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Quantum-based solution of time-dependent complex Riccati equations
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Using the Wei-Norman theory, we obtain a time-dependent complex Riccati equation (TDCRE) as the solution
of the time evolution operator (TEO) of quantum systems described by time-dependent (TD) Hamiltonians that
are linear combinations of the generators of the su(1, 1), su(2), and so(2, 1) Lie algebras. Using a recently
developed solution for the time evolution of these quantum systems, we solve the TDCRE recursively as
generalized continued fractions, which are optimal for numerical implementations, and establish the necessary
and sufficient conditions for the unitarity of the TEO in the factorized representation. The inherited symmetries
of quantum systems can be recognized by a simple inspection of the TDCRE, allowing effective quantum
Hamiltonians to be associated with it, as we show for the Bloch-Riccati equation whose Hamiltonian corresponds
to that of a generic TD system of the Lie algebra su(2). As an application, but also as a consistency test, we
compare our solution with the analytic one for the Bloch-Riccati equation considering the Rabi frequency driven
by a complex hyperbolic secant pulse generating spin inversion, showing an excellent agreement.
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I. INTRODUCTION

Symmetries have always had an important place in physics,
and they became mainstays since Emmy Noether’s theorem
[1], where they were formally connected with conserved
quantities. This theorem arises from the study of a lagrangian
under the action of groups of infinitesimal transformations
known as Lie groups [2], which are of special interest in
physics because they are continuous groups with the structure
of a differential manifold [3]. Lie groups can be introduced
through their corresponding Lie algebras [4], with the group
structures identified from the commutation relations satisfied
by the generators of the algebra. A paradigmatic example of
algebraic methods, i.e., methods that use the algebraic struc-
ture to describe and solve physical systems, can be found in
one of the many ways of solving the quantum harmonic oscil-
lator, where ladder operators are introduced to diagonalize the
Hamiltonian, allowing a precise and elegant way of finding the
corresponding energy levels and energy eigenfunctions [5].
Algebraic methods are important not just in the obtainment
of the energy spectrum of physical systems [6], but also in
the computation of dynamical properties as the time evolution
operator (TEO), Feynman propagators, or Green functions
[7,8]. Moreover, these methods can be used in the treatment of
physical systems described by time-dependent (TD) Hamilto-
nians, which are natural scenarios for describing interactions
with external agents. As a remarkable example, the so-called
Wei-Norman theory [9,10] allows to find the exact solution
of these systems when their Hamiltonians can be written as a
linear combination of time-independent generators of a finite
Lie algebra. Using this method, the Schrödinger equation is
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mapped on a set of coupled nonlinear differential equations
from which the TEO can be calculated as a factorized element
(that is, as a product of exponentials each containing only one
generator of the algebra) of the correspondent Lie group. It
is worth emphasizing that in most cases such solutions must
be computed numerically, and the same is true for other exact
solutions, such as those involving invariant quantities [11,12],
for example. A different algebraic approach, based on Baker-
Campbell-Haussdorf (BCH)-like relations obtained recently
[13], provides a simple recursive way to directly compute
the TEO of physical systems described by TD Hamiltonians
which are written as linear combinations of the generators
of the su(1, 1), su(2), and so(2, 1) Lie algebras. Notably, its
numerical implementation is easy and limited only by com-
putational capacity, and such an approach has proven to be
efficient in the study of the time evolution of a TD quantum
harmonic oscillator [14,15] and a system of two coupled TD
qubits [16]. The main purpose of this work is to develop a
formalism to recursively solve the differential equations that
arise from the use of the Wei-Norman theory and to use the
latter theory to directly obtain effective quantum Hamiltoni-
ans for the physical systems described by these differential
equations.

In Sec. II we present the mathematical scenario and
apply the Wei-Norman theory to quantum systems of the
su(1, 1), su(2), and so(2, 1) Lie algebras, arriving at the time-
dependent complex Riccati equation (TDCRE). Moreover, we
obtain the complete unitarity criteria for the TEO in the factor-
ized representation. In Sec. III we use an explicit solution for
time-dependent quantum systems to solve the TDCRE recur-
sively as generalized continued fractions. In Sec. IV we apply
our results. Initially, we map the so-called Bloch-Riccati equa-
tion (BRE) [17,18] into an effective quantum Hamiltonian of
the su(2) Lie algebra that can be performed by a TD qubit.
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TABLE I. Relations between the Lie algebras under considera-
tion and parameters ε and δ.

Lie algebra ε δ

su(1, 1) 1 1
su(2) −1 1
so(2, 1) i/2 i

Subsequently, we solve the BRE numerically considering a
complex hyperbolic secant pulse in the Rabi frequency and
with a parameter domain where spin inversion phenomenon
is generated. Comparison with the analytical results shows
excellent agreement. Section V is left for conclusions and final
comments.

II. FROM SCHRÖDINGER TO RICCATI

In this section we initially set the mathematical scenario for
the simultaneous treatment of quantum systems described by
TD hermitian Hamiltonians that are written as linear combi-
nations of the generators of the aforementioned algebras. Let
us consider the following Hamiltonian:

Ĥ (t ) = η+(t )T̂+ + ηc(t )T̂c + η−(t )T̂−, (1)

where the η coefficients are in principle arbitrary (at least
piecewise constant) scalar functions of time, and the T̂ ’s are
time-independent operators satisfying

[T̂−, T̂+] = 2εT̂c and [T̂c, T̂±] = ±δT̂±. (2)

The parameters ε and δ allow us to identify the operators T̂ as
the generators of the su(1, 1), su(2), or so(2, 1) Lie algebras,
as indicated in Table I.

Let us assume T̂+ = T̂ †
− . Therefore, from Eqs. (2) T̂c is

antihermitian for the so(2, 1) algebra or hermitian for the
other two. Using the above, it can be shown that the hermitic-
ity of the Hamiltonian is guaranteed if η+(t ) = η∗

−(t ), with
∗ denoting complex conjugation, while ηc(t ) must be either
pure imaginary for the so(2, 1) algebra or real for the other
two. Accordingly, three independent real-valued functions are
needed to define completely the Hamiltonian, namely, two
for η+(t ) and one for ηc(t ). The Hamiltonian can be thus
written as

Ĥ (t ) = η+(t )T̂+ + ηc(t )T̂c + η∗
+(t )T̂−. (3)

The state vector of a quantum system |ψ (t )〉 obeys
the Schrödinger equation i ∂

∂t |ψ (t )〉 = Ĥ (t )|ψ (t )〉 (h̄ = 1)
[19], and the corresponding TEO is defined by |ψ (t )〉 =
Û (t, 0)|ψ (0)〉, where we set the initial time at t = 0. There-
upon, the TEO fulfils the initial condition Û (0, 0) = 11, obeys
the differential equation

i
∂

∂t
Û (t, 0) = Ĥ (t )Û (t, 0), (4)

and satisfies the composition property

Û (t, 0) = Û (t, tN−1)Û (tN−1, tN−2) . . . Û (t2, t1)Û (t1, 0). (5)

There is no general method to find the TEO in Eq. (4) for an
arbitrary TD Hamiltonian. However, when symmetries corre-

sponding to the Lie groups can be identified in it, there is a
general way to proceed, as we show below.

A. Wei-Norman theory and the Riccati equation

The Wei-Norman theory [9,10] ensures that when a
Hamiltonian can be expressed as a linear combination of
time-independent generators of a finite Lie algebra, the TEO
can be written as an element of the correspondent Lie group,
expressed as a product of exponentials of the algebra gener-
ators [20]. Accordingly, for our Hamiltonian in Eq. (3) we
are allowed to consider the TEO factorized in the following
convenient arrangement:

Û (t ) = eα(t )T̂+eln ( β(t ) )T̂c eγ (t )T̂− , (6)

where we suppressed the initial time in our notation. Notice
that there are six different but equivalent ways of ordering
the exponentials of the generators, each arrangement with
a different set of coefficients. Substituting the above equa-
tion together with Eq. (3) in Eq. (4), and with the aid of
ordering techniques [21] (similarly to those found in Ap-
pendix B), we obtain the following set of coupled differential
equations for the coefficients of the TEO:

α̇ − δ
β̇

β
α + εδ

γ̇

βδ
α2 + iη+ = 0,

β̇

β
− 2ε

γ̇

βδ
α + iηc = 0,

γ̇

βδ
+ iη∗

+ = 0, (7)

satisfying the initial conditions α = 0, γ = 0, and β = 1 at
t = 0, and where the overdot indicates time derivative. Notice
that in the latter expressions we have omitted the temporal
dependence in the argument of the functions for simplicity of
notation. We shall do that along the text whenever there is
not risk of confusion. The decoupling of the above equations
leads to

α̇ + εδ(iη∗
+)α2 + δ(iηc)α + iη+ = 0, (8)

which is a TDCRE in α. Actually, the above equation rep-
resents three families of TDCREs, each associated with one
of the Lie algebras presented in Table I. Note that η+ is the
parameter associated with the nonlinearity of Eq. (8), and the
solution for η+ = 0 with the mentioned initial condition for α

is the trivial one, namely, α(t ) = 0. Once the equation for α is
solved, one can find β from Eqs. (7) as

β(t ) = exp

{
−2iε

∫ t

0
η∗

+(t ′)α(t ′)dt ′ − i
∫ t

0
ηc(t ′)dt ′

}
, (9)

and then γ can be calculated as

γ (t ) = −i
∫ t

0
η∗

+(t ′)βδ (t ′)dt ′. (10)

We can conclude, therefore, that the solution of the TEO
corresponding to the TD Hamiltonian in Eq. (3) is equivalent
to solve the TDCRE of Eq. (8). Notice that the TDCRE is of
great importance, e.g., in mathematics [22], physics [23–26],
and optimal control theory [27,28]. More specifically, in quan-
tum physics the Hamiltonian of many prominent systems,
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such as coupled harmonic oscillators, models for spin and
coupled spins, a charged particle moving in a magnetic field,
or coupled two-photon lasers, can be put in the form of Eq. (3)
(the above and other examples can be found in Ref. [12]
and the references therein). Recall that the TDCRE has some
known analytical solutions but, in general, it must be solved
numerically [29].

One important nontrivial example of a TDCRE with a
known analytical solution is the BRE [17], which we shall use
in Sec. IV to do a consistency test of our results. Hence, it is
appropriate to look at the problem from a reverse perspective
and ask: When can we use our results if we start with a generic
TDCRE as

α̇ + b0α
2 + b1α + b2 = 0, (11)

with b0, b1, and b2 arbitrary complex functions of time? A
comparison between the above equation and Eq. (8) allows
us to conclude that, to apply our solution, b1 must be a pure
imaginary function of time, b2 arbitrary, and b0 depending on
the algebra as b0 = b∗

2
2 so(2, 1), b0 = −b∗

2 su(1, 1), or b0 = b∗
2

su(2). Importantly, using the above prescription it is possible
to relate TDCREs directly with quantum Hamiltonians of the
mentioned algebras, as we shall show in Sec. IV.

B. Unitarity criteria

As previously mentioned, three independent real-valued
functions are needed to fully define the Hamiltonian, and
thus the same is true to fully describe the TEO [3]. However,
although these functions should be identified directly from the
constraints derived from the unitarity criteria for the TEO, we
note that the latter is not easily found in the literature for the
elements in the representation of Eq. (6). Therefore, due to
the importance of unitarity in physical systems, and also as a
per se relevant mathematical result, in Appendix A we take
advantage of the algebraic methods developed in Ref. [13]
to demonstrate the complete unitarity criteria that we list
next. For an arbitrary element of the Lie groups under con-
sideration, written as Ĝ = e|α|eiθ T̂+eln(|β|eiξ )T̂c e|γ |eiφ T̂− , the first
constraint is

|α| = |γ |, (12)

independently of the group. For the SO(2, 1) Lie group the
remaining two constraints are

e−ξ = 1 + |α|2
2

and ln |β| = θ + φ ± nπ, (13)

with n = 1, 2, . . . . On the other hand, for the su(1, 1) and
su(2) Lie groups the remaining two constraints are

|β| + ε|α|2 = 1 and ξ = θ + φ ± nπ, (14)

with n = 1, 2, . . . . While he did not formally calculate the
above relations for the groups under consideration, in an
important paper of Truax [30] he showed that, starting with
an unfactorized representation for an unitary element of the
su(1, 1) and su(2) Lie groups, the factorized representation
remains unitary.

III. TIME EVOLUTION OF QUANTUM SYSTEMS

We now follow a simple recursive solution recently de-
veloped in Ref. [13] to calculate the TEO corresponding to
the Hamiltonian in Eq. (1). There, the authors considered a
time splitting in N intervals of equally small enough size
τ = t/N such that the Hamiltonian coefficients, and therefore
the Hamiltonian itself, can be regarded as constant in each
jth time interval ( j = 1, 2, . . . , N). Formally, this implies that
the present solution will coincide with the exact one only in
the limit N → ∞ (and τ → 0). Nevertheless, for numerical
implementation of this method, it is enough to choose τ to
be much smaller than the typical timescale of the Hamilto-
nian coefficients. For our Hamiltonian in Eq. (3) let us write
these functions compactly, henceforth, as η = (η+, ηc, η

∗
+).

Without loss of generality we define their jth value as η j ≡
η(t = jτ ), where η j = (η j+, η jc, η

∗
j+), and the correspondent

jth TEO can be thus written as a Lie group element in the un-
factorized representation Ûj = exp(λ j+T̂+ + λ jcT̂c + λ j−T̂−),
where λ j ≡ (λ j+, λ jc, λ j−) = −iτη j . Using BCH-like rela-
tions (see Appendix B for details) each Ûj can be reexpressed
in the factorized representation Ûj = e� j+T̂+eln(� jc )T̂c e� j−T̂− ,
with the coefficients given by

� jc =
(

cosh(ν j ) − δλ jc

2ν j
sinh(ν j )

)− 2
δ

, (15)

� j± = 2λ j± sinh(ν j )

2ν j cosh(ν j ) − δλ jc sinh(ν j )
, (16)

and

ν2
j =

(
δλ jc

2

)2

− δελ j+λ j−. (17)

Since each Ûj is a Lie group element and the TEO is given by
the composition of them, then the total TEO must also be an
element of the Lie group, so that it can be written in the form

Û (t ) = eαN T̂+eln(βN )T̂c eγN T̂− , (18)

where the choice of the coefficients in the previous expression
is not coincidental. Indeed, comparing it with Eq. (6), it is
clear that the solution for α, β, and γ is the same. Using the
composition rule shown in Appendix A, the coefficients in the
above equation can be written recursively as [13]

α j = � j+ + α( j−1)(� jc)δ

1 − εδα( j−1)� j−
, (19)

β j = β( j−1)� jc

(1 − εδα( j−1)� j−)
2
δ

, and (20)

γ j = γ( j−1) + � j−(β( j−1))δ

1 − εδα( j−1)� j−
, (21)

with α1 = �1+, β1 = �1c, γ1 = �1−, and j = 1, 2, . . . , N .
Notice that the α parameter is an independent term of β

and γ , since the latter two need the former to be calculated.
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Furthermore, it can be written as

α j = � j+ − (� jc)δ

εδ� j− − 1

�( j−1)+ − (�( j−1)c)δ

εδ�( j−1)− − 1

· · · − 1

�1+

,

(22)

i.e., as a generalized continued fraction (GCF). This kind
of mathematical object is important in the realm of com-
plex analysis and is specially useful to study analyticity of
functions as well as number theory, among other fields (see
Ref. [31] and references therein). More importantly, its nu-
merical implementation is straightforward and limited only by
computational capacity, as demonstrated in Refs. [14–16].

Note that, although α is written recursively, the analyti-
cal calculation of its derivatives can be done by finding the
differential equation that it satisfies, which we have demon-
strated in Sec. II to be the TDCRE. Furthermore, there is
a way to demonstrate this last result directly from the re-
cursive solution for α given in Eq. (19). To do this, let us
consider the limit of small time intervals satisfying |η j |τ � 1,

so that ν j � 1. Up to first order in τ, we have sinh(ν j ) ≈ ν j

and cosh(ν j ) ≈ 1. In this case, one trivially finds (� jc)δ ≈
1 − iδ η jcτ, � j+ ≈ −iη j+τ, and � j− ≈ −iη∗

j+τ. Therefore,
(1 − εδ� j−α j−1)−1 ≈ 1 − iεδ η∗

j+ α j−1 τ, and up to first or-
der in τ the recurrence relation for α becomes

α j ≈ α j−1 − τ
(
iεδ η∗

j+ α2
j−1 + iδη jcα j−1 + iη j+

)
. (23)

When τ → 0, the finite difference ratio in α approaches a
derivative resulting in the Riccati equation (8). In this way, the
connection between the generalized continued fraction and
the complex Riccati equation for α is straightforward.

As a particular case, we can realize that j = 1 corresponds
to the exact analytic solution for a sudden change (also called
a jump or a quench) in the Hamiltonian coefficients at t = 0.
Moreover, Eqs. (19)–(21) represent the exact analytic solution
for a sequence of N jumps equally spaced in time of the
Hamiltonian coefficients. For one jump at t = 0, they can be
written as η(t ) = ηo + (η f − ηo)�(t ), where ηo ≡ η(t < 0),
η f ≡ η(t � 0), and � is the usual Heaviside step function.
The corresponding TEO is therefore given by Û1(t, 0) =
e�1+T̂+eln(�1c )T̂c e�1−T̂− , with the � functions given by Eqs. (15)
and (16) evaluated for λ1 = −it (η f

+, η
f
c , η

∗ f
+ ). Notice that, as

we are using essentially the composition rule for the elements
of the groups corresponding to the algebras under considera-
tion, our solution also contemplates the calculation of the TEO
for systems with a finite number of jumps in their parameters
that are not necessarily equally spaced in time, e.g., the case of
a quantum harmonic oscillator with frequency jumps [32–35],
being useful in the construction of squeezed states of atomic
motion in optical lattices [36]. Moreover, they can also be used
to calculate the arbitrary composition of squeeze operators,
rotation operators, and many other interesting unitary opera-
tors of the Lie algebras under consideration (see, for instance,
Refs. [37,38]).

To end this section, it is important to note that the con-
straints obtained from the unitarity in Eqs. (12)–(14) can be
used as a fundamental test for the numerical implementations
of our results, once the � functions in Eqs. (15) and (16) must
satisfy them at any time (for any j), and the same is true for
Eqs. (19)–(21).

IV. EFFECTIVE HAMILTONIAN AND SOLUTION
OF THE BLOCH EQUATIONS

Since its publication in 1946 [39], the Bloch equations be-
came of fundamental importance in the realm of NMR. They
provide a quantitative description of any NMR experiment
that involves radio frequency pulses, which are at the heart of
all modern NMR experiments [18]. In this section we shall
use our results to identify the effective quantum Hamilto-
nian for the Bloch-Riccati equation and numerically recover
the remarkable results of Silver et al. [17] as an application
of our results. Following this reference, the Bloch equa-
tions in the rotating frame, neglecting relaxation terms, can be
written as

Ṁ + i�ωM + Mz�(t ) = 0,

Ṁz − i

2
( M�∗(t ) − M∗�(t ) ) = 0, (24)

where M is the complex magnetization in the x–y plane, Mz is
the longitudinal magnetization, and �(t ) = −g(B1x + iB1y) is
the complex TD driving function. Using the definition

f = M

Mo + Mz
, (25)

where Mo is the equilibrium magnetization, Eqs. (24) can be
transformed into the BRE [17], namely,

ḟ − i

2
�∗(t ) f 2 + i�ω f + i

2
�(t ) = 0. (26)

Notice that the above equation is identical to Eq. (8) for the
particular case of the Lie algebra su(2) (δ = 1 and ε = −1),
with the identifications η+ = �(t )/2 and ηc = �ω. There-
fore, using our results of Sec. II A, the corresponding effective
Hamiltonian is simply given by

Ĥ (t ) = 1
2�(t )T̂+ + �ωT̂c + 1

2�∗(t )T̂−. (27)

Furthermore, if we consider a realization of this algebra for
the Pauli operators σ+, σ−, and σz, with σ± = σx ± iσy, we
note that the above Hamiltonian will be exactly the same
as a TD qubit [40], with �(t ) the Rabi frequency and �ω

an effective detuning. We conclude, therefore, that the time
evolution of a TD qubit is, among several other possible TD
systems of the su(2) Lie algebra, a setup equivalent to NMR
described by the Bloch equations in the rotation frame and
with relaxation terms neglected, a result that is in agreement
with the well-known connection between quantum optics and
NMR [18]. Note that, although there are some exact solutions
for a TD qubit with certain driving terms (see, e.g., Ref. [41]),
our general approach allows us to consider arbitrary complex
TD functions for the Rabi frequency as well as arbitrary real-
valued functions for the detuning.

A nontrivial emblematic example with an analytical solu-
tion for the BRE and with relevant experimental applications
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in NMR comes from the use of a complex hyperbolic secant
pulse as the driving function for the Rabi frequency [17].
Moreover, choosing appropriately the domain of the involved
functions, spin inversion phenomenon can be achieved. As
a consistency test, we now shall recover the results for such
driving. Let us consider the following family of functions for
the Rabi frequency:

�(t ) = �o( sechχ (t − to))1+iμ, (28)

where μ is a real constant and �o is the pulse amplitude.
Using the above driving, the BRE (26) can be transformed in
a hypergeometric equation with known solutions. After taking
into account the initial conditions, the authors in Ref. [17]
found for the stationary solution of the magnitude of f (t ) the
following simple expression:

| f |2t→∞ = cosh2 (πμ/2) − cos2 (πy)

cosh2 (π�ω/2χ ) − sin2 (πy)
, (29)

with

y =
{(

�o

2χ

)2

−
(μ

2

)2
}1/2

, (30)

and where they considered solutions for y real and 2y 
=
1, 2, 3, . . .. The quantity that serves to predict the spin in-

version is given by Mz

Mo
= 1−| f |2t→∞

1+| f |2t→∞
. Using Eq. (29), it can be

shown that
Mz

Mo
= tanh ϕ1 tanh ϕ2 + sechϕ1sechϕ2 cos ϕ3, (31)

where

ϕ1 = π

{
�ω

2χ
+ μ

2

}
, ϕ2 = π

{
�ω

2χ
− μ

2

}
,

and ϕ3 = π

{(
�o

χ

)2

− μ2

}1/2

. (32)

Spin inversion is achieved if the above quantity changes from
Mz

Mo
= 1 to Mz

Mo
= −1 (and vice versa). Moreover, notice from

Eq. (31) that without phase modulation (μ = 0) and whenever
�o = 2nχ with n = 1, 2, . . ., there is an excursion of the
magnetization (Mz = Mo). On the other hand, in the limit of
μ → ∞, χ → 0, with μχ → C a constant, and �o � C, the
magnetization is inverted over all frequencies (Mz = −Mo).
To capture this phenomenon and taking into account the
considered analytical solutions, we chose for the numerical
calculations the following values of the parameters in arbi-
trary units: �o = 10, χ = �o/2μ, and μ = {7/5, 2, 4} for
the phase modulation parameter, with fixed values of �ω

sweeping the interval −15 � �ω � 15. We also chose a time
interval for the analysis of t ∈ [0, 40]. In Fig. 1, we plot in
solid lines the analytic solution of Eq. (31) for the chosen
values of the parameters. Recall that the intermediary numer-
ical calculations of Eqs. (15)–(17) allow for the testing of the
code using the unitary relations given in Eqs. (12) and (14)
(ε = −1). Now, considering the time splitting in N = 8 × 103

intervals for each value (point) of �ω, we numerically cal-
culate a total of 300 points within the effective detuning
interval to evaluate the same quantity with our formalism.
The calculations took less than 20 min on a laptop machine

FIG. 1. Spin inversion as a function of the detuning using the
driving in Eq. (28) for different values of the real parameter μ. Solid
lines are calculated with the analytic expression of Eq. (31), while
the points are numerically calculated with our general approach.

and are plotted as the dot patterns in Fig. 1. As it can be
noted, the matching is excellent, allowing us to validate our
results. Recall that our formalism allows one to fully calculate
the TEO corresponding to the NMR effective Hamiltonian
obtained in Eq. (27), i.e., the β and γ functions in addition to
α, and, consequently, to evolve any initial state. Nevertheless,
the only necessary parameter to describe spin inversion in this
case is α. This is because the Bloch equations (24) consider
intrinsically the initial state of the system as the ground state,
where α is the protagonist of the dynamics. Therefore, we
can expect that in NMR analysis using arbitrary drivings and
initial states, our results will be useful.

V. CONCLUSIONS

In the first part of this work we derived a TDCRE from the
application of the Wei-Norman theory in TD systems of the
su(1, 1), su(2), and so(2, 1) Lie algebras, and so we obtained
all the necessary and sufficient conditions for the unitarity
of the elements of the correspondent given Lie groups in the
factorized representation. This result is important as unitarity
guarantees probability conservation. Then, in the second part
of this work we used a solution for time-dependent quantum
systems to solve the TDCRE recursively as GCFs, which are
optimal for numerical implementations. The formalism we
developed also allows us to associate effective Hamiltoni-
ans directly to TDCREs, as we showed in the third part of
this work for the BRE, mapping it in an effective quantum
Hamiltonian of the su(2) Lie algebra. Then, as an applica-
tion, but also as a consistency test, we numerically calculated
the solution of the BRE for a complex hyperbolic secant
pulse generating spin inversion and compared it to analytical
results, showing excellent agreement. Our results are quite
general and can be used not just to solve the TEO of any
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TD system of the algebras at issue and its related TDCRE,
but also TDCREs that do not need to be related to quantum
systems. For instance, Newton’s laws can be put in the form of
Riccati equations under certain conditions [42], and therefore
it should be possible to apply the methods discussed in this
work.

Our results can be straightforwardly extended to other
nonlinear differential equations that can be derived from the
TDCRE, e.g., the (dissipative) Ermakov equation [43–45]
with its respective invariant, paving the way for new possibil-
ities in the quantum-classical connection [25]. Furthermore,
our results can also be extended for other algebras with a
higher number of generators [46], arriving at different sets of
differential equations that could be solved in terms of GCFs,
also amplifying the possibilities of investigating more com-
plex systems as coupled TD-quantum harmonic oscillators
[47–50] or coupled TD qubits [16,51]. Our results related to
GCFs could also be useful in the analysis of quantum systems
using differential Galois theory [52], in extensions for nonher-
mitian time-dependent systems [53], in the search for special
symmetries leading to analytical solutions [54], as well as in
the analysis of the Lie-Scheffers theorem [55,56]. Finally, we
can expect applications of our results in several branches of
physics, as they encompasses the solution of the TEO of im-
portant fundamental systems as TD qubits and TD-quantum
harmonic oscillators, being useful in the control of quantum
systems [57,58], in the design of shortcuts to adiabaticity
[59], in the harnessing of nonadiabatic excitations promoted
by quantum critical points [60], in the description of ion
traps dynamics [61], in quantum thermodynamics [62–65],
in the study of (cavity) optomechanical systems [66–69], or
in quantum interference of levitated nanorotors [37], among
many others.
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APPENDIX A: BCH-LIKE RELATIONS
AND UNITARY CRITERIA

The BCH-like relations developed in Ref. [13] are es-
sentially the composition rule for the elements of the
groups corresponding to the algebras under consideration,
once they are written in the factorized representation of
Eq. (6). More specifically, given two arbitrary elements Ĝ1 =
eα̃T̂+eln(β̃ )T̂c eγ̃ T̂− and Ĝ2 = eαT̂+eln(β )T̂c eγ T̂− , their product is an-
other element of the group, namely,

Ĝ = Ĝ2Ĝ1 = eζ+T̂+eln(ζc )T̂c eζ−T̂− , (A1)

where

ζ+ = α + α̃βδ

1 − εδα̃γ
, ζc = β̃β

(1 − εδα̃γ )
2
δ

,

and ζ− = γ̃ + γ (β̃ )δ

1 − εδα̃γ
. (A2)

Notice that the inverse product, i.e., Ĝ1Ĝ2, leads to identical
relations as in Eqs. (A2) but interchanging the letters having
tildes with those that do not. Suppose that we know Ĝ2 and
we desire to obtain its inverse, namely, Ĝ1. Accordingly, their
product must equal the identity, i.e., Ĝ2Ĝ1 = Ĝ1Ĝ2 = 11. In
Eq. (A2) this implies ζ+ = 0, ζc = 1, and ζ− = 0, from which
we obtain α̃ = −α

l , β̃ = β

l
2
δ

, and γ̃ = − γ

l , where we define

l ≡ βδ − εδ α γ . It can also be proven that for the inverse
product the above relations holds true, and therefore Ĝ2 is the
inverse of Ĝ1. Let us now define

α = |α|eiθ , β = |β|eiξ , and γ = |γ |eiφ. (A3)

The unitary condition demands Ĝ−1 = Ĝ†, where Ĝ† =
eγ ∗T̂+eln(β∗ )T̂ †

c eα∗T̂− , leading to

γ ∗ = −α

l
, ln(β∗)T̂ †

c = ln

(
β

l
2
δ

)
T̂c, and α∗ = −γ

l
.

(A4)

From the left- and right-hand-side equations above and
Eqs. (A3) we obtain the following results valid for all the
algebras at issue: First, the constraint

|α| = |γ |. (A5)

Second, that l is just a phase once |l| = 1. And third, that
l2 = e2i(θ+φ). Recall that, by construction, T̂c is antihermi-
tian for the so(2, 1) algebra and hermitian for the other two.
Accordingly, for the so(2, 1) algebra, the middle equation in
Eqs. (A4) implies that |β|2i = l2, with l = β i + αγ

2 (see Ta-
ble I). Using the above results together with Eqs. (A3) and
(A4), it is straightforward to show that

e−ξ = 1 + |α|2
2

and ln |β| = θ + φ ± nπ, (A6)

with n = 1, 2, . . . . On the other hand, for the su(1, 1) and
su(2) algebras the middle equation in Eqs. (A4) implies that
β

β∗ = l2 with l = β − εαγ , leading to

|β| + ε|α|2 = 1 and ξ = θ + φ ± nπ, (A7)

with n = 1, 2, . . . . Using the above results, it can be shown
that, for all the algebras under consideration, l = −ei(θ+φ).
Finally, notice that the arbitrary composition of squeeze
operators, rotation operators, and other interesting unitary op-
erators of the groups under consideration can be calculated
using these BCH-like relations.

APPENDIX B: FACTORIZING GROUP ELEMENTS

In this Appendix we show that an arbitrary element of the
Lie groups at issue and given in the unfactorized representa-
tion, namely,

Ĝ(λ) = exp(λ+T̂+ + λcT̂c + λ−T̂−), (B1)
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can be factorized in the usual order, as indicated in Eqs. (15)–
(17), or as

Ĝ(�) = e�−T̂−eln(�c )T̂c e�+T̂+ , (B2)

where

�c =
(

cosh(ν) + δλc

2ν
sinh(ν)

) 2
δ

, (B3)

�± = 2λ± sinh(ν)

2ν cosh(ν) + δλc sinh(ν)
, (B4)

with

ν2 =
(

δλc

2

)2

− εδλ+λ−. (B5)

Firstly, let us redefine Eq. (B1) as the special case ρ = 1 of
the operator

F̂1(ρ) = eρ(λ+T̂++λcT̂c+λ−T̂−). (B6)

The basic idea is to find an equivalent expression in the form

F̂1(ρ) = e�−(ρ)T̂−eln ( �c (ρ) )T̂c e�+(ρ)T̂+ , (B7)

and therefore, to write the functions �+, �−, and �c in terms
of the small lambdas so that the last two equations are equal.
The relations between these two set of functions (� and λ)
are known as BCH-like relations [21]. Accordingly, we derive
both expressions with respect to ρ and impose the derivatives
to be equal. The derivative of Eq. (B6) is direct, and given by

F̂ ′
1 = (λ+T̂+ + λcT̂c + λ−T̂−)F̂1, (B8)

where the prime indicates derivative with respect to ρ. On the
other hand, the derivative of Eq. (B7) can be written as

F̂ ′
1 =

(
�−T̂− + �′

c

�c
Î1 + �+Î2

)
F̂1, (B9)

with

Î1 = e�−T̂− T̂c e−�−T̂−

Î2 = e�−T̂− eln(�c )T̂c T̂+ e− ln(�c )T̂c e−�−T̂− . (B10)

Using the BCH relation [21]

eÂB̂ e−Â = B̂ + [Â, B̂] + 1

2!
[Â, [Â, B̂]]

+ 1

3!
[Â, [Â, [Â, B̂]]] + · · · (B11)

together with the commutation relations given in Eq. (2) we
can solve Eqs. (B10), and then equalize Eqs. (B8) and (B9) to
obtain the following set of coupled differential equations:

�′
− + δ�−

�′
c

�c
+ εδ(�−)2(�c)δ�′

+ = λ−, (B12)

�′
c

�c
+ 2ε�−(�c)δ�′

+ = λc, (B13)

(�c)δ�′
+ = λ+ . (B14)

Substitution of Eq. (B14) in Eq. (B13) leads to

�′
c

�c
= λc − 2ελ+�−, (B15)

and we obtain the differential equation for �− by substituting
the above equation together with Eq. (B14) into Eq. (B12):

�′
− − εδλ+(�−)2 + δλc�− − λ− = 0. (B16)

This is a first-order, quadratic, and nonhomogeneous ordinary
differential equation known as the (time-independent) com-
plex Riccati equation. It has a unique solution, and can be
transformed into an ordinary, homogeneous, and second-order
differential equation with the aid of the well-known transfor-
mation

�− = − 1

εδλ+

u′

u
, (B17)

leading to

u′′ + �u′ + ς2u = 0, (B18)

where we defined ς2 = εδλ−λ+ and � = δλc in order to
identify it as the classical equation of a damped harmonic
oscillator with natural frequency ς and damped coefficient �.
Its general solution is given by

u(ρ) = e− �
2 ρ (Aeνρ + Be−νρ ), (B19)

where ν is given by Eq. (B5) and constants A and B are
determined from the initial condition �−(ρ = 0) = 0. Using
the above results in Eq. (B17), we obtain

�−(ρ) = 2λ− sinh(νρ)

2ν cosh(νρ) + δλc sinh(νρ)
,

which leads to the desired expression written in Eq. (B4) if
we take ρ = 1. Now, using Eq. (B15) and the above result
together with the initial condition �c(ρ = 0) = 1, we can
calculate

�c =
(

cosh(νρ) + δλc

2ν
sinh(νρ)

) 2
δ

,

which after taking ρ = 1 leads to the desired result of
Eq. (B3). To find �+(ρ) we replace the above equation in
Eq. (B14) and take into account the initial condition �+(ρ =
0) = 0, obtaining

�+ = 2λ+ sinh(νρ)

2ν cosh(νρ) + δλc sinh(νρ)
,

which leads to the desired result in Eq. (B4) with ρ = 1. To
finish this section we shall factorize expression (B1) in the
usual order:

Ĝ(�) = e�+T̂+eln(�c )T̂c e�−T̂− . (B20)

Following a similar process, the correspondent set of coupled
differential equations is given by

�′
+ − δ�+

�′
c

�c
+ εδ(�+)2(�c)−δ�′

− = λ+, (B21)

�′
c

�c
− 2ε�+(�c)−δ�′

− = λc, (B22)

(�c)−δ�′
− = λ− . (B23)

Then, solving the above system, it is straightforward to show
that

�c =
(

cosh(ν) − δλc

2ν
sinh(ν)

)− 2
δ

, (B24)
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�± = 2λ± sinh(ν)

2ν cosh(ν) − δλc sinh(ν)
, (B25)

which are equivalent to Eqs. (15) and (16) [13]. It must
be noted that our expressions in Eqs. (B3) and (B4) differ
by one sign from those found in Ref. [21] for the spe-
cial cases of the su(1, 1) and su(2) Lie algebras. However,
we can use Eqs. (B24) and (B25) to check our results as
follows. First, notice that the inverse of Eq. (B1) can be

easily calculated as Ĝ−1 = exp(−λ+T̂+ − λcT̂c − λ−T̂−), i.e.,
is equivalent to the change λ → −λ. Using this condition
in Eqs. (B3) and (B4), it is straightforward to show that
�c → (�c)−1 and �± → −�±. Therefore, from Eq. (B2) it
follows that Ĝ−1 = e−�−T̂−e− ln(�c )T̂c e−�+T̂+ , which is consis-
tent with Eq. (B20), since ĜĜ−1 = Ĝ−1Ĝ = 11. Notice that
the above factorizations do not depend on the unitarity of Ûj ,
but just on the commutation relations of the generators of the
algebra.
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