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The propagation and scattering of electromagnetic waves in dielectric media is of theoretical and experimental
interest in a wide variety of fields. An understanding of observational results generally requires a numerical
solution of Maxwell equations—usually implemented on conventional computers using sophisticated numerical
algorithms. In recent years, advances in quantum information science and in the development of quantum
computers have piqued curiosity about taking advantage of these resources for an alternate numerical approach
to Maxwell equations. This requires a reformulation of the classical Maxwell equations into a form suitable
for quantum computers which, unlike conventional computers, are limited to unitary operations. In this paper,
a unitary framework is developed for the propagation of electromagnetic waves in a spatially inhomogeneous,
passive, nondispersive, and anisotropic dielectric medium. For such a medium, generally, the evolution operator
in the combined Faraday-Ampere equations is not unitary. There are two steps needed to convert this equa-
tion into a unitary evolution equation. In the first step, a weighted Hilbert space is formulated in which the
generator of dynamics is a pseudo-Hermitian operator. In the second step, a Dyson map is constructed which
maps the weighted-physical-Hilbert space to the original Hilbert space. The resulting evolution equation for the
electromagnetic wave fields is unitary. Utilizing the framework developed in these steps, a unitary evolution
equation is derived for electromagnetic wave propagation in a uniaxial dielectric medium. The resulting form is
suitable for quantum computing.
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I. INTRODUCTION

The prospect that, for a range of problems, quantum com-
puters could be be exponentially faster than conventional
computers [1,2] has led to an enhanced interest in quantum
computer sciences. For efficient use of quantum computers, it
is necessary that the evolution equations for any physical sys-
tem be expressed in terms of unitary operators [3]. There is no
such requirement for classical computations. The tantalizing
possibility of faster computations as well as including many
more degrees of freedom has been the motivation behind ap-
plying quantum information science to traditionally classical
fields.

The propagation and scattering of electromagnetic waves
in magneto-dielectric matter has been of considerable inter-
est over many decades. The electromagnetic properties of a
medium are included in Maxwell equations through consti-
tutive relations that relate the electric displacement field and
magnetic induction to the electric field and magnetic inten-
sity, respectively. Most of these studies are classical—the de
Broglie wavelengths being negligibly small compared to the
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wavelengths of the macroscopic fields. Thus, the implemen-
tation of Maxwell equations on quantum computers requires
expressing a classical description in the language of quan-
tum mechanics. The first step in this direction was taken by
Laporte-Uhlenbeck [4] and Oppenheimer [5] casting Maxwell
equations in vacuum into a form similar to the Dirac equation.
Along similar lines, there have been recent studies drawing
on the connection between the photon wave function and the
Dirac equation in vacuum [6,7], and in a magneto-dielectric
medium with scalar permittivity and permeability [8].

In this paper, we formulate Maxwell equations for wave
propagation in a dielectric medium such that they become
amenable to quantum computations. The magneto-dielectric
medium is assumed to be passive and nondispersive for
which both the permittivity and permeability can be a
tensor. When the medium is spatially homogeneous, the
Faraday-Ampere equations take on the form of a Dirac
equation for spin-one photons. The evolution operator is
unitary and the state vector is a six-vector composed of
the electric field and magnetic intensity. A unitarily simi-
lar representation is obtained for a state vector comprised
of Riemann-Silberstein-Weber (RSW) vectors [9]—which
represent the left- and right-hand polarizations of an electro-
magnetic field.
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When the same prescription is extended to a spatially
inhomogeneous medium, the evolution operator for the elec-
tromagnetic fields is no longer unitary. We develop a pathway
towards a unitary evolution equation through a two-step pro-
cess. The first step is to identify the generator of dynamics—
the Hamiltonian operator—as a pseudo-Hermitian operator. In
a newly defined weighted Hilbert space, the Hamiltonian is
Hermitian with respect to a weighed inner product structure.
There has been a lot of interest in pseudo-Hermitian Hamil-
tonians in quantum mechanics, especially in the subset of
PT -symmetric Hamiltonians [10–12]. The second step is to
draw a connection between the physical Hilbert space and the
initial Hilbert space that preserves the inner product structure
of the two spaces. This is accomplished by constructing an
appropriate isometric Dyson map. The end result is a fully
unitary evolution equation with an explicit Hermitian Hamil-
tonian that could be implemented in a quantum computer.
The fields evaluated from this evolution equation are directly
related to the physical electromagnetic fields.

This paper is organized as follows. In Secs. II A and II B,
we formulate the Faraday-Ampere equations in terms of a
six-vector and in terms of RSW vectors, respectively, for a
homogeneous medium. In Sec. II C, we extend the description
to allow for an inhomogeneous medium. From Poynting’s the-
orem, as expected for a passive medium, we show that the total
electromagnetic energy is conserved in a bounded medium
subject to suitably chosen Dirichlet boundary conditions. In
Sec. II D, it is shown that the evolution generator of the previ-
ous section is not Hermitian due to spatial inhomogeneity. A
physical Hilbert space is created in which the Hamiltonian is
Hermitian. It is shown that in this weighted Hilbert space, the
norm of the state vector is the conserved energy that follows
from Poynting’s theorem. In Sec. II E, we formulate three
different forms of the Dyson map which lead to a Maxwell-
Dirac equation with unitary evolution operator in the initial
Hilbert space. In Sec. II F, the entire formalism is applied to
a uniaxial dielectric medium. There is a natural extension of
the evolution equation to a set of spatially dependent RSW
vectors which are a generalization of the RSW vectors in
Sec. II B. In Sec. III A, we construct a qubit lattice algorithm
(QLA) corresponding to our unitary formulation of Maxwell
equations. The advantage of this QLA is that it can also be
implemented and tested on classical computers. In Sec. III B,
to demonstrate proof of concept, we map out a quantum circuit
for the QLA that is suitable for a quantum computer.

II. QUANTUM REPRESENTATION

The source-free Maxwell equations for a linear medium are

∇ · D(r, t ) = 0, ∇ · B(r, t ) = 0, (1)

∂B(r, t )

∂t
= −∇ × E(r, t ),

∂D(r, t )

∂t
= ∇ × H (r, t ), (2)

with the constitutive relations

D(r, t ) = ε(r) E(r, t ), B(r, t ) = μ(r) H (r, t ), (3)

where E is the electric field, B is the magnetic induction, D
is the displacement field, H is the magnetic intensity, ε is the

dielectric permittivity of the medium, and μ is its magnetic
permeability; ε and μ can be functions of space.

In Sec. II A, we express Maxwell equations in terms of a
six-vector when ε and μ are independent of space and time.
We show that the Faraday-Ampere equations (2) take on a
form similar to the Dirac equation for a spin-one massless
photon. In Sec. II B, we rewrite the Faraday-Ampere system
using the RSW vectors and draw similarities with the results
in Sec. II A.

In Sec. II C, we assume that the medium is inhomoge-
neous in space, independent of time, and nondissipative—i.e.,
ε(r) and μ(r) are real functions. The Faraday-Ampere equa-
tions and the Poynting theorem are set up using the six-vector
representation.

A. Six-vector formulation of Maxwell equations

The Faraday-Ampere equations (2) can be written in a
compact form using a six-vector [13],

i
∂u
∂t

= Ŵ −1M̂u = D̂u, (4)

where u = (E, H )T is an ordered pair of three-vectors com-
posed of the electromagnetic field, T indicates the transpose,

M̂ = i

[
0 ∇×

−∇× 0

]
, Ŵ =

[
εI3×3 03×3

03×3 μI3×3

]
, (5)

I3×3 is the 3 × 3 identity matrix, and 03×3 is the null matrix.
The invertible, Hermitian matrix Ŵ operating on u yields
the constitutive relations D(r, t ) = εE(r, t ) and B(r, t ) =
μH (r, t ) for a homogeneous medium. The Maxwell operator
M̂ is Hermitian in L2(R3,C) with the appropriate boundary
conditions. We will discuss this further in Secs. II C and II D.

The generator of the evolution operator D̂ in (4) is Her-
mitian since the Hermitian operators Ŵ −1 and M̂ commute,
Ŵ −1M̂ = M̂Ŵ −1. Upon operating on (4) with Ŵ 1/2, we obtain

i
∂U
∂t

= (−σy ⊗ vS · p̂)U = D̂ρU , (6)

where v = 1/
√

εμ is the speed of light in the medium, U =
Ŵ 1/2u, the components of S = (Sx, Sy, Sz ) are the spin-one
matrices,

Sx =
⎡⎣0 0 0

0 0 −i
0 i 0

⎤⎦, Sy =
⎡⎣ 0 0 i

0 0 0
−i 0 0

⎤⎦,

Sz =
⎡⎣0 −i 0

i 0 0
0 0 0

⎤⎦, (7)

satisfying the commutator relation [Sa, Sb] = iεabcSc, p̂ =
−i∇ is equivalent to the quantum momentum operator for
h̄ = 1, and the Pauli spin-1/2 matrices σ = (σx, σy, σz ) are

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (8)

Since the evolution operator D̂ρ is Hermitian, Eq. (6) is anal-
ogous to the Dirac equation for a spin-one massless photon.
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B. Riemann-Silberstein-Weber vectors and Maxwell equations

The RSW vectors F±(r, t ) are a reexpression of the elec-
tromagnetic fields in a form that is useful for a quantumlike
formulation of Maxwell equations. They are defined as [9]

F±(r, t ) = 1√
2

(√
ε E ± i√

μ
B

)
. (9)

For a homogeneous medium, the Faraday-Ampere equa-
tions take the form [9,14]

i
∂F±

∂t
= ±v(S · p̂)F±. (10)

Equation (10) can be considered as a quantum representation
of Maxwell equations with the RSW vectors as the photon
wave function [9].

In the standard square-integrable Hilbert space H =
L2(R3,C), the Hermitian Hamiltonian operator in (10),

Ĥ = v(S · p̂), (11)

has eigenvalues E = ω, reflecting the monochromatic energy
of a photon. This is analogous to the quantum definition of
energy for h̄ = 1. The norm of the RSW vectors F± is the
electromagnetic energy of the macroscopic electromagnetic
field,

〈F±| =〉‖F±‖2 =
∫

�

F±†F± d r = 1

2

∫
�

(
εE2 + B2

μ

)
d r,

(12)

where † is the complex conjugate transpose of the vector.
The evolution equation (10) is analogous to the Weyl equa-

tion for spin-1/2 massless particles,

i
∂ψ

∂t
= c(σ · p̂)ψ, (13)

where ψ is the wave function composed of the two Weyl
spinors. The analogy is not surprising since the two RSW
vectors represent the two distinct polarizations of the electro-
magnetic field in a homogeneous, time-independent medium.

If we introduce a unitary transformation L̂ : U → F where

L̂ = 1√
2

[
I3×3 i I3×3

I3×3 −i I3×3

]
, (14)

then (6) takes the block-diagonal form,

i
∂

∂t

[
F+
F−

]
=

[
vS · p̂ 0

0 −vS · p̂

][
F+
F−

]
, (15)

which is exactly the form in (10). The six-vector form of the
Faraday-Ampere equations is directly connected to the RSW
vectors. In other words, the RSW transformation is a Weyl
representation of the Dirac-type equation (6). Significantly,
the representations (6) and (15) are equivalent due to the
unitary nature of the transformation (14). In a homogeneous
medium, the two field helicities are uncoupled as is the time
evolution of the RSW vectors.

C. Maxwell equations in an inhomogeneous, passive medium

The Faraday-Ampere equations (2) can be written as

i
∂d
∂t

= M̂u, (16)

where d(r, t ) = (D, B)T is related to u(r, t ) = (E, H )T by a
linear constitutive operator L̂,

d = d(u) ⇒ d = L̂u. (17)

The divergence equations (1) become

∇ · d = ∇ · (L̂u) = 0. (18)

If at time t = 0, d0 = d(r, 0) is such that

∇ · d0 = ∇ · (L̂u0) = 0, (19)

where u0 = u(r, 0), then (16) ensures that ∇ · d(r, t ) = 0 is
for all times. We will assume that the medium is bounded by
a perfect conductor so that

n̂(r) × u1 = 0 on the boundary ∂�, (20)

where n̂(r) is the outward pointing normal at the boundary,
and u = (u1, u2)T with u1 and u2 each being a three-vector.
The boundary conditions are necessary for energy conserva-
tion and for ensuring that M̂ remains Hermitian. The set of
equations (16)–(20) is the complete mathematical descrip-
tion of electromagnetic waves in a Hilbert state space H =
L2(�,R6) 	 u, defined by the inner product [15]

〈v|u〉 =
∫

�

v†(r, t )u(r, t )d r, � ⊆ R3, t ∈ T = [0, T ],

(21)

where u(r, t ) and v(r, t ) are two solutions within the bounded
domain defined by �.

A general form of the constitutive operator L̂ has to satisfy
five physical postulates [15]: Determinism, linearity, causal-
ity, locality in space, and invariance under time translations.
The form that is consistent with these postulates is [15]

d(r, t ) = L̂u(r, t ) = Ŵ (r)u(r, t ) +
∫ t

0
Ĝ(r, t − τ )u(r, τ )d τ.

(22)

The first term on the right-hand side in (22) corresponds to the
instantaneous optical response of the medium, and the second
term with G as the susceptibility kernel is the dispersive re-
sponse which includes memory effects.

For an anisotropic nondispersive medium, Eq. (22) reduces
to

d(r, t ) = Ŵ (r)u(r, t ), (23)

where

Ŵ =
[
ε(r) 03×3

03×3 μ(r)

]
. (24)

In what follows, we will ignore dispersive effects. However,
in general, a constitutive relation of the form (23) is an ap-
proximation to (22) which includes a nonlocal time-response
function [16].

Since Ŵ is invertible [15], Eq. (16) takes the form

i
∂u
∂t

= Ŵ −1(r)M̂u = D̂u, (25)

where

D̂ = Ŵ −1(r)M̂. (26)
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In this representation, the Poynting theorem is [15]

∇ · S + u† ∂d
∂t

= 0, (27)

where S = E × H is the Poynting vector. Following [17], the
electromagnetic energy density is

U (r, t ) =
∫ t

0
u† ∂d(r, τ )

∂τ
dτ

= 1

2
u†Ŵ u +

∫ t

0
u†(r, τ ) Ŵ A ∂u(r, τ )

∂τ
dτ, (28)

where Ŵ A = (Ŵ − Ŵ †)/2 is the anti-Hermitian part of Ŵ .
For a passive medium [15,17],

U (r, t ) � 0, ∀ r ∈ �. (29)

From (28), it follows that Ŵ must be Hermitian and semipos-
itive definite,

Ŵ = Ŵ † and Ŵ � 0. (30)

The total integrated stored electromagnetic energy U� in a
volume � is

U�(t ) = 1

2

∫
�

u† Ŵ u d3r � 0. (31)

Integrating (27) over � and making use of the divergence
theorem, we obtain

∂U�(t )

∂t
+

∫
∂�

S · n̂(r) dA = 0, (32)

where dA is an elemental area on the surface ∂�, and n̂ is
the outward pointing normal to ∂�. Since S = u1 × u2, it
follows from (32) and the boundary condition (20) that U�(t )
is constant in time,

U�(t ) = U�(t = 0) =
∫

�

u†
0 Ŵ (r) u0 d3r. (33)

As expected for a passive medium, there is no net dissipation
or generation of electromagnetic energy within �.

D. Pseudo-Hermitian operators

In the Hilbert space H,

〈v|M̂u〉 = i
∫

�

[v∗
1 · (∇ × u2) − v∗

2 · (∇ × u1)] d3r (34a)

= i
∫

�

[u2 · (∇ × v∗
1 ) − u1 · (∇ × v∗

2 )] d3r

+ i
∫

∂�

[v∗
1 · (̂n × u2) − v∗

2 · (̂n × u1)]dA,

(34b)

where v = (v1, v2)T , with v1, and v2 each being three-
vectors. In obtaining Eq. (34b) from (34a), we have made use
of the vector identity ∇ · (a × b) = b · (∇ × a) − a · (∇ × b)
and the divergence theorem. Since v∗

1 · (̂n × u2) = −u2 · (̂n ×
v∗

1 ), the surface integral in (34b) vanishes as a consequence of
the boundary condition (20). It follows from (34) that

〈v|M̂u〉 = 〈vM̂|u〉, (35)

proving that M̂ is Hermitian; i.e., M̂ = M̂†.

Even though Ŵ (r) and M̂ are Hermitian, the operator
D̂ = Ŵ −1M̂ is not Hermitian. In contrast to a homogeneous
medium, the commutator [Ŵ −1, M̂] is nonzero for an in-
homogeneous medium. Consequently, the operator on the
right-hand side of the evolution equation (25) is nonunitary.
In order to make Maxwell equations for an inhomogeneous
medium suitable for quantum computing, we formulate a uni-
tary representation that relies on D̂ being a special kind of
non-Hermitian operator—a pseudo-Hermitian operator.

A linear operator D̂ in a Hilbert space H is pseudo-
Hermitian if there exists an invertible Hermitian linear
operator η̂ in H with the property [18–20]

D̂† = η̂ D̂ η̂−1. (36)

For 〈u|̂η|u〉 > 0 for all nonzero states u, η̂ is a positive-definite
metric operator, and we can define an inner product,

〈v|u〉η = 〈v|̂ηu〉 =
∫

�

v†(r, t ) η̂(r) u(r, t ) d3r, (37)

with respect to a new weighted Hilbert space Hη.
From (26),

D̂† = M̂ Ŵ −1 = Ŵ Ŵ −1 M̂ Ŵ −1 = Ŵ D̂ Ŵ −1. (38)

Comparing with (36), we note that η̂ = Ŵ . Furthermore, ex-
ploiting the Hermiticity condition (37) of Maxwell operator
M̂, we obtain

〈v|D̂u〉W = 〈v|M̂u〉 = 〈vM̂Ŵ −1Ŵ |u〉
= 〈vM̂Ŵ −1|u〉W = 〈vD̂|u〉W . (39)

Thus, D̂† = D̂, i.e., D̂ is Hermitian in the weighted Hilbert
space HW . In HW , the inner product is as defined in (37), with
η̂ replaced by Ŵ , and the evolution equation (25) is unitary.
Making use of (33), the square of the norm of u,

〈u|〉W = 〈u|Ŵ |u〉 =
∫

�

u†(r, t )Ŵ (r) u(r, t ) d3r = 2U�,

(40)

is a constant independent of time. Consequently, the underly-
ing conservation of the electromagnetic energy in the closed
volume � is preserved in HW .

E. The Dyson map for Maxwell equations

Even though D̂ is Hermitian in the new Hilbert space
HW , in the Maxwell-Dirac equation (25) there is no change
except that u ∈ HW . We need to connect the original,
physical, Hilbert space H, in which D̂ is not Hermitian, to
HW by an isometric transformation that preserves the inner
product structure between the two Hilbert spaces. Such an
invertible transformation ρ̂(r) : HW → H between equivalent
descriptions of a physical system is referred to as a Dyson
map [18–20].

Our derivation of the Dyson map ρ̂(r) is based on the
factorization of the metric operator η̂ = Ŵ ,

η̂(r) = ρ̂†(r)̂ρ(r), (41)

which preserves the inner product structure since

〈v|u〉η = 〈v|̂ρ†ρ̂u〉 = 〈vρ̂ |̂ρu〉 = 〈φ|ψ〉, (42)

where v, u ∈ HW and φ,ψ ∈ H.
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FIG. 1. The Dyson map interconnection between the various
spaces.

For Maxwell equations, there can be three different factor-
ization forms of Ŵ in Eq. (24) [21]:

(i) Spectral decomposition,

Ŵ (r) = Û †
̂(r)Û = Û †
√


̂(r)
√


̂(r)Û = ρ̂†(r)̂ρ(r), (43)

leading to the Dyson map,

ρ̂(r) =
√


̂(r)Û . (44)

(ii) Square root decomposition,

Ŵ (r) = Ŵ 1/2(r)Ŵ 1/2(r) = ρ̂†(r)̂ρ(r), (45)

with the corresponding Dyson map,

ρ̂(r) = Ŵ 1/2(r). (46)

(iii) Cholesky decomposition,

Ŵ (r) = T̂ †(r)T̂ (r) = ρ̂†(r)̂ρ(r), (47)

giving the Dyson map,

ρ̂(r) = T̂ (r). (48)

For the spectral decomposition (43), 
̂(r) = λi(r)δi j (there
is no implied summation over repeated indices) with λ(r) >

0 and
√


̂(r) = √
λi(r)δi j . For the Cholesky decomposition

(47), the T̂ matrix is an upper triangular matrix with pos-
itive diagonal elements. The particular choice of a Dyson
map is based on the decomposition scheme which leads to a
sparse ρ̂.

The Dyson map leads to a Hermitian form for Maxwell
equations in H. Multiplying (25) by ρ̂ gives

i
∂ψ

∂t
= ρ̂(r)D̂ρ̂−1(r)ψ = D̂ρψ, (49)

where ψ = ρ̂u ∈ H, and D̂ρ = ρ̂(r)D̂ρ̂−1(r) is Hermitian in
H The unitary evolution of ψ(r, t ) is

ψ(r, t ) = e−it D̂ρ ψ0(r), (50)

where ψ0(r) is the initial condition at time t = 0.
In general, any operator Âη : Hη → Hη is related to its

counterpart Â in H through a similarity transformation,

Â = ρ̂ Âη ρ̂−1. (51)

The Dyson map ρ̂ connecting H to Hη can be schematically
represented in Fig. 1. This diagram illustrates the dual role
of the Dyson map. The first is to map the weighted space Hη

into the initial Hilbert space H through an isometric transfor-
mation. This ensures that the Hamiltonian is Hermitian and
the evolution is unitary. The second is to map different, not
equivalent, representation of elements u and ψ belonging to
H. This is evident from the Dyson mapping—the operator

ρ̂ : H → H is not unitary in H. In other words, the transfor-
mation ρ̂ : u → ψ is not a trivial and unitary representation of
the initial dynamics (25). However, every other transformation
τ̂ in H that preserves the dynamics of (49) is unitary. From
(49), applying the transformation τ̂ , the generator D̂τ yields

D̂τ = τ̂ D̂ρ τ̂
−1 = D̂†

τ = (̂τ−1)†D̂ρ τ̂
† ⇒ τ̂−1 = τ̂ †. (52)

Thus, all other dynamics preserving transformations are
equivalent once the Dyson map ρ̂ is established. Indeed,
this holds for the formulation in terms of RSW vectors F =
L̂Ŵ 1/2u.

F. Application to a uniaxial dielectric medium

As an illustration of the formalism developed in Sec. II E,
we consider a nonmagnetic, uniaxial dielectric medium,

ε(r) =
⎡⎣εx(r) 0 0

0 εx(r) 0
0 0 εz(r)

⎤⎦, μ = μ0I3×3. (53)

A useful choice for a sparse Dyson map is

ρ̂ = Ŵ 1/2 =
[
ε1/2 03×3

03×3
√

μ0I3×3,

]
, (54)

where

ε1/2(r) =
⎡⎣√

εx(r) 0 0
0

√
εx(r) 0

0 0
√

εz(r),

⎤⎦. (55)

Then, D̂ρ = ρ̂ D̂ ρ̂−1 is

D̂ρ =
[

03×3 icZ · p̂
−iĉp · Z† 03×3

]
, (56)

where, in terms of the refractive index ni(r) = √
εi(r)/ε0, the

components of Z = (Zx, Zy, Zz ) are

Zx =

⎡⎢⎣0 0 0
0 0 − i

nx (r)

0 i
nz

(r) 0

⎤⎥⎦, Zy =

⎡⎢⎣ 0 0 i
nx (r)

0 0 0
− i

nz (r) 0 0

⎤⎥⎦,

Zz =

⎡⎢⎣ 0 − i
nx (r) 0

i
nx (r) 0 0
0 0 0

⎤⎥⎦, (57)

with nx = √
εx/ε0 and nz = √

εz/ε0 being the indices of re-
fraction in the x and z directions, respectively, and, as before,
p̂ = −i∇.

Applying the unitary operator L̂ in (14) to (49) gives

i
∂

∂t
L̂ψ = (L̂D̂ρ L̂−1) L̂ψ. (58)

Upon defining

F±
r = L̂ψ = L̂Ŵ 1/2u = 1√

2

[
ε1/2(r) E ± i√

μ0
B

]
,

(59)

the unitary evolution equation (58) takes the form

i
∂

∂t

[
F+

r
F−

r

]
= c

[
(Z · p̂)H −(Z · p̂)A

(Z · p̂)A −(Z · p̂)H

][
F+

r
F−

r

]
, (60)
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where the superscripts H and A represent the Hermitian and
the anti-Hermitian parts of the operator, respectively. The
definition in (59) for an inhomogeneous medium is a gener-
alization of the RSW vectors (9) for a homogeneous medium.
For a nondissipative medium, the anti-Hermitian part of Z in
(60) is zero, and the time evolution of the two RSW vectors
F± decouples. It is straightforward to show that for a homo-
geneous nondissipative medium, (60) reduces to (15).

III. CONNECTION WITH QUANTUM COMPUTING

The representation of Maxwell equations expressed in (49)
is suitable for implementing on a quantum computer as it
satisfies a primary requirement—unitarity. In addition, the
operator D̂ρ for Maxwell equations is equivalent to any other
Hermitian representation within H, as Eq. (52) suggests. Con-
sequently, any algorithm developed for implementation on
quantum computers for the unitary operator exp it D̂ρ also
applies to any other unitary evolution of the same system.
This particular aspect regarding the equivalence of two uni-
tary operators within the same physical Hilbert space is also
discussed in [22], where the Dyson map is referred to as a
“passive transformation.” However, it is important to note that
we need to have an explicit form for D̂ρ in order to take
advantage of quantum computing. In the next section, we
develop a qubit lattice algorithm (QLA) for D̂ρ in a biaxial
dielectric medium which is suitable for implementing on a
quantum computer.

A. Qubit lattice algorithms

Qubit lattice algorithms have been used to simulate the
propagation and scattering of electromagnetic waves is an in-
homogeneous dielectric medium having a scalar permittivity
[23–25]. A QLA is a discrete representation of Maxwell equa-
tions, usually up to second order in a perturbation parameter,
which, at a mesoscopic level, uses an appropriately chosen
interleaved sequence of three noncommuting operators. Two
of the operators are collision and streaming operators—the
collision operator entangles the on-site qubits and the stream-
ing operator propagates the entangled state through the lattice.
The dielectric medium is included via a third operator referred
to as a potential operator. Following [26], we construct a QLA
for two-dimensional scattering of electromagnetic waves by a
biaxial dielectric material described by a diagonal refractive
index, n(r) = diag(nx, ny, nz ).

Following the discussion in Sec. II F, the state vector that
admits unitary evolution has the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nxEx

nyEy

nzEz

μ
1/2
0 Hx

μ
1/2
0 Hy

μ
1/2
0 Hz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0

q1

q2

q3

q4

q5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= q. (61)

Assuming two-dimensional spatial dependence in the x-y
plane, the decomposition of the optical Dirac equation (49)

into Cartesian components yields

∂q0

∂t
= 1

nx

∂q5

∂y
,

∂q1

∂t
= 1

ny

∂q5

∂y
,

∂q2

∂t
= 1

nz

[
∂q4

∂y
− ∂q3

∂x

]
,

∂q3

∂t
= ∂ (q2/nz )

∂y
,

∂q4

∂t
= ∂ (q2/nz )

∂x
,

∂q5

∂t
= −∂ (q1/ny)

∂x
+ ∂ (q0/nx )

∂ny
. (62)

We discretize the two-dimensional space into a lattice with
the spacing given by the ordering parameter O(δ). Then, to
second order in δ, the unitary collision operators in the x and
y directions are, respectively,

ĈX =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 cos θ1 0 0 0 − sin θ1

0 0 cos θ2 0 − sin θ2 0
0 0 0 1 0 0
0 0 sin θ2 0 cos θ2 0
0 sin θ1 0 0 0 cos θ1

⎤⎥⎥⎥⎥⎥⎥⎦,

(63)

ĈY =

⎡⎢⎢⎢⎢⎢⎢⎣
cos θ0 0 0 0 0 sin θ0

0 1 0 0 0 0
0 0 cos θ2 sin θ2 0 0
0 0 − sin θ2 cos θ2 0 0
0 0 0 0 1 0

− sin θ0 0 0 0 0 cos θ0

⎤⎥⎥⎥⎥⎥⎥⎦.

(64)

Let Ŝi j denote a unitary streaming operator which shifts the
qubits qi and q j one lattice unit along x and one lattice along y,
while leaving all the other qubits unaffected. Then the collide-
stream sequence along each direction is

ÛX = Ŝ+x
25 Ĉ†

X Ŝ−x
25 ĈX Ŝ−x

14 Ĉ†
X Ŝ+x

14 ĈX Ŝ−x
25 ĈX Ŝ+x

25 Ĉ†
X Ŝ+x

14 ĈX Ŝ−x
14 Ĉ†

X ,

ÛY = Ŝ+y
25 Ĉ†

Y Ŝ−y
25 ĈY Ŝ−y

03 Ĉ†
Y Ŝ+y

03 ĈY Ŝ−y
25 ĈY Ŝ+y

25 Ĉ†
Y Ŝ+y

03 ĈY Ŝ−y
03 Ĉ†

Y .

(65)

The terms in (62) that contain the derivatives of the refractive
index are recovered through the following potential operators:

V̂X =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 − sin β2 0 cos β2 0
0 sin β0 0 0 0 cos β0

⎤⎥⎥⎥⎥⎦ (66)

and

V̂Y =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 cos β3 sin β3 0 0

− sin β1 0 0 0 0 cos β1

⎤⎥⎥⎥⎥⎦. (67)

The angles θ0, θ1, θ2, β0, β1, β2, and β3 that appear in (63),
(64), (66), and (67) are chosen so that the discretized system
reproduces (62) to the order of δ2. The evolution of the state
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vector q from time t to t + 
t is given by

q(t + 
t ) = V̂Y V̂XÛY ÛX q(t ). (68)

The external potential operators V̂X , V̂Y , as given above, are
not unitary. Nonetheless, we can implement V̂X,Y in our al-
gorithm using the method of linear combinations of unitary
operators (LCU) [27,28].

B. Quantum encoding

The product decomposition formula describing the evolu-
tion of the state q in (68) forms the core of quantum simulation
[3]. An efficient quantum algorithm requires all the unitary
evolution operators to be encoded into simple quantum gates.
For this, we construct two qubit registers—the first for en-
coding the amplitude of the state vector q and the second
for the discrete x-y space. Since the state vector q is six
dimensional, the first register will contain ni = 3 qubits with
basis |i〉 and amplitudes qi. For the two-dimensional lattice
with N nodes and a discretization step δ in both directions, we
will need np = log2 N qubits with basis |p〉. Hence, we will
need ntotal = np + 3 qubits for a complete description of state
q. The qubit encoding of the state vector q on a lattice site is

|q〉 =
5∑

i=0

qi|i〉|p〉, (69)

where the amplitudes qi are normalized to the square root
of the initial (constant) energy U�(0) in (33), so that∑

i |qi|2 = 1.

1. Preparation of initial state

The preparation of initial state |q0〉, made up of real 6N
components, is expressed in terms of the amplitudes of a quan-
tum state using a sequence of controlled one-qubit rotations,

|000〉|0〉⊗np → |q0〉. (70)

In general, this requires a quantum circuit of O(6N ) elemen-
tary gates. However, to study the propagation and scattering
of electromagnetic waves in physically relevant situations, the
initial state, like wave packets or pulses, is localized in space.
Thus, the initial condition will usually be a small subset of the
complete N-dimensional discretized space,

|q0〉 =
M∑

p=0

∑
i

q0ip|i〉|p〉, (71)

where q0ip = 0 for p > M and M � N . The sparse initial state
(71) uses O(6M ) gates, thereby reducing the overall cost of
implementation.

2. Implementation of ̂CX,Y operators

We assign the unitary collision operators ĈX in (63) and
ĈY in (64) to multicontrolled, single-qubit unitary gates. Since
these operators act on |i〉, we obtain the following two-level
unitary decomposition:

ĈX =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 cos θ1 0 0 0 − sin θ1

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 sin θ1 0 0 0 cos θ1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos θ2 0 − sin θ2 0
0 0 0 1 0 0
0 0 sin θ2 0 cos θ2 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦,

ĈY =

⎡⎢⎢⎢⎢⎢⎢⎣
cos θ0 0 0 0 0 sin θ0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

− sin θ0 0 0 0 0 cos θ0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos θ2 sin θ2 0 0
0 0 − sin θ2 cos θ2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦. (72)

Subsequently, the quantum gate implementation of ĈX and ĈY

acting on |i〉 is as depicted in Figs. 2 and 3, respectively.
For the two-dimensional lattice with N = NxNy nodes,

there are Nx − 1 and Ny − 1 number of segments of length

∑
i q0i |i〉

Ry(2θ1) Ry(2θ2)

FIG. 2. Quantum gate implementation of ĈX acting on the |i〉
register. The Ry gate corresponds to a rotation around the y axis.

δ along each direction. Consequently, the |p〉 register con-
tains two subregisters for each spatial direction, with npx

and npy the number of qubits along x and y, respectively.

∑
i q0i |i〉

Z Ry(2θ0) Z

Z Ry(2θ2) Z

FIG. 3. Quantum gate implementation of ĈY acting on the |i〉
register. The Z gate corresponds to the Pauli matrix σz.
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FIG. 4. Quantum gate implementation of streaming operator Ŝ+x

in the |p〉 register. The least significant bit is the px0.

Thus,

np = log2 N = log2 Nx + log2 Ny = npx + npy. (73)

The spatial location of each node is given by

|p〉 = |px〉|py〉 = |ax + pxδ〉|ay + pyδ〉, (74)

with px = 0, 1, . . . , Nx − 1 and py = 0, 1, . . . , Ny − 1. The
action of streaming operators on the |p〉 register,

Ŝ+x|p〉 = |px + 1〉|py〉, Ŝ+y|p〉 = |px〉|py + 1〉, (75)

is controlled by the qubits in the |i〉 register, as is evi-
dent from the sequence in (65). Expressing |p〉 in its binary
form |pnpx−1 pnpx−2 . . . px0〉|pnpy−1 pnpy−2 . . . py0〉, the imple-
mentation of (75) is shown in Figs. 4 and 5. For simplicity,

FIG. 5. Quantum gate implementation of streaming operator Ŝ+y

in the |p〉 register. The least significant bit is py0.

the control dependence on |i〉 has been omitted. Following
(75), the action of Ŝ−x, Ŝ−y is represented using the conjugate
transpose quantum circuit since Ŝ−x,−y = (Ŝ+x,+y)†.

3. LCU operations for ̂VX,Y operators

The sparse operators V̂X,Y in (66) and (67) can be decom-
posed into a four-term unitary sum,

V̂X,Y = 1

2

4∑
j=0

̂̃V jX,Y , (76)

where the unitary matrices ̂̃V j are

̂̃V 0X = ̂̃V 0Y = I6×6,

̂̃V 1X =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦, ̂̃V 1Y =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦,

̂̃V 2X =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 cos β0 0 0 0 − sin β0

0 0 cos β2 0 sin β2 0
0 0 0 1 0 0
0 0 − sin β2 0 cos β2 0
0 sin β0 0 0 0 cos β0

⎤⎥⎥⎥⎥⎥⎥⎦, ̂̃V 2Y =

⎡⎢⎢⎢⎢⎢⎢⎣
cos β1 0 0 0 0 sin β1

0 1 0 0 0 0
0 0 − sin β3 cos β3 0 0
0 0 cos β3 sin β3 0 0
0 0 0 0 1 0

− sin β1 0 0 0 0 cos β1

⎤⎥⎥⎥⎥⎥⎥⎦,

̂̃V 3X =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 − cos β0 0 0 0 sin β0

0 0 − cos β2 0 − sin β2 0
0 0 0 1 0 0
0 0 − sin β2 0 cos β2 0
0 sin β0 0 0 0 cos β0

⎤⎥⎥⎥⎥⎥⎥⎦, ̂̃V 3Y =

⎡⎢⎢⎢⎢⎢⎢⎣
− cos β1 0 0 0 0 − sin β1

0 1 0 0 0 0
0 0 sin β3 − cos β3 0 0
0 0 cos β3 sin β3 0 0
0 0 0 0 1 0

− sin β1 0 0 0 0 cos β1

⎤⎥⎥⎥⎥⎥⎥⎦.

(77)

As a result, the evolution operator Ûev in Eq. (68) is a sum of unitary operators,

Ûev = 1

4

3∑
j,k

̂̃V jX
̂̃V kY ÛXÛY =

(
15∑

m=0

Ûm

)
ÛXÛY . (78)
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In order to implement (78), we need to apply the LCU
method. For an ancillary register of nm = log2 16 = 4 qubits,
we define the following unitary operators:

Ûselect =
15∑

m=0

|m〉〈m| ⊗ Ûm,

Ûprep : |0〉⊗nm → 1

4

15∑
m=0

|m〉, (79)

where Ûprep is the state preparation operator in the ancillary
register. The implementation of Ûselect is similar to that in
Figs. 2 and 3; Ûm are composed of dual combinations of
two-level matrices (77) containing rotations and Pauli gates.

Finally, following [28], we implement Ûev using Ŵ =
ÛprepÛselectÛ †

prep, where

Ŵ (|0〉⊗nmÛXÛY |q0〉) = 1
4 |0〉⊗nm |q〉 + |�⊥〉, (80)

with (|0〉⊗nm nm⊗〈0| ⊗ 1)|�⊥〉 = 0. A measurement in the an-
cillary register leads to the desired outcome with probability
1/16.

4. Discussion

The quantum circuits in Figs. 2–5 along a representation of
the initial state fully implement the unitary sequences ÛX and
ÛY in (65) using O[16M(ntotal + 2)] multicontrolled single-
qubit gates. For M = O(nκ

p) � N , we can reduce the number
of gates to O(nκ+1

p ). By introducing an ancillary register of
nm = 4 qubits, the implementation cost of Ûprep and Ûselect, us-
ing LCU, scales as O(12M + 16) = O(nκ

p). Consequently, the
number of multicontrolled single-qubit gates that are needed
to effectively simulate (68) is �(nκ+1

p ). The polynomial gate
complexity of a simulation depends primarily on the qubit
number np associated with spatial discretization.

Finally, the retrieval of physically relevant information
(electromagnetic energy E and B fields) from the final state
can be achieved by employing proper projection operators and
amplitude estimation [29].

IV. CONCLUSIONS

The propagation and scattering of electromagnetic waves
in a dielectric medium is governed by classical Maxwell equa-
tions. The enticing possibility of an exponential reduction in
computational time on quantum computers has led to recast-
ing some topics in classical physics into the framework of
quantum information science. We have expressed the Faraday-
Ampere equations for a passive, nondispersive dielectric
medium in a form that is similar to the Dirac equation for
a massless spin-one particle. For a medium homogeneous in
space, the permittivity and permeability are scalars. In the
Dirac-type evolution equation, the electromagnetic fields are
expressed either as a six-vector or as Riemann-Silberstein-
Weber vectors. When the permittivity and permeability of the
medium are functions of space, then, in contrast to a homo-
geneous medium, the Maxwell operator M̂ and the operator
for the constitutive relations Ŵ do not commute. Even though

both operators are Hermitian, their product is not. A remedy
is to construct a weighted Hilbert space HW in which the
generator of dynamics is pseudo-Hermitian. The Hermitian,
positive-definite metric operator that defines the inner product
within HW is Ŵ . The norm of a state vector in HW is the
electromagnetic energy which, from Poynting’s theorem, is
conserved. The connection between the original Hilbert space
and HW is established through a Dyson map. Significantly,
the Dyson map is a fundamental way to construct a unitary
evolution of Maxwell equations for wave propagation in a
complex medium. Any other representation, preserving the
dynamics, is generated through a unitary transformation of
the Dyson map. There are three different Dyson maps that are
suitable for connecting the two Hilbert spaces. The preferred
Dyson map could be guided by the sparseness of the associ-
ated matrix operators. Regardless of the choice, the final form
of the Faraday-Ampere equations comprises unitary evolution
operators. The formal development of Maxwell equations into
a unitary evolution equation is applied to a uniaxial, inhomo-
geneous, dielectric medium. We use a qubit lattice algorithm
to illustrate a means of implementing our formalism onto a
quantum computer. The backbone of the QLA, which uses the
state variable q as its qubit basis, is an interleaved sequence of
unitary collision and streaming operators. The collision opera-
tors entangle the on-site qubits, while the streaming operators
move this entanglement throughout the lattice. In contrast to
the Lie-Trotter-Suzuki treatment of noncommuting exponen-
tial Hermitian operators, the QLA consists of sparse matrices.
The present formulation of QLA needs external potential op-
erators which are sparse, but not unitary. However, following
[27,28], the potential operators can be represented as a sum
of unitary operators, making them amenable for quantum
computers. Consequently, as we have shown, it is possible to
design the appropriate quantum circuits. Since the polynomial
gate complexity of a simulation scales with the number np of
qubits which, in turn, are related to the number of spatial grid
points, the speedup of quantum computing for simulation with
high spatial resolution is quite clear. Even though it is early to
estimate the scale of the speedup for QLAs, recent develop-
ments provide reason for optimism. It is likely that optimized
QLAs will make use of fast Fourier transform techniques for
implementing the streaming operators, thereby reducing the
number of operations of the streaming operator [30].
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