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Many quantitative approaches to the dynamical scrambling of information in quantum systems involve the
study of out-of-time-ordered correlators (OTOCs). In this paper we introduce an algebraic OTOC (A-OTOC)
that allows us to study information scrambling of generalized quantum subsystems under quantum channels.
For closed quantum systems, this algebraic framework was recently employed to unify quantum information-
theoretic notions of operator entanglement, coherence-generating power, and Loschmidt echo. The main focus
of this work is to provide a natural generalization of these techniques to open quantum systems. We first show
that, for unitary dynamics, the A-OTOC quantifies a generalized notion of information scrambling, namely,
between a subalgebra of observables and its commutant. For open quantum systems, on the other hand, we
find a competition between the global environmental decoherence and the local scrambling of information.
We illustrate this interplay by analytically studying various examples of algebras and quantum channels.
To complement our analytical results, we perform numerical simulations of two paradigmatic systems: the
PXP model and the Heisenberg XXX model, under dephasing. Our numerical results reveal connections with
many-body scars and the stability of decoherence-free subspaces.
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I. INTRODUCTION

Quantum information scrambling, in its purest form, refers
to the ability of quantum systems to generate entangle-
ment and correlations under time evolution [1–12]. In the
Schrödinger picture, this is typically characterized by starting
from distinguishable low-entanglement states, e.g., orthog-
onal product states, which under unitary dynamics become
more and more indistinguishable to local measurements. In a
similar spirit, in the Heisenberg picture, scrambling manifests
as the growth of the support of initially local operators under
time evolution and their subsequent noncommutativity with
operators supported on distinct subsystems. This spreading of
initially localized information (delocalization) allows for the
emergence of nonlocal quantum correlations, which are linked
to many-body phenomena such as thermalization [13] and
quantum chaos [3,14,15], among others. A central quantitative
approach to information scrambling has been the study of out-
of-time-order correlators (OTOCs), which possess a principal
position in theoretical insights into scrambling dynamics for
a variety of phenomena, ranging from, e.g., many-body chaos
to black hole physics [1–12]. This theoretical investigation of
OTOCs has been accompanied by a number of state-of-the-art
experimental implementations [16–26].

Recent works have revealed connections between OTOCs
and prominent quantum information-theoretic concepts such
as operator entanglement and entropy production [27–29],
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quantum coherence [30], Loschmidt echo [31], quasiproba-
bilities [32], and multiple-quantum coherences [33], among
others [34–36]. In several of these studies, the OTOCs were
averaged over an appropriate class of randomly distributed
operators, thereby extracting features of the OTOC that are
independent of the specific choice of operators involved, man-
ifesting instead the typical features of the class of operators.
These results suggest that the averaged OTOC is a promising
tool for investigating scrambling properties of dynamical sys-
tems, revealing connections to many-body phenomena such as
integrability, localization, and quantum chaos.

Reference [37] considers unitary dynamics and provides
a generalized formalism in which the notion of locality is
with respect to a generalized subsystem structure, described
by a ∗-closed unital algebra of observables. This gives rise
to a natural geometrical picture which connects information
scrambling to a distance between algebras while also con-
ceptually unifying many of the aforementioned results. In
this paper we provide a quantitative framework for analyzing
scrambling at the algebra level when the evolution is allowed
to be a unital quantum channel (completely positive and trace-
preserving map) in the Heisenberg picture, thus incorporating
open quantum system effects, e.g., decoherence.

Disentangling the contribution of environmental decoher-
ence from unitary scrambling has been studied in previous
works using a host of ideas and techniques. To this end,
Ref. [28], by a subset of the present authors, introduced
Haar averaged OTOCs for open quantum systems, Ref. [35]
introduced a quantum-teleportation-based decoding protocol,
Ref. [36] used the quantum mutual information between the
system and environment, and Ref. [38] introduced an interfer-
ometric and weak-measurement-based scheme, to list a few.
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These works have focused on specific forms of environmental
decoherence or techniques to disentangle it from scrambling.
Our algebraic approach, may provide a much broader frame-
work for this task.

This paper is structured as follows. In Sec. II we present
general results (in the form of propositions) that combine and
extend ideas of Refs. [27,28,30]. In Sec. III we treat analyti-
cally a few illustrative cases of algebras and channels, which
complement the general results and reveal the competition
between decoherence and information scrambling. In Sec. IV
we study numerically the application of our tools in represen-
tative open quantum spin chain models with selected algebras
that probe their respective physical properties. In Sec. V we
conclude with a brief discussion of the results. The detailed
proofs of the technical results are included in the Appendix.

II. THEORETICAL RESULTS

Let H ∼= Cd be a finite d-dimensional Hilbert space rep-
resenting a quantum system and L(H) be the space of
linear operators on H. The space L(H) endowed with the
Hilbert-Schmidt inner product 〈X,Y 〉 := Tr(X †Y ) is a Hilbert
space and the associated Hilbert-Schmidt norm is the 2-
norm ‖X‖2 := √〈X, X 〉. Quantum states are identified as ρ ∈
L(H), with ρ � 0 and Tr(ρ) = 1.

A. Preliminaries

The Schrödinger picture evolution of quantum states is
described by quantum channels, i.e., completely positive and
trace-preserving (CPTP) superoperators E† on L(H). The
Heisenberg picture evolution of observables is described by
the adjoint channel E identified by 〈X, E†(Y )〉 = 〈E (X ),Y 〉.
Since E† is completely positive (CP) and trace preserving, it
follows that E is CP and unital (namely, the identity is a fixed
point). Although the concepts presented in the paper largely
do not depend on this, it is convenient to assume that E† is
also unital, which means that E is also trace preserving.

Given a quantum channel E , the object we will use to
quantify scrambling dynamics is the norm of the commutator
[28]

CV,W (E ) := 1

2d
‖[E (V ),W ]‖2

2. (1)

To illustrate the intuition behind this quantity and the con-
nection with the OTOC, assume that V and W are local
operators that initially commute and the time evolution is
unitary [E = Ut , where Ut (V ) ≡ Vt = U †

t VUt , and Ut ∈ L(H)
are unitary operators depending on time t]. Then, under time
evolution, the support of Vt grows, leading, after a sufficient
amount of time, to potential noncommutativity with W , which
is understood as scrambling of information initially localized
in the support of V . If in addition we assume that V and W are
unitaries, then

CV,W (Ut ) = 1 − 1

d
ReFV,W (Ut ),

where

FV,W (Ut ) := 1

d
Tr(V †

t W †VtW ) (2)

is the four-point correlation function referred to as the
OTOC.1 Note that, as the norm of the commutator grows, the
OTOC decays. If we allow for open-system dynamics, then
CV,W (E ) will also incorporate effects of decoherence [28].

The main mathematical structures of interest are ∗-closed
unital algebras of observables A and their commutants,

A′ = {Y ∈ L(H) | [X,Y ] = 0 ∀ X ∈ A}.
We define the center of A as Z (A) := A ∩ A′. Note that by
virtue of the double commutant theorem (A′)′ = A [39].

A fundamental structure theorem for C∗-algebra states that
there is an algebra-induced decomposition of H into dZ =
dim Z (A) blocks of the form [39]

H ∼= ⊗dZ
J=1C

nJ ⊗ CdJ ,

A ∼= ⊗dZ
J=11nJ ⊗ L(CdJ ),

A′ ∼= ⊗dZ
J=1L(CnJ ) ⊗ 1dJ . (3)

On account of the above decomposition,

dim H ≡ d =
dZ∑
J=1

nJdJ ,

dim A =
dZ∑
J=1

d2
J =: d (A),

dim A′ =
dZ∑
J=1

n2
J =: d (A′).

For any algebra A there exists a projection CP map PA
such that P †

A = PA, P 2
A = PA, and the image of PA is the

full algebra A. Such a map can be written in a Kraus operator
sum representation form as

PA[•] =
d (A′ )∑
γ=1

fγ • f †
γ ,

where { fγ }d (A′ )
γ=1 is a suitable orthogonal basis of A′ [37].

Similarly,

PA′ [•] =
d (A)∑
α=1

eα • e†
α,

where {eα}d (A)
α=1 is a suitable orthogonal basis of A.

By virtue of the Cauchy-Schwarz inequality d2 �
d (A)d (A′). The equality is satisfied when dJ = λnJ ∀ J (for
some λ ∈ Z), in which case we say that the pair (A,A′) is
collinear. We note that in the above decomposition, the Hilbert
space is broken into orthogonal blocks with a virtual (algebra-
induced) local structure. These observations are exemplified
by two physically relevant choices of collinear algebras [37].
(i) For dZ = 1, the algebra A induces a bipartition into virtual
subsystems H ∼= Cn1 ⊗ Cd1 [40,41]. (ii) For nJ = 1 ∀ J , the
algebra A induces a decomposition in superselection sectors
H ∼= ⊕dZ

J=1C
dJ [42]. The case of a maximal Abelian algebra

1We focus on the infinite-temperature case where the correlation
functions are over the Gibbs state ρβ=0 = 1

d , hence the factor of 1
d .
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A (nJ = dJ = 1 ∀ J) is in fact intimately related to the study
of the dynamical generation of quantum coherence [43,44].

B. Algebraic OTOC

We are now ready to define the main object of this study,
which we refer to as the algebraic OTOC (A-OTOC).

Definition 1. Let E : L(H) → L(H) be a unital CPTP
map. We define the open (averaged) A-OTOC as

GA(E ) := 1

2d
EXA,YA′

[‖[XA, E (YA′ )]‖2
2

]
, (4)

where EXA,YA′ [•] := ∫
Haar[•]dXAdYA′ denotes averaging

over the Haar measures on the unitary subgroups of operators
in A and A′.

Note that the above definition is closely related to but
distinct from the geometric algebra anticorrelator (GAAC)
introduced in Ref. [37] for the case of unitary dynamics.
The key difficulty in generalizing the GAAC to open sys-
tems is that the algebra structure is in general not preserved
under the mapping E (·). Hence, the geometric interpretation
of scrambling as a distance between algebras ceases to be
straightforward. However, as we will see throughout this pa-
per, the A-OTOC can help mitigate this issue. First, it provides
a natural generalization to open quantum systems, capturing
both scrambling and decoherence and hence generalizing the
results of Ref. [28], which focused on the bipartite alge-
bra case. Second, when restricted to unitary dynamics and
collinear algebras, it turns out to be exactly equal to the
GAAC, thereby retaining the intuitive geometric notion of
distance between algebras.

In order to perform the averaging in Eq. (4), we consider
the replica space H⊗2 = H ⊗ H and let S denote the SWAP

operator between the two copies.
Proposition 1. We propose that

GA(E ) = 1

d
Tr[S(1d2 − �A)E⊗2(�A′ )], (5)

where

�A :=
d (A)∑
α=1

eα ⊗ e†
α,

�A′ :=
d (A′ )∑
γ=1

fγ ⊗ f †
γ ,

and {eα}d (A)
α=1 and { fγ }d (A′ )

γ=1 are suitable orthogonal bases of A
and A′, respectively.

Note that the orthogonal bases {eα}d (A)
α=1 and { fγ }d (A′ )

γ=1 are
defined up to unitary transformations. The doubled Hilbert
space in Eq. (5) is the usual cost one has to pay when lin-
earizing Eq. (4). In the special case of a bipartite system H ∼=
HA ⊗ HB (HA

∼= CdA and HB
∼= CdB ) with A ∼= 1A ⊗ L(HB)

and A′ ∼= L(HA) ⊗ 1B, the A-OTOC reduces to the open (av-
eraged) bipartite OTOC [28] and if we further restrict the case
to unitary dynamics generated by Ut we recover the bipartite
OTOC [27], which coincides with the operator entanglement
of Ut [45,46]. The quantities �A and �A′ , while abstract
at first sight, provide the input of the algebra. For example,

for the bipartite case they reduce just to swaps between the
subsystem copies �A = SBB′/dB and �A′ = SAA′/dA.

A corollary of Proposition 1 is that the A-OTOC can be
expressed in terms of two-point correlation functions as stated
below.

Corollary 1. We further propose that

GA(E ) = 1

d

d (A′ )∑
γ ′=1

‖E ( fγ ′ )‖2
2 − 1

d

d (A′ )∑
γ ,γ ′=1

|〈 f̃ †
γ , E ( fγ ′ )〉|2, (6)

where f̃γ := fγ
‖ fγ ‖2

is the normalized basis of A′.
This formula is practically useful as it allows the direct

computation of the A-OTOC for specific examples of alge-
bras and channels (Sec. III) and also suggests how one could
potentially measure the A-OTOC by a process tomography of
the channel E .

Decoherence and scrambling. From Definition 1 we can
deduce that a sufficient condition for the A-OTOC to vanish is
that the channel E does not map elements of A′ outside of A′,
i.e., commutativity with A is preserved under time evolution.
The following result shows that the A′ invariance is also a
necessary condition for the vanishing of the A-OTOC.

Proposition 2. We propose that

GA(E ) = 0 ⇔ E (A′) ⊆ A′. (7)

This suggests that the A-OTOC quantifies the deviation of
A′ from itself under the map E . Intuitively, if we denote by
A′ the relevant degrees of freedom of our quantum system,
then as long as they are mapped within the set, there is no
scrambling of information within the system. Indeed, this
becomes apparent by manipulating Eq. (5) into the following
form.

Proposition 3. We propose that

GA(E ) = 1

d

d (A′ )∑
γ=1

[‖E ( fγ )‖2
2 − ‖PA′E ( fγ )‖2

2

]

= 1

d

d (A′ )∑
γ=1

‖(I − PA′ )E ( fγ )‖2
2. (8)

The second formula in Eq. (8) shows that the quantifica-
tion we alluded to is obtained exactly by the norm of the
components of E (A′) that are in the orthogonal complement
of A′. In addition, the first formula in Eq. (8) breaks the
A-OTOC into two terms G(1)

A (E ) := 1
d

∑d (A′ )
γ=1 ‖E ( fγ )‖2

2 and

G(2)
A (E ) := 1

d

∑d (A′ )
γ=1 ‖PA′E ( fγ )‖2

2. Similar to Ref. [28], we
associate the first term with decoherence effects and the sec-
ond term with information scrambling inside the system. Note
that indeed the decoherence term is in general upper bounded
by one and is exactly equal to one if we restrict the case to
unitary dynamics, where there is no decoherence. Thus, deco-
herence and scrambling have competing roles in the A-OTOC,
which roughly corresponds to information (as seen by A′)
becoming inaccessible, even if the system is otherwise maxi-
mally scrambling. This observation will become explicit in the
physical example of stabilizer algebras and dephasing chan-
nels in Sec. III. This type of competition between information
scrambling and decoherence in OTOCs has been previously
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studied in terms of the mutual information for the case of
a Hilbert space that is bipartitioned in subsystems [35,36].
Other approaches for isolating only the information scram-
bling in the presence of environmental noise involve attempts
to normalize the information scrambling term [47] and time-
reversal experimental protocols that account for imperfections
[38,48].

As a corollary of Proposition 3, we can express the scram-
bling term of the A-OTOC in terms of out-of-time-ordered
four-point correlation functions involving structural elements
of the pair (A,A′).

Corollary 2. We further propose that

G(2)
A (E ) = 1

d

d (A′ )∑
γ=1

d (A)∑
α=1

Tr[E ( fγ )†e†
αE ( fγ )eα]. (9)

This recovers an analog expression of Eq. (2) in the frame-
work of the A-OTOC, where the out-of-time-order correlation
function now contains uniform contributions from all choices
of operators in some bases of A and A′. Since the OTOC
FV,W is related to information scrambling in terms of the local
structure of V and W , the term G(2)

A is understood to relate to
the average information scrambling in terms of the structure
induced by the pair (A,A′).

Upper bound, GAAC, and typical value. Given an algebra
A, a natural question concerns the upper bound of scrambling
as quantified by the A-OTOC, which we address in the fol-
lowing proposition.

Proposition 4. We propose that

GA(E ) � min

{
1 − 1

d (A)
, 1 − 1

d (A′)

}
. (10)

Situations where the bound (10) is saturated, e.g., the ones
described in the collinear case below and the examples in
Sec. III, are identified with maximal scrambling of the algebra
degrees of freedom.

In order to understand the scrambling ability of open quan-
tum systems as characterized by the A-OTOC, it is useful
to first focus on the case of unitary channels. In this case,
we find that the double commutant theorem and the unitary
invariance of the 2-norm imply that there is a simple relation
when exchanging the roles of A and A′ as emphasized by the
following result.

Proposition 5. For a unitary channel U [•] = U • U † [U is
a unitary operator on L(H)] it follows that

GA(U ) = GA′ (U†). (11)

To be specific, for unitary dynamics, exchanging the roles
of A ↔ A′ is akin to U ↔ U †. Furthermore, we find that if A
is collinear, then the A-OTOC coincides with the GAAC.

Proposition 6. For the collinear case (dJ = λnJ ∀ J) and a
unitary channel U it follows that

GA(U ) = G̃A(U ), (12)

where2

G̃A(U ) = 1 − 〈PA′ ,PU (A′ )〉HS

‖PA′ ‖2
HS

is the GAAC [37].
It follows that even though the definition of the A-OTOC

in Eq. (4) is an algebraic construction, by restricting the
case to unitary channels (and collinear algebras) we recover
the geometrical intuition associated with the GAAC, i.e., the
distance between the commutant and its dynamically evolved
image. Note that the GAAC was found to be upper bounded
by exactly the same quantity as in Eq. (10) [37]. Moreover,
for the collinear case, the bound is achievable if and only
if PA′UPA′ = T or PAUPA = T , where T [•] = Tr[•]1d is
the completely depolarizing channel, whence from the point
of view of A (or A′) the degrees of freedom are maximally
scrambled.

To gain insights into the scrambling ability of unitary dy-
namics, we consider the dynamics generated by the ensemble
of Haar random unitaries, also known as the circular uni-
tary ensemble in the theory of random matrices [49,50]. For
finite-dimensional systems, they provide a natural proxy for
maximally scrambling evolutions [12]. In particular, while lo-
cal quantum many-body systems cannot scramble information
as quickly, random unitaries provide an analytically tractable
case to quantitatively estimate how close a quantum system
is to maximally scrambling information. It is important to
note, however, that for the bipartite case, namely, when A ∼=
1A ⊗ L(HB), locally interacting, chaotic many-body systems
can quickly equilibrate close to the random matrix theory pre-
dicted value (see, e.g., the numerical results in Refs. [27,29]).
To this end, we compute the typical value of the A-OTOC for
Haar unitary channels.

Proposition 7. The average of the A-OTOC over Haar dis-
tributed unitary channels U is

GA(U )
U = [d2 − d (A)][d2 − d (A′)]

d2(d2 − 1)
. (13)

The symmetry of this average value in A and A′ is a direct

consequence of Proposition 5. As anticipated, GA(U )
U = 0 if

and only if d (A) = d2 or d (A′) = d2, in which cases A′ =
C1 and A′ = L(H), respectively, implying that A′ is (triv-
ially) unitarily invariant. Notions of A chaoticity can emerge
by comparing typical values as in Eq. (13) with infinite-time
averages [37].

III. SPECIAL ALGEBRAS AND CHANNELS

In order to concretely illustrate our formalism, we will now
apply it to a few analytically tractable physical choices of
algebras and channels. To that end, given an algebra A, we
will use Eq. (6) to calculate the A-OTOC for some channel E .

2The superoperator space L[L(H)] is endowed with the inner

product 〈X ,Y〉HS := TrHS[X †Y] := ∑d2

k=1〈X (Bk ),Y (Bk )〉, where
{Bk}d2

k=1 is an orthonormal basis of L(H). The corresponding inner
product norm is ‖X‖HS := √〈X ,X 〉HS .
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A. Maximal Abelian subalgebras
and coherence-generating power

We consider the algebra AB of operators diagonal with re-
spect to an orthonormal basis B := {|μ〉}d

μ=1, i.e., AB = {Pμ =
|μ〉〈μ|}d

μ=1. This is a d-dimensional maximal Abelian subal-
gebra of L(H), so as AB = A′

B [which on account of Eq. (3)
corresponds to dJ = nJ = 1 ∀ J], we then have { fγ }d (A′ )

γ=1 =
{Pμ}d

μ=1 and thus we find [51]

GAB (E ) = 1

d

⎛⎝ d∑
μ=1

‖E (Pμ)‖2
2 −

d∑
μ,μ′=1

|Tr[Pμ′E (Pμ)]|2
⎞⎠

= 1

d

d∑
μ=1

‖QBE (Pμ)‖2
2, (14)

where QB := 1 − PAB is the projector on the orthogonal
complement of AB. The quantity in Eq. (14) is a coherence
generating power (CGP) [43,51,52] measure for CP unital
maps [53]. Operationally, the CGP expresses the average co-
herence generated by the map E on initially incoherent states
(identified as states that are B diagonal). In Eq. (14) the av-
eraging is taken over the basis states |μ〉, i.e., the extremal
points of the simplex IB formed by the set of B-diagonal states
[53]. The CGP has been used as a signature of localization
transitions in many-body systems [52] and as a diagnostic tool
for quantum chaos [30].

Note that the bound 1 − d−1 of Eq. (10) can be achieved
by a unitary channel [43] E[•] = U • U † with |〈μ′|U |μ〉| =
d−1/2, e.g., a unitary that is mutually unbiased with respect to
the basis B [54].

Let us specify E in two physically relevant examples
of Lindbladian dynamics Et = eLt for the case of n-qubit
systems H ∼= C2⊗n (d = 2n). These examples illustrate the
effects of open dynamics, similarly observed in the bipartite
case [28].

Example 1. Consider the Lindbladian

L1 = AdM − I,

where AdM[•] := M • M†, M ≡ H⊗n
0 , and H0 is the

Hadamard gate. Then M = M† = M−1 and, letting B be
the computational basis, |〈μ′|M|μ〉| = 2−n/2. By direct ex-
ponentiation, we then find that the evolution is the convex
combination

E1t = α(t )I + β(t )AdM,

with α(t ) = (1 + e−2t )/2 and β(t ) = (1 − e−2t )/2. Then the
A-OTOC becomes

GAB (E1t ) = β2(t )

(
1 − 1

2n

)
.

The evolution is, by construction, a convex combination
of the identity and a unitary evolution generated by M
with time-dependent probabilities. The identity evolution is
nonscrambling, while the evolution by AdM is maximally
scrambling. For t → 0 only the identity evolution is present,
whereas for t → ∞ both evolutions become equiprobable.
The resulting A-OTOC depends only on the AdM evolution,

starting from zero and tending asymptotically to

GAB (E∞) = 1

4

(
1 − 1

2n

)
.

Example 2. Consider the Lindbladian

L2 = i adH + λ(DH − I ),

where adH[•] := [H, •] corresponds to a Hamiltonian evo-
lution and DH [•] = ∑2n

i=1 �i • �i is dephasing generated by
one-dimensional eigenprojectors �i of H . By exponentiation,
we find that the evolution is a convex combination of a unitary
channel and dephasing

E2t = a(t )eit adH + [1 − a(t )]DH ,

with a(t ) = e−λt . Letting B be the computational basis, we
assume that H = σ⊗n

x , where σx is the Pauli x operator, and
thus Tr(Pμ�i ) = 2−n. Then the A-OTOC becomes

GAB (E2t ) = a2(t )GAB (eit adH ).

Furthermore, we have H2 = 1 and 〈μ′|H |μ〉 = δμ′μ̄, where
|μ̄〉 ≡ H |μ〉. Then

GAB (E2t ) = a2(t )
sin2(2t )

2
,

which corresponds to damped oscillations.

B. Projector algebra and Loschmidt echo

Let |ψ〉 ∈ H be a quantum state. We consider the algebra
ALE of operators that leave the subspace C|ψ〉 and its orthog-
onal complement invariant. Then A′

LE = C{1,� = |ψ〉〈ψ |}
(CG denotes the group algebra of G) is the unital ∗-closed al-
gebra generated by �. We then have { fγ }d (A′ )

γ=1 = {�,1 − �}
and thus we find

GALE (E ) = 2

d

(
‖E (�)‖2

2 − L2(dL2 − 2) + 1

d − 1

)
, (15)

where L2 := Tr[�E (�)] and reduces to a Loschmidt echo
for unitary dynamics. In Sec. IV we analyze Eq. (15) in the
context of quantum many-body scars [55,56]. The maximum
value of Eq. (15) as a function of L2 is 2/d[‖E (�)‖2

2 − 1/d]
and is achieved for L2 = 1/d , which corresponds to the
intuition of |ψ〉 being scrambled into an equal weight super-
position in some basis of L(H). The bound 1

2 of Eq. (10)
is achievable only for d = 2 and is realized by E (�) =
1/d

∑d
i, j=1 |i〉〈 j|, where {|i〉}d

i=1 is an orthonormal basis of
L(H) containing |ψ〉.

C. Stabilizer algebra and dephasing

Let {Sμ}2n−k

μ=1 be a stabilizer group identified as an Abelian
subgroup of the n-qubit (d = 2n) Pauli group such that
S2

μ = 1∀μ [57]. We consider the algebra Ast such that

A′
st = C{Sμ}2n−k

μ=1. Then the Hilbert space decomposes into 2k-

dimensional sectors H ∼= ⊗2n−k

J=1C
2k

and Ast contains all the
stabilizers and additionally all logical-error operators of the
corresponding stabilizer code. The stabilizers act as scalars
on each sector (see Table I). We consider a dephasing channel
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TABLE I. Irreducible representation of the stabilizer group. Each
irreducible representation J is characterized by the one-dimensional
representation of the n − k stabilizers that generate the stabilizer
group ({Sμ}2n−k

μ=1 = 〈Sg
α〉n−k

α=1).

J Sg
1 Sg

2 · · · Sg
n−k−1 Sg

n−k

1 + + · · · + +
2 + + · · · + −
...

...
...

...
...

...

2n−k − − · · · − −

D[•] = ∑d
i=1 �i • �i generated by rank-1 orthogonal pro-

jectors. Denoting by 1J the restriction of the identity onto
the irreducible representation J , we have { fγ }d (A′ )

γ=1 = {1J}2n−k

J=1.

This is unitarily equivalent to { f̂δ}d (A′ )
δ=1 = {Sμ/2(n−k)/2}2n−k

μ=1,
which contains an element proportional to the identity [see
Eq. (A26)]. Using the latter orthogonal basis of A′

st, the ex-
pression for the A-OTOC is

GAst (D) = 2k

22n

2n−k∑
μ=1

〈Sμ,D(Sμ)〉

− 2k

23n

2n−k∑
μ,μ′=1

|〈Sμ′ ,D(Sμ)〉|2. (16)

For simplicity, let us make a specific choice for the dephasing
operators. For each irreducible representation J of the stabi-
lizer group we choose χ of the �i’s to project onto a state in
J , while the rest 2n − 2n−kχ of the �i’s project onto a uniform
superposition of states from each irreducible representation.
Then

GAst (Dχ ) =
(

1 − 2k

2n

)
χ

2k

(
1 − χ

2k

)
. (17)

The A-OTOC depends on the ratio χ

2k and is directly related
to the average information obtained for Ast by measuring the
stabilizers A′

st and knowing the form of the channel Dχ . Note
that the result does not depend on the choice of states on each
irreducible representation J , as A′

st is insensitive to transfor-
mations inside an irreducible representation (logical errors).
Moreover, the A-OTOC is zero if χ = 2k or χ = 0. The
former case is a model that contains only logical errors and
from the perspective of A′

st this is equivalent to no scrambling;
in this case both terms in Eq. (16) are equal to one. The latter
case is a model of white noise, where all states are projected
to equivalent (from the perspective of A′

st) superpositions; in
this case both terms in Eq. (16) are equal to 2k/2n. Despite the
scrambling being intuitively maximal, decoherence (from the
perspective of A′

st) is also maximal. As a result, the A-OTOC
vanishes, thereby showing a competition between information
scrambling and decoherence in accordance with observations
in the case of a bipartite algebra [28,35,36].

IV. QUANTUM SPIN-CHAIN MODELS

As a physical application of the A-OTOC formalism, we
consider representative spin-chain models with open-system

dynamics, which are a result of system-bath interactions. For
systems where the bath is Markovian, the system evolution is
described by a continuous one-parameter family of dynamical
maps3 Et = etL, t � 0, generated by the Lindbladian [58]

L[•] = i[H†, •] +
∑

j

(
L†

j • Lj − 1

2
{L†

j L j, •}
)

, (18)

where H is the Hamiltonian and {Lj} j are the Lindblad opera-
tors that describe the system-bath interactions. To numerically
simulate the evolution, we vectorize the Hilbert-Schmidt
space [59] and the Lindbladian L is represented in matrix
form as

L ·−→ i(1 ⊗ H† − H∗ ⊗ 1) +
∑

j

(
LT

j ⊗ L†
j

− 1

2
1 ⊗ L†

j L j − 1

2
LT

j L∗
j ⊗ 1

)
, (19)

where X T and X ∗ denote the matrix transpose and matrix
conjugate of X , respectively.

A. The PXP model

We consider a one-dimensional spin- 1
2 chain model with N

sites, periodic boundary conditions, and Hamiltonian dynam-
ics given as

HPXP = J
N∑

j=1

Pj−1σ
x
j Pj+1, (20)

where Pj := (1 − σ z
j )/2 and {σα

j }α=x,y,z are the Pauli opera-
tors. In our numerical simulations, we set J = 1, which sets
the energy scale of the Hamiltonian and in turn the timescale
of the dynamics. This model is relevant in Rydberg atom
experiments [60] in the limit of Rydberg blockade [61,62].
The projectors Pj effectively truncate the Hilbert space so as to
exclude states with neighboring excitations (here correspond-
ing to |↑〉). Scrambling properties of the PXP model were
recently studied using OTOCs for specific choices of local
observables [63].

In terms of level statistics, the PXP Hamiltonian was
shown to exhibit level repulsion [55], a characteristic of
nonintegrable systems. However, the system exhibits weak
ergodicity breaking that has been associated with a small set
of special many-body eigenstates (scars) [55,64]. Specifically,
quenching the system from states inside the scar subspace
leads to revivals of the wave function and local observ-
able correlations. A prototypical example is the Néel state
|Z2〉 := |↑↓↑↓ · · ·〉, which was shown to have an unusually
large overlap with the scar eigenstates compared to eigen-
states with similar energy E , violating the strong eigenstate
thermalization hypothesis [65,66] conjectured for quantum
ergodic systems. In contrast, other initial states, like the fer-
romagnetic state |0〉 := |↓↓ · · ·〉, quickly thermalize without
revivals [64]. Generally, this scar behavior is sensitive to
perturbations, which can make the model integrable [67] or

3Note that this is the Heisenberg picture evolution map.
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FIG. 1. Temporal variation of the A-OTOC GA(E ) for the PXP model with N = 14 and A′ = C{1, �} for varying dissipation strengths α

and γ and (a) � = |Z2〉〈Z2| and (b) � = |0〉〈0|. The characteristic periodic recurrences of scar dynamics are present in (a), but are increasingly
suppressed as we scale up α and γ , obfuscating the distinction with the thermal behavior in (b).

thermalizing [64], although some robustness is exhibited with
respect to disorder [68].

We consider Lindbladian dynamics of Eq. (18), with Lind-
blad operators corresponding to bulk dephasing L(z)

j = √
ασ z

j

and bulk driving L±
j = √

γ σ±
j , where σ±

j = 1/2(σ x
j ± iσ y

j ).
Simulating exact dynamics for N = 14, we compute the cor-
responding A-OTOCs as a function of time for the algebra
ALE with � = |Z2〉〈Z2| and � = |0〉〈0|. As we increase
the system-bath couplings α and γ , we observe that the
A-OTOC starts decaying from its closed-system value (α =
γ = 0) due to open-system effects (Fig. 1). At the same
time, the scar dynamics (revivals) that clearly distinguishes
the scar from the thermal dynamics in the closed-system
case is still present but becomes less apparent as we scale α

and γ .
Given the intuition following Proposition 3, we com-

pute the terms G(1)
A (Et ) = 1

d

∑d (A′ )
γ=1 ‖E ( fγ )‖2

2 and G(2)
A (Et ) =

1
d

∑d (A′ )
γ=1 ‖PA′E ( fγ )‖2

2 separately in Fig. 2. We observe that

the decoherence term G(1)
A (Et ) provides an enveloping func-

tion to the information scrambling term G(2)
A (Et ). After a

certain timescale, the distance between the functions is dimin-
ished and the system (in terms of scrambling of the algebra
degrees of freedom) becomes “saturated,” in the sense that
open-system effects dominate and the interesting information
scrambling behavior is suppressed.

B. Heisenberg model and decoherence-free subspace

Consider the Hamiltonian of a one-dimensional spin- 1
2

Heisenberg XXX model with N sites and periodic boundary
conditions

HXXX = J
N∑

j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1 + σ z

j σ
z
j+1

)
. (21)

In our numerical simulations, we set J = 1, which sets the
energy scale of the Hamiltonian and in turn the timescale of
the dynamics.

Let us assume that the evolution is described by Lind-
bladian dynamics as in Eq. (18) with Lindblad operators
corresponding to collective decoherence L(z) = √

α
∑N

j=1 σ z
j ,

L(±) = √
γ
∑N

j=1 σ±
j . Then, for even N there exists a

decoherence-free subspace (DFS) [69–71] spanned by the
spin-0 eigenstates of S2 := ∑

α=x,y,z(
∑N

j=1 σα
j )2. In fact, the

underlying structure is exactly as in Eq. (3), where J now
labels the irreducible representations of sl(2) on C⊗N and the
DFS simply corresponds to the singlets J = 0.

We consider the unital algebra of observables ADFS that act
nontrivially only on the orthogonal complement of the DFS.
Then, for the commutant A′

DFS we have the orthogonal basis

{ fγ }d2
D+1

γ=1 =
{
1⊥,

|p〉〈q|√
dD

}dD

p,q=1

,

FIG. 2. Temporal variation of the separated terms G(1)
A (E ) = 1

d

∑d (A′ )
γ=1 ‖E ( fγ )‖2

2 and G(2)
A (E ) = 1

d

∑d (A′ )
γ=1 ‖PA′E ( fγ )‖2

2 for the PXP model
with N = 14 and A′ = C{1, �} for varying dissipation strengths α and γ and (a) � = |Z2〉〈Z2| and (b) � = |0〉〈0|. After a timescale that
depends on the system-environment coupling, the open-system effects dominate and the scrambling is saturated.
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FIG. 3. (a) Temporal variation of the scrambling term G(2)
A (Et ) = 1

d

∑d (A′ )
γ=1 ‖PA′E ( fγ )‖2

2 of λ-perturbed DFS subspace algebras for the

Heisenberg XXX model with collective decoherence and N = 6 and α = γ = 0.05. Here G(2)
A (Et ) exhibits a decaying oscillatory behavior and

as we scale up the rotation strength λ, the long-time limit decreases (which corresponds to increased scrambling). (b) The long-time average
of the G(2)

A (Et ) depends quadratically on the rotation strength λ, showing a first-order stability of the DFS in terms of information scrambling.

where {|p〉}dD
p=1 is an orthonormal basis of the DFS and 1⊥ :=

1 − ∑dD
p=1 |p〉〈p|. We also consider λ-perturbed algebras de-

fined by unitary rotations U (λ) := exp{i∑N
j=1 λ�η j · �σ j} via

|pλ〉 := U (λ)|p〉, where �η j is a uniformly distributed vector on
the unit sphere in R3 and �σ j ≡ (σ x

j , σ
y
j , σ

z
j ). The free parame-

ter λ provides a simple representation of departure from exact
DFS dynamics due to model inaccuracies. Simulating exact
dynamics for N = 6, we compute the corresponding scram-
bling terms G(2)

A (Et ) of the A-OTOCs as functions of time for
various values of λ. Naturally, for λ = 0 there is no scram-
bling, as the DFS is invariant under both the Heisenberg XXX
Hamiltonian and collective decoherence and thus G(2)

A (Et ) is
constant in time. As λ is scaled up, the effects of decoherence
and information scrambling strengthen and G(2)

A (Et ) exhibits
a decaying oscillatory behavior [Fig. 3(a)]. In the long-time
limit the system generally transitions to fixed points that are
not entirely in the λ-perturbed subspace. As an example, for
N = 2, the singlet is invariant, the diagonal elements of the
triplet subspace transition to 1⊥, and all nondiagonal ele-
ments vanish. As we increase λ, the λ-perturbed algebra of
observables moves further from the fixed points, leading to
increased scrambling under evolution [which corresponds to
the decreased long-time limit of G(2)

A (E )].
In order to gauge the stability of the DFS in the λ perturba-

tion, we time average G(2)
A (Et ) for each λ in the time interval

[0,30] using a time step �t = 0.075. We find that G(2)
A (Et )

t

depends quadratically on the parameter λ [Fig. 3(b)], which
shows a first-order stability of the DFS in terms of scrambling.
This result is in accordance with previous stability consider-
ations with the addition of symmetry-breaking Hamiltonian
terms [71].

V. CONCLUSION

In this paper we have established a formalism for quan-
titatively describing scrambling at the level of algebras of
observables in open quantum systems. In doing so, we have
defined an algebraic (averaged) out-of-time-order correlator,
termed the A-OTOC, generalizing the open bipartite OTOC
to arbitrary algebras of observables that correspond to the
relevant physical quantities of interest of the system. Explicit

analytic calculations showed that the A-OTOC quantifies the
degree of deviation of A′ from its dynamically evolved image
E (A′) (Proposition 3) and allowed for the identification of
a competing role of the effects of decoherence and infor-
mation scrambling in the A-OTOC. For unitary dynamics
and a collinear algebra, we have shown that the A-OTOC is
exactly equal to the geometric algebra anticorrelator [37]. We
also computed its typical value for Haar random unitaries,
thereby providing a quantitative estimate for the A-OTOC
in chaotic quantum systems, which, after an initial transient,
are expected to equilibrate to this random matrix theory
value.

Additionally, we have studied concrete, physically moti-
vated examples of algebras and channels, showing that the
A-OTOC recovers, as special cases, the open-system exten-
sions of information-theoretic notions like the coherence-
generating power and Loschmidt echo. Analytic calculations
for a stabilizer algebra, as well as numerical simulations
for the Loschmidt echo algebra, demonstrate how decoher-
ence, after a certain timescale, suppresses the signatures
of information scrambling. The competing effects are de-
scribed by separated terms, with saturation occurring when
open-system effects dominate. A concrete manifestation of
this phenomenon was observed in the PXP model, where
the characteristic revivals related to the quantum scars are
suppressed as open dynamics become predominant. In addi-
tion, we have analyzed subspace algebras for the Heisenberg
XXX model with collective decoherence, where the subspaces
are obtained by unitary rotations of the decoherence-free
subspace and determined that the DFS is stable to first or-
der in terms of the time-averaged scrambling term of the
A-OTOC.

A worthwhile direction for future investigation is the
detailed characterization of the separate contributions of de-
coherence and information scrambling in the generalized
framework introduced in this paper so that one can disentan-
gle their contributions, both in principle and in experimental
setups. Additionally, it is of interest to consider the role of
the A-OTOC framework in general classifications of ergod-
icity breaking in physical models, e.g., with regard to the
spectrum-generating algebra of scar systems [56] or Hilbert
space fragmentation [72].
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APPENDIX

1. Proof of Proposition 1

Note that for a CPTP map E (Y )† = E (Y †). Then Eq. (4) can be rewritten as

GA(E ) = 1

d
EXA,YA′ (Tr[E (Y †

A′ )E (YA′ )] − Re{Tr[XAE (YA′ )X †
AE (Y †

A′ )]}), (A1)

where XA ∈ A, YA′ ∈ A′, and EXA,YA′ denotes averaging over the Haar measures on the unitary subgroups of operators in A and
A′. Letting S denote the SWAP operator in the replica space H⊗2 = H ⊗ H and recalling the replica trick

Tr[S(M ⊗ N )] = Tr(MN ), (A2)

we have further

GA(E ) = 1

d

(
Tr
{
SE⊗2

[
EYA′ (YA′ ⊗ Y †

A′ )
]}− Tr

{
SEXA (XA ⊗ X †

A)E⊗2
[
EYA′ (YA′ ⊗ Y †

A′ )
]})

≡ 1

d
Tr[S(1d2 − �A)E⊗2(�A′ )], (A3)

where �A := EXA (XA ⊗ X †
A) and �A′ := EYA′ (YA′ ⊗ Y †

A′ ). We now use the following result:

EQ(Q ⊗ Q†) = S

d
. (A4)

A proof of this result is as follows. Left invariance of the Haar measure implies that for any linear operators M,U ∈ L(H) where
U is unitary, we have that [U,EQQMQ†] = 0 and as a consequence of Schur’s lemma

EQQMQ† = Tr(M )

d
1d . (A5)

By direct computation one can also show that

Tr2[S(M ⊗ 1d )S] = Tr2(1d ⊗ M ) = Tr(M )1d , (A6)

Tr2[(Q ⊗ Q†)(M ⊗ 1d )S] = QMQ†, (A7)

where Tr2 denotes the partial trace over the second copy of H ⊗ H. Equation (A4) then follows by combining Eqs. (A5)–(A7).
Note that left invariance of the Haar measure also implies that

EQQ = 0. (A8)

In our case, we have XA ∈ A, which means that XA = ⊗dZ
J=11nJ ⊗ XdJ . Thus

�A = EXA (XA ⊗ X †
A) = EXA

( ⊗dZ
J,J ′=1 1nJ ⊗ XdJ ⊗ 1nJ′ ⊗ X †

dJ′

)
= ⊗dZ

J=1EXdJ

(
1nJ ⊗ XdJ ⊗ 1nJ ⊗ X †

dJ

) ⊗dZ
J �=J ′=1 EXdJ ,XdJ′

(
1nJ ⊗ XdJ ⊗ 1nJ′ ⊗ X †

dJ′

)
∼= ⊗dZ

J=11
⊗2
nJ
EXdJ

(
XdJ ⊗ X †

dJ

) ⊗dZ
J �=J ′=1 1nJ ⊗ 1nJ′EXdJ′

[(
EXdJ

XdJ

) ⊗ X †
dJ′

]
(A4),(A8)=== ⊗dZ

J=11
⊗2
nJ

⊗ SdJ

dJ
. (A9)

By virtue of the structure theorem (3), we can choose the following orthogonal basis of A:

eα = 1nJ√
dJ

⊗ |k〉〈l|, α := (J, l, m), l, m = 1, . . . , dJ , J = 1, . . . , dZ . (A10)
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Then

d (A)∑
α=1

eα ⊗ e†
α = ⊗dZ

J=1

dJ∑
k,l=1

1nJ√
dJ

⊗ |k〉〈l| ⊗ 1nJ√
dJ

⊗ |l〉〈k| ∼= ⊗dZ
J=11

⊗2
nJ

⊗ SdJ

dJ
. (A11)

Comparing Eqs. (A9) and (A11), we get

�A =
d (A)∑
α=1

eα ⊗ e†
α

∼= ⊗dZ
J=11

⊗2
nJ

⊗ SdJ

dJ
. (A12)

Similarly,

�A′ =
d (A′ )∑
γ=1

fγ ⊗ f †
γ

∼= ⊗dZ
J=1

SnJ

nJ
⊗ 1⊗2

dJ
, (A13)

where fγ is an orthogonal basis of A′ given as

fγ = |p〉〈q| ⊗ 1dJ√
nJ

, γ := (J, p, q), p, q = 1, . . . , nJ , J = 1, . . . , dZ . (A14)

Note that the orthogonal bases in Eqs. (A10) and (A13) are defined up to unitary transformations and are suitable for expressing
the projectors on A′ and A in an operator sum representation as PA′[•] = ∑d (A)

α=1 eα[•]e†
α and PA[•] = ∑d (A′ )

γ=1 fγ [•] f †
γ .

2. Proof of Corollary 1

Using Eq. (A12), we have

�A ∼= ⊗dZ
J=11

⊗2
nJ

⊗ SdJ

dJ
= S ⊗dZ

J=1

SnJ

dJ
⊗ 1⊗2

dJ
∼= S

d (A′ )∑
γ=1

f̃γ ⊗ f̃ †
γ , (A15)

where f̃γ := fγ
‖ fγ ‖2

. Then, from Eq. (5) we have

GA(E ) = 1

d
Tr

⎡⎣S

⎛⎝1 − S
d (A′ )∑
γ=1

f̃γ ⊗ f̃ †
γ

⎞⎠ d (A′ )∑
γ ′=1

E ( fγ ′ ) ⊗ E ( f †
γ ′ )

⎤⎦
= 1

d

d (A′ )∑
γ ′=1

⎛⎝Tr[SE ( fγ ′ ) ⊗ E ( f †
γ ′ )] −

d (A′ )∑
γ=1

Tr[ f̃γ E ( fγ ′ ) ⊗ f̃ †
γ E ( f †

γ ′ )]

⎞⎠
= 1

d

d (A′ )∑
γ ′=1

‖E ( fγ ′ )‖2
2 − 1

d

d (A′ )∑
γ ,γ ′=1

|〈 f̃ †
γ , E ( fγ ′ )〉|2. (A16)

3. Proof of Proposition 2

Using the definition (4),

GA(E ) = 0 ⇔ EXA,YA′ ‖[XA, E (YA′ )]‖2
2 = 0 ⇔ ‖[X, E (Y )]‖2

2 = 0

⇔ [X, E (Y )] = 0 ∀ X ∈ U (A), Y ∈ U (A′). (A17)

Since every finite-dimensional C∗ algebra is ∗ isomorphic to the direct sum of full matrix algebras [39], it follows that we can
always find a unitary basis for A and A′ and thus Eq. (A17) is equivalent to

GA(E ) = 0 ⇔ [M, E (N )] = 0 ∀ M ∈ A, N ∈ A′

⇔ E (A′) ⊆ A′. (A18)
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4. Proof of Proposition 3

Using Eqs. (A12) and (A13) in Eq. (5), we have

GA(E ) = 1

d

d (A′ )∑
γ=1

Tr

⎡⎣S

⎛⎝1d2 −
d (A)∑
α=1

eα ⊗ e†
α

⎞⎠E⊗2

⎛⎝d (A′ )∑
γ=1

fγ ⊗ f †
γ

⎞⎠⎤⎦
= 1

d

d (A′ )∑
γ=1

⎛⎝Tr[SE ( fγ ) ⊗ E ( f †
γ )] −

d (A)∑
α=1

Tr[SeαE ( fγ ) ⊗ e†
αE ( fγ )†]

⎞⎠
= 1

d

d (A′ )∑
γ=1

[〈E ( fγ ), E ( fγ )〉 − 〈E ( fγ ),PA′E ( fγ )〉]. (A19)

Since PA′ is an orthogonal projector, 〈(I − PA′ )E ( fγ ),PA′E ( fγ )〉 = 0 and Eq. (A19) becomes

GA(E ) = 1

d

d (A′ )∑
γ=1

[‖E ( fγ )‖2
2 − ‖PA′E ( fγ )‖2

2

]
. (A20)

On the other hand, Eq. (A19) also yields

GA(E ) = 1

d

d (A′ )∑
γ=1

〈E ( fγ ), (I − PA′ )E ( fγ )〉

= 1

d

d (A′ )∑
γ=1

‖(I − PA′ )E ( fγ )‖2
2. (A21)

5. Proof of Corollary 2

From Eq. (A20) we have

G(2)
A (E ) = 1

d

d (A′ )∑
γ=1

‖PA′E ( fγ )‖2
2 = 1

d

d (A′ )∑
γ=1

〈E ( fγ ),PA′E ( fγ )〉

= 1

d

d (A′ )∑
γ=1

d (A)∑
α=1

Tr[E ( fγ )†e†
αE ( fγ )eα]. (A22)

6. Proof of Proposition 4

Recall that any unital, positive, trace-preserving map T is contractive for the p-norm4 for all p ∈ [1,∞] in the sense that
supX

‖T (X )‖p

‖X‖p
� 1 [75]. Since E is a unital CPTP map, this in particular implies that

‖E (X )‖2 � ‖X‖2 ∀ X ∈ L(H). (A23)

Moreover, as a direct consequence of ‖X − TrX
d 1d‖2

2 � 0 we have

‖X‖2
2 � |TrX |2

d
∀ X ∈ L(H). (A24)

Finally, recall that the Cauchy-Schwarz inequality implies that d2 � d (A′)d (A). Using the above observations in Eq. (A20),

GA(E ) � 1

d

d (A′ )∑
γ=1

‖ fγ ‖2
2 − 1

d

d (A′ )∑
γ=1

|Tr[PA′E ( fγ )]|2
d

= 1

d

d (A′ )∑
γ=1

Tr( f †
γ fγ ) − 1

d

d (A′ )∑
γ=1

∣∣∣Tr
(∑d (A)

α=1 eαE ( fγ )e†
α

)∣∣∣2
d

4The (Schatten) p-norm [74] is defined as ‖X‖p := (
∑

i sk
i )1/k , where {si}i are the singular values of X .
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= 1

d
Tr

⎛⎝ dZ∑
J=1

nJ∑
p,q=1

1√
nJ

f(Jqq)

⎞⎠ − 1

d

d (A′ )∑
γ=1

∣∣∣Tr
(∑dZ

J=1

∑dJ
k,l=1 E ( fγ ) 1√

dJ
e(Jll )

)∣∣∣2
d

= 1

d
Tr(1d ) − 1

d

d (A′ )∑
γ=1

|Tr[E ( fγ )1d ]|2
d

= 1 − 1

d

d (A′ )∑
γ=1

|Tr fγ |2
d

= 1 − d (A)

d2
� 1 − 1

d (A′)
. (A25)

On the other hand, consider a unitary transformation êβ := ∑d (A)
α=1 (U )αβeα of the basis in Eq. (A10), given by a unitary U such

that (U )(Jkl )1 =
√

dJ
d (A)δkl . This is a valid choice since

∑
(Jkl )(U

†)1(Jkl )(U )(Jkl )1 = 1, as it should for a unitary matrix. Then

ê1 =
dZ∑

J=1

dJ∑
k,l=1

√
dJ

d (A)
δkl

1nJ√
dJ

⊗ |k〉〈l| = 1d√
d (A)

. (A26)

Moreover, expressing

1nJ =
nJ∑

n(J )=1

|n(J )〉〈n(J )|, 1dJ =
dJ∑

d (J )=1

|d (J )〉〈d (J )|, E[•] =
∑

δ

Kδ • K†
δ

and using Eqs. (A10) and (A14), we can find after some algebra that

d (A′ )∑
γ=1

Tr[êβE ( fγ )ê†
βE ( f †

γ )]

=
dZ∑
J=1

∑
δ,δ′

dJ∑
d (J ),d ′ (J )=1

1

nJ

∣∣∣∣∣∣
dZ∑

J ′=1

d (A)∑
k,l=1

d (A′ )∑
p=1

nJ∑
n(J′ )=1

(U )(J ′kl )β√
dJ ′

〈n(J ′ ), l|Kδ|p, d (J )〉〈p, d ′(J )|K†
δ′ |n(J ′ ), k〉

∣∣∣∣∣∣
2

� 0 ∀β.

Then, using Eqs. (A20), (A22) with the basis êβ , and (A23), we obtain

GA(E ) � 1

d

d (A′ )∑
γ=1

‖E ( fγ )‖2
2 − 1

d

∑
γ=1

Tr[E ( fγ )†ê†
1E ( fγ )ê1]

= 1

d

d (A′ )∑
γ=1

‖E ( fγ )‖2
2 − 1

dd (A)

∑
γ=1

Tr[E ( fγ )†E ( fγ )] =
(

1

d
− 1

dd (A)

) d (A′ )∑
γ=1

‖E ( fγ )‖2
2

�
(

1

d
− 1

dd (A)

) d (A′ )∑
γ=1

‖ fγ ‖2
2 = 1 − 1

d (A)
. (A27)

From Eqs. (A25) and (A27) it follows that GA(E ) � min{1 − 1
d (A) , 1 − 1

d (A′ ) }.

7. Proof of Proposition 5

This follows from the fact that [XA,U (YA′ )] = −U ([YA′ ,U†(XA)]), the unitary invariance of the 2-norm and the double
commutant theorem. Using the definition (4),

GA(U ) : = 1

2d
EXA,YA′ ‖[XA,U (YA′ )]‖2

2 = 1

2d
EXA,YA′ ‖ − U ([YA′,U†(XA)])‖2

2

= 1

2d
EXA,YA′ ‖[YA′ ,U†(XA)]‖2

2 = GA′ (U†). (A28)

8. Proof of Proposition 6

Note from Eq. (A10) that {eα} is † closed, which implies that S�AS = �
†
A = �A ⇔ [S,�A] = 0. Also, clearly [S,U ⊗2] =

0. Finally, for the collinear case and using Eqs. (A13) and (A15), we have

�A′ = ⊗dZ
J=11

⊗2
dJ

⊗ SnJ

nJ
= ⊗dZ

J=1λ1
⊗2
dJ

⊗ SnJ

dJ
= d

d (A′)
S�A.
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Then, using (A3) we find

GA(U ) = 1

d
Tr[S(1d2 − �A)U⊗2(�A′ )] = 1

d
Tr

[
S(1d − �A)U⊗2

(
d

d (A′)
S�A

)]
= 1

d (A′)
{Tr[U⊗2(�A)] − Tr[�AU⊗2(�A)]}

= 1 − 1

d (A′)
〈�A,U⊗2(�A)〉, (A29)

where in the last line we also used that from Eq. (A12)

Tr[U⊗2(�A)] = Tr�A = Tr

(
⊗dZ

J=11
⊗2
nJ

⊗ SdJ

dJ

)
=

dZ∑
J=1

n2
J = d (A′).

The last expression in Eq. (A29) coincides with Eq. (4) for the GAAC in Ref. [37].

9. Proof of Proposition 7

By Schur-Weyl duality the commutant of the algebra K generated by {M⊗2 | M ∈ L(H)} is K′ = CS2, where S2 = {1d , S}
is the symmetric group over the copies in H ⊗ H [76]. Since we can always find a unitary basis of L(H), it follows that K is

equivalently generated by {U ⊗2 | U ∈ L(H),UU † = 1d}. Also, note that PK′ [•] := U⊗2•U ≡ U ⊗2[•]U †⊗2
U

is an orthogonal
projector on K′.5 Thus we can express PK′ in terms of the orthonormal basis { 1d +S√

2d (d+1)
, 1d −S√

2d (d−1)
} of CS2:

PK′[•] = U⊗2(·)U =
∑
η=±1

1d + ηS

2d (d + η)
〈1d + ηS, •〉. (A30)

Now, using Eqs. (A3), (A12), (A13), and (A30), we have

GA(U )
U = 1

d
Tr[S(1d2 − �A)U⊗2(�A′ )

U
]

= 1

d
Tr

⎛⎝S(1d2 − �A)
∑
η=±1

1d + ηS

2d (d + η)

〈
1d + ηS,

d (A′ )∑
γ=1

fγ ⊗ f †
γ

〉⎞⎠
= 1

d
Tr

⎛⎝S(1d2 − �A)
∑
η=±1

1d + ηS

2d (d + η)

d (A′ )∑
γ=1

Tr( fγ ⊗ f †
γ ) + η Tr[S( fγ ⊗ f †

γ )]

⎞⎠
= 1

d
Tr

⎛⎝S(1d2 − �A)
∑
η=±1

1d + ηS

2d (d + η)

d (A′ )∑
γ=1

|Tr fγ |2 + η Tr( fγ f †
γ )

⎞⎠
= 1

d
Tr

⎛⎝S(1d2 − �A)
∑
η=±1

1d + ηS

2d (d + η)
[d (A) + ηd]

⎞⎠
=

∑
η=±1

d (A) + ηd

2d2(d + η)
Tr(S + η1d − S�A − ηS�AS)

=
∑
η=±1

d (A) + ηd

2d2(d + η)

⎡⎣d + ηd2 − Tr

⎛⎝S
d (A)∑
α=1

eα ⊗ e†
α

⎞⎠ − η Tr

⎛⎝d (A)∑
α=1

eα ⊗ e†
α

⎞⎠⎤⎦
=

∑
η=±1

d (A) + ηd

2d2(d + η)

⎛⎝d + ηd2 −
d (A)∑
α=1

Tr(eαe†
α ) − η

d (A)∑
α=1

|Treα|2
⎞⎠

=
∑
η=±1

d (A) + ηd

2d2(d + η)
η[d2 − d (A′)] = [d2 − d (A)][d2 − d (A′)]

d2(d2 − 1)
. (A31)

5It is not hard to check that P †
K′ = PK′ , P 2

K′ = PK′ , {PK′ (M ) | M ∈ L(H⊗2)} ⊆ K′, PK′ (1d ) = 1d , and PK′ (S) = S.
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10. Example 1 calculations

Note that since M is a unitary involution, (AdM )2 = I, so L2
1 = −2L1 and inductively Ln

1 = (−2)n−1L1 ∀ n � 1, n ∈ Z. Thus

E1t =
∞∑

n=0

(tL1)n

n!
= I + L1

∞∑
n=1

t n(−2)n−1

n!
= I + (AdM − I )

1

2
(1 − e−2t ) = α(t )I + β(t )AdM, (A32)

where α(t ) ≡ 1+e−2t

2 and β(t ) ≡ 1−e−2t

2 . Recalling the definition (4),

GAB (E1t ) = 1

22n
EXAB ,YA′

B

{∥∥[XAB , α(t )YA′
B
+ β(t )AdM

(
YA′

B

)]∥∥2

2

}
= β2(t )

1

22n
EXAB ,YA′

B

{∥∥[XAB , AdM
(
YA′

B

)]∥∥2

2

} = β2(t )GAB (AdM ). (A33)

Since AdM is a unitary channel with |〈μ′|M|μ〉| = 2−n/2,

GAB (AdM ) = 1 − 1

2n

2n∑
μ,μ′=1

|〈μ′|M|μ〉|4 = 1 − 1

2n
(A34)

and so

GAB (E1t ) = β2(t )

(
1 − 1

2n

)
. (A35)

11. Example 2 calculations

Note that since �i are eigenprojectors of H , [adH,DH ] = 0 and adHDH = 0. Also, DH is an orthogonal projector, so

E2t = eit adH eλtDH e−λt = eit adH (1 − DH + eλtDH )e−λt = e−λt [eit adH + (eλt − 1)DH ]

= a(t )eit adH + [1 − a(t )]DH , (A36)

where a(t ) ≡ e−λt . Since Tr(Pμ�i ) = 2−n,

DH (Pμ) =
2n∑

i=1

�iPμ�i = 2−n
2n∑

i=1

�i = 1

2n
, (A37)

so

GAB (E2t ) = 1

22n
EXAB ,YA′

B

(∥∥{XAB , a(t )eit adH
(
YA′

B

) + [1 − a(t )]DH
(
YA′

B

)}∥∥2

2

)

= a2(t )
1

22n
EXAB ,YA′

B

{∥∥[XAB , eit adH
(
YA′

B

)]∥∥2

2

} = a2(t )GAB (eit adH ). (A38)

Note that eit adH [•] = eitH • e−itH is a unitary channel and since H2 = 1, eitH = cos t1 + i sin tH . Thus

GAB (eit adH ) = 1 − 1

2n

2n∑
μ,μ′=1

|〈μ′|cos t1 + i sin tH |μ〉|4 = 1 − 1

2n

2n∑
μ,μ′=1

|δμ′μ cos t + iδμ′μ̄ sin t |4

= 1 − 1

2n

2n∑
μ,μ′=1

δμ′μ cos4 t + δμ′μ̄ sin4 t + 2δμ′μδμ′μ̄ cos2 t sin2 t = 1 − (cos4 t + sin4 t ) = sin2(2t )

2
, (A39)

where we used that 〈μ′|H |μ〉 = δμ′μ̄ and μ̄ �= μ∀μ. Thus

GAB (E2t ) = a2(t )
sin2(2t )

2
. (A40)

12. Proof of Eq. (15)

Using { fγ }d (A′ )
γ=1 = {�,1 − �} in Eq. (6) and the fact that E is CPTP, we have

GALE (E ) = 1

d

(
‖E (�)‖2

2 + ‖E (1 − �)‖2
2 − |〈�, E (�)〉|2 − |〈�, E (1 − �)〉|2 −

∣∣∣∣〈 1 − �√
d − 1

, E (�)

〉∣∣∣∣2 −
∣∣∣∣〈 1 − �√

d − 1
, E (1 − �)

〉∣∣∣∣2
)

= 1

d

(
‖E (�)‖2

2 + Tr[1 + E (�)E (�) − 2E (�)] − |Tr[�E (�)]|2 − Tr[� − �E (�)]2 − 1

d − 1
|Tr[E (�) − �E (�)]|2
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− 1

d − 1
|Tr[1 − E (�) − � + �E (�)]|2

)
= 1

d

(
2‖E (�)‖2

2 + d − 2 − L2
2 − (1 − L2)2 − 1

d − 1
(1 − L2)2 − 1

d − 1
(d − 2 + L2)2

)
= 2

d

(
‖E (�)‖2

2 − L2(dL2 − 2) + 1

d − 1

)
, (A41)

where L2 := Tr[�E (�)].

13. Proof of Eq. (17)

We can compute the A-OTOC using either the basis { fγ }d (A′ )
γ=1 = {1J}2n−k

J=1 or the basis { f̂δ}d (A′ )
δ=1 = {Sμ/2(n−k)/2}2n−k

μ=1. Here it is
convenient to use the former. Let us now formalize the chosen rank-1 dephasing operators

�
(J )
i = ∣∣ψ (J )

i

〉〈
ψ

(J )
i

∣∣, i = 1, . . . , χ, J = 1, . . . , 2n−k

� jα =
⎛⎝2n−k∑

J=1

λ
(J )
jα

∣∣ψ (J )
j

〉⎞⎠⎛⎝2n−k∑
J=1

λ̄
(J )
jα

〈
ψ

(J )
j

∣∣⎞⎠, j = χ + 1, . . . , 2k, α = 1, . . . , 2n−k,
∣∣λ(J )

jα

∣∣2 = 1

2n−k
,

(A42)

where {|ψ (J )
k 〉}2k

k=1 is an orthonormal basis of the J irreducible representation, the phases of λ
(J )
jα are chosen such that the projectors

are orthogonal, and λ̄ denotes the complex conjugate. Let us compute the quantity

〈1J ′ ,Dχ (1J )〉 = Tr

⎡⎣1J ′

⎛⎝ χ∑
i=1

2n−k∑
J1=1

�
(J1 )
i 1J�

(J1 )
i +

2k∑
j=χ+1

2n−k∑
α=1

2n−k∑
J2,J3,J4,J5=1

λ
(J2 )
jα λ̄

(J3 )
jα λ

(J4 )
jα λ̄

(J5 )
jα

∣∣ψ (J2 )
j

〉〈
ψ

(J3 )
j

∣∣1J

∣∣ψ (J4 )
j

〉〈
ψ

(J5 )
j

∣∣⎞⎠⎤⎦
= Tr

⎛⎝ χ∑
i=1

2n−k∑
J1=1

δJ1J ′δJ1J�
(J1 )
i +

2k∑
j=χ+1

2n−k∑
α=1

2n−k∑
J2,J3,J4,J5=1

δJ2J ′δJ3JδJ3J4λ
(J2 )
jα λ̄

(J3 )
jα λ

(J4 )
jα λ̄

(J5 )
jα

∣∣ψ (J2 )
j

〉〈
ψ

(J5 )
j

∣∣⎞⎠
=

χ∑
i=1

δJ ′J +
2k∑

j=χ+1

2n−k∑
α=1

2n−k∑
J5=1

λ
(J ′ )
jα λ̄

(J )
jα λ

(J )
jα λ̄

(J5 )
jα δJ ′J5

= χδJ ′J +
2k∑

j=χ+1

2n−k∑
α=1

∣∣λ(J ′ )
jα

∣∣2∣∣λ(J )
jα

∣∣2 = χδJ ′J + (2k − χ )2n−k 1

(2n−k )2

= χδJ ′J + 2k − χ

2n−k
. (A43)

Now, using Eq. (A43), the A-OTOC is

GAst (Dχ ) = 1

2n

⎛⎝2n−k∑
J=1

〈Dχ (1J ),Dχ (1J )〉 −
2n−k∑

J,J ′=1

∣∣∣∣〈 1J ′√
2k

,Dχ (1J )

〉∣∣∣∣2
⎞⎠

= 1

2n

⎛⎝2n−k∑
J=1

〈1J ,Dχ (1J )〉 − 1

2k

2n−k∑
J,J ′=1

∣∣∣∣χδJ ′J + 2k − χ

2n−k

∣∣∣∣2
⎞⎠

= 1

2n

⎡⎣2n−k∑
J=1

(
χ + 2k − χ

2n−k

)
− 1

2k

2n−k∑
J,J ′=1

χ2δJ ′J +
(

2k − χ

2n−k

)2

+ 2χ

(
2k − χ

2n−k

)
δJ ′J

⎤⎦
= 1

2n

(
χ2n−k + 2k − χ − 1

2k
[χ22n−k + (2k − χ )2 + 2χ (2k − χ )]

)
=
(

1 − 2k

2n

)
χ

2k

(
1 − χ

2k

)
. (A44)
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