 2N symplectic matrices defined
by the action of the corresponding unitary Lindbladian on
the vector of quadrature operators [all unitaries of the form
(70) produce such an equation due to the Baker-Campbell-
Hausdorff formula]:

Û †
j
�̂ξÛj = Kj �̂ξ . (74)

C. Stabilizability

The framework of stabilizability can be naturally extended
to the covariance matrix evolution. In an analogy to the den-
sity operator evolution, here, the Hamiltonian can stabilize
the covariance matrix only if the symplectic picture dissipator
does not alter the state’s symplectic eigenvalues [15].

In [15], the following necessary conditions for stabilizabil-
ity of invertible covariance matrices were derived [41] for the
special case of γU = 0, i.e., when D = γLDL:

0 = Tr[D̃L(Ṽ )Ṽ k−1] for all k ∈ {1, . . . , 2N}, (75)

where

D̃L(Ṽ ) := {Im(C†C)J, Ṽ } + Re(C†C)J. (76)

As we will now show, Eq. (75) holds also if γU �= 0. In other
words, we have that

0 = Tr[D̃(Ṽ )Ṽ k−1] for all k ∈ {1, . . . , 2N}, (77)

where

D̃(Ṽ ) = γLD̃L(Ṽ ) + γU D̃U (Ṽ ),

D̃U (Ṽ ) :=
∑

j

κ j
(
K̃jṼ K̃−1

j − Ṽ
)
, (78)

and K̃j := JKjJT .
To see this, we follow the original derivation [15]: if the

state’s symplectic eigenvalues are invariant, then so are any
moments of the matrix Ṽ since its eigenvalues depend solely
on the symplectic eigenvalues of V . Written in mathematical
notation, for a stabilizable covariance matrix

d

dt
TrṼ k = Tr

(
d

dt
Ṽ

)
Ṽ k−1 = 0. (79)
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Note that it is enough to consider k � 2N , as all higher mo-
ments necessarily depend on the first 2N .

The time derivative of Ṽ can be computed using Eq. (71).
Due to the properties (63), we obtain

d

dt
Ṽ = [GJ, Ṽ ] + γLJDL(V ) + γU JDU (V ). (80)

Substituting this into Eq. (79) we quickly find that the first
commutator term vanishes due to the cyclic property of the
trace. As for the remaining term, one can easily check by
direct calculation that

TrγLJDL(V )Ṽ k−1 = Tr[γLD̃L(Ṽ )Ṽ k−1],

TrγU JDU (V )Ṽ k−1 = Tr[γU D̃U (Ṽ )Ṽ k−1] (81)

with D̃L(Ṽ ), D̃U (Ṽ ) as in Eqs. (76) and (78). We therefore
find that Eq. (79) is equivalent to

Tr
(
γLD̃L(Ṽ ) + γU D̃U (Ṽ )

)
Ṽ k−1 = 0, (82)

which concludes our proof due to the first line of Eq. (78).
Given a stabilizable covariance matrix, one can recover the

stabilizing Hamiltonian via Eq. (67) with

G = γ

d−1∑
l,l ′=0
zl �=zl′

�w†
l D̃(Ṽ ) �wl ′

zl − zl ′
J
√

V �wl �w†
l ′
√

V JT , (83)

where {zl , �wl} is the eigendecomposition of the matrix

V :=
√

V J
√

V . (84)

The eigenvalues of V are connected to the symplectic eigen-
values of V via [15]

zl =
{

iνl , l = 1, . . . , N
−iνN−l , l = N + 1, . . . , 2N.

(85)

VI. SPECTRAL APPROACH TO STABILIZABILITY
OF THE COVARIANCE MATRIX

We are now in a position to extend our spectral approach
to stabilizability to the covariance matrix. The main idea is
similar to the case of stabilizability of density operators: the
covariance matrix can be stabilized by the Hamiltonian only if
the dissipator initially leaves its symplectic eigenvalues invari-
ant [15]. That is, a covariance matrix V may be stabilizable
only if its evolution in the absence of the Hamiltonian term

d

dt
V = γD(V ), V (0) = V (86)

has a solution V (t ) such that

V (t ) =
2N∑

j, j′=1

z j (t ) �w j (t ) �w†
j (t ),

dzl (0)

dt
= 0, (87)

where the eigenvectors �wl (t ) of the matrix V (t ) are orthonor-
mal due to the matrix being asymmetric. Similarly to the case
of the density operator, we will now show that the remaining
drift of the vectors �wl (t ) at t = 0 can be always counteracted
by adding an appropriate Hamiltonian term to the equation.

We begin by observing that, due to Eq. (87), the symplectic
eigenvalues of the covariance matrix can be computed as

zl (t )δll ′ = �w†
l (t )V (t ) �wl ′ (t ). (88)

Taking the time derivative of both sides at t = 0, we obtain

0 = �w†
l

(
d
√

V

dt
J
√

V +
√

V J
d
√

V

dt

)
�wl ′

+ d �w†
l

dt
V �wl ′ + �w†

l V
d �wl ′

dt
. (89)

As in the case of stabilizability of the density operator, we skip
writing the time dependence explicitly, assuming that all the
quantities are evaluated at the initial time. The last two terms
vanish due to the orthonormality of the eigenbasis. As for the
remaining two terms, we assume V to be invertible and insert

12N =
√

V
−1√

V , 12N =
√

V
√

V
−1

, (90)

the former in front of J in the first term and the latter after J
in the second term. Deploying the eigenrelations of V results
in

0 = zl �w†
l

(
d
√

V

dt

√
V

−1 +
√

V
−1 d

√
V

dt

)
�wl ′ . (91)

Using V = √
V

√
V , one can easily see that the above is equiv-

alent to

0 = zl �w†
l

√
V

−1 dV

dt

√
V

−1 �wl ′ . (92)

Now, the time derivative can be replaced by Eq. (86), yielding

0 = �w†
l

√
V

−1D(V )
√

V
−1 �wl ′ . (93)

Finally, we notice that �ζl ′ := √
V

−1 �wl ′ is the eigenvector
of the matrix Ṽ defined in Eq. (66) with eigenvalue zl ′ .
Indeed,

Ṽ �ζl ′ = J
√

V �wl ′ =
√

V
−1V �wl ′ = zl ′ �ζl ′ . (94)

Thus, Eq. (93) is equivalent to

0 = �ζ †
l D(V )�ζl ′ (95)

for all l , l ′ such that zl = zl ′ . It is therefore a necessary condi-
tion for stabilizability of the covariance matrix.

However, this condition is also sufficient for stabilizabil-
ity. An explicit calculation shows that, provided Eq. (95)
is fulfilled, Eq. (71) vanishes the input Hamiltonian (83),
i.e., this Hamiltonian stabilizes the covariance matrix: V (t ) =
V (0) = V . Thus, Eq. (95) is equivalent to the stabilizability
of V .

Once again, we summarize our result in a proposition.
Proposition 2 (Spectral conditions for stabilizability of the

covariance matrix). Let V be an invertible covariance matrix
and {zl , �ζl} be the eigendecomposition of the matrix Ṽ = JV .
Then, the covariance matrix V is stabilizable with respect to
the dissipator D of the form (72) if and only if

0 = �ζ †
l D(V )�ζl ′ for all l, l ′ such that zl = zl ′ . (96)
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Our previous discussion regarding spectral stabilizability
of the density operator can be easily generalized to the co-
variance matrix. Most importantly, the spectral conditions for
the covariance matrix are stronger than the original conditions
(75), in the sense that they are not only necessary, but also
sufficient for stabilizability. Furthermore, they are again only
linear in the symplectic eigenvalues, rendering their analysis
more tractable.

To illustrate the advantages of the spectral approach for
stabilizing covariance matrices, we consider three examples:
one for linear, one for unitary Lindblad operators, and one for
a mix of the two classes.

As for the target covariance matrices, we restrict ourselves
to covariance matrices in the so-called standard form

Vsf =

⎡
⎢⎢⎣

a 0 c+ 0
0 a 0 c−

c+ 0 b 0
0 c− 0 b

⎤
⎥⎥⎦, (97)

which can be assumed without loss of information whenever
one is interested only in the global properties of the state
(such as, e.g., entanglement or entropy). Here, a, b > 0 are
proportional to the average number of excitations in the two
modes, while c± ∈ R measure nonlocal correlations between
them [16].

As discussed above, the spectral approach is most naturally
applied to problems in which the target state’s eigendecompo-
sition is at least partially emphasized. For this reason, in the
case at hand, we restrict ourselves to squeezed thermal states,
which are partially parametrized in terms of their symplectic
eigenvalues:

a = ν1 cosh2 r + ν2 sinh2 r,

b = ν1 sinh2 r + ν2 cosh2 r,

c± = ±ν1 + ν2

2
sinh 2r, (98)

where r > 0 is the squeezing strength. Two-mode squeezed
thermal states play an important role in quantum metrology
(see, e.g., [42–44]).

One can easily calculate the eigensystem of Ṽsf, yielding

z1 = z∗
2 = iν1, �ζ1 = �ζ ∗

2 = (−i coth r, coth r, i, 1)T ,

z3 = z∗
4 = iν2, �ζ3 = �ζ ∗

4 = (i tanh r, tanh r,−i, 1)T , (99)

where we note that the eigenvectors’ norm is irrelevant for
the spectral conditions (96). Let us observe that, because
�ζ1 = �ζ ∗

2 , the corresponding spectral conditions are equivalent,
and similarly for �ζ3 = �ζ ∗

4 . This means that in the following
examples it will be enough to consider only the conditions
given by l = l ′ = 1 and l = l ′ = 3.

Example 5 (Linear Lindblad operators). Recently,
stabilizability was used to investigate the robustness of
entangled two-mode Gaussian states against three classes of
dissipators based on linear Lindblad operators [16] occurring,
e.g., in quantum computation and spectroscopy [45,46]:

(i) local damping: L̂1 := â1 and L̂2 := â2;
(ii) damping with global vacuum: L̂ := (â1 + â2);

(iii) dissipation engineered to preserve two-mode
squeezed states with squeezing strength α:

L̂1 := cosh α â1 − sinh α â†
2,

L̂2 := cosh α â2 − sinh α â†
1. (100)

Here, âk is the annihilation operator associated with the kth
mode, i.e., âk := 1√

2
(x̂k + i p̂k ). Our goal is to use the spectral

approach to stabilizability to calculate the set of stabilizable
states with respect to each of the above dissipators, which we
consider separately so that we can compare with [16].

Because all the dissipators are linear, we have γU = 0.
We only need to calculate the matrices Im(C†C), Re(C†C)
entering the dissipator DL. Recasting the Lindblad operators
into the form (68), computing the matrix C through Eq. (73)
and finally taking the real and imaginary parts of the matrix
C†C, we obtain

(i) local damping: ImC†C = 1
2 J and ReC†C = 1

214;
(ii) damping with global vacuum:

ImC†C = 1

2

[
J2 J2

J2 J2

]
, ReC†C = 1

2

[
12 12

12 12

]
, (101)

where J2 is as in Eq. (62);
(iii) dissipation engineered to preserve two-mode

squeezed states with squeezing strength α:

ImC†C = 1

2
J, ReC†C = 1

2

[
cosh 2α 12 − sinh 2α η2

− sinh 2α η2 cosh 2α 12

]
,

(102)

where

η2 =
[

1 0
0 −1

]
. (103)

Solving the conditions (96), we find that stabilizable states
for the three models are given by

2ν1 = 2ν2 =
{

cosh 2r, models (i) and (ii),
cosh 2(r − α), model (iii), (104)

which are all physical, as for all of them clearly ν2 � ν1 � 1
2 ,

as required by Eq. (65).
The findings for models (i) and (iii) coincide with the

original results [16], while the solution for model (ii) extends
them to the case of squeezed thermal states.

Example 6 (Unitary Lindblad operators). For our second
example, we consider dissipation stemming from unitary
Lindblad operators. To this end, we consider three transfor-
mations corresponding to channels often utilized in studies
of Gaussianity, entropy, and entanglement, among others
[47–49]:

(i) phase conjugation and transposition channel, with
unitary Lindlad operator inducing the following sym-
plectic transformation via Eq. (74) [47]:

K1 =
[

sinh μη2 cosh μ12

cosh μ12 sinh μη2

]
. (105)

(ii) beam splitter and attenuator channel, which corre-
ponds to [47]

K2 =
[

cos θ 12 − sin θ 12

sin θ 12 cos θ 12

]
; (106)
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(iii) amplifier channel, which corresponds to [47]

K3 =
[

cosh δ 12 sinh δ η2

sinh δ η2 cosh δ 12

]
. (107)

Here, the parameters μ, δ ∈ R, θ ∈ [0, 2π ) quantify the
channels’ strengths. The more they deviate from the points
μ = 0, θ ∈ {0, π}, and δ = 0, which correspond to trivial
transformations, [50] the stronger the channels. Furthermore,
η2 is as in Eq. (103).

The most general dissipation corresponding to the three
channels is given by the bottom line of Eq. (72) with Kj given
by Eqs. (105)–(107). We stress that, unlike in the previous ex-
ample, we consider the three channels collectively. Assuming
the covariance matrix to be in the standard form (97) and (98),
we find that the spectral conditions (96) for stabilizability are
fulfilled only in the trivial cases

(κ1 = 0 or μ = 0) and (κ2 = 0 or θ ∈ {0, π})

and (κ3 = 0 or δ = 0). (108)

In other words, there exist no nontrivial stabilizable states with
respect to dissipation given by Eqs. (105)–(107).

To see this, let us consider the case, in which κ j �= 0 for all
j. The conditions (96) have the following explicit form:

0 = [Q − 2(κ1 + κ̄2)]ν1 + [Q + 2(κ1 + κ̄2)]ν2

sinh2 r
,

0 = [Q + 2(κ1 + κ̄2)]ν1 + [Q − 2(κ1 + κ̄2)]ν2

cosh2 r
, (109)

where κ̄2 ≡ κ2 sin2 θ and

Q ≡ κ1(cosh 2μ − 1) + κ̄2(cosh 4r − 1) + κ3(cosh 2ν − 1).
(110)

Clearly, Eq. (109) is fulfilled only if the two numerators van-
ish. If so, then their difference must also vanish, which yields,
after simplification,

0 = (ν1 − ν2)(κ1 + κ̄2). (111)

Under our assumption that κ j �= 0, the only solution to this
equation is ν1 = ν2. Then, both of the two equations (109)
reduce to

0 = Q, (112)

which, as we can see clearly from Eq. (110), has no nontrivial
solutions. This finishes the proof for the case κ j �= 0 for all j.
The remaining special cases can be treated analogously.

To derive our result, we heavily used the fact that the spec-
tral conditions are linear in the covariance matrix’ symplectic
eigenvalues. It allowed us to obtain an easily solvable equa-
tion after substracting the two original conditions from each
other, and then get a condition independent from the symplec-
tic eigenvalues upon setting ν1 = ν2. Similar operations are
not applicable using the corresponding geometric conditions
(75), which in this case consist of two polynomial equations of
second and fourth order in these eigenvalues. This implies a
much higher computational complexity than in the case of the
linear spectral conditions, and consequently we were unable
to analytically rederive the result (108) using the geometric
approach.

Example 7 (Mixed Lindblad operators). As a final exam-
ple, let us consider a mixed dissipator. Specifically, we assume
that part of the dissipation is engineered to preserve two-mode
squeezed states with squeezing strength α, given by a linear
Lindblad operator as in model (iii) from Example 5, while
the system is disturbed by additional amplification given by
a unitary Lindblad operator, as in model (iii) from Example
6. In other words, we assume the dissipator (72) with ReC†C,
ImC†C as in Eq. (102), κ j = δ j3 and K3 as in Eq. (107).

The spectral conditions (96) read as

0 = γL[cosh(2r − 2α) − 2ν1] + γU (cosh 2δ − 1)(ν1 + ν2)

sinh2 r
,

0 = γL[cosh(2r − 2α) − 2ν2] + γU (cosh 2δ − 1)(ν1 + ν2)

cosh2 r
.

(113)

As in the previous example, by substracting the numerators
from each other we find that ν1 = ν2 ≡ ν is necessary for
stabilizability. Solving the conditions with this input, we im-
mediately find the ultimate solution

ν = γL cosh(2r − 2α)

2[γL − γU (cosh 2δ − 1)]
, (114)

which corresponds to a valid covariance matrix (we must have
ν � 1

2 ) as long as

γL � γU (cosh 2δ − 1). (115)

To see what the inclusion of the unitary Lindblad opera-
tor changes compared to the original solution, given by the
bottom line of Eq. (104), we compare the amount of en-
tanglement corresponding to the two solutions. To measure
entanglement, we deploy the logarithmic negativity, which for
two-mode Gaussian states reads as [31]

EN := max {0,− ln [2ν̃−]}, (116)

where

ν̃−(V ) =
√

1
2

(
�̃(V ) −

√
�̃2(V ) − 4 det V

)
(117)

and �̃(V ) := a2 + b2 − 2c+c− in the notation from Eq. (97).
We find that

EN = − ln[e−2r cosh 2(r − α)]

− ln
γL

γL − γU (cosh 2δ − 1)
, (118)

where the second term vanishes for γU = 0, reproducing the
original result from [16]. Because of the condition (115), the
second term is never positive and thus contributes negatively
to the amount of entanglement in the state. This is an ex-
pected result, as amplification given by the amplifier channel
is typically interpreted as a random process, which generically
does not result in an increase of a useful resource such as
entanglement.

We note that, similarly to the previous example, we were
not able to solve this problem analytically using the geometric
conditions due to their computational complexity.
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VII. CONCLUDING REMARKS

The concept of stabilizability serves to fathom the
prospects and limits of coherent control for counteracting the
detrimental effects of dissipation in quantum systems. We
developed a spectral approach to stabilizability, where the
stabilizability conditions manifestly refer to the eigenstates
of the state to be stabilized. These spectral conditions com-
plement the previously formulated geometric stabilizability
conditions, extending the scope of applicability of the sta-
bilization framework both from a conceptual and a practical
perspective, and both in finite-dimensional Hilbert spaces and
in Gaussian quantum systems. We presented several examples
that exposed the advantages of the spectral over the geometric
approach in these cases.

Remarkably, the spectral conditions make it possible to
directly address the stabilizability of desired target states as
eigenstates, which arguably represents the most informative
way to assess how a target state’s functionality can be upheld
in a dissipation-induced mixed state. We demonstrated this,
for instance, with generalized GHZ and W states, where we
could identify scaling laws governing their stabilizability for
general spin numbers N . As we argued, a similar analysis
using the geometric conditions and based on maximizing the

fidelity with the target state is not possible since the target
state is in general not an eigenstate of the fidelity-optimal
mixed state. More generically, the spectral conditions allow
us to discuss the stabilizability of dominant eigenstates, the
relevance of which has recently been identified, for instance,
in the context of quantum state tomography [51] and quantum
error mitigation [52,53].

As a final remark, let us stress that the advantage of the
spectral approach over the original one in the examples con-
sidered by us stems from the fact that we were interested
in classes of states whose eigendecomposition was at least
partially known. It would be interesting to see whether one
can find a set of stabilizability conditions that would have the
best of the spectral and geometric approaches and be relatively
easy to solve in general.
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