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We numerically study two methods of measuring tunneling times using a quantum clock. In the conventional
method using the Larmor clock, we show that the Larmor tunneling time can be shorter for higher tunneling
barriers. In the second method, we study the probability of a spin-flip of a particle when it is transmitted through
a potential barrier including a spatially rotating field interacting with its spin. According to the adiabatic theorem,
the probability depends on the velocity of the particle inside the barrier. It is numerically observed that the
probability increases for higher barriers, which is consistent with the result obtained by the Larmor clock. By
comparing outcomes for different initial spin states, we suggest that one of the main causes of the apparent
decrease in the tunneling time can be the filtering effect occurring at the end of the barrier.
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I. INTRODUCTION

The measurement of time is often ambiguous in quan-
tum mechanics due to the absence of a time operator [1-4].
In particular, the problem of quantum tunneling time, i.e.,
“How long does quantum tunneling take?” has been a long-
standing controversial issue of quantum mechanics [5-14].
Quantum tunneling has been studied in various fields, includ-
ing superconductors [15], spintronics [16], micromaser fields
[17], nuclear fusion [18], biological or chemical processes
[19,20], composite particle dynamics [21-25], and relativistic
quantum mechanics [26-28]. Many attempts have been made
to define tunneling times, including the phase times [5,6],
the dwell time [29], the Larmor time [30], or by using the
time-dependent potential barrier [31], paths integrals [32],
and weak measurements [33,34]. It has now become possi-
ble to address the problem experimentally using strong-field
tunneling ionization [35] or ultracold atoms [36,37]. One of
the simplest possible methods to measure tunneling times can
be to compare the difference in the time of arrival of a wave
packet with and without a tunneling barrier [12,13]. Precise
measurement by this method requires that both the initial
wave packet and the wave packet after tunneling through
a barrier have small uncertainty in position. However, this
results in large uncertainty in momentum, making it difficult
to restrict the modes of the wave packet to have energies less
than the barrier height. It is generally known that the position
uncertainty of the wave packet should be greater than the
width of the barrier to simultaneously satisfy the conditions
that most modes in the wave packet have energies less than
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the barrier height and that the transmission probability of the
particle through the barrier is reasonably large. As a result,
the uncertainty of the measurement can be greater than the
measured tunneling time by this method. Another method that
has been recently implemented by an experiment is to use the
Larmor clock [30,36,37]. In this method, a quantum system
such as spin is attached to a particle as a clock. The clock then
could be used to measure tunneling times when it is made to
run only within the barrier [1,30]. It was observed that the
Larmor time, interpreted as the tunneling time, appears to be-
come shorter as the barrier height increases [36,37]. Although
many analytical studies have been done on tunneling times,
there are few numerical calculations on the subject. In this
paper, we numerically study the use of quantum clocks for
measuring tunneling times. In particular, we focus on the im-
pact of the measurement-induced back action and the filtering
effect of the barrier, i.e., the preferential transmission of high
momentum modes by the barrier. In addition to the method
using the Larmor clock, we introduce an alternative method
using the adiabatic theorem to investigate time-of-flight and
tunneling times. Comparing the two methods may clarify the
differences in behaviors caused by the back action and the
filtering effect.

This paper is organized as follows. In Sec. II, we review the
measurements of time-of-flight and tunneling times using the
Larmor clock. We show that the decrease of the Larmor time
for higher barriers is observed in the numerical simulation
of the wave-packet dynamics. The numerical results obtained
are similar to those observed experimentally in [36,37]. In
Sec. III, we introduce an alternative method of investigating
time-of-flight and tunneling times using the adiabatic theo-
rem. The adiabatic theorem [38] has been applied to a wide
range of contexts in quantum mechanics, such as quantum
phase transitions [39-45], geometric phase [46], quantum
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computations [47], chemical reactions [48], and atomic or
molecular collision theory [49,50]. We consider the adiabatic
theorem for a spin of a particle that propagates through the
region with a gradual rotation of the direction of the field inter-
acting with the spin. The model could be relevant to electronic
transport through a domain wall in a ferromagnet [51-53]
and spin transistor action [54,55]. The high probability of a
spin flip of the particle after transmission can indicate that the
particle traversed the barrier nonadiabatically. It is observed
that the particle transmitted through the higher barrier exhibits
a higher probability of a spin flip, which is consistent with the
results discussed in Sec. II. By performing numerical simula-
tions with different initial spin states, we explore the relevance
of the back action and the filtering effect to these observations.
Finally, we conclude that the filtering effect occurring at the
end of the barrier can be one of the main causes of the apparent
decrease in the tunneling time with increasing potential height
(Sec. 1V).

II. LARMOR CLOCK FOR TUNNELING TIMES

In this section, we review the measurements of time-
of-flight and tunneling times using the Larmor clock by
performing numerical simulations. The Larmor clock can be
described by the dynamics of a spin-1/2 particle whose spin
experiences Larmor precession in the region where it interacts
with the magnetic field, i.e., |[y| < D. The Hamiltonian is
given by

]22 wo
H =Hy+ Hsr = -— — —g(y)o, ()
2m 2

where m is the mass of the particle, wy is the coupling con-
stant, o, is the Pauli matrix, and g(y) =1 for |y| < D and
g(y) = 0 otherwise.

We assume that the particle travels in the § direction and its
spin is initially polarized in the X direction. When the particle
initially starts at y <« —D, the time of flight in the region
where |y| < D is measured using the Larmor precession. On
the measurement of the spin state of the particle at y > D, we
define

{Sy) 1 (S2)

, T, = —arctan———=, (2)
(S0)* + (Sy)?

where (S;), (Sy), and (S;) are the expectation values of the
spin component. T, represents the time of flight of the particle
in the region where |y| < D and t, is associated with the
measurement-induced back action caused by the interaction
of the magnetic field with the spin of the particle.

As an example, we prepare the initial wave packet of the
particle, |Wi,) = ¥o(y)|s) where |s) = |1) is the spin-up state
in the X direction and
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)1/4 exXp <_M + ik())’) > 3
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with the uncertainty of position oy, and ko representing the
momentum in the § direction.

The particle is initially located at yo = —9.5D at time
t =0 and we choose o,/D = 1. We numerically solve the
time-dependent Schrodinger equation with H (1) using finite-
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FIG. 1. 7, with different initial velocities obtained numerically
(black circles). The solid black line represents the analytical estimate
7, = 2D /v, for comparison.

difference methods to obtain the time evolution of the wave
packet. After the propagation of the particle through the re-
gion |y| < D, we obtain the wave packet |Woy) = e #|\W;,).
We evaluate 7, from the wave packet arriving at y > D at
t = 15D /vy with different vy such that wy/Ey € [0.01, 0.13]
where vy = ko/m and Ey = k3/2m. Figure 1 shows T, ob-
tained by the above numerical method (black circles). Since
the expectation value of the particle velocity is given by
(k)/m = vg, the time of flight of the particle over the region
ly| < D is analytically estimated as 2D /v, (solid black line).
It can be seen from the figure that the Larmor clock makes it
possible to measure time of flight. However, this measurement
has limitations. To have a good resolution of time, a large
energy transfer between the clock and the translational motion
of the particle is necessary. This energy transfer modifies
the dynamics of the particle. In [1], it was estimated that
wo ~ 1/AT where AT is the time resolution of the clock.
Assuming wy < Ej so that the effect of measurement is small,
the lower limit of the time resolution of the clock is given
by AT > 1/Ey. It was further argued that this lower limit
imposes a limitation on the accuracy of the measurement of
the particle velocity over a distance 2D. Since v ~ 2D/T
where T is the time of flight, Av ~ v?AT /2D > 1/2Dm or
Ak > 1/2D. Therefore, only measurements on the particle
with ky > 1/2D can have reasonable accuracy. These are
inherent limitations of time-of-flight measurements through
the quantum clock. Nevertheless, the Larmor clock is com-
monly used to investigate tunneling times. In the following,
we discuss the results which can be obtained when the tun-
neling time is measured using the Larmor clock despite these
limitations.

To study the quantum tunneling problem, we introduce the
potential barrier

]22 wo

H= 5"~ —80)0o: +UW) 4)

where U(y) is the rectangular potential barrier such that
U(®y) = U, for |y| < D and U (y) = 0 otherwise.

We prepare the wave packet |Wj,) as above with yg =
—50D and |s) = [1). We choose 0,,/D = 10 and wo/Eq = 0.1.
As in the previous case, the wave packet propagates through
the region |y| < D. 7, and 1, are measured from the wave
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FIG. 2. t,, 7, (upper panel) and transmission probability (lower
panel) as the function of Uy/E, obtained numerically.

packet arriving aty > D att = 120D /vy. Figure 2 shows 1, T,
(upper panel) and the transmission probability of the particle
through the barrier (lower panel) as the function of Uy/Ej ob-
tained numerically. Since the velocity inside the barrier can be
approximated by v’ ~ /2m(Ey — Uy)/m when Uy/Ey < 1,
it can be seen that t, ~ 2D/v’ increases with Uy/Ep in the
regime. However, as Uy approaches E and exceeds it, T, starts
to decrease. On the other hand, t, generally tends to increase
with Uy /Ey. It was confirmed that the expectation value of the
kinetic energy (E) for the wave packet arriving at y > D gives
(E) < Uy when Uy/Ey > 1. Therefore, most modes of the
transmitted wave packet have experienced the tunneling effect
in the regime. Similar results were obtained in the experiment
attempting to measure the tunneling time using the Larmor
clock [36,37]. The decrease of 7, in the tunneling regime was
interpreted as the tunneling taking less time for higher barri-
ers. In the next section, we introduce an alternative method to
investigate time-of-flight and tunneling times using the adia-
batic theorem and explore the possible causes of these results.

1I1. ADIABATIC THEOREM FOR TUNNELING TIMES

In the previous section, the back action t, results in dif-
ferent transmission probabilities for spin-up and spin-down
states in the Z direction, while the initial spin state is prepared
in the spin-up state in the X direction. In this section, we
introduce an alternative method to investigate time-of-flight
and tunneling times using the adiabatic theorem where the
initial spin state can be set to the spin-up or spin-down state
in the X direction, and the spin-field interaction causes dif-
ferent transmission probabilities for these spin states in the X

direction as well. For this reason, the following method may
clarify the relationship between outcomes of tunneling time
measurements and measurement-induced back action.
We consider the Hamiltonian for the spin-1/2 particle
whose spin interacts with the spatially rotating field'
72

k wo =
H=Hy+Hsr = — + —
2m

5[ (&)

where f represents the direction of the field and & =
(oy, 0y, o) are the Pauli matrices. We assume that the particle
travels in the ¥ direction.

We choose
—sin 32X +cos 33§ for |y| < D,
f={—sen(»% forD< Iyl <L, (6)
0 for |y| > L,

where L > D.

In this choice, the field rotates in the x-y plane. How-
ever, the following arguments are equally applicable to other
choices (e.g., the rotation of the field in the x-z plane). We
have

0 —iexp(—iz2
@o 2D
5 <i exp (l.gy) 0 for |y| < D,
Hsp=1 o O sgn(y)
—« (sgn(y) 0 for D < |y| <L,
0242 for |y| > L.

N

It is assumed that f =0 when ly] > L. However, the dis-
cussions below also apply to the case where the uniform field
f = —sgn(y)X exists for |y| > L. The particle initially starts
at y <« —L with the spin-up or spin-down state along the field
at y = —D. Its initial wave packet is given by (3) as before.
We calculate the probability of a spin flip after the propa-
gation through the region [y| < D. If the particle propagates
such that (y(¢)) = vot where vy = ko/m, Hsp[y(t)] appears
as the time-dependent Hamiltonian with the field rotating at
the angular velocity w(vy) = mvy/2D from the point of view
of the spin degrees of freedom. Therefore the approximate
time-dependent Schrodinger equation for a spin state y(z),
ih% x () ~ Hgp(t)x(¢) gives the familiar problem of a par-
ticle with a spin in the rotating field and the probability of a
spin flip can be calculated as [56]

P = ! sin (Z\/ 1+ [a)o/a)(vo)]z) 2.(8)
V1 + [wo/w(vo)]? 2

This indicates that the adiabaticity is maintained when the
velocity is small and the rotation of the field is slow in the
perspective of the spin state so that the spin can track the re-
orientation of the field. In other words, P — 0 when tp > 19
where 7p = 1/w(vy) is the characteristic time for a change in
HSF and T = l/a)o.

IThe situation relevant to our toy model could be a conduction elec-
tron locally exchange coupled to electrons in a fixed configuration
responsible for the magnetization of domains (separated by a domain
wall).
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FIG. 3. The probability of a spin-flip P obtained numerically.
The initial spin state is prepared in |1) (blue circles) and || ) (red
crosses), respectively. The solid gray line is given by the analytical
expression Eq. (8) for comparison.

In the following, we choose o,/D=1 and L/D =
2. The particle is initially located at yy = —9.5D at
time r=0. We numerically solve the time-dependent
Schrodinger equation with H (5). After the propagation
of the particle through the region |y| < D, we obtain
the wave packet [Wou) = e |Win) =3, | ¥ (n)ls). We
evaluate the probability of a spin flip at 7 = 15D/vy
by normalizing the wave packet at y > D, ie., P =
Jo WOy Yoy ) [y Y 0) Vs ()dy where s =
or 1 when the initial spin state starts with 1) and || ), re-
spectively. This is the probability for finding the spin state
|{) or |1) along the direction of the field at y = D when the
state is initially prepared in |1) or || ), respectively, along the
direction of the field at y = —D before the propagation.

By repeating the above numerical computations with dif-
ferent vy so that wy/Ey € [0.01, 6.2] where Ey = k3 /2m, we
obtain the result in Fig. 3. When w(vg)/wg 2 1, it can be seen
that the result agrees well with the analytical plot from (8)
represented by the solid gray line. This confirms that, in the
regime of the weak field, the probability of a spin flip for the
particle propagating through the spatially rotating field can be
estimated by the adiabatic theorem where the nonadiabaticity
is determined by the velocity of the particle vy. On the other
hand, the strong field modifies the dynamics of the particle
significantly. As a result, the time evolution of the particle
becomes different depending on the initial spin state, and
the numerical result deviates from the analytical estimate (8)
when w(vy)/wy < 1.

In this model, the spin interacting with the field can mea-
sure time-of-flight 7 ~ 7w 7p by observing the velocity of the
particle. However, we have P — 0 and P — 1 when tp > 19
and tp K 19, respectively. Therefore, for a reasonable resolu-
tion of time, it is necessary to have T ~ 7. This indicates that
the energy transfer between the spin and the translational mo-
tion of the particle should be large when T is small. Since the
uncertainty of the momentum of the particle becomes Ak ~
wp/vo ~ 1/2D by the energy transfer, only measurements on
the particle with ky > 1/2D would have reasonable accuracy.
Therefore, this method also cannot avoid the inherent limita-
tions, similar to the previous method using the Larmor clock.
However, in this method, both time-of-flight measurement

I
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FIG. 4. A model used for investigating quantum tunneling dy-
namics using the adiabatic theorem. The particle propagates through
the potential barrier including the spatially rotating field.

and back action occur to the spin-up and spin-down states
in the X direction, which may clarify the relation between
the two more directly. By comparing outcomes for different
initial spin states, we investigate the effect of the back ac-
tion when the method is applied to the study of tunneling
times.

Let us consider the situation where there exists the poten-
tial barrier in addition to the field (Fig. 4). The Hamiltonian
can be written as

2w
H=—+—f-0+U®), 9
2m 2
where we introduce the rectangular potential barrier such that
U®) = U, for |y| < Land U(y) = 0 otherwise.

When Ey > Uy & wo/2, it is known that the velocity
inside the barrier can be approximated by v’ ~ ky  /m =
V2m(Ey — Uy F wo/2)/m where k4 and k| correspond to the
momentum of the particle with spin-up state and spin-down
state, respectively. However, k4 ; inside the barrier in the
tunneling regime Ey < Up & wp/2 is imaginary. We use
this model to study the nonadiabaticity of the propagation
of the particle in the tunneling regime. Figure 5 shows the
probability of a spin flip P of the transmitted wave packet
after the propagation through the potential barrier (left)
and transmission probability of the particle through the
barrier (right) obtained numerically using the Hamiltonian
(9) and the initial wave packet |Wi,) = Yo(¥)ls) (3) with
|s) = |1) (navy squares) or with |s) = |]) (pink triangles).
Here P = [ yrOVsOdy/ Yoy | [ s ) Yo (0)dy
with |Wou) = e |Wip) = 3~ | ¥;(»)ls) and P is plotted
as the function of Uy/Ey. We chose o,/D =10, L/D =1
and wy/Eyp =0.1 in the upper panels and wy/Ey = 0.5
in the lower panels, respectively. It was confirmed that
the expectation value of the kinetic energy (E) for the wave
packet arriving aty > L gives (E) < Uy £ wo/2 (for |s) = |1)
and |]), respectively) when Uy/Ey > 1 with wy/Ey = 0.1,
while the condition is satisfied when Uy/E > 1 for |s) = |1)
and Uy/Ey > 1.27 for |s) =|]) with wy/Ey = 0.5. This
indicates that most modes of the transmitted wave packet
have undergone a tunneling process in these regimes. When
L and D are large and the interaction time between the
field and the spin can be long, it is possible to measure
the nonadiabaticity of the propagation with a small wy.
However, the tunneling probability becomes extremely low
in the situation. To obtain a reasonably high tunneling
probability, the length of the barrier 2L should be around 1/«
where « = /2m(Uy — Ep). With this length, an appropriate
resolution for the measurement can be obtained with wy
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FIG. 5. The probability of a spin-flip P (left) and transmission probability (right) as the function of Uy/E, obtained numerically. The
initial spin state is prepared in |1) (navy squares) and ||} (pink triangles), respectively. wy/Ey = 0.1 (upper panel) and wy/Ey = 0.5 (lower

panel).

which causes the momentum transfer Ak ~ 1/2D > k. In
other words, the energy transfer AE > k?/2m is necessary.
Comparing the upper and lower left panels for the probability
of a spin flip, it can be seen that P is more dependent on
Uy/Ey in the lower panel. This makes it appear that the case
of the lower panel allows a more precise determination of
the nonadiabaticity of the propagation. However, a large wq
has a great effect on the dynamics of the particle instead
and can alter it significantly. This can be confirmed by the
larger difference in the transmission probability depending
on the initial spin state in the lower right panel. Since the
transmission probability of the spin-down state is higher than
that of the spin-up state, P is higher when the initial spin
state is prepared in the spin-up state |s) = |1), as can be
seen in the left panels. The difference in P at each Uy/Ey
between the initial state |s) = |1) and |]) is approximately
the same as the difference in the transmission probability
between these states at each Uy/Ey. This suggests that the
back action is mainly responsible for this difference by
causing spin-dependent transmissions. In both the upper
and lower panels, P decreases as Uy/E; increases when
Uy/Ey is sufficiently smaller than 1 since the velocity of
the particle decreases inside the potential barrier. However,
as Uy approaches E; and exceeds it to enter the tunneling
regime (Up/Ey 2 1), P starts to increase again. Remarkably,
this behavior can be seen in both initial spin states |1) and
[{). This indicates that the behavior can be attributed to
the filtering effect rather than the spin dependence of the
transmission probability due to the back action. It may be
understood as follows.

The study of tunneling dynamics generally requires the ini-
tial preparation of a spatially localized wave packet rather than
a single plane wave since the latter extends all over space and

the question of tunneling times for the wave is obscure. Due
to the spatial localization of the wave packet and the energy
transfer from a spin, the wave packet is broadened in mo-
mentum space. Consequently, few modes with energies higher
than the barrier height can exist even when Uy/Ey > 1 and
the expectation value of the kinetic energy (E) < Uy £ wy/2
for the transmitted wave packet. The constructive interference
between these modes and the modes with energies lower than
the barrier height form the wave packet propagating through
the barrier from left to right. When the wave packet arrives at
the right end of the barrier and is transmitted out of the barrier,
some modes get reflected at the boundary of the barrier. As the
energy of the barrier increases, the higher energy modes are
selectively transmitted at the boundary. Therefore, the parts
of the wave packet which propagated nonadiabatically are
preferentially transmitted, and it appears that the probability
of a spin flip increases with the height of the barrier.

IV. CONCLUSION

To conclude, we numerically investigated the use of quan-
tum clock for measuring time-of-flight and tunneling times.
In particular, our study focused on the influence of the
measurement-induced back action and the filtering effect on
outcomes. We performed numerical simulations of measure-
ments using the Larmor clock and the adiabatic theorem,
respectively. It was observed that the Larmor tunneling time
is shorter and the nonadiabatic transition probability of spin
is larger for higher barriers. These results are consistent
with each other and with the recent experimental results
in [36,37]. One challenge in using a quantum clock to
measure time-of-flight and tunneling times has been the back-
action caused by energy transfer from a spin. Its strength is
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FIG. 6. Wave packet propagating through the barrier and exam-
ples of modes inside the barrier. The energies of the modes are lower
than the barrier height for the dashed purple line and the thick red
line, and they are higher than the barrier height for the dotted black
line and the solid blue line. The dynamics of the wave packet inside
the barrier is generally given by the sum of these modes.

approximately equal to the inverse of the time resolution of the
clock [1]. Its effects are mainly recorded in 7, for the Larmor
clock. In the case of the method using the adiabatic theorem,
they give rise to the spin dependence of the nonadiabatic
transition probability P and the transmission probability. We
showed that P is always higher for the spin-up state than
for the spin-down state due to the effects. Interestingly, it
was observed that P increases with the height of the barrier
in the tunneling regime for both initial states. This suggests
that the shorter Larmor tunneling time and the larger P for
higher barriers can be caused by the filtering effect. In the
rectangular barrier, the filtering effect occurs at both the left
and right edges. The high momentum modes are preferentially
transmitted while low momentum modes are largely reflected
as the wave packet enters and exits the barrier. One of the
ambiguities in the tunneling time problem is that the study
of time-dependent tunneling dynamics generally requires the
preparation of the spatially localized wave packet. This lo-
calization, together with the energy transfer from a spin,
broadens the wave packet in momentum space. Therefore,
rather than a single plane wave, it becomes important to
investigate the time-dependent behavior of the constructive
interference of modes within the wave packet. In particular,
even if the wave packet consists mostly of modes with ener-
gies lower than the barrier height, there may exist few modes
with energies higher than the barrier height for the reasons

above. The dynamics of the wave packet inside the barrier
composed of these two types of modes is complex (Fig. 6).
It can be expected that the wave packet traverses the barrier
from left to right. Then the faster propagated parts can be
preferentially transmitted when exiting the barrier from the
right end, resulting in the short Larmor tunneling time or large
P. Note that the filtering effect at the right end of the barrier
becomes pronounced when the barrier height approaches the
energy of the particle and exceeds it to enter the tunneling
regime. Since the transmitted wave packet can still consist
mostly of modes with energies less than the barrier height,
the expectation value of its energy can be less than the barrier
height. The question remains how small the proportion of the
modes with energies higher than the barrier height should be
so that the dynamics of the wave packet can still be called
quantum tunneling. Realistically, however, modes with ener-
gies lower and higher than the barrier height often coexist
inside the barrier. Therefore, the study of the dynamics given
by their sum may provide insight into tunneling time prob-
lems. In this paper, we numerically investigated two methods
for measuring tunneling times using a quantum clock. Each
method of measuring tunneling times has its inherent lim-
itations. However, our study suggests that a comparison of
outcomes from each method may clarify the origins of the
behaviors observed and provide a deeper understanding of
tunneling dynamics and measurements of it.
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