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and reconstruction of quantum correlation
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The ability to track and control the dynamics of a quantum system is the key to quantum technology.
Despite its central role, the quantitative reconstruction of the dynamics of a single quantum system from the
macroscopic data of the associated observable remains a problem. We consider this problem in the context of
weak measurements of a single nuclear carbon spin in a diamond with an electron spin as a meter at room
temperature, which is a well-controlled and understandable bipartite quantum system. In this work, based on
a detailed theoretical analysis of the model of the experiment, we study the relationship between the statistical
properties of the macroscopic readout signal of the spin of a single electron and the quantum dynamics of the spin
of a single nucleus, which is characterized by a parameter associated with the strength of the measurement. We
determine the parameter of measurement strength in separate experiments and use it to reconstruct the quantum
correlation. We control the validity of our approach applying the Leggett-Garg test.
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I. INTRODUCTION

The advantage of quantum information systems is based
on the ability to store and process information encoded in a
set of qubits. An obstacle to the implementation of complex
quantum algorithms is the decoherence effect that occurs in
the process of interaction and transformation of information.
To transfer information from one subsystem of a complex
system to another, both subsystems must be entangled, which
inevitably leads to irreversible state changes and loss of in-
formation. The ability to track and control the dynamics of a
quantum system is the key to quantum technology.

To the best of our knowledge, it is impossible to com-
pletely and unambiguously restore the state of quantum
systems based on the macroscopic measurements of observ-
ables associated with the system. In principle, the state of a
quantum system can be characterized using the Wigner dis-
tribution function. However, the reconstruction procedure for
this function is extremely sensitive to measurement errors, is
inefficient, and requires a large number of experiments [1,2].
In this work, we pose a more modest problem of restoring
the correlation function of the dynamics of an observable
associated with a quantum object. We control the accuracy of
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our reconstruction by checking the nonclassical properties of
the resulting correlation function using the Leggett-Garg test.

In contrast to the classical filtering and control problem,
the main difficulty in the quantum case is that the probabilistic
properties of the classical (macroscopic) process at the output
of the system and the quantum process that generates it differ
significantly (see, e.g., [3,4]). In this regard, it is interesting
to trace theoretically the transformation of a quantum process
into a macroscopic output process and test this analysis with
experimental results on a simple model. On this path, we are
guided by the idea that measurements are not an instantaneous
jumplike act (collapse of the wave function), but a process
in which one quantum state is replaced by another, pure or
mixed, under the control of some interaction Hamiltonian,
while the final stage of this process is just a nonunitary nature
(see Sec. III B).

The classical probability measure P is defined on the prob-
ability space (�,F ) or, equivalently, on a Boolean algebra A
(distributive lattice) and satisfies the strong additivity property

P(A) + P(B) = P(A ∧ B) + P(A ∨ B), A, B ∈ A . (1.1)

On the other hand, the quantum probability is defined on an
orthomodular (nondistributive) lattice generated by projec-
tions of a Hilbert space, where a finite function (dimension
function) with a property similar to (1.1) exists only in special
cases (see [5,6]). Moreover, there is no dispersion free state
(corresponding to the δ measures in classical case) on a com-
plex Hilbert space of dimension greater than two (Gleason’s
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theorem [7]; see also [8]). In other words, randomness is an
inevitable property of quantum states.

Strong additivity is a distinctive property that fundamen-
tally separates classical probability from quantum probability,
which manifests itself in a variant of the proof of Wigner’s
and d’Espagnat’s formulation [9,10] for Bell’s theorem, given
for clarity in Appendix A.

Bell [11,12], using Bohm’s version [13] (ch. 22) of the
Einstein-Podolsky-Rosen (EPR) arguments [3], introduced
test inequalities relating correlations between measurements
in separate parts of the classical composite system. While
Bell’s inequalities examine correlations of bounded random
variables over space, the more recent Leggett-Garg inequality
[14] examines correlations over time. The simplest Bell- and
Leggett-Garg-type inequalities can be represented in the same
form,

C21 + C32 − C31 � 1,

where Ci j are the two-point correlation functions with differ-
ent pairs of space or time arguments. This inequality limits the
strength of spatial or temporal correlations that can arise in a
classical framework and is expected to be violated by quan-
tum mechanical unitary dynamics such as Rabi oscillations or
Larmor precession.

From a mathematical point of view, Bell-type inequalities
arose in classical probability more than 100 years before
Bell’s discovery. The first appearance of such a result is as-
sociated (see [15,16]) with the name of the creator of Boolean
algebra [17]. The final solution to this problem is formulated
as Kolmogorov’s consistency theorem (see, e.g., [18]). The
key mathematical condition of Bell-type theorems is that all
(bounded) random variables given in space or in time are
defined on the same probability space, which is especially
significant in the case of spatially separated subsystems in
the Bell test. In terms of applicability, a critical limitation of
Bell-type theorems is that inequalities are derived under the
assumption of noninvasive measurements.

We consider the tracking problem in the framework of
measurements of a single nuclear spin in a diamond with an
electron spin as a meter at room temperature [19–21]. This is a
well-controlled and understandable bipartite quantum system.
A feature of a substitutional nitrogen nuclear spin is that it lies
on the nitrogen-vacancy (NV) axis, and therefore its hyperfine
tensor is rotationally symmetric and collinear with the NV
axis.

The possibility of quantum nondemolition (QND) mea-
surement of single nitrogen nuclear spins (14N, 15N) to probe
different charge states of the NV center was demonstrated in
[22]. In this case, the system observable is the nuclear spin
Iz, which undergoes the Rabi oscillations, while the probe
observable is the electron spin Sz. This is a realizable QND,
which is close to the conditions of projective measurement
[23].

Tracking the precession of a single nuclear 13C spin using
periodic weak measurements was demonstrated in [24,25].
The nuclear spin of carbon in diamond weakly interacts with
the electron spin of a nearby nitrogen vacancy center, which
acts as an optically readable measurement qubit. The nuclear
spin undergoes a free precession around the z axis with an
angular velocity given by the Larmor frequency ω. The pre-

cession is monitored by probing the nuclear spin component
Ix by means of a conditional rotation via the effective inter-
action Hamiltonian H ≈ A‖SzIx, which couples Ix with the Sz

component of electronic spin.
The experimental setup of our work basically coincides

with the scheme of [24]. However, the problem of restoring
the correlation function of a quantum signal from the data
of successive (weak) measurements and, in particular, the
subsequent application of the Leggett-Garg test required a
significant development of the experiment and an increase in
the measurement accuracy.

To the best of our knowledge (see [15,26]), most of the
experiments on the application of the Leggett-Garg test used
explicit or implicit preprocessing of macroscopic experimen-
tal data (application of an empirical “measurement factor,”
filtering, postselection). For example, Palacios-Laloy et al.
[27] wrote (we adhere to the original notations): “under
macrorealistic assumptions, the only effect of the bandwidth
of the resonator would be to reduce the measured signal by
its Lorentzian response function C(ω) = 1/[1 + (2ω/k)2]; we
thus have to correct for this effect by dividing the measured
spectral density S̃z(ω) by C(ω). We then compute K (τ ) by
inverse Fourier transform of Sz(ω) = S̃z(ω)/C(ω).” Palacios-
Laloy et al. found that their qubit violated Leggett-Garg tests,
albeit with a single data point, and conclude that their system
does not admit a realistic, noninvasively measurable descrip-
tion.

In Waldherr et al. [28] the data preprocessing procedure
is explicitly described. They reconstruct the conditional Rabi
oscillation for a substitutional nitrogen nuclear spin using
(almost) projective QND measurements [22]. The application
of a narrow-band, nuclear spin state-selective microwave π

pulse flips the electron spin into the |+1〉e state or |0〉e and
|−1〉e states conditional on the state of the nuclear spin. How-
ever, only if the measurement outcome is |+1〉n is the Rabi
oscillation generated. Since the fluorescence intensity differs
significantly for the electron spin states |+1〉e (low) and |0〉e

and |−1〉e (high), these target states can be distinguished
in the histogram of many subsequent measurements using a
maximum likelihood statistical procedure. Low fluorescence
level indicates that the π pulse was successful, i.e., that the
nuclear spin state is |+1〉n. Only in this successful case is a
resonant radio-frequency pulse of certain length applied and a
subsequent measurement is used for data analysis.

In our experiment (see Sec. II), the successive weak mea-
surements generate a classical stochastic signal whose char-
acteristics can be calculated using a positive operator-valued
measure (POVM) measurement scheme. We theoretically
show that the correlation of the classical output signal can be
converted to the correlation of nuclear spin dynamics using a
mapping dependent on the factor α characterizing the strength
of the measurements. A similar idea of applying inverse imag-
ing to macroscopic data has been used in the field of quantum
tomography (see, e.g., Smithey et al. [1]).

We apply the theoretical mapping to the output classical
process (or, equivalently, to the empirical correlation function)
in order to recover the correlation function of the quantum
object. Only then do we apply the Leggett-Garg inequality
to verify that the reconstructed process violates the classical
properties of correlations. Thus, although the Leggett-Garg
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FIG. 1. Scheme of the experiment. (a) The sequential weak measurements Mi are composed of a sensor initialization part, dynamical
decoupling (KDD-XYn), and readout of the sensor state using conventional optical readout of an NV center electron spin. The KDD-XYn
filter function is tuned via pulse spacing τ to the Larmor precession of the weakly coupled (Azz ≈ 100 Hz) 13C nuclear spin, which results in
an effective interaction between nuclear and electron spin. The electron spin state is read out after each interaction, which leads to extraction
of information about the nuclear spin and its back-action. (b) Schematic evolution trajectory of an electron spin state in the case the nuclear
spin is in the Ie + Ix state (c) Schematic evolution of the nuclear spin during sequential measurements. Initially, the nuclear spin is in the
thermally mixed state ρ0 = Ie, which is then partially polarized by measurements along the x axis with magnitude sin α. The free precession
between the measurements leads to a rotation around the z axis, which is perpendicular to the figure plane. Subsequent measurements affect
the measurement by disturbing both the x and y component of the Bloch vector, conditioned on the measurement outcome (see text).

test was not developed for invasive (albeit weak) measure-
ments, our approach allowed us to apply it to verify the
compliance of the model and the method of analysis with the
experimental conditions.

Moreover, our approach makes it possible to introduce
an analog of the classical relative entropy of Kullback and
Leibler as a measure of the discrepancy of information that
occurs during the measurement process. This definition differs
from the relative entropy commonly used in the noncommu-
tative case.

The paper is organized as follows. A detailed description
of the main experiment and the results are given in Sec. II,
while the theoretical analysis is carried out in Sec. III.

The main tools of our analysis are the POVM mea-
surements theory and the Baker-Campbell-Hausdorff (BCH)
formula. We introduce a modification of closed form (3.12) of
the BCH formula (a simple proof is given in Appendix B) and
show that it can be used in our model. In view of the numerous
references in our main text to various aspects of the POVM
theory, we found it useful to summarize for convenience the
main facts of this theory in Appendix C.

II. EXPERIMENT AND RESULTS

A. Experimental setup

We use a single 13C nuclear spin in diamond as quantum
system, probed by an NV center electron spin [see Fig. 1(a)].
The electron spin interacts weakly with the single 13C nuclear
spin through their hyperfine interaction. Each NV electron
spin can selectively address nuclear spins in the near vicinity
under control of the dynamical decoupling (DD) sequence and
is then read out using projective optical measurements (see
Appendix K for details).

B. Model and main assumptions

Recall that the secular hyperfine vector Az of the hyperfine
tensor A(r), r = (r, θ, φ) with a properly chosen x axis is

given by

Az = (Axz, 0, Azz ) = (A⊥, 0, A‖). (2.1)

Since the electronic spin precesses at a much higher frequency
than the nuclear spin, the nuclear feels only the static compo-
nent of the electronic field. Therefore, the dynamics of the
unified system with single spin 13C can be described by the
Hamiltonian in the secular approximation:

H = ωIz + 2πA‖Sz ⊗ Iz + 2πA⊥Sz ⊗ Ix, (2.2)

where ωL = γCBz, γC is the 13C gyromagnetic ratio, Bz is
the external magnetic field along the NV axis, Sz, Ix, Iz are
the electron and nuclear spin-1/2 operators, and A‖ = Azz

and A⊥ =
√

A2
xz + A2

yz are the parallel and transverse hyper-
fine coupling parameters. After the interaction controlled by
the Hamiltonian and the DD sequence, the amplitude of the
nuclear component Ix is mapped to optically detectable com-
ponent Sz of the NV center.

In our experiment, the interaction between the electron and
nuclear spins is controlled by a Knill-dynamical decoupling
(KDD-XYn) sequence of periodically spaced π pulses, which
contains n units of 20 pulses with a pulse interval τ . The
measurement strength of weak measurements can be varied.
If τ is adjusted to the effective nuclear Larmor period ωL, that
is (see [20]),

τ = (2k + 1)π

2ωL + 2πAzz
, if 2πAzx � γnB (2.3)

or

τ = π/ωL if 2πAzz � ωL, (2.4)

we can assume that the system evolves under the effective
Hamiltonian [24,29,30]

Heff = 2αSz ⊗ Ix, (2.5)

where the Larmor frequency is determined by the static mag-
netic field (in our experiment B ≈ 0.25 T). The effect of the
KDD-XYn sequence is specified by a measurement strength
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parameter α = πNpA⊥τ , which depends on the transverse
hyperfine component A⊥ and the number of pulses Np = 20n.

Nuclear-spin precession at the Larmor frequency around
an external magnetic field B is perturbed by the presence
of the electron spin. As a result, depending on the NV
charge and spin states NV−, mS = {−1, 0,+1} or NV0,
mS = {−1/2,+1/2}, the precession frequency and axis are
modified. The interaction Hamiltonian gives rise to electron-
spin-dependent nuclear precession frequencies ω0 (electron
spin in |0〉) and ω±1 =

√
(ω0 ± a‖)2 + a2

⊥ (electron in |mS =
±1〉, a‖ = 2πA‖, a⊥ = 2πA⊥). The interaction controlled by
the effective Hamiltonian Heff carries the main information
about the nuclear spin through the transverse hyperfine com-
ponent A⊥, but introduces a dephasing associated with the
back-action on the nuclear spin. At the same time, the secular
longitudinal part of the hyperfine interaction A‖Sz ⊗ Iz turns
out to be a source of significant information distortion.

C. Influence of the longitudinal part: Diamond sample

One of the possible mechanisms for involving the longi-
tudinal component A‖ into the dynamics in our experiment
is the process of optical readout [25]. During optical readout
of the NV center with nonresonant laser pulse, due to the
shift

�
ω = |ω0 − ω±1| of nuclear precession, the NV center

cycles through its electronic states before reaching the mS = 0
spin-polarized steady state. The way to overcome the influ-
ence of the surrounding nuclear spins 13C on the sample spin
is to reduce the concentration of nuclear spins 13C. To this
end, our experiment is carried out at NV centers in isotopically
purified diamond (see Appendix K).

Uncontrolled dynamics of electron spin states during and
after the readout leads to random z rotations of the nuclear
spin under the action of the secular longitudinal part of the
hyperfine interaction A‖Sz ⊗ Iz. Therefore, due to a random
phase accumulation, stochastic flips of the sensor spin lead
to the decoherence of target spin with the intrinsic trans-
verse relaxation time T ∗

2 or the intrinsic nuclear dephasing
rate �intr = (T ∗

2 )−1 It is also believed that the longitudinal
hyperfine interaction during laser readout causes an additional
dephasing with rate [25]

�opt ≈ A2
‖t2

l

2ts
, (2.6)

where tl = treadout is a period at which ms = 0 and ts is a
sample time.

The influence of the longitudinal part of the hyperfine
interaction A‖Sz ⊗ Iz associated with optical readout accumu-
lates with an increase in the number of measurements. As a
result, a short period of weakly perturbed behavior does not
make it possible to reveal the purely quantum properties of the
nuclear spin. Therefore, for the purposes of our experiment, it
is desirable to choose a pair of NV-nuclear spins for which the
value of A‖ is negligibly small. The properties of the various
electron-nuclear pairs and the process of choosing a suitable
pair are described in more detail in Appendix J. In our dia-
mond sample, we managed to find such a pair corresponding
to “the magic angle cone,” which made it possible to obtain a
clear picture of the interaction.

D. Detection protocol

We now turn to the description of the results of the ex-
periment with this particular magic pair, designated as NV2.
In our experiment, we investigated both prepolarized and
nonpolarized initial conditions for the nuclear spin. While
electron spin polarization is a relatively easy task, nuclear
spin polarization is a rather delicate procedure. In the main
text, we analyze and present the main results for the partially
polarized case, when incomplete polarization occurs during
the first measurements (see Sec. III D). The results for the case
of a prepolarized target spin are presented in Appendix G for
additional information.

When initially the nuclear spin is not polarized, it is repre-
sented by a completely mixed state

ρI = 1
2 |0〉〈0| + 1

2 |1〉〈1| = 1
2 Iα + 1

2 Iβ = 1
21 = Ie, (2.7)

where Iα = Ie + Iz, Iβ = Ie − Iz and Ie = 1
21, Sk = Ik =

1/2 σk , and σk are Pauli matrices. In Sec. III D, we show
that the initial state (2.7) during the first measurements is
transformed into a partially polarized state Ie + sin αIx, the
degree of polarization of which depends on the parameter α.

The measurement protocol is as follows. The electron spin
is optically pumped [see Figs. 1(a) and 1(b)] into the state
|0〉 = |mS = 0〉 or equivalently to Se + Sz, and then rotated by
a (π/2)y pulse around the y axis to state Se + Sx. Then the
interaction controlled by the KDD-XYn sequence is applied,
which ends with a (π/2)x pulse along the x axis. Between
two successive measurements the target spin undergoes free
precession around the z axis with the Larmor frequency ωL

[see Fig. 1(c)], during which the accumulation of information
about the target object takes place. The final optical readout
of the Sz component of the NV sensor repolarizes the sensor
back to the initial state Se + Sz while maintaining the nuclear
spin state in the x-y plane, which reduces the amplitude of the
Iy component by a factor of cos α. Nuclear precession leads
to a mixing of the Ix and Iy amplitudes. Thus, in the process
of measurement, the components Ix and Iy are subject to a
back-action, which leads to an exponential decay of the spin
amplitude, depending on the strength parameter α.

E. Data analysis

The experiment is designed in such a way that the inter-
action Hamiltonian (the effective Hamiltonian proportional
to Sz ⊗ Ix) and density matrices are expressed in terms of
operators Si and I j of the basis (3.3) so the dynamics of the
object can be calculated using a modification of the Baker-
Campbell-Hausdorff (BCH) formula (3.12).

An analysis of the transformation of the state of the com-
posite system and, in particular, the dynamics of the state
of the target nuclear spin during the interaction is given in
Sec. III B. We single out the moment when, as a result of the
interaction of the NV center as a meter with the spin 13C, the
amplitude of the observable Ix is mapped into the observable
Sy and next to Sz after a π/2 pulse along Sx axis with the
inevitable uncertainty introduced by the factor sin α, which
characterizes the strength of the interaction. Together with the
projective measurement, this process converts the quantum
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FIG. 2. Externally applied classical field and calibration of fluorescence readout. (a) Experimental protocol for modulation assisted method
for determining the fluorescence response of the NV spin readout na and nb. Sequential measurements with optical readout of the electron spin
yield phase information obtained by the interaction with the external signal. The readout π/2 pulse phase is sinusoidally modulated with
an amplitude of π/2 and a period of eight measurement cycles. (b) The empirically calculated correlation of the centered photon count
number trace. The beating in the correlation originates from the presence of two frequencies. The size of the beating is determined by the
relative amplitude of the external signal to phase modulation. The solid curve is the best fit of the analytical model of the correlation function
(2.16), which includes phase modulation and the unknown external signal. (c) Measurement protocol for the estimation of the classical signal
correlation function. (d) Reconstructed correlation function of the classical sinusoidal signal with a stochastic phase.

signal into the classical stochastic process of the measured
signal.

In Sec. III B a recurrent equation for the dynamics of a
composite system (3.51) and the recurrent formula (3.45)
for the state of the target nuclear spin are obtained. Under
natural assumptions, we get approximate formulas specifying
the values of the amplitudes of the observables Ix and Iy

corresponding to the nuclear spin at an arbitrary instant of
time.

The expression for the amplitude xN of the Ix component,
taking into account incomplete polarization with an indefinite
sign, can be represented as [see (3.64)]

x±
N ≈ ± sin α cos(ωNt f ) exp

[
− (N − 1)α2

4

]
≈ ± sin α cos(ωNt f )e−N�⊥ts , (2.8)

where ts is the total measurement sequence time [see Fig. 1(a)]
and �⊥ = α2/4ts is the measurement-induced dephasing rate.
This formula is then used (see Sec. III E) to theoretically
calculate the correlation functions [see (3.75)]

CIx (N ) = cos(ωNt f ) exp

[
− (N − 1)α2

4

]
, (2.9)

for the quantum process corresponding to the component Ix

and the classical output process of the component Sz

CSz (N ) = sin2 α cos(ωNt f ) exp

[
− (N − 1)α2

4

]
= sin2 α CIx (N ). (2.10)

First, we note that formulas (2.9) and (2.10) differ by the
factor sin2 α in which one sin α is generated by incomplete
polarization (see Sec. III D), and the second sin α is given by
the measurement process itself, while both are determined by
the strength parameter α of the weak measurements. Further,
although the correlation function CIx (N ) corresponds to the
quantum process of the Ix component and its formula includes
a pure component cos(ωNt f ) corresponding to the Larmor
precession, this pure component is distorted by the exponen-
tial decay factor.

The above analysis shows that the application of the L-G
test to the correlation functions of the output process does not
make sense, since this test is designed for noninvasive mea-
surements of the observable in the pure state. However, we
can use the theoretical analysis to reconstruct the correlation
function of the Larmor precession from experimental data. To
do this, we need to be able to restore the parameter α with
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FIG. 3. Reconstruction of quantum correlation function and calibration of fluorescence readout. (a) Experimental protocol for the
modulation-assisted method for determining fluorescence response of NV spin readout na and nb. Sequential measurements with optical
readout of electron spin results in idle measurements as the DD filter function is detuned from 13C Larmor frequency. The readout π/2 pulse
phase is sinusoidally modulated with amplitude π/2 and a period of eight measurement cycles. (b) Calibration of na and nb for optical spin
readout of the NV center electron spin. The dependence of average photon counts on angle φk reveals the na and nb photon counts. The model
analytical curve [see (2.19)] shows that the response of the NV center depends on na and nb. Measurement scheme [Fig. 3(a)] operates at
φk = 90. (c) Measurement scheme of the nuclear spin correlation function, operating at φk = 90. (d) Empirically estimated correlation of
sensor outputs. The solid curve is the best fit of the analytical model for the correlation function, which includes back-action-induced decay of
the initial amplitude accounting for a single unknown parameter α. (e) Reconstructed correlation function of the quantum signal.

great accuracy. In the following Secs. II F and II G and in
Appendixes F, H, L, we describe the procedures for estimating
the parameter α in various experimental modes.

Thus, we come to a simple algorithm for analyzing the
experimental data: (1) calculate the empirical correlation
function of the classical output signal, (2) normalize the
calculated empirical correlation function by sin2 α and by
exponential decay determined by the measurement-induced
dephasing rate �⊥, and (3) apply the Leggett-Garg inequality
to the corrected empirical correlation function.

F. Test experiment with a classical signal

First, we apply these ideas to design of a test experiment
in which the NV center interacts not with the nuclear spin,
but with an external classical sinusoidal magnetic field with a
random phase. The experiment consists of a series of measure-
ments of a classical external oscillating (linearly polarized)

magnetic field [see Figs. 2(a) and 2(c)]

Bac(t ) = Bac sin(ωact + φ), (2.11)

where Bac is the amplitude of the magnetic field ωac = 2π fac

is the frequency and φ is a random phase, using the NV center
as a meter. Since the time interval between Mi is not precisely
controlled, it can be assumed that each run corresponds to
a different realization of the random phase φ between the
oscillating field and the measurement.

The analysis of the experiment with the classical random
magnetic field (2.11) basically follows the approach described
above, with some natural modifications. In this experiment,
the effective Hamiltonian is given by

Heff = 2αSz sin(ωt + φ). (2.12)

We can interpret this Hamiltonian as describing the inter-
action of the NV sensor with a random sinusoidal signal
(2.11), where α = BzNpτ/π determines the strength of the
interaction.
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(a) (b)

(c) (d)

FIG. 4. L-G functions for the classical and quantum processes. (a) L-G function for the reconstructed autocorrelation of the classical r.f.
signal. (b) NV2 measurements, L-G function for empirical autocorrelations normalized only by sin2 α. (c) NV2 measurements, L-G function
for empirical autocorrelations normalized by sin2 α, and dephasing factor. (d) NV2 measurements, the result of averaging L-D functions over
five experiments with different control sequences.

Using our theoretical approach, we calculate that the output
process is given by

z(t ) = ± sin[α sin(ωt + φ)] ≈ ±α sin(ωt + φ), (2.13)

where the approximate equality holds assuming small α.
Therefore, the correlation function of the output process z(t )
has the following form:

〈z(t )z(t + τ )〉 = α2

2
cos(ωτ ). (2.14)

Recall that the autocorrelation function of the classical ran-
dom process x(t ) = sin(ωt + φ) with a random phase φ

uniformly distributed on the interval [0, 2π ] is given by

C(τ ) = 1
2 cos(ωτ ). (2.15)

Comparing expressions (2.15) and (2.14), we find that they
differ only in the factor α2, which we must extract from a
separate experiment.

The result of measurements in our experiment is a se-
quence {nk} of the number of photons recorded during each
readout. Thus, we need to find how the probabilistic proper-
ties of counting statistics {nk} are related to the probabilistic
characteristics of the sensor signal. We calibrate the fluo-
rescence output na and nb of the NV center for electron
spin in the bright ms = 0 and dark ms = −1 states (see
Appendix H).

To estimate parameter α a phase modulation

φk = π/2 sin(2πk/8)
is additionally applied to the final (π/2) pulse, which
modulates the output signal [see Fig. 2(a)]. The empirical cor-
relation function of the output signal has the form [Fig. 2(b)],
which is the result of the superposition of the external classical
field and the final modulation impulse π/2. We fit the curve
with least-squares method using an analytical expression:

min
na,nb,α

200∑
k=1

((〈nini+k〉i − n2
av

) − (na − nb)2

4

〈
Si

z(α,�s)Si+k
z (α,�s)

〉
i

)2

. (2.16)

Here nav = (na + nb)/2 and Si
z(α,�s) is the amplitude of the component Sz of the density matrix of the NV spin. As shown in

Appendix H, it takes the form

Si
z(α,�s) = sin

[
π

2
sin

(
2πk

8

)
+ α cos

(
k�sπ

4

)]
, (2.17)
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where � [see Appendix H, Eq. (H3)] is the phase acquired
under the influence of the DD sequence. As a result, we extract
both the fluorescent responses of the NV center in ms = 0
(na), ms = −1 (nb) and the local strength of the RF field (for
details see Appendix H). Finally, performing an experimental
series without phase modulation, we reconstruct the normal-
ized correlation function of the classical signal [see Fig. 2(d)],
using

〈zizi+k〉emp = 4
〈nini+k〉 − n2

av

(na − nb)2
(2.18)

and Eq. (2.14). Note that the restored correlation function
of the classical signal is equal to the analytically calculated
function.

G. Calibration of electronic and nuclear spin parameters

To calibrate the fluorescence output na and nb of the NV
center for electron spin in the bright ms = 0 and dark ms = −1
state, we apply a phase modulation to the final (π/2) pulse
[see Fig. 3(a)]. In a series-averaged output, we obtain an
oscillating signal, which is fitted with

n(k) = 1
2 (na + nb) + 1

2 (na − nb) sin2(φk/2 + φ0), (2.19)

where φk are the modulation angles in series
0, 30, 60, 90, . . . , 360, na and nb are bright and dark photon
count rates [see Fig. 3(b)]. The φ0 � 1 is the phase offset
due to imperfections of the pulses due to detuning. The
measurement scheme [Fig. 3(a)] operates at φk = 90. Each
angle series consists of 50 sequential measurement, and
φk = 90 is measured 500 times [see Fig. 3(a), number of
measurements in inner brackets].

Then we calculate the empirical correlation function for the
registered photons using the formula

Cn(N ) = 〈nini+N 〉 = 1

k − N

k∑
i

nini+N

and the empirical electron spin correlation

CSz (N ) = 4
[
Cn(N ) − n2

av

]
(na − nb)2

(2.20)

using the estimated parameters na and nb from Fig 3(b). We
evaluate the parameters α, using the standard least-squares
method (φ = ωt f ) by comparing the empirically estimated
CSz (N ) to the analytical one [Eq. (2.10)]. In this way we
find an estimate of α with which Eq. (2.10) approximates
the reconstructed correlation function of the output signal in
an optimal way [see Fig. 3(c)]. After carefully measuring the
calibration constant α we normalized the empirical correlation
function CSz (N ) by sin2 α and get an estimation of CIx (N ) [see
Fig. 3(d)].

H. Main results

We use the Leggett-Garg (L-G) test in the following form
(see, e.g., [26]):

LG(τ ) = 2C(τ ) − C(2τ ). (2.21)

Let us first consider the case of a classical input sinusoidal
signal with a random phase. In Fig. 4(a) it can be seen that

even after correcting the empirical correlation function by
the factor α2, as expected, there is no violation of the L-G
inequality.

In the case of measurement of the nuclear spin NV2, we
first consider the case when the empirical correlation func-
tion is corrected only on the factor sin2 α [see Fig. 4(b)]. In
this case the inequality is violated until the damping effect
manifests itself, that is, only at several initial points, the num-
ber of which depends on the parameter α. The demonstrated
result corresponds to the following experimental parameters:
KDD-XY5 sequence, free precession angle ≈27◦, polarized
14N, and α ≈ 0.18π . In this case decoherence is fast, and we
recognize only three points of disturbance and only in the first
period of oscillation.

Figure 4(c) shows the case where the empirical correlation
function is corrected by an exponential decay factor. It is note-
worthy that with such a correction, the correlation function
demonstrates a violation of inequality in the second and even
third fluctuations. In total, we conducted five experiments. We
used a simplified version of memory-enhanced readout pro-
posed in [22], where the NV electron spin is mapped to 14N.
We performed 200 repetitive readouts per single measurement
and calculated the resulting number of photons instead of
using the maximum likelihood method. Figure 4(d) shows the
result of the result of averaging over five experiments with
different control sequences. Again, the correlation function
demonstrates a reliable violation of the inequality in the third
oscillation.

Finally, we discuss the effects of ionization on the recorded
data. It was found that the NV center is in the dark state during
green excitation for ≈30% of the time without an observable
fluorescence fingerprint. Ionization of the NV center has been
identified as the limiting decoherence mechanism for quantum
memories used for long-range quantum communication opti-
cal networks. However, as we emphasized above, the values
of the signal in the initial period, when the back-action does
not yet distort the signal, are fundamentally important for
our experiment. Therefore, we select control actions that are
aimed not at achieving the longest oscillation duration, but at
the least signal distortion in the initial period. We simulate the
process of sequential weak measurements with initially polar-
ized target spin using the Monte Carlo method and conclude
that the errors induced by the charge state are less than sta-
tistical errors and do not affect our final conclusions. A more
detailed ionization mechanism and the results of numerical
simulations are given in Appendix E.

In conclusion, we showed that the empirical correlation
functions corrected on the basis of our theoretical model do
break the LG inequality in different measurement regimes. We
also showed that in a test experiment with an input random
classical signal, the empirical correlation function corrected
in accordance with the theory does not violate the inequality.
These results allows us to conclude that, first, our model and
theoretical analysis describe the experiment quite well, and
second, that the strength parameter α of weak measurements
is estimated experimentally with high accuracy. This means
that we correctly reconstruct the correlation of the quantum
Larmor precession, which, of course, violates the LG in-
equality according to the theory. The above results show that
although we cannot avoid the inevitable decoherence effect
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during the measurement process, we can account for these
changes based on theoretical analysis and accurate empirical
reconstruction of the experimental parameters.

We also note that in the process of analysis, we restore the
sequence of transformations of the initial state from a purely
quantum state to a classical macroscopic state at the output of
the system (see Sec. III).

III. THEORETICAL ANALYSIS OF EXPERIMENT

A. Notation and preliminaries

The process of repeated (weak) measurements of some
quantum observable is implemented on the composite Hilbert
space H = HD ⊗ HQ by coupling the primary quantum sys-
tem Q, initially in the ρ state, on the Hilbert space HQ, to a
quantum measuring device D, initially in the state σ . The two
systems interact during a period τ , and after interaction, the
initial density matrix is transformed into

ρQD(τ ) = U (τ )ρ ⊗ σU ∗(τ ), (3.1)

where U is a unitary operator acting on the composite system.
The unitary group U(H) consists of complex linear operators
U on H, which satisfy UU ∗ = 1, and, accordingly, the Lie al-
gebra u(H) of this group consists of anti-Hermitian operators.

The manifold of general quantum states is the family of
orbits of the smooth action of the group GL(H) of invertible
operators on H acting on the space of self-adjoint operators
according to the map [31]

u∗(H) � A = A∗ → gAg∗, g ∈ GL(H). (3.2)

In this picture, pure states form an orbit in the dual space
u∗(H). This action does not preserve the spectrum and the
trace of A unless g is unitary; however, it preserves the posi-
tivity of A and the rank of A.

In the case of a composite 2 × 2 system (in particular, two
spin system S = 1/2 and I = 1/2), the basis of the state space
can be written as the direct product of the basis sets of the
single spins

{Se, Sx, Sy, Sz} ⊗ {Ie, Ix, Iy, Iz}, (3.3)

where Se = Ie = 1
21, Ii = 1

2σi. In this case the local transfor-
mations of density matrices form a six-dimensional subgroup
SU(2) ⊗ SU(2) of the full unitary group U(4). For an isolated
system with dynamical symmetry group SU(2) there exists
the corresponding (real) Lie algebra su(2), spanned by the
operators {ι̇Ix, ι̇Iy, ι̇Iz} satisfying the angular momentum com-
mutation relations

[Ix, Iy] = ι̇Iz (3.4)

and cyclic permutations, where Ii = 1
2σi and σi, i = x, y, z are

Pauli matrices. So the pure state can be expressed in terms
of the basis of observables and identified with a point on the
surface of the Bloch ball as the Bloch vector

ρ = Ie + xIx + yIy + zIz := w · I,

x = tr[ρ σx], y = tr[ρ σy], z = tr[ρ σz],

w = (x, y, z), tr[ρ] = tr[ρ2] = 1. (3.5)

The mixed states correspond to the points inside the Bloch
ball |w| = tr[ρ2] < 1. Unitary operations can be interpreted
as rotations of the Bloch ball and the dissipative processes as
linear or affine contractions of this ball.

It is generally considered that a quantum-mechanical
system which is isolated from the external world has a Hamil-
tonian evolution. If H is the Hilbert space of the system, this
is expressed by the existence of a self-adjoint (Hamiltonian)
operator H , such that the state ρ at time t is computed from
the state at time 0 according to the law ρt = e−ι̇tHρeι̇tH . A
composite system represented in terms of a Lie group can be
considered as isolated from the environment.

To analyze the impact of a unitary group on the state of the
system we can use the Baker-Campbell-Hausdorff (BCH) for-
mula. The BCH formula reveals the formal purely algebraic
connection between the local structure of a Lie group G and
its algebra g. If one makes no further simplifying assumptions,
then the BCH formula for the orbit eHρeH expands to an
infinite series of nested commutators. But, in a particular case,
under the condition

[H, [H, ρ]] = ρ

(for example, [Si, [Si, S j]] = Si if Si = S j,) the exact formula
holds:

e−ι̇φHρeι̇φH = ρ cos φ − ι̇[H, ρ] sin φ. (3.6)

This means that if the experiment is constructed so that the
interaction Hamiltonian is expressed in terms of some basis
operator Si, then the dynamics of the object can be calculated
using (3.6). However, the formula (3.6) does not work in the
case when, as a result of interactions, the system passes into
an entangled state, which is necessary to obtain information
about the measurement object.

A state ρQD of a composite quantum system is called en-
tangled if it cannot be represented as a convex combination

ρQD =
∑

α

pαρ1
α ⊗ ρ2

α, with
∑

α

pα = 1, (3.7)

where ρ1
α, ρ2

α are density matrices of the two subsystems.
Recall that a bipartite pure state ρQD is entangled if and only
if its reduced states are mixed states. (Moreover, a pure state
of a composite system is entangled if and only if it violates
Bell’s inequality [32]; however, the assumption that violation
of some Bell inequality is equivalent to the concept of entan-
glement is incorrect [33,34].)

In our case, entanglement manifests itself in the appearance
of zero commutators in the BCH expansion of the composite
system, such as (3.19).

The local properties of mixed states of two subsystems of an
entangled composite system can be studied by analyzing the
action of the elements of the local subgroup Loc = SU(2) ⊗
SU(2) of the group U(4) on state ρ of a composite system
lying in orbit

{ρ ′ = UρU ∗, U ∈ SU(2) ⊗ SU(2)}. (3.8)
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For this purpose, the real symmetric 6 × 6 Gram matrix is
introduced:

Gi j := 1
2 tr(WiWj ), Wj := [Rj, ρ], j = 1, . . . , 6,

Rk = ι̇σk ⊗ 12, Rk+3 = 12 ⊗ ι̇σk, k = 1, 2, 3,
(3.9)

where the anti-Hermitian matrices Ri, i = 1, . . . , 6, form a
basis of the su(2) ⊕ su(2) Lie algebra. It turns out [35], that
the rank of the Gram matrix is a geometric invariant [cf.
the mapping (3.2)] of the orthogonal transformations, which
does not change along the orbit (3.8). Since a state ρQD of
the composite system is expressed in terms of Pauli matrices,
the commutators [Rj, ρ] can also be represented in terms of
[σk ⊗ 1, σ j ⊗ 1]. Therefore, if the interaction Hamiltonian
H applied to a composite system in a separable state ρQD

generates zero terms [see (3.19)]

[σk ⊗ 1, σ j ⊗ 1] = 0

in the BCH formula, it can serve as evidence of the transition
of a separable state to an entangled one. The degeneracy of the
Gram matrix and, as a consequence, the appearance of zero
terms violate the conditions for the applicability of formula
(3.6).

Despite this, in our simple model, we can derive a modified
exact BCH formula (see Appendix B). If the conditions

B = [H, ρ], [H, B] = kρ − k�, (3.10)

[H,�] = 0 [H, [H, B] + k�] = [H, [H, B]]. (3.11)

are met, the following modification of the BCH formula holds:

UρU ∗ = e−ι̇Hφρeι̇Hφ = ρ cos(φ
√

k) + �[1 − cos(φ
√

k)]

− 1√
k
ι̇[H, ρ] sin(φ

√
k). (3.12)

POV measures naturally arise in the process of repeated
measurements of a quantum observable. The POVM method
is a realization of Naimark’s theorem (see, e.g., [36–38]),
which states roughly that the POVM scheme is equivalent
to projective measurements in an extended Hilbert space (the
von Neumann–Lüder projection measurements). The discrep-
ancy between the original and extended Hilbert spaces is
interpreted as the presence of perturbations or inaccuracies in
measurements (see Appendix C).

Completely positive, trace-preserving maps arise in the
POVM measurement scheme, when one wishes to restrict
attention to a subsystem U(HQ) of a larger system U(HD) ⊗
U(HQ). The postmeasurement state ρQ of the primary system
Q is obtained by projecting the joint state ρQD of the entangled
system QD into the subspace of quantum subsystem by taking
a partial trace with respect to the ancilla.

The basic characterization of the measurement model is
given by the quantum operation Sα [see (C6) in Appendix C],
which is the linear transformation of the initial state corre-
sponding to a projection measurement given by an orthogonal
projector Pα . The postmeasurement state of the primary sys-
tem is obtained by taking a partial trace (C4) with respect to
quantum measuring device D. Thus, the map Sα must at least
be both trace-preserving and positive-preserving in order to
preserve the density matrix property. However, the latter is not
sufficient, since Sα must be the result of a positivity-preserving

process on the larger system U (HD) ⊗ U (HQ) of operators,
which is essentially an informally definition of the complete
positivity of Sα . Every completely positive map Sα can be
represented (nonuniquely) in the Kraus form [37],

Sα (ρ) =
∑

k

(
Mα

k

)∗
ρMα

k , (3.13)

with some set of operators Mα
k . The probability to obtain result

α in the measurement is given by [see (C10) for details]

Pρ⊗σ (α) = tr

[
ρ

∑
k

(
Mα

k

)∗
Mα

k

]
:= tr[ρFα], (3.14)

where [see (C8)]

Fα =
∑

k

(
Mα

k

)∗
Mα

k = trD[U ∗PαUσ ]. (3.15)

Therefore, we may identify a set of Kraus operators {Mα
k } or,

equivalently, a set of effects {Fα} with a generalized observ-
able defined by a positive operator-valued measure

R(E ) =
∑
α∈E

Fα, E ⊂ Z.

Equation (3.15) demonstrates that a physical quantity Fα of
a physical system is actually identified by the real experimen-
tal equipment used to measure it. Thus, quantum observables,
defined by {Fα} and measured relative to a reference frame
(ancillas), can be considered as relative attributes.

The representation (3.14), which is the result of a inverse
mapping of the detector output to the target system, allows
us to introduce an analog of the classical relative entropy
of Kullback and Leibler as a measure of the discrepancy of
information that occurs during the measurement process [see
definition (C12) and discussion in Appendix C, and applica-
tion in (III E)].

A sequence of (weak) POVM measurements given by
a completely positive stochastic map S(ρ) generates a set
of orbits inside the Bloch ball. Each measurement reduces
the parameters of orbits, and a sequence of measurements
produces an inward-spiraling precession, which sequentially
traverses the orbits.

The stratification of the Bloch ball by the orbits can be
considered as a natural quantization generated by POVM
measurements.

B. Interaction in the x-y plane

The simple basic idea of the experiment is to study the
precession of a spin- 1

2 particle under the action of the Hamil-
tonian H = −ωIz with some angular precession frequency ω.
The nuclear spin undergoes a free precession around the z axis
with an angular velocity given by the Larmor frequency ω.
We expect the L-G inequality, which limits the strength of
temporal correlations in the classical structure, to be violated
by the quantum mechanical unitary dynamics of the Larmor
precession. However, in a real experiment, a challenging task
is to implement and analyze the measurement procedure,
which is carried out using another quantum object as a meter.
In this section we will pass through this procedure step by
step.
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1. Initial condition

We start the analysis of the experiment with the initial con-
dition of the composite system corresponding to the idealized
polarized state of the target nucleus spin

ρ(0) = ρS (0) ⊗ ρI (0) = (Se + Sz ) ⊗ (Ie + Ix ). (3.16)

In our experiment, we investigated both polarized and un-
polarized initial conditions of the nuclear spin. As shown in
Sec. III D, an experiment with an unpolarized initial state
results in partial polarization during measurements. Note also
that prepolarization procedures (see [25,39]) are never 100%
efficient. How to take into account the influence of incomplete
polarization on the final result is discussed in Sec. III D. We
consider an experiment with a polarized initial condition as a
basic idealized measurement model.

2. Step 1, substep 1

We consider the transformation of a composite system,
which is in the initial state (3.16), under the influence of
the Hamiltonian H = −ωIz, and apply the BCH formula to
calculate the result of this transformation

ρ1(1) = (Se + Sx ) ⊗ [Ie + Ix cos(ωt f ) + Iy sin(ωt f )]. (3.17)

Information about the quantum Larmor precession itself arises
as amplitudes x = cos(ωt f ) and y = sin(ωt f ) of the observ-
ables Ix and Iy. Since entanglement does not occur under this
action, the state of the electron spin does not change.

3. Step 1, substep 2

Next, we study the interaction between the NV sensor
and the target nuclear spin in the x-y plane, which under the
action of the KDD sequence is determined by the effective
Hamiltonian [24,29,30]

Heff = 2αSz ⊗ Ix. (3.18)

The influence of the KDD sequence is specified by the
measurement strength parameter α, which depends on the
perpendicular component A⊥ of the hyperfine field and
can be controlled by the number and duty cycle of pulses
(see Sec. II). To study evolution, we apply the propagator
exp(−2αSz ⊗ Iz ) to the density matrix (3.17).

Before applying the BCH formula, we calculate the com-
mutator [H, ρ]:

[H, ρ] = [2αSz ⊗ Ix, (Se + Sx ) ⊗ (Ie + xIx + yIy)]

= [2αSz ⊗ Ix, Se ⊗ (Ie + xIx )] + [2αSz ⊗ Ix, Se ⊗ yIy]

+ [2αSz ⊗ Ix, Sx ⊗ Ie + xIx]

+ [2αSz ⊗ Ix, Sx ⊗ Ie + xIx].

Notice that

[Sz ⊗ Ix, Sx ⊗ Iy] = 0, (3.19)

[Sz ⊗ Ix, Se ⊗ (Ie + xIx )] = [Sz, Se] ⊗ 1
2 (Ix + xIe) = 0,

(3.20)

which indicates the transition of a separable state (3.17) into
an entangled state as a result of interaction (see Sec. III A).

Hence,

B := [H, ρ] = [2αSz ⊗ Ix, Se ⊗ yIy]

+ [2αSz ⊗ Ix, Sx ⊗ Ie + xIx]

= ι̇
1

2
Sy ⊗ (xIe + Ix ) + ι̇

2
Sz ⊗ yIz (3.21)

and

[H, B] = k� + kρ,
√

k = 1/2, (3.22)

� = (Sx ⊗ yIy) + Se ⊗ (Ie + xIx ). (3.23)

Thus, applying the BCH formula (3.12) we get

ρ2(1) = (cos α)ρS ⊗ ρI (3.24)

− ι̇

1/2
sin α

[
ι̇

2
Sy ⊗ (xIe + Ix ) + ι̇

2
Sz ⊗ yIz

]
(3.25)

= (sin α)Sy ⊗ (xIe + Ix ) (3.26)

+ Se ⊗ (Ie + xIx ) + (cos α)Se ⊗ yIy (3.27)

+ (sin α)Sz ⊗ yIz (3.28)

+ (cos α)Sx ⊗ (Ie + xIx ) + Sx ⊗ yIy, (3.29)

which already clearly shows that entanglement has occurred.
We note that a similar expression is given in [25]; however, it
remained unclear for us how it was obtained.

This result immediately leads to a postinteraction estima-
tion of the state of the nuclear spin. Following the POVM
analysis rules (see Appendix C), we estimate the new state
ρI

2(1) of the nuclear spin by taking the partial traces over the
NV sensor and the state of NV spin ρS

2 (1), respectively:

ρI
2(1) := trS[ρ2(1)] = Ie + Ix cos(ωt f ) + Iy sin(ωt f ) cos α,

(3.30)

ρS
2 (1) := trI [ρ2(1)] = Se + Sx cos α + Sy cos(ωt f ) sin α.

(3.31)

Note also that as a result of the interaction, the coordinate
x of the observable Ix is mapped into the coordinate θ =
cos(ωt f ) sin α of the observable Sy of the NV sensor with
the factor sin α, which specifies the magnitude of the mea-
surement and, as a consequence, the incompleteness of the
information obtained during the weak measurement.

4. Step 1, substep 3

The rotation of the electronic spin is performed by applying
π/2 pulse along Sx:

ρ3(1) = (sin α)Sz ⊗ (xIe + Ix ) (3.32)

+ Se ⊗ (Ie + xIx ) + (cos α)Se ⊗ yIy (3.33)

− (sin α)Sy ⊗ yIz (3.34)

+ (cos α)Sx ⊗ (Ie + xIx ) + Sx ⊗ yIy. (3.35)
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Again, by taking the partial traces over the NV sensor and
nuclear spin we obtain

ρI
3(1) := trS[ρ3(1)] = Ie + Ix cos(ωt f ) + Iy sin(ωt f ) cos α,

(3.36)

ρS
3 (1) := trI [ρ3(1)] = Se + Sx cos α + Sz cos(ωt f ) sin α.

(3.37)

Thus, the rotation of the electron spin leads to a mapping of
the Sy coordinate of the NV sensor and, consequently, the x
amplitude of the nuclear component Ix onto the amplitude of
the optically readable Sz component of the NV sensor given
by

ζ1 := tr
[
σzρ

S
3 (1)

] = x sin α = cos(ωt f ) sin α.

5. Step 1, substep 4

The final projective measurement along the z axis is the
optical readout of the observable Sz with eigenvalues and
corresponding projection operators given by the formula

λ+ = 1
2 , λ− = − 1

2 ,

Sα = Se + Sz, Sβ = Se − Sz (3.38)

These measurements are defined by the probabilities

P(λ+) = tr[ρS
3 (1)Sα] and P(λ−) = tr[ρS

3 (1)Sβ]. (3.39)

Remark III.1. Canonical projective measurement is usu-
ally viewed as an instantaneous act or spontaneous collapse
of the probability amplitude. However, the optical projective
measurement is a quantum stochastic (nonunitary) process,
which has been intensively studied from both a physical and
mathematical point of view (see, e.g., [36,40]). We postpone
the discussion of this problem to Sec. III C and Appendix D.

An optical readout repolarizes the sensor back on to the
initial state ρS (0) = (Se + Sz ), while leaving the nuclear spin
in the x-y plane, so in the next cycle of measurements we start
with the next free precession applied to the state

ρS (0) ⊗ ρI
3(1) = (Se + Sz ) ⊗ [Ie + Ix cos(ωt f )

+ Iy sin(ωt f ) cos α].

By repeating the above measurement process, we obtain after
N measurements

ρI (N ) = Ie + xN Ix + yN Iy, (3.40)

ρS (N ) = Se + ξN Sx + θN Sy + ζN Sz, (3.41)

where coordinates xN and yN are given by the recurrent equa-
tions

xN = xN−1 cos(ωt f ) − yN−1 sin(ωt f ), (3.42)

yN = xN−1 sin(ωt f ) cos α + yN−1 cos(ωt f ) cos α, (3.43)

with x0 = 1 and y0 = 0. The recorded output amplitude ζN is
given by

ζN = tr[σzρ
S (N )] = xN sin α. (3.44)

In terms of Bloch vectors �ρ = (x, y, z), the system of
Eqs. (3.42) and (3.43) can be written as follows:

�ρI (N ) = Rα
z �ρI (N − 1), (3.45)

where the operator Rα
z is given by⎡⎢⎣ cos(ωt f ) − sin(ωt f ) 0

sin(ωt f ) cos α cos(ωt f ) cos α 0

0 0 1

⎤⎥⎦. (3.46)

For a sufficiently small α, by the same reasoning as in
[25], one can obtain from (3.42) and (3.43) the following
approximate representation of the dissipative process:

xN ≈ cos(ωNt f )(cos(α/2))2(N−1), (3.47)

≈ cos(ωNt f ) exp

[
− (N − 1)α2

4

]
, (3.48)

yN ≈ sin(ωNt f ) cos α[cos(α/2)]2(N−1), (3.49)

≈ sin(ωNt f ) cos α exp
[
− (N − 1)α2

4

]
. (3.50)

This representation corresponds to the well-known form of
solutions of the classical Bloch equations for the transverse
components Mx, My.

Finally we note that with

� = ρ − 4[H, [H, ρ]] and
√

k = 1/2,

the closed form (3.12) of the BCH formula can be rewritten in
the form of the master equation

ρN − ρN−1 = − 2ι̇[H, ρN−1] sin α

− 4[H, [H, ρN−1]](1 − cos α), (3.51)

where [H, ρN−1] is the group generator and

4[H, [H, ρN−1]](1 − cos α)

the damping term (α := φ
√

k). In the specific case of our ex-
periment, taking into account (3.23), we can rewrite Eq. (3.51)
as follows:

ρN = −2ι̇[Heff , ρN−1] sin α + ρN−1 cos α

+ (Sx ⊗ yN−1Iy + Se ⊗ (Ie + xN−1Ix ))(1 − cos α).
(3.52)

Note that Eq. (3.52) can be considered as an analog of the
qubit master equation in Ref. [41] [Eqs. (3.10) and (3.14)]
for the model of measurements in circuit quantum electrody-
namics (QED), that is, as a discrete time analog of the master
equation in the Born-Markov approximation in the Lindblad
form. This is not surprising, since the master equations in
Refs. [42,43], as well as in other papers, were obtained us-
ing perturbation formulas such as the Lie-Trotter formula or
Kato’s perturbation formula, under some additional strong
assumptions. For example, in Refs. [36,44] the Markovian
master equations are given under the assumption of the weak
coupling limit. In Refs. [42,43] the main postulate besides the
Markov property was the complete positivity of the generator
of the quantum semigroup. This is a strict assumption, the
importance of which we discussed in connection with the con-
cepts of entanglement and POVM measurements. Our exact
formula, of course, stems from the simplicity of the particular
experimental model that allows the closed BCH formula to be
used.
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C. Optical projective readout

As we mentioned in the Sec. II F, the result of measure-
ments in our experiment is a sequence {nk} of the number
of photons recorded during each readout period. Thus, the
goal of the theory is to obtain a formula for the probability
P(m, [0, t )) that m counts are recorded in the interval [0, t ).
[How to relate it to the probabilities (3.39) given by the theory
is explained in Appendixes H and I; see also [45,46].]

Such formulas were obtained in the 1960s for both classical
and quantum optical fields and in the phase space represen-
tation (z = x + ι̇y) can be formally written in a similar form
(see, e.g., [40]):

P(m, [0, t )) = 1

m!

∫
ϕ(z)(|z|2αt )me−|z|2αt d2z, (3.53)

where α characterizes the efficiency of the detector. In this for-
mal connection, the weight function ϕ(z) (called the Wigner
quasiprobability distribution, or Glauber P representation)
is an analog of the classical distribution function, but, in
the general case, it is not nonnegative. (See, e.g., the well-
known example of a simple harmonic oscillator introduced by
Groenevold [47] in 1946.) Thus, the similarity in form does
not mean that the quantum theory is physically equivalent
to the classical theory and is called the optical equivalence
theorem. In cases where the measurement model leads to a
positive normalized function ϕ(z), it becomes a conventional
normal distribution function, and formula (3.53) determines a
meaningful distribution for all T . There are examples when
the negativity of the function ϕ does not give rise to any
difficulties in the analysis if the basic laws of the theory are
not violated. However, the question arises when ϕ is the usual
probability density, and, consequently, as a result of measure-
ments, we get a classical stochastic (macroscopic) process.

It follows from the analysis of Sec. III B that, under the
influence of a sequence of weak measurements, the state of
the target spin tends to a totally mixed state (3.55). Thus, the
transformation of a quantum random process into a classical
one cannot be explained by decoherence alone. To do this, it
is necessary to take into account that the process of projective
optical readout is carried out with limited accuracy.

In our experiment the basic photo-physical mechanisms
behind the optical detection of the NV spin are well developed
(see, e.g., [45,46]). The spin dependence of the fluorescence
arises through an intersystem crossing to metastable singlet
states, which occurs preferentially from the ms = ±1 excited
states. The transient fluorescence signal is typically measured
by counting photons in a brief period following optical illu-
mination. This inevitable strategy misses part of the signal
because the differential fluorescence remains after the time
cutoff, while photons arriving near the end of the counting
interval are overweight.

The effect of error in an optical (nonunitary) readout pro-
cess can be described using a variant of the POVM method
(see Appendix D), similar to how the occurrence of de-
coherence as a result of Hamiltonian transformations was
demonstrated in Sec. III B. The Wigner distribution ϕ(z)
can indeed be negative, but when integrated with a certain
nonnegative normalized weight function σα (x, y) it gives a

conventional probability distribution

ρα (x, y) =
∫
R2

ϕ(x − ξ, y − η)σα (ξ, η) dξ dη. (3.54)

Moreover, if this weight function σα (x, y) depends on a pa-
rameter α, which characterizes the measurement error of the
detector, then using the POVM method it is possible to show
that ρα (x, y) corresponds to new commutative approximate
observables of position and momentum [see (D10) and (D11)
in Appendix D]. This is of course consistent with the interpre-
tation that in the case of successive unitary transformations
of a composite system, observables Fα given by (3.15) are
generated.

The exact meaning of this approach and the mathematical
details are explained in Appendix D.

Thus, we may conclude that the transition from a quantum
process to a classical one in the optical projective measure-
ment can be explained as a consequence of measurement
inaccuracy. This apparently explains the fact that the results
of theoretical analysis based on a macroscopic model [48] and
the classical probabilistic scheme assuming Poisson statistics
and independence of repeated observation bins [46] give a
good approximation in the analysis of experimental data.

D. Initial state generation

The special polarization procedure (see [25,39]), does not
guarantee 100% polarization. In this regard, below we analyze
the process which realizes an incomplete (depending on α)
polarization of the nuclear spin during the first few measure-
ments.

In this case, the initial condition is believed to be the
thermal equilibrium state which is the result of interactions
with other spins and the environment and is described by the
totally mixed state

ρI
0 = 1

2 |0〉〈0| + 1
2 |1〉〈1| = 1

2 Iα + 1
2 Iβ = Ie. (3.55)

As for the sensor spin, NV center is easily optically pumped
with suitable fidelity into the polarized state |0〉. Thus, the
initial state of the combined system can be naturally assumed
to be

ρ0 = ρS (0) ⊗ ρI
0 = (Se + Sz ) ⊗ Ie. (3.56)

After the π/2 pulse to NV spin about the y axis this state is
converted to

ρ0
1 = (Se + Sx ) ⊗ Ie. (3.57)

This state is separable but not absolutely separable [49]; there-
fore we can get an entangled state with the help of a global
transformation. To this end, we first apply the interaction con-
trolled by the Hamiltonian Heff = 2αSz ⊗ Ix using microwave
manipulation of the electronic spin.

To calculate the effect of the first interaction we apply the
BCH formula to ρ0

1 given by (3.57) with[
Heff , ρ

0
1

] = ι̇Sy ⊗ 1
2 Ix, � = Se ⊗ Ie.

Thus, we obtain

ρ0
2 = Sy sin α ⊗ Ix + (Se + Sx cos α) ⊗ Ie, (3.58)
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and after the π/2 pulse along Sx we get

ρ0
3 = Sz sin α ⊗ Ix + (Se + Sx cos α) ⊗ Ie. (3.59)

Considering Sz as an observable with eigenvalues and projec-
tions given by (3.38), we can predict, using von Neumann’s
canonical rule (sometimes also called Bayesian estimation),
the a posteriori state of the system:

ρ+(0) = (Sα ⊗ 1)ρ1(Sα ⊗ 1)

P
Sz

0 (λ+)
= (Se + Sz ) ⊗ (Ie + sin αIx ),

(3.60)

ρ−(0) = (Sβ ⊗ 1)ρ1(Sβ ⊗ 1)

P
Sz

0 (λ−)
= (Se − Sz ) ⊗ (Ie + sin αIx ).

(3.61)

The probabilities of occurrence of the eigenvalues λ+ and λ−
are given by

P
Sz

0 (λ+) = tr[Sαρ1] = 1
2 ,

P
Sz

0 (λ−) = tr[Sβρ1] = 1
2 . (3.62)

Since no projective readout is performed at this stage, our
knowledge of the state of the system is limited to the infor-
mation that, with a probability of 1/2, the nuclear spin is in
a state of incomplete polarization either in direction |0〉 or in
direction |1〉. Nevertheless, this information is adequate to the
calculating the correlation function of the output process in
the POVM measurement scheme.

In what follows, we will use the notation [compare (3.16)]

ρ±(0) = (Se + Sz ) ⊗ (Ie ± Ix sin α) (3.63)

for this state. Having done the calculations of Sec. III B with
the replacement of x = cos(ωt f ) by x = ± sin α cos(ωt f ), it is
easy to obtain a modification of expression (3.48):

x±
N ≈ ± sin α cos(ωNt f ) exp

[
− (N − 1)α2

4

]
, (3.64)

which we use below when calculating the correlation function.
In this case the output process is given by

ζN = tr[σzρ
S (N )] = x±

N sin α

≈ ± sin2 α cos(ωNt f ) exp

[
− (N − 1)α2

4

]
. (3.65)

E. Autocorrelation of observables Ix and Sz and relative entropy

The autocorrelation function of a classical random process
is defined as the second moment of the joint distribution.
In quantum mechanics, the definition of a joint distribution
in the classical sense is meaningless due to the impossibil-
ity of (exact) simultaneous measurements of noncommuting
observables in the framework of projective von Neumann
measurements. Nevertheless, this problem is solved in terms
of the positive operator value measures in the way, which is a
natural consequence of conventional ideas of quantum theory
(see [36] and Appendix C).

We intend to calculate the correlation of the output pro-
cess {ζn} given by (3.65). However, since its probabilistic
properties are completely determined by the sequence {x±

N }
(3.64), we will deal with the calculation of correlations for

this process associated with the observable Ix. It means that,
depending on the realized sign of the polarization, all mea-
surements are determined either by the sequence {x+

N } or by
the sequence {x−

N }.
First of all, we note that the probabilities of realizing {x+

N }
or {x−

N } are determined by the probabilities (3.62):

P(x−
N ) = P

Sz
0 [λ+] = 1

2 ,

P(x−
N ) = P

Sz

0 [λ−] = 1
2 . (3.66)

Recall that observable Ix has eigenvalues μ+ = 1
2 , μ− =

− 1
2 with the eigenvectors

|0〉 = 1√
2

(1, 0)T , |1〉 = 1√
2

(0, 1)T (3.67)

and corresponding projection operators Iα
x := Ie + Ix, Iβ

x :=
Ie − Ix, given by

Iα
x = 1

2

[
1 1
1 1

]
, Iβ

x = 1

2

[
1 −1

−1 1

]
. (3.68)

The measurements of the observable Ix = μ+Iα
x + μ−Iβ

x cor-
responding to the projectors Iα

x and Iβ
x are given by the

probabilities [compare (3.39)]

PIx
N [μ+|x±

N ] = PIx
N [μ+|λ±] = tr

[
Iα
x ρI

±(N )
]
,

PIx
N [μ−|x±

N ] = PIx
N [μ−|λ±] = tr

[
Iβ
x ρI

±(N )
]
,

(3.69)

where ρI
±(N ) = Ie + x±

N Ix + y±
N Iy corresponds (with obvious

modification) to the density matrix (3.40) obtained for the case
of deterministic polarization.

Thus, by direct calculation we find that the probabilities
PIx

N [μ±|λ±] are given by

PIx
N [μ+|λ+] = tr

[
Iα
x ρI

+(N )
] = 1

2 (1 + xN ),

PIx
N [μ+|λ−] = tr

[
Iα
x ρI

−(N )
] = 1

2 (1 − xN ),

PIx
N [μ−|λ+] = tr

[
Iβ
x ρI

+(N )
] = 1

2 (1 − xN ),

PIx
N [μ−|λ−] = tr

[
Iβ
x ρI

−(N )
] = 1

2 (1 + xN ),

(3.70)

where xN := sin α cos(ωNt f ) exp [ − (N−1)α2

4 ].
Using (3.70), we define the probabilities pIx (μ±, λ±) to

obtain the value corresponding to the state ρI (N ) together
with the value, corresponding to the state ρI (0) by Bayes’ rule

pIx (μ+, λ+) = PIx
N [μ+|λ+] PSz

0 [λ+]

= 1
2 (1 + xN ) PSz

0 [λ+],

pIx (μ+, λ−) = PIx
N [μ+|λ−] PSz

0 [λ−]

= 1
2 (1 − xN ) PSz

0 [λ−],

pIx (μ−, λ+) = PIx
N [μ−|λ+] PSz

0 [λ+]

= 1
2 (1 − xN ) PSz

0 [λ+],

pIx (μ−, λ−) = PIx
N [μ−|λ−] PSz

0 [λ−]

= 1
2 (1 + xN ) PSz

0 [λ−]. (3.71)
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Substituting (3.66) into (3.71), we obtain a set of probabilities
that determine the joint distribution pIx (μ±, μ±):

pIx (μ+, λ+) = 1
4 (1 + xN ), pIx (μ+, λ−) = 1

4 (1 − xN ),

pIx (μ−, λ+) = 1
4 (1 − xN ), pIx (μ−, λ−) = 1

4 (1 + xN ).

(3.72)

We define the autocorrelation of the process corresponding
to observable Ix as

CIx (0, N ) =
∑
±,±

μ±λ± pIx (μ±, λ±). (3.73)

Substituting now expressions (3.72) in (3.73) we obtain

CIx (0, N ) = xN

= sin α cos(ωNt f ) exp

[
− (N − 1)α2

4

]
. (3.74)

Considering the connection (3.65) of the registered process
ζN and the process x±

N , it is now easy to obtain an expression
for the correlation function of the output signal

CSz (0, N ) = xN sin α

= sin2 α cos(ωNt f ) exp

[
− (N − 1)α2

4

]
. (3.75)

In Appendix C we introduce an analog of the classical
relative entropy of Kullback and Leibler (C12) as a mea-
sure of the discrepancy of information that occurs during the
measurement process. We will now apply this formula to our
particular case.

The information that we intended to obtain during the
measurement is the initial value x = cos ωt f of the amplitude
of the observable Ix. During the measurement process, after N
steps, this information was translated with inevitable distor-
tions into the amplitude ζN of the observable Sz, determined
by the expression (3.65), and then was registered as a result
of optical readout. Without loss of generality, we restrict our-
selves for simplicity to the case of a polarized initial condition.
In this case, measurements of the observable Sz instead of
four conditional probabilities in (3.70) generate only a pair of
unconditional probabilities given by the formulas (recall that
λ+, λ− correspond to the projections Sα , Sβ of the observable
Sz)

P
Sz
N [λ+] = 1

2 (1 + xN sin α),

P
Sz
N [λ−] = 1

2 (1 − xN sin α). (3.76)

An “ideal” measurement of the observable Ix in the state
ρI (1) = Ie + Ix cos(ωt f ) + Iy sin(ωt f ) gives two probabilities:

PIx = 1
2 [1 + cos(ωt f )] and PIx = 1

2 [1 − cos(ωt f )].

Hence, we get the following expression for the relative en-
tropy:

H (Sz|Ix ) = 1

2
(1 + xN sin α) log

1 + xN sin α

1 + cos(ωt f )

+ 1

2
(1 − xN sin α) log

1 − xN sin α

1 − cos(ωt f )
. (3.77)

The Taylor expansion of the function log(1 + y) gives a very
simple and intuitive interpretation of the relative entropy in

terms of the weighted differences
(xN sin α)k − [cos(ωt f )]k

of all powers of the functions xN sin α and cos(ωt f ) character-
izing the discrepancy between the true and measured values.
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APPENDIX A: MATHEMATICAL FORMULATIONS
OF THE WIGNER-BELL THEOREMS

We will give a proof of the theorem based on formula (1.1),
which just characterizes the difference between the classical
probability, for which it is valid, and the quantum (noncom-
mutative) probability.

Theorem A.1 (The Wigner-d’Espagnat inequality). Let ξ,

φ, θ be arbitrary random variables with values ±1 on a
Kolmogorov probability space (�,F ,P). Then the following
inequality holds:

P(ξ = +1, φ = +1) + P(φ = −1, θ = +1)

� P(ξ = +1, θ = +1). (A1)

Proof. Consider the following sets:
A = {ξ = 1, φ = 1, θ = 1, θ = −1}, (A2)

B = {ξ = 1, ξ = −1, φ = −1θ = 1}, (A3)

A ∩ B = {ξ = 1, θ = 1}, (A4)

A ∪ B = {ξ = 1, ξ = −1, φ = 1, φ = −1, θ = 1, θ = −1}.
(A5)

Hence, by (I1) we have

P(A) + P(B) = P(A ∩ B) + P(A ∪ B).

But since the set A contains both values of θ and the set B
contains both values of ξ , this equality is equivalent to the
following representation:

P{ξ = 1, φ = 1} + P{φ = −1, θ = 1}
= P{ξ = 1, θ = 1} + P(A ∪ B), (A6)

and due to the nonnegativity of the probability, we get

P{ξ = 1, φ = 1} + P{φ = −1, θ = 1}
� P{ξ = 1, θ = 1}. (A7)

�
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APPENDIX B: MODIFICATION OF THE BAKER-CAMPBELL-HAUSDORFF FORMULA

We show that under conditions

B = [H, A], [H, B] = kA − k�, (B1)

[H,�] = 0 [H, [H, B] + k�] = [H, [H, B]], (B2)

the following modification of the BCH formula holds:

UAU ∗ = e−ι̇HφAeι̇Hφ = A cos(φ
√

k) + �[1 − cos(φ
√

k)] − 1√
k
ι̇B sin(φ

√
k). (B3)

By direct calculation

UAU ∗ = e−ι̇HφAeι̇Hφ = A − (ι̇φ)[H, A] + (ι̇φ)2

2!
[H, [H, A]] + (ι̇φ)3

3!
[H, [H, [H, A]]] + · · ·

=
(

A + (ι̇φ)2

2!
[H, B] + (ι̇φ)4

4!
[H, [H, [H, B]]] + · · · ) −

(
ι̇φ[H, A] + (ι̇φ)3

3!
[H, [H, B]] + · · ·

)

=
(

A + (ι̇φ)2

2!
(kA − k�) + (ι̇φ)4

4!
[H, [H, k(A − k�)]] + · · ·

)
−

(
ι̇φ[H, A] + (ι̇φ)3

3!
[H, (kA − k�)] + · · ·

)
.

Since [H,�] = 0 we write

UAU ∗ =
(

A + (ι̇φ)2

2!
(kA − k�) + (ι̇φ)4

4!
[H, [H, kA]] + · · ·

)
−

(
ι̇φ[H, A] + (ι̇φ)3

3!
[H, kA] + · · ·

)

=
(

A + (ι̇φ)2

2!
(kA − k�) + (ι̇φ)4

4!
k[H, B] + · · ·

)
−

(
ι̇φB + (ι̇φ)3

3!
kB + · · ·

)
.

Next we use [H, B] = kA − k� to get(
A + (ι̇φ)2

2!
(kA − k�) + (ι̇φ)4

4!
k(kA − k�) + · · ·

)
− B

(
ι̇φ + (ι̇φ)3

3!
k + · · ·

)
= A

(
1 + (ι̇φ)2

2!
k + (ι̇φ)4

4!
k2 + · · ·

)
+ �

(
− (ι̇φ)2

2!
k − (ι̇φ)4

4!
k2 + · · ·

)
− B

(
ι̇φ + (ι̇φ)3

3!
k + · · ·

)
= A

(
1 − φ2

2!
k + φ4

4!
k2 + · · ·

)
− �

(
1 − 1 − φ2

2!
k + φ4

4!
k2 + · · ·

)
− B

(
ι̇φ − (ι̇φ)3

3!
k + · · ·

)
= A

(
1 − φ2

2!
k + φ4

4!
k2 + · · ·

)
+ � − �

(
1 − φ2

2!
k + φ4

4!
k2 + · · ·

)
− B

(
ι̇φ − (ι̇φ)3

3!
k + · · ·

)
= A cos(φ

√
k) + �[1 − cos(φ

√
k)] − 1√

k
ι̇B sin(φ

√
k).

APPENDIX C: POVM MEASUREMENTS

Let � be a set with a σ field F , H be a Hilbert space and
Bsa(H) be a space of bounded self-adjoint operators in H. A
positive operator valued (POV) measure on � is defined to be
a map F : � → Bsa(H) such that for � ∈ F , F (�) � F (∅),
and if {�n} is a countable family of disjoint sets in F then

F

(⋃
n

�n

)
=

∑
n

F (�n),

where the series converges in the weak operator topology.
POV measures naturally arise in the process of repeated

(weak) measurements of some quantum observables (see
Sec. III B), the scheme of which is described below. This
process is implemented on the composite Hilbert space H =

HD ⊗ HQ by coupling the primary quantum system Q, ini-
tially in the ρ state, on the Hilbert space HQ, to a quantum
measuring device D, initially in the state

σ =
∑

k

λk|ek〉〈ek|, (C1)

where the states |ek〉 form an orthonormal basis for the Hilbert
space HD of the meter. The two systems interact during a
period τ under the control of some Hamiltonian, and the result
of the interaction is described by the unitary operator U acting
on the composite system. After interaction the initial density
matrix is transformed into

ρQD(τ ) = U (τ )ρ ⊗ σU ∗(τ ). (C2)

042212-16



TRANSITION FROM QUANTUM TO CLASSICAL … PHYSICAL REVIEW A 107, 042212 (2023)

The final projection measurement is determined by orthogonal
projectors {Pα}

Pα =
∑

j

∣∣φα
j

〉〈
φα

j

∣∣, α ∈ Z,

associated with a measurable observable A of the meter. Here
the states |φα

j 〉 form an orthonormal basis for the Hilbert space
HD of the meter and satisfy the completeness relation∑

α, j

∣∣φα
j

〉〈
φα

j

∣∣ =
∑

α

Pα = 1HD (C3)

(compare the observable Sz and projections Sα = Se + Sz,
Sβ = Se − Sz in Sec. III B). The postmeasurement state of
the primary system is obtained by taking a partial trace with
respect to D:

trD(PαUρ ⊗ σU ∗Pα ) = trD(PαUρ ⊗ σU ∗) = Sα (ρ). (C4)

The probability to obtain result α in the measurement on the
meter is dictated by the standard von Neumann rules for the
orthogonal projectors measurement:

Pρ⊗σ (α) = tr[PαUρ ⊗ σU ∗] := tr[Sα (ρ)]. (C5)

Thus, the basic characterization of the measurement model
is given by the quantum operation Sα , which is the linear
transformation of the initial state

ρ → Sα (ρ). (C6)

Substituting (C1) and (C3) in (C4) we get

Sα (ρ) =
∑

j,k

λ
1/2
k

〈
φα

j

∣∣U |ek〉ρ〈ek|U ∗∣∣φα
j

〉
λ

1/2
k

=
∑

j,k

Mα
jkρ

(
Mα

jk

)∗
. (C7)

The set of operators Mα
jk = √

λk〈φα
j |U |ek〉 provides a Kraus

decomposition of the operation Sα , which in turn defines the
set of effects Fα given by

Fα :=
∑

j,k

(
Mα

jk

)∗
Mα

jk =
∑

j,k

λk〈ek|U ∗∣∣φα
j

〉〈
φα

j

∣∣U |ek〉

= trD[U ∗PαUσ ]. (C8)

The Kraus operators and hence the set of effects {Fα} satisfy a
completeness relation:∑

α, j,k

(
Mα

jk

)∗
Mα

jk =
∑
α, j,k

λk〈ek|U ∗∣∣φα
j

〉〈
φα

j

∣∣U |ek〉

= trD(U ∗Uσ ) = tr(1 ⊗ σ ) = 1. (C9)

The probability to obtain result α in the measurement on the
ancilla can now be written as

Pρ⊗σ (α) = tr[Sα (ρ)] = tr

⎡⎣ρ
∑

j,k

(
Mα

jk

)∗
Mα

jk

⎤⎦
= tr[ρ · trD[U ∗PαUσ ]] = tr[ρFα]. (C10)

Therefore, we may identify a set of effects {Fα} or, equivalently,
a set of Kraus operators {Mα

jk} with a generalized observable

in the sense that the operator

R(E ) =
∑
α∈E

Fα, E ⊂ Z (C11)

is a positive operator-valued measure and

Pρ⊗σ (E ) = tr[ρR(E )], E ⊂ Z.

Equation (C10) demonstrates that quantum observables are
defined and measured relative to a reference frame (ancillas)
and therefore can be considered as relative attributes.

Thus, the quantity Fα of a physical system is actually iden-
tified by the real experimental equipment used to measure the
system. The relative nature of the observable, associated with
effects {Fα}, suggests the introduction of relative entropy as
a measure of information transforming from (immeasurable)
observable, related to the prime system, and a measurable
observable A, set by projections Pα related to the detector.

Let us assume that the observable O associated with the
prime system, which is not accessible for direct measure-
ment, is given by the projectors {Qα} and that the unitary
transformation U in (C2) defining the measurement process
uniquely connects the projectors Qα and {Pα} by some relation
(compare the observables Ix and Sz and their projectors in
Sec. III B). By analogy with commutative probability theory
we define the relative entropy (also called information diver-
gence and introduced in classical probability by Kullback and
Leibler [50]) by

H (A|O) =
∑

α

Pρ⊗σ (α) log
Pρ⊗σ (α)

Pρ (α)

=
∑

α

tr[ρFα][log tr[ρFα] − log tr[ρQα]]. (C12)

Recall that in the noncommutative case for an isolated system
the relative entropy of a state ω with respect to another state
ϕ is usually defined in terms of the corresponding density
operators by ρω and ρϕ :

H (ω|ϕ) = tr[ρω[log ρω − log ρϕ]].

APPENDIX D: THE WEYL-WIGNER TRANSFORMATION
AND APPROXIMATE OBSERVABLES IN THE PHASE

SPACE REPRESENTATION

Let H = L2(R), be the Hilbert space, ψ ∈ L2(R) a state
of a quantum system, and α ∈ L2(R) a function of norm one,
whose expectation is zero. This function can be regarded as
specifying certain limitations of the measurement device. If
we define a function

αxy = eι̇yqα(q − x), (D1)

where the factor exp(ι̇yq) simply maps the measurement un-
certainty given by α from the Hilbert space into the phase
space, then for any density operator ρ the nonnegative con-
tinuous function ρα (x, y) on phase space given by (〈·, ·〉2

L is a
scalar product in L2)

ρα (x, y) := 1
2 〈ραxy, αxy〉L2 (D2)
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is a probability density on R2∫
R2

ρα (x, y) dx dy = 1.

Recall that the Weyl operator W (u, v) is defined on L2(R) by

(W (u, v)ψ )(x) = (eι̇uQ+ι̇vPψ )(x). (D3)

The following statement is due to Davis [36]:
Let ρα (x, y) be the probability density of the state ρ on phase

space defined by (D2) Then∫
R2

ρα (x, y)eι̇xu+ι̇yv dx dy = tr[ρeι̇uQ+ι̇vP]〈α,W (u, v)α〉L2 .

(D4)

The Wigner density ϕW of a state ρ is defined formally by
the equation∫

R2
ϕW (x, y)eι̇xu+ι̇yv dx dy = tr[ρeι̇uQ+ι̇vP]. (D5)

In other words, the Wigner density is the inverse Fourier
transform of the characteristic function tr[ρeι̇uQ+ι̇vP]. If we
define a function σα (x, y) by∫

R2
σα (x, y)eι̇xu−ι̇yv dx dy = 〈α,W (u, v)α〉L2 ,

then, taking the Fourier transforms, we can express ρα (x, y)
as

ρα (x, y) =
∫
R2

ρW (x − ξ, y − η)σα (ξ, η) dξ dη. (D6)

This shows that the probability density ρα (x, y) is the result
of averaging the improper Wigner density by the function σα ,
which depends on the vector α ∈ L2 and reflects the inaccu-
racy of the measurements.

Recall that the conventional position observable on the
Hilbert space H = L2(R) is the projection-valued measure
q(·) on R, defined by

[q(B)ψ](x) = χB(x)ψ (x), ψ (x) ∈ L2(R), (D7)

where χB is the characteristic function of a Borel set B ∈
B(R). The momentum observable is projection-valued mea-
sure p(·) on R, defined by

[p(B)ψ](x) = −ι̇χB(x)∂xψ (x). (D8)

To formalize the random influence on measurements, a
probability density function (known or unknown) f (x) on R is
introduced, and the convolution

( f ∗ g)(x) =
∫ ∞

−∞
f (y)g(x − y) dy (D9)

is defined for a bounded measurable function g on R. It can be
shown ([36], Theorem 3.1) that weakly convergent integrals
(here f̂ is the Fourier transform of f and g ≡ χE )

Q f (E ) =
∫
R

( f ∗ χE )(x)q(dx), (D10)

Pf (F ) =
∫
R

( f̂ ∗ χF )(k)p(dk) (D11)

uniquely define the so-called approximate position and mo-
mentum observables Q f and Pf , which are POV measures on
Borel sets E , F on R. POV measures have the same properties
as projection-valued (spectral) measures but take values in the
set of positive operators, as the name suggests. It is clear that
the approximate observables defined by (D10) and (D11) are
commutative unsharp observables.

APPENDIX E: INFLUENCE OF STATE OF CHARGE

First, we explain qualitatively the effect of the charge state
switching on the developed theoretical model. We assume that
each green laser pulse can fully switch the charge state, mean-
ing that the ionization rate at the power of 600 µW is around
3–5 MHz (≈300−1 ns−1), which results in switching times
comparable to the duration of the laser pulse. We assume that
there is a probability p− ≈ 70% of having NV− after the green
pulse, independent of the history. Second, we assume that the
charge state is stable during the “dark time” of the measure-
ment when the laser is switched off. Next, we consider that
the long-pass 650 nm filter in the detection pass cuts most
of the NV0 fluorescence spectra, making it darker compared
to negative charge state. In the derivation of the correlation
function, we use the fact that each measurement performs a
measurement and hence imposes the back-action and causes
the decay per measurement α2/4. The amplitude of the de-
tected signal is given by the strength of the measurement sin α

The consequence of the charge state switching is thus
twofold: (1) the missed 1 − p− part of the measurement due
to the NV0 state will not perturb the target spin state, making
the decay of the correlation function smaller α2 p−/4, and (2)
the amplitude of the correlation function 〈SzSz〉 will tend to
be smaller by (p−)2, due to the reduction of “useful” data,
produced by NV−, and that Sz produces 0 when NV0.

The latter effect is accounted by a contrast calibration
procedure. The contrast shrinking of �n = p−(na − nb) will
be observed as well, and when photon correlation 〈nini+k〉
is divided by the contrast �n the full amplitude of the Sz

correlation function will be restored under the assumptions
that the p− stays the same under both experiments, which is
guaranteed by use of same NV and same laser pulses.

The former is more delicate as it affects the decay constant
of the nuclear spin precession under the measurements by fac-
tor of p−, which clearly becomes visible on longer correlation
times. Thus, the process of fitting the correlation function Sz

to the model function could give underestimated values of α,
which could lead to systematic error in its estimated values.

To show this issue quantitatively, we simulate the process
of sequential weak measurements with initially polarized tar-
get spin using the Monte Carlo method. We compare results
for the model with the ideal case p− = 1.0(100% NV−) and
realistic case of p− = 0.7(70% NV−) (see Fig. 5).

Using 1000 experimental runs of 100 weak measurements
with α = 0.1π corresponding roughly to the KDD-XY3 se-
quence of NV2, we estimate the average 〈Ix〉(N ) evolution in
both cases. We observe that in the realistic case the decay is
smaller; however, due to noise its significance becomes clear
only at long correlation times.

Next, we fit the numerically obtained Sz data with a model
function sin α cos(ωtsN ) exp(−α2N/4) and find αest . We di-
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(a) (b)

FIG. 5. The influence of the charge state dynamics on the Ix evolution. (a) The evolution of the Ix has smaller decay, which is shown by
the red dots. Panel (b) shows a recovered L-G function using both data sets, including the value of αest from the full data set and from the
shortened Ix to N = 30. The cut plays important role, due to the less importance of the actual decay values.

vide the Sz by sin αest and get Ix reconstructed, and check the
LG expression from them: LG(N ) = 2Ix(N ) − Ix(2N ).

Analyzing the reconstructed values we conclude that the
errors induced by charge state are less than statistical errors
and do not affect significantly the correlation function relevant
for the first two periods of oscillation, the region which is
essential for its violation of the inequality.

Additionally, we note that it is possible to optimize the
fitting procedure by weighting the correlation function points
depending on their correlation length; in particular, we find
that use of the box car weighting (cutting the tail of the expo-
nent) with window length equal to 1/3 of the original decay
gives a much better estimate of the alpha values, due to the
fact that on this data set, initial amplitude is more important
than the decay. We point out that this could be a subject of
future research in the field.

APPENDIX F: CLASSICAL FIELD CALIBRATION

To calibrate the classical field amplitude, we perform AC
sensing of a 2 MHz AC external field at various output power
of the external generator from −18 to 2 dBm. We apply the
KDD-XY5 sensing sequence. The algorithm is as following:

(1) ρe = Se + Sx state is prepared with a π/2 pulse which
rotates the initially polarized Se + Sz state towards the equator.

(2) The phase acquired during the KDD sequence is esti-
mated as

� = cos(ωt + φ)sinc(Npτπδ). (F1)

(3) The π/2 pulse rotates the state around the y axis
(again) and converts the X component of the state to the
readable Z component. Hence

Sz = cos � = cos[α cos(ωt + φ) sinc(Npτπδ)]. (F2)

(4) We perform a series of measurements without con-
trolling the phase and time; hence we average over the
argument of cos(ωt + φ) which we denote as φs to derive the
averaged result Sz = ∫

φs
cos[α cos(φs) sinc(Npτπδ)]dφs =

J0[α sinc(δNpπτ )].
(5) The readout of the state Sz is not ideal. It has losses of

contrast due to the finite T1 of the nuclear spin under the read-
out, and instability of the charge state reduces the full possible

contrast by constant K . Hence, we obtain an expression

S(τ ) = S1 − S2 = KJ0[α sinc(Npτπδ)] (F3)

which we fit to the absorption spectra of the external signal
[see Fig. 6(a)].

Here α is the normalized field strength Br f , φ is the
phase of the signal at the beginning of the sequence, and τ

is dynamical decoupling pulse spacing, i.e., the half period
0.5 f −1 of the artificial signal. The Sz component readout
is performed via the memory-enhanced single-shot readout
scheme (see Appendix H). After fitting the absorption pro-
files, we get a calibration of signal strength for various input
powers on the signal generator for our setting [see Fig. 6(b)],
fitted with expression α = α0 exp(PdBm/k). We compare the
absorption method with a correlation measurement with the
phase modulation scheme presented in the main text and find
an agreement between them. For the −17 dBm signal power
which was used for the experiment we got αabs = 0.94(5) and
αcorr = 0.88(4) rad respectively.

APPENDIX G: CASE OF POLARIZATION
OF NUCLEAR SPIN

To experimentally study the case of a hyperpolarized ini-
tial state of a nuclear spin we first polarize the 13C nuclear

(a) (b)

FIG. 6. External field amplitude calibration. (a) Absorption pro-
files of the KDD-XY5 sequence as a function of interpulse spacing
τ for various signal amplitudes. (b) The extracted parameter α of the
classical signal as a function of signal power on the r.f. generator.
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FIG. 7. (a) Sequential weak measurements of target spins with the prior polarization scheme. The sequence contains the Pulse-Pol routine
as polarization, radio frequency (r.f.) π/2 pulse for initiating free precession of 13C target spin, and sequence of weak measurements including
the KDD-XY3 sequence for NV2 and 14N polarization. (b) Average electron spin Sz in the series of measurements M0, . . . , MN−1, MN . Orange
uncertainty area is a confidence interval of the fitting model. The uncertainty of the initial phase adds additional systematic parameter for
calibration in this case, which is not present in the nonpolarized case. (c) The L-G expression of recovered Ix component of the nuclear spin.
Note that in this case we took 〈Ix〉 as a K function of the L-G functional. (d) The L-G functional from the Ix signal divided by the exponential
decay with exp(−α2N/4). The error bars are also divided by exponential decay and express how well our model of an effective Hamiltonian
describes the obtained signal. This view shows that the signal behaves according to the model for several intervals where inequality is violated.
The inset shows the integral points of L-G inequality violation corresponding to the violation points on the main chart (first four points), which
gives stronger confidence in violation. (e) Depiction of the initial phase with respect to the rotation frame of the nuclear spin drive on the Bloch
sphere.

spin with a standard Pulse-Pol sequence [51] and saturate
the polarization transfer from the electron spin by repeating
the procedure four or five times after realigning the electron
spin with laser light. Starting from the polarized nuclear state,
we perform a π/2 rotation of the nuclear spin via radio fre-
quency (r.f.). However, when driving the nuclear spin, the
rotation instead of the x axis occurs around the direction
Brf = (− sin φ, cos φ, 0). Consequently, the polarized Ie + Iz

state transforms into the Ie + cos φIx + sin φIy state, followed
by precession in the equatorial plane of the Bloch sphere, as
shown in Fig. 7(e). Therefore, the azimuthal angle φ corre-
sponds to the initial phase of nuclear precession and must be
taken into account in data analysis.

Note that in the case of a polarized initial state, since the
initial condition is determined, the calculation of the correla-
tion function reduces to the calculation of the average process
〈Sz〉. Therefore, during the nuclear spin precession we apply
sequential weak measurements of nuclear spin Heff = 2αSzIx,
and similarly to [25] calculate the averaged number of photons
in a series of experiment. We estimate the 〈Sz〉 of the sensor
electron spin, using the na and nb values for electron spin

bright and dark state, measured separately. Note, however,
that the formula for the unpolarized case was obtained under
the assumption that the initial state is aligned with the x axis
and therefore does not take into account the presence of the
azimuth angle φ. In this regard, when processing the data, we
used a modified model

Sz(N ) ≈ sin α cos(ωNt f + φ) exp

(
−N

4
α2

)
. (G1)

Then, following the same idea in the case of an unpolarized
initial state, we reconstruct the mean value 〈Ix〉 and LG func-
tion shown in Fig. 7(c). Note again that in this case to obtain
〈Ix〉 we divide 〈Sx〉 by sin α instead of sin2 α. We obtain an
explicit violation of the LG inequality at three points in the
first period; however, it should be taken into account that in
this case there is an additional uncertainty associated with the
presence of an unknown azimuth angle φ.

Since the formula of the correlation function explicitly
contains the dephasing factor, the rate of which, given by
α, is estimated in the experiment, it is natural to correct the
correlation function by dividing by the exponential decay. If
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FIG. 8. Histogram of the photon count differences �n in single-
shot readout with referenced probing using two microwave π pulses,
conditioned to mi = 0 and mi! = 0. In such a case the threshold is
positioned on the �n = 0.

the estimate of α is sufficiently accurate over some time inter-
val, then the violation of the inequality should manifest itself
over the entire this interval. Figure 7(d) shows one of these
reconstructions. This figure shows that the signal behaves
according to the model for several intervals where inequality
is violated. A similar picture is observed in other experiments.

APPENDIX H: SSR METHOD FOR ESTIMATING
THE α PARAMETER

The single-shot readout (SSR) method [45] can be con-
sidered as an analog of the maximum likelihood method in
statistics and is used to reproduce an ideal projective measure-
ment, in which individual measurements generate a sequence
of 0 and 1, depending on the state of spin.

The NV center has 14N as a built-in memory, where the
state of the electron spin ρS can be mapped. The transfer
of the electron spin state onto the nuclear spin is realized
by a radio-frequency π pulse on the nuclear spin conditional
on electron spin (CNOT gate). The SSR of the nuclear spin
is carried out by repeating CNOT gates on the electron spin
followed by a laser pulse readout. More precisely, we ap-
ply the microwave π pulse, which rotates the electron spin
conditional on nuclear spin |−1〉, and then perform the green
laser readout that projects the electron spin state and gives the
number n1

k of photons associated with the projected state. The
next microwave π pulse rotates the electron spin, conditional
this time on |0〉 and |+1〉, and is then accompanied by a green
readout, which gives the number of photons n2

k associated
with the projected state. Finally, we calculate �k = n1

k − n2
k .

Whereas the electron spin state is destroyed each time during
this process, the nuclear spin state is robust to repeat the
measurements many times (we repeat the described process
900 times). This procedure of nondemolishing measurements
permits one to gather enough statistics to estimate the nuclear
spin state with the help the photon-counting histograms (see
Fig. 8). When the readout assisted by the 14N nuclear spin is
applied and the interpulse time τ is closed to the resonant τ0,

then the number of photons in each cycle becomes quite large,
and two peaks in the histogram become clearly distinguish-
able. This makes it possible to choose a threshold between
spin states that corresponds to different peaks in the histogram
(see Fig. 8).

As a result the output is recorded as +1 or −1 if the photon
counts in a cycle are above or below a threshold

s±
k =

{+1 if �nk−1 � nth and �nk > nth

−1 if �nk−1 < nth and �nk < nth.
(H1)

The advantage of this method is that as a result we can calcu-
late the normalized frequency

P̂α(β ) =
∑

k s+
k∑

k (s+
k + s−

k )
(H2)

of the flips. The normalized frequencies P̂α and P̂β can be
considered as an estimate of the probability of realization
of the one of projections Sα or Sβ in the ideal projective
measurement, depending on what state was prepared in the
sensing part of the experiment.

The sensing part, which is carried out on the electron spin
using microwave pulses, is divided into two cases. Both cases
start with the initial state of NV spin ρS = S0 + Sz, which is
then rotated to ρS = S0 + Sx by (π/2)y pulses around the y
axis. The DD sequence with the different interpulse time τ is
then applied to ρS = S0 + Sx, and as a result the phase

� = α cos(ωt + φ)sinc(Npτπδ) (H3)

is acquired, where δ = τ − τ0 is a deviation of applied τ from
a resonance time τ0. The difference is that in one case the
(π/2)y pulse around the y axis converts the amplitude of the
x component of the state to the amplitude +Sz of the readable
z component, while in the second case the (π/2)−y pulse
converts the amplitude of the x component of the state to the
opposite −Sz direction.

We perform the series of measurements of P̂α − P̂β for
various τ and for the power external signal PdBm varied from
−18 to −2 dBm to determine the resonant frequency τ0. It
should be noted that the shape of the resonance curves for a
weak and strong signal differs significantly.

Having revealed the near-resonant τ, we can proceed to
determine the parameter α. The idea of estimating α is based
on a comparison of the average value of the ideal projective
measurement, which can be calculated using the SSR estima-
tions of the probabilities P̂α and P̂β

〈Sz〉ideal = (+1)P̂α + (−1)P̂β = P̂α − P̂β, (H4)

and the mean value of output macroscopic signal averaged
over a random phase Eφ〈Sz〉 [see (H3)], which represents the
conventional optical readout of Sz

Eφ〈Sz〉 = 1

2π

∫ 2π

0
cos[α cos(ωt + φ)sinc(τNpπδ)] dφ

= J0[αsinc(τNpπδ)], (H5)

where J0(x) = 1
π

∫ π

0 cos(x sin t ) dt is the Bessel function. Us-
ing the well-known dependence of the magnetic field Bz on
the signal power PdBm, we express α in terms of power α =
2BzNpτ/π = α010PdBm/P0 , where P0 is a known normalizing
parameter, while α0 must be determined. We introduce the
parameter K and perform a series of experiments at various
values of PdBm, selecting K and α0 so that they satisfy

min
K,α0

|(P̂α − P̂β ) − KJ0[α010PdBm/P0 sinc(τNpπδ)]|2. (H6)
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(a)

(b)

(c)

(d)

(e)

FIG. 9. Result of five series of main experiments on NV2 with KDD-XY5 and NRR = 200 repetitive readouts using 14N as an ancillary
memory.

The parameter K can be considered as a parameter charac-
terizing the transition from the quantum state to the classical
probabilistic output in our particular experiment, which is de-
termined by an inaccuracy in estimating the SSR probabilities
P̂alpha, P̂beta and possibly also by other factors that make real
measurements invasive. It turns out that in our experiments the

constant K is independent of power PdBm, while the equality in
(H6) is achieved with high accuracy. The dependence of alpha
on the power calculated by this scheme is shown in [Fig. 6(b)].

As explained in the Appendix I: Data Analysis, to re-
construct the correlation function from a photon statistic by
formula (I9) we need to determine the values 〈n+〉 and 〈n+〉 of
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FIG. 10. Choice of NV-13C pair. (a) Decay rate of the 13C correlation signal in a sequence presented in Fig. 7(a) vs total sequence time
ts normalized by α2 (measurement strength). Various 13C possess a plateau, which was fitted and extracted as a natural �2 rate for each 13C
at corresponding NV. (b). Dependence of the 13C decay rate as a function of the Azz coupling of the corresponding 13C. (c), (d) Map of 13C
relative positions to their NV center. Note NV2 is located close to the magic-angle latitude with close to zero Azz. (e), (f) The Sz correlation
results for two NV11 and NV2, respectively. The signals show a clear difference in signal-to-noise ratio. The reason for that is overall better
spin readout contrast of fluorescence for NV2, since the 14N is polarized as well as reduced decay of the correlation signal due to vanishing
Azz coupling. Nonpolarized 14N also leads to a shift in the readout phase of the KDD sequence, which ultimately reduces the contrast and even
could change the underlying dynamics of the target spin.
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FIG. 11. Experimental setup scheme. A stands for a wedged
mirror, B is a pinhole, C is a long pass filter 650 nm, D is the 3D
piezo nanopositioner.

photon numbers. The numbers 〈n+〉 and 〈n+〉 are the specific
readout characteristics of the NV center, which are indepen-
dent of the magnetic field in the classical signal experiment or
in the case of hyperfine interaction. Therefore, their measured
values can be used in both experiments. To determine 〈n+〉
and 〈n+〉 we perform a series of measurements analogous to
sequential measurements nonresonant to nuclear spin with ad-
ditional modulation of the readout π/2 pulse phase. This peri-
odically brings electron spin to states 1 and 0. After averaging
we get the average photon numbers for bright and dark states.
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We perform a series of measurements with the following
protocol. First, we polarize the 14N nuclear spin to the |−1〉
state by swapping electron spin polarization using selective
π pulses and polarize the electron spin back with green laser
light. We then apply (π/2)y pulse to the electron spin and the
same DD sequence as in the correlation measurements. Fi-
nally, we apply π/2x+φm (i), followed by optical green readout
to collect photons.

The angle or phase φ determines the rotation axis in the
x-y plane with respect to the y axis. In our measurement
we set φm(k) = π/2 sin(k2π/8), where k is the index of the
measurement. Thus, the phase is modulated with amplitude
of 90◦ and a period of eight measurements. We group these
measurements in a series diagram in increments of 32 and then
average columnwise to obtain the average photon number n̂k .

As a result, the amplitude Sz of the density matrix ρS takes the
form

Sk
z (α,�s) = sin[π/2 sin(k2π/8) + α cos(ωt + φ0)]

:= sin[π/2 sin(k2π/8] + α cos(k�sπ/4).

Note that Sz depends on the parameters α,�s which we want
to find. We use this result as a theoretical model of the mea-
sured signal, whose correlation function can be calculated at
least numerically and calculate α,�s, using the least-squares
method

min
C,α,�s

200∑
k=1

(〈(n j − n̂)(n j+k − n̂)〉 j

− C2
〈
S j

z (α,�s)S j+k
z (α,�s)

〉
j

)2
,

where {n j} are measured photon numbers, and n̂ is average
of measured photon number and C = (na − nb)/2. Note that
with this approach, we simultaneously calculate α and con-
trast C = (na − nb)/2.

APPENDIX I: DATA ANALYSIS

The result of measurements in our experiment is a se-
quence {nk} of the number of photons recorded during each
read-out. Thus, we need to find how the probabilistic proper-
ties of counting statistics {nk} are related to the probabilistic
characteristics of the sensor signal {mk}. Let p(nk|mk ) be the
conditional probability of detecting nk photons given that the
electron spin is in the state that would produce the output mk

under a perfect projective measurement. The joint probability
p(nk, nk+N ) of the two outcomes nk and nk+N can be expressed
through joint distribution p(mk, mk+N ) as follows:

p(nk, nk+N ) =
∑

mk ,mk+N

p(nk|mk )p(nk+N |mk+N )p(mk, mk+N ).

(I1)

Thus, the autocorrelation function of the process {nk} is given
by

cor(nk, nk+N ) := 〈nk, nk+n〉 − 〈nk〉〈nk+N 〉, (I2)

where, in view of (I1),

〈nknk+N 〉 :=
∑

nk ,nk+N

nknk+N p(nk, nk+N )

Sample substrate
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FIG. 12. Scheme of the diamond sample and NV center.

=
∑

nk ,nk+N

∑
mk ,mk+N

nk p(nk|mk )nk+N p(nk+N |mk+N )

× p(mk, mk+N ). (I3)

Considering now the sequence {mk} as a classical stochastic
output process as if we could measure it directly, we ap-
ply the bivariate Bernoulli distribution model to calculate
p(mk, mk+N ). For any mk and mk+N , the two-point joint dis-
tribution p(mk, mk+N ) of elements of random process {mk} in
this case is defined by the matrix

p(mk, mk+N ) =
[

P(−1,−1) P(1,−1)
P(−1, 1) P(1,−1)

]
=

[
p00 p10

p01 p11

]
with

p00 + p10 + p01 + p11 = 1. (I4)

The marginal distribution of mk is given by univariate law with
parameter p10 + p11,

P(mk = −1) = p00 + p01 P(mk = +1) = p10 + p11,

and similarly the marginal distribution of mk+N is

P(mk+N = −1) = p00 + p10 P(mk+N = +1) = p01 + p11.

We assume that p00 = p11 and p01 = p10. Then the mean
value of mk and mk+1 is

E (mk ) = −1(p00 + p01) + 1(p10 + p11) = 0,

FIG. 13. Pulsed-ODMR spectra of the single NV center for ms =
0 to ms = −1 electron spin transition. 14N nuclear spin hyperfine
splitting of 2.2 MHz is visible. No visible hyperfine coupling for 13C
within T ∗

2 ; π pulse is 8 µs.
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FIG. 14. ENDOR spectroscopy of two NV centers. NV5 is an example with detectable nuclear spin coupling for total interrogation time
of 100 µs. NV2 is the NV center used in the current research without detectable Azz coupled nuclear spin within the 100 µs total interrogation
time.

and similarly E (mk+N ) = 0 for all k and N. Hence, the corre-
lation function of the pair (mk, mk+N ) is given by

E (mkmk+N ) = (−1)(−1)p00 + 1(−1)p10

+ (−1)(1)p01 + (1)(1p11)

= (p00 + p11) − (p10 + p01), (I5)

or in compact form

E (mkmk+N ) = [1 − 1]

[
p00 p10

p01 p11

][
1

−1

]
. (I6)

Since we consider {mk} as an output macroprocess, its auto-
correlation function is given by

E (mkmk+N ) :=
∑

mk ,mk+N

mkmk+N p(mk, mk+N ).

Thus, we can express the joint distribution p(mk, mk+N )
through the autocorrelation C(N ) as follows:

p(mk, mk+N )

=
[

p00 = 1
4 [1 + C(N )] p10 = 1

4 [1 − C(N )]

p01 = 1
4 [1 − C(N )] p11 = 1

4 [1 + C(N )]

]
. (I7)

We do not need to know the exact form of p(nk|mk ), since
we are interested only in a value of the average photon counts
〈n±〉 for the NV center in the states ms = ± given by

〈n±〉 =
∑

nk

nk p(nk|±). (I8)

Thus, we conclude that in terms of the photon counting statis-
tic C(N ) is given by (see [24])

C(N ) = 4(〈nknk+N 〉 − 〈n〉2)

(〈n〉+ − 〈n〉−)2
, 〈n〉 = (〈n〉+ + 〈n〉−)/2.

(I9)

These considerations show that (under the assumptions
made about the nature of the processes) probabilistic charac-
teristics of processes {nk} and {mk} exhibit similar behavior.
Therefore, information about the process {mk} can be ex-
tracted from photon statistics {nk}, provided that we can
measure the average values 〈n〉+ and 〈n〉− with sufficient
accuracy.

We collect a series of around 500 measurements, each of
those is a coherent series of 200 000 sequential weak mea-
surements. The size of 200 000 of each coherent series is
motivated by hardware limitations.

The data processing is described in the Supplemental Ma-
terial [52] (see Fig. 9).

APPENDIX J: NV-13C PAIR SURVEY

In addition to the ideal pair, designated NV2, the results
of experiments which are given above, we also probed some
other promising pairs, in particular, those marked as NV5,
NV8, and NV11. Figures 10(c) and 10(d) show maps of the
positions of spins 13C relative to the NV centers of each of
them, while the values of the components Axy [Fig. 10(c)] and
Azz [Fig. 10(b)] are shown in color shades. Note that NV2 is
located close to the magic-angle latitude with negligible Azz,
while the other three deviate significantly (note that values are
presented on a logarithmic scale) from it.

Having in hand the results obtained for the ideal pair, we
will briefly consider the problem associated with the presence
of the A‖ component, which arises due to the arbitrary arrange-
ment in space of nuclear spins with respect to the electron
spin.

As we discussed above, dephasing of nuclear spins is also
subject to intrinsic dephasing with a ate �intr and additional
dephasing at a rate of �opt caused by optical readout, which
involves the longitudinal component A‖ in the interaction. The
total decay rate is then the sum of all contributions

� ≈ α2

4ts
+ 1

T ∗
2

+ A2
‖t2

l

2ts
≈ �⊥ + �2, (J1)

where �⊥ is given by and �2 is the decay rate determined by
�intr and �opt and possibly by some additional perturbations.
We estimate the values of �2 for the 13C-NV pairs by the
following procedure.

Applying successive weak measurements of target spins
with a preliminary polarization scheme [Fig. 7(a)] at different
values of ts for different pairs, we calculate the correspond-
ing values of the total decay rate �. The values of the total
decay rate as a function of ts/α2 are shown in Fig. 10(a),
where the straight line with constant slope corresponds to the
values of the back-action decay rate �⊥. This line marks the
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FIG. 15. High-order KDD-XY30 (totally 600 π pulses) (maximum contrast) spectroscopy of the nuclear spin bath. No trace of Azz coupling,
though there is clear indication of negative contrast, caused by coherent interaction via the Azx terms.

boundary of physically unreachable area (red) for quantum
measurements. Note that the green dots corresponding to the
NV2 pair almost exactly lie on this line, which in particular
indicates that NV2 corresponds to the magic angle. From
these data, with a reasonable assumption that the marks in
the picture fluctuate around different constant values, we can
estimate the approximate values of �2 for different pairs of
spins. In Fig. 10(b) the points marked with the symbols of the
corresponding pairs are shown, the position of which is deter-
mined by the coordinates Azz along the abscissa and the decay
rate �2 along the ordinate. The coordinates of the pair NV2
differ significantly from the coordinates of the other pairs, as a
result of which the recorded processes differ sharply. This can
be seen in Fig. 10, where, for comparison, the measurement
results for pair NV11 and ideal pair NV2 are given. The noisy
nature of the registered processes of all pairs except NV2 does
not allow using them for a fine analysis of revealing purely
quantum properties of the process. This fact, however, is not
an obstacle to the use of the NV center in diamond in quantum
sensor networks and distributed quantum computation.

APPENDIX K: EXPERIMENTAL SETUP
AND DIAMOND SAMPLE

The experimental setup consists of a superconducting mag-
net (Scientific Magnetics) with a room temperature bore
adjacent to a confocal microscope. The 12Gs AWG (Keysight
M8190) provides microwaves amplified with a traveling wave

FIG. 16. Zoom into the 21st resonance of the KDD-XY30 se-
quence for the NV2. The resonance reveals no Azz coupled nuclear
spins and allows for determination of Larmor frequency with higher
precision.

tube amplifier (Hughes 8010H) and radio frequencies am-
plified with an Amplifier Research 150A250 amplifier for
control for the spin experiment. The optical readout is per-
formed via a confocal microscope with 520 nm laser diode
(Thorlabs) and APD (Perkin Elmer SPCM). The objective
lens (NA = 1.35) is positioned via the 3D nonmagnetic piezo
positioner (n-Point) (see Fig. 11). Photoluminescence is spa-
tially filtered with a pinhole (50 um) and spectrally with a
long-pass filter 650 nm (Semrock).

The 〈111〉-oriented diamond slice (2 mm × 2 mm ×
88 µm) is obtained by laser cutting and polishing from a
high crystalline quality, 99.995% 12C-enriched, type IIa high-
pressure and high-temperature (HPHT) crystal. In the original
crystal, single NV centers were created by 2 MeV electron
irradiation (1.3 × 1011 cm−2) at room temperature and subse-
quent annealing (1000 ◦C for 2 h in vacuum). The sample is
positioned on a coplanar waveguide to deliver the microwave
and r.f. signal to the NV site (see Fig. 12). The B field is
aligned with the NV orientation.

APPENDIX L: HYPERFINE FIELD CALIBRATION

To find a proper NV center for our experiment we ex-
amined around 20 NV centers and checked their nuclear
spin environment. A set of calibration measurements for the
NV center was used to calibrate the weakly coupled nuclear
spin 13C.

FIG. 17. DD resonance position in microseconds as a function of
its order.
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FIG. 18. Demonstration of coherent coupling in NV2. Depen-
dence of the evolution on number of pulses in the KDD-N sequence
shows the coherent oscillations for NV2, while for other NVs with-
out a signal in the ENDOR sequence, the decay results in loss of
coherence, meaning that the Azx coupling is also weak.

1. ODMR

First, we examine the NV center ODMR spectrum and
check that there is no strongly coupled 13C spin by observing
three peaks associated with the 14N intrinsic nuclear spin
(Fig. 13). This means that Azz is below 1/(πTπ ) ≈ 30 kHz,
for Tπ = 8 µs.

2. CSTE

Second, we examine the weakly coupled bath nuclei, us-
ing the ENDOR sequence [53] with total interrogation time
τ = 100 µs. In Fig. 14 we see that, e.g., for NV5 there is a
moderately coupled nuclear spin with Azz = 10 kHz coupling.
For our experiments we search for NV centers, which do not
have a detectable ENDOR signal for the 13C nuclear spins,
meaning that Azz � 10 kHz, e.g., like for NV2 (Fig. 14, right
panel).

3. KDD-N τ and N sweep

In addition to the absence of the ENDOR signal, we check
the nuclear bath spectroscopy via high-order DD resonance
[20]. By going to the highest possible resonance (in our case,
21st) with KDD-XY30 sequence, we determine no visible
splitting of the 13C bath peak (Figs. 15, 16). That means that
the Azz coupling is below 0.37 kHz. From the position of the
peaks as a function of resonance number we determine the
Larmor frequency with high precision (Fig. 17). Next, we
check that the first peak has a coherent interaction by changing
the number of pulses N in the KDD-N sequence and observe
coherent oscillations for NV2 (Fig. 18).

We derive τ = 3.92033(2) µs from the best fit of the curve.
From the fitting of Fig. 17, we got also the linear dependence
of the resonance position as a function of its order: a k + b

FIG. 19. 2D image of KDD numbers vs the interpulse time. The
image shows a coherent evolution of the single weakly coupled
nuclear spin. The resonance to the bath is also visible, resulting in
dissipative dynamics.

with a = 0.186682(1) and b = 10−6. Having the value for the
width of the 21st resonance we obtain an upper bound on the
Azz coupling as

τk ≈ (2k + 1)π

ωl + Azz/2
,

δτk = (2k + 1)2π

2ωl + Azz
− (2k + 1)2π

2ωl
≈ τk

Azz

ωl
,

δτk

τk
≈ Azz

ωl
,

Azz <
δτk

τk
ωl = 0.37(2π ) kHz. (L1)

To further study the interaction with the bath, we obtain a 2D
image of KDD-XY number and period of the interpulse se-
quence. The obtained figure resembles a 2D Rabi oscillations
with detuning. It can be seen from Fig. 19 that during the
DD, the NV is moderately coupled to a single nuclear spin
via the Azx interaction, which gives a coherent oscillation in a
broad region of τ intervals, while the bath interaction results
in coherence fast decay after the first full oscillation. As soon
as the detuning of τ is larger than the average Azx coupling
to the bath, only coherent interaction is visible. The 2D data
presented in Fig. 19 were fitted to extract the center of the
fringes and the effective coupling to the nuclear spin. Results
are presented in Table I.

4. Phase locking via τ sweep

To estimate the τ of the DD with higher precision we
utilize a Hamiltonian interpolation technique [54]. Since the

TABLE I. Various method to estimate the hyperfine components of the single weakly coupled nuclear spin of NV2.

First-order KDD-N Rabi (Azx) Weak measurement Phase locking in Correlation
CSTE (ENDOR) Tau sweep 21st resonance (Azz) decay weak measurements function fitting

Azx , kHz NA 9.4(2) 7.8(6) 7.9 (5) 9.5(7)
Azz, kHz �10 <0.37 NA NA NA
τ , µs 0.186682(1) 0.18668(1)
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FIG. 20. Precise determination of resonant τ of the DD sequence. Left: dependence of the decay of the correlation function on the interpulse
time τ . Right: the no-decay correlation function in the region of the phase-matching condition.

Azz term is very subtle, its accurate identification requires a
calibration to observe it via the sequential weak measurements
and observe the decay of the correlation function, similar to
[24]. At the resonance condition, a phase matching occurs,
which results in reduction of the decay rate of the correlation
function and a phase transition, a phase locking of the nuclear
spin precession. We design a sequence, parametrized with τ ,
which, if τ is chosen correctly, is perfectly synchronized for
phase matching. This results in a nuclear spin free preces-
sion angle between subsequent measurements equal to an odd
number of π . Upon sweeping the τ of the DD we observe that

when the τ is resonant the correlation function is not decaying
(see Fig. 20). The width of this resonance could be reduced
with reducing the measurement strength. We find that τ =
2240.18(2) of AWG steps, or τ = 2240.18(2) × 1/12 ns =
0.18668(1) µs, which corresponds to the τ estimated from the
slope as τslope = 0.186682(1) µs within the error bars.

5. Phase locking via t f sweep

Alternatively, fixing the interpulse interval τ at resonance
condition, and sweeping the free precession angle by precisely
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FIG. 21. Free precession angle sweeping, and phase-locking effect (left). The decay of the autocorrelation vanishes as the phase acquired
by the target spin between successive measurements approaches π .
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FIG. 22. Decay of the correlation function for KDD1, 2, 3, 5.

controlling the time interval added between the measure-
ments, the phase-locking feature also allows us to make an
estimate of the perpendicular component of the hyperfine term
(see Fig. 21). As described in [24], the orange line was fitted
with the curve which resulted in the value of Azx. We provide
the value and the error in Table I. For KDD-XY5:

α = NpAzxτπ = 0.14(1)π,

Np = 100,

τ = 2240.2/12 ns. (L2)

6. Measurement strength sweep

As shown in Fig. 22, we check the dependence of the decay
of the correlation function on the measurement strength, i.e.,
the number of pulses. As a result, we fit the decay constant
with α2/4 dependence, which gives us an approximate deter-
mination of the Azx coupling (see Fig. 23).

APPENDIX M: PARAMETERS OF THE SEQUENCE

The sequence scheme timing (see Table II) is as follows:
(1) Repetitive readout (200 times)

(a) Electron spin green laser readout time: 340 ns

TABLE II. Typical sequence scheme timing.

Repeated readout 200 times Initial 14N spin Wait time KDD SWAP Total time

CNOT for 1.07 µs + green laser for 300 ns + wait 0.5 µs ≈ 400 µs ≈151 µs ≈10 µs ≈35 µs ≈34 µs ≈630 µs
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FIG. 23. Decay of the correlation function as a function of the measurement strength.

(b) CnROTe to electron spin 1.07 µs
(2) 14N polarization: 151 µs

(a) CnROTe to electron spin 4 µs
(b) CeROTn to nuclear spin 50 µs
(c) Laser repolarization 300 ns

Repeat a, b, and c + 1µs wait time.

(3) 10 µs of waiting time
(4) KDD-XY5 is 35 µs
(5) CeROTn is 34 µs
The free precession time t f is then estimated as the total

time of the sequence, where CROT stands for controlled rota-
tion.
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