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Energy-level shift of quantum systems via the scalar electric Aharonov-Bohm effect
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A version of the electric Aharonov-Bohm effect is proposed where the quantum system which picks up the
Aharonov-Bohm phase is confined to a Faraday cage with a time-varying spatially uniform scalar potential.
The electric and magnetic fields in this region are effectively zero for the entire period of the experiment. The
observable consequence of this version of the electric Aharonov-Bohmn effect is to shift the energy levels of the
quantum system rather than shift the fringes of the two-slit interference pattern. We show a strong mathematical
connection between this version of the scalar electric AB effect and the ac Stark effect.
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I. THE AHARONOV-BOHM EFFECT

The Aharonov-Bohm effect [1] (AB effect hereafter) shows
that in the quantum-mechanical context the scalar and vector
potentials have a greater reality than is implied by classical
electromagnetism where the potentials can be eliminated in
favor of the fields. The two forms of the AB effect are known
as the magnetic or vector AB effect (since this involves the
magnetic field coming from the vector potential) and elec-
tric or scalar AB effect (since this involves the electric field
coming from the scalar potential). The term scalar AB effect
is also applied to cases when the system develops an AB
phase connected with the scalar interaction μ · B [2–4]. In
this paper, the scalar interaction we focus on is qV , i.e., the
scalar coupling between the charge and the electric scalar
potential. The original experimental setup of the scalar electric
AB effect, which is the focus of this paper, is shown in Fig. 1.

The vector AB effect—which occurs by placing an infinite
solenoid carrying a constant magnetic flux behind the slits
of a two-slit interference experiment—was first confirmed
experimentally by Chambers [5] a year after the original theo-
retical work by Aharonov and Bohm. This initial experimental
demonstration of the vector AB effect had some experimental
loop holes, chief among these being that the electrons did not
move in a purely B-field-free region. These loop holes were
later plugged in a tour-de-force experiment [6] by Tonomura
et al., which replaced the unrealistic, infinite solenoid with a
microscale torus.

*raymond_chiao@yahoo.com
†hhart3@ucmerced.edu
‡mscheibner@ucmerced.edu
§jsharping@ucmerced.edu
‖ninan@ucmerced.edu
¶dougs@mail.fresnostate.edu
#michael.tobar@uwa.edu.au

Next, the scalar AB effect connected with the interac-
tion μ · B, whereas not as extensively tested as the magnetic
or vector AB effect, has nevertheless received a substan-
tial amount of experimental confirmation—in addition to
Refs. [2–4] mentioned above we note the works [7,8]. Ref-
erence [2], in particular, very clearly lays out the distinction
between the scalar AB effect coming from μ · B versus that
coming from qV . Additionally we will use the term “scalar
electric AB effect” in the present paper since there is a dual
formulation of electromagnetism where the electric field can
arise from the curl of a dual vector potential, which then leads
to a dual AB effect [9–11]. This leads to a dual “vector electric
AB effect.”

Finally, in contrast with the above two versions of the AB
effect, the scalar electric AB effect has received much less ex-
perimental attention. A prominent experimental verification of
the scalar electric AB effect was given in Ref. [12]. However,
this experiment measured the effects of both the scalar electric
and the vector AB effect, rather than the effect of only the
scalar electric AB effect. Also at some point in the experiment
the electrons did move in a region where the E field was
nonzero.

In this paper, we propose a version of the scalar electric AB
effect, that improves on the setup in Fig. 1. The basic setup
for our proposal to test the scalar electric AB effect is given
in Fig. 2. It consists of a Faraday shell with a time-varying
voltage on its surface. Outside the Faraday shell, there will be
both a time-varying E(t ) field and time-varying scalar poten-
tial V (t ). However, inside the Faraday shell, the E field will be
zero; there will be only a time-varying spatially uniform scalar
potential V (t ). The quantum-mechanical system that we use
to register the effect of this V (t ) inside the Faraday shell is
a gas of hydrogenlike atoms. We propose using rubidium gas
since rubidium can more easily be obtained in atomic form,
whereas hydrogen generally comes as a molecule H2. In the
next section, we discuss some of the basic theoretical aspects
of this new version of the scalar electric AB effect. We find
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FIG. 1. The original proposed setup for the electric AB effect.

that the time-varying spatial uniform potential V (t ) will split
the energy levels into a series of energy levels. In terms of the
mathematical analysis, this is almost identical to the ac Stark
effect [13,14] where a time-varying electric field will split
the energy levels of the atom. The difference here is that the
energy-level splitting occurs in atoms placed in a region with
a time-varying scalar potential, V (t ), but zero electric-field
E = −∇V (t ) = 0. This shift in energy levels as a means to
probe the AB effect is different from the usual signature of the
AB effect, which involves a shift in interference fringes.

II. ANALYSIS FOR PROPOSED SCALAR ELECTRIC
AB EFFECT

Here we give the analysis for the proposed scalar elec-
tric AB effect. The quantum system used to probe the scalar
electric AB effect is assumed to have a Hamiltonian H0

for which the solutions to the time-independent Schrödinger
equation are known, i.e., H0�i(x) = Ei�i(x). To observe the
scalar electric AB effect, we place the quantum system (in
our case the quantum system is an electron in a hydrogenlike
atom) inside a Faraday shell connected to a time-varying
voltage as in Fig. 2. The new Hamiltonian is

H = H0 + eV (t ). (1)

We take the scalar potential V (t ) to be sinusoidal and of the
form

V (t ) = 0 for t < 0, (2)

V (t ) = V0 cos �t for t � 0,

where �
2π

is the frequency and V0 is the amplitude. For t <

0 where V (t ) = 0, the Hamiltonian is just H0 with wave-

FIG. 2. The basic setup of our proposed test of the scalar electric
AB effect.

function solutions �i(x), and energy eigenvalues Ei. The
time-dependent Schrödinger equation for this system is given
by

ih̄
∂ψ

∂t
= Hψ = [H0 + eV (t )]ψ (3)

Note that whereas V (t ) does depend on time t , it does not
depend upon x, the position of the electron. In contrast, the
unperturbed Hamiltonian H0 will, in general, depend upon x,
but it does not depend on time t . Hamiltonians of the form (3)
with a piecewise continuous periodic potential can be solved
using Floquet’s theorem. We now present a brief summary.

First we apply the separation-of-variables ansatz,

ψ (x, t ) = X (x)T (t ). (4)

Substituting this ansatz into (3) we find

ih̄
∂ψ

∂t
= ih̄X

dT

dt
= (H0 + eV )XT = T H0X + X (eV )T .

(5)

Dividing this equation by XT and moving the eV (t ) term to
the left-hand side gives

−eV + ih̄
1

T

dT

dt
= 1

X
H0X. (6)

This equation has the form f (t ) = g(x) where f (t ) is only
a function of t , and g(x) is only a function of x. The only
way that this can be true is if each function is equal to a
constant E , i.e., f (t ) = g(x) = E . This gives the separated
equations,

−eV + ih̄
d ln T

dt
= E and H0X = EX. (7)

Setting X = �i(x) and E = Ei, gives the time-independent
Schrödinger equation,

H0�i(x) = Ei�i(x), (8)

which is the known eigenvalue problem for the unperturbed
hydrogenlike atom. Integrating the first temporal equation in
(7) over t gives

−e
∫

V (t )dt + ih̄
∫

d ln T (t )

dt
dt =

∫
Eidt . (9)

Carrying out the integrations in (9) and solving for T (t ), gives

T (t ) = exp

(
− i

h̄
Eit

)
exp

(
− i

h̄
e
∫

V dt

)

= exp

(
− i

h̄
Eit − iα sin �t

)

= exp

(
− i

h̄
Eit − iϕ(t )

)
, (10)

where we have defined α, the frequency modulation (FM)
depth of modulation parameter,

α = eV0

h̄�
. (11)

Multiplying X (x) = �i(x) and T (t ) from (10) gives the
wave function ψi(r, t ) for the full Hamiltonian H0 + eV (t )
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FIG. 3. A plot of Jn(α) versus n for the case when α = 1000.
There are sidebands in the energy E (n)

i , which occurs up to some
maximum index n given by nmax ≈ α. From the plot, one can see that
the weighting Jn(α) is largest when n = nmax ≈ α, and it is this state
which contributes the most.

from (1) gives

ψi(r, t ) = �i(r) exp

(
− iEit

h̄
− iϕ(t )

)
. (12)

Note that this new wave function is the original wave function
with an added AB phase factor exp[−iϕ(t )]. From (10) ϕ(t ) is
given by

ϕ(t ) = e

h̄

∫
V (t )dt = α sin �t, (13)

The expression ϕ(t ) = e
h̄

∫
V (t )dt above shows that ϕ(t ) is

the usual scalar electric AB phase. Exponentiating the scalar
electric AB phase and using the Jacobi-Anger expansion gives

exp[−iϕ(t )] = exp (−iα sin �t )

=
∞∑

n=−∞
(−1)nJn(α) exp (in�t ). (14)

Inserting the result from (14) back into (12), the wave function
reads

ψi(r, t ) = �i(r)
∞∑

n=−∞
(−1)nJn(α) exp (in�t ) exp

(
− iEit

h̄

)

= �i(r)
∞∑

n=−∞
(−1)nJn(α) exp

(
− i(Ei − nh̄�)t

h̄

)
.

(15)

Thus, each energy-level Ei will be split into a multiplet E (n)
i

with

E (n)
i = Ei ± nh̄�, with n, an integer, (16)

where E (n)
i are evenly spaced energy levels with an energy

step h̄�. This new energy spectrum E (n)
i is of the form of the

quasienergies discussed in Ref. [15]. If one takes the results
of Eqs. (15) and (16) at face value, this would seem to imply a
new spectrum with an infinite number of new states labeled by
the sideband index n. However, from (15), one finds that the
different contributions are weighed by the Bessel functions
Jn(α). In Fig. 3, we plot Jn(α) for a fixed α as a function of n

and find a maximum index given by

nmax ≈ α. (17)

From Fig. 3 where we take α = 1000, one can see that the
Bessel function weighting exponentially drops to zero beyond
nmax. Thus, for n > nmax the contributions in the sum in (15)
will be suppressed as will the energies E (n)

i with n > nmax.
Furthermore, from Fig. 3, one sees that the states and energies
which contribute the most and have the largest weighting
are those with n ≈ ±nmax. Taking these n = nmax states to
dominate, one finds that the energy-level Ei has been split into
two levels: Ei ± nmax h̄�. Recalling that nmax ≈ α = eV0

h̄�
then

gives new energies levels of E (nmax )
i = Ei ± eV0.

This result of the splitting of the energy levels—our version
of the scalar electric AB effect—looks almost mathemati-
cally identical to the Autler-Townes effect or ac Stark effect
[13]. Furthermore, in Ref. [16], Townes and Schawlow point
out that the radio-frequency methodology of FM can be ap-
plied to quantum-mechanical wave functions whenever their
phases undergo sinusoidal frequency modulation due to exter-
nal perturbations, which mirrors the influence of the external
time-varying potential V (t ) on the wave function ψi as shown
in (15). The key difference, of course, is that for the ac Stark
effect the quantum system is in a region of nonzero electric
field, whereas here, the quantum system is in a region where
the electric field is zero but the scalar potential is nonzero.

We now show in detail the mathematical similarity between
our version of the scalar electric AB effect and the ac Stark
effect. To lay out the similarities, we compare our results
to those of the ac Stark effect as given in the review article
[14]. Our modified wave function (15) matches with the wave
function from the review article (Eq. (13) of Ref. [14]). The
weighting factor in Ref. [14], instead of being (−1)nJn(α),
takes the more complex form

Cn =
+∞∑

S=−∞
(−1)nJS

(
βE2

0

8�

)
Jn+2S

(
dE0

�

)
, (18)

where E0 is the magnitude of the electric field that oscil-
lates with frequency �, d is a dipole moment, and β is a
polarizability. In (18), we have changed some of the notation
relative to Ref. [14] to avoid overlap with our notation. In
Ref. [14], there were interactions terms between the electric
field and the quantum system—one linear and one quadratic
in E0. In our case, we have only linear terms in E0 or V0,
i.e., for us β = 0 so that the middle term in the sum in (18)
is JS (0). Now, JS (0) = 0 except for S = 0 [J0(0) = 1]. Thus,
the sum in (18) reduces to only the S = 0 term, namely,
Cn = (−1)nJn(dE0/�). This exactly matches our weighting
(−1)nJn(eV0/h̄�). Taking the dipole as d = ex (charge times
distance) we find that dE0 ∼ exE0, noting that a distance times
the electric field has units of a potential (xE0 ∼ V0), and finally
recalling that Ref. [14] took h̄ = 1 one can see that dE0

�
∼ eV0

h̄�
.

The Cn weighting in (18) exactly matches our (−1)nJn(α)
weighting.

The reason that [14] had both linear and quadratic electric-
field terms, whereas, we only have linear terms, comes about
due to the difference in minimal coupling of the scalar
versus vector potential in the time-independent Schrödinger
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equation, ih̄ ∂
∂t � = p̂2

2m �. For the vector potential case with
a sinusoidal potential A(t ) = E0

�
cos(�t )ẑ, minimal coupling

is p̂2 → (p̂ − eA)2, which then gives both linear (A ∼ E0)
and quadratic (A2 ∼ E2

0 ) terms. In contrast, the minimal cou-
pling of the scalar potential arises via the minimal coupling
ih̄ ∂

∂t → ih̄ ∂
∂t − eV (t ) with V (t ) = V0 cos(�t ), and this only

gives a term linear in the scalar potential. More physically, the
quadratic term in Ref. [14] is connected with polarization of
the quantum system by the electric field, but for our scalar
electric AB setup there is no electric field and, hence, no
polarization term.

This connection between the ac Stark effect and the scalar
electric AB effect also supports the earlier statement that only
a few of the many energy levels from (16) are populated and,
thus, play a role. In the ac Stark effect, both theory and exper-
iment [14] indicate that the n = ±nmax states are dominant, in
the limit of low frequency and strong field. It is in this limit
that the ac Stark effect and scalar electric AB effect are cor-
rected due to the absence of the quadratic term for the scalar
electric AB effect. Thus, this close mathematical connection
between the ac Stark effect and the scalar electric AB effect
indicate that, as for the ac Stark effect, the n = ±nmax states
are dominant for the scalar electric AB effect.

After drawing this exact, mathematical identity between
the ac Stark effect and our scalar electric AB effect proposal,
we now state that physically these two are very different. In
the case of the ac Stark effect, the quantum system is in a
region where the electric field is nonzero, so qualitatively (but
not quantitatively), all the effects can be explained classically
since in classical electromagnetism electric fields can change
the energy of the system. In our proposal, the scalar potential
V (t ) is uniform within the entire interior of the Faraday shell
so that the E field is zero inside the Faraday shell, and there
are no electrical forces exerted on the atom. Classically, one
expects no effect in a Faraday cage, i.e., no energy change
for the system. However, the connection between the ac Stark
effect and our proposal for the scalar electric AB effect, can
be compared to Feynman’s analysis of the vector AB effect in
Vol. II of the Feynman lecture series. In Ref. [17], Feynman
first derives the standard vector AB effect to obtain the shift
in the interference pattern when there is an infinite solenoid
placed between the slits. He then takes the magnetic field
and smears it out into a continuous strip in the region behind
the slits and reanalyzes what happens. In this second case,
the charges going through the slits are subjected to a v × B
force, which changes their momentum and, thus, shifts the
interference pattern. Feynman shows that the shift in the in-
terference pattern is the same in both cases as long as the flux
enclosed by the particles path is the same. In the usual AB
setup the shift can only be interpreted as arising from the flux
enclosed by the path of the charges, whereas, in the case where
the magnetic field is smeared out in a strip behind the slits,
one can view the shift as coming either from the AB effect
and the enclosed flux or from the shift in the momentum of
the charged particles due to a v × B force. In an analogous
way for the ac Stark effect one can interpret the change in
energy levels as coming from either the direct effect of the
electric field or from the influence of the time-varying vector
potential, A(t ), giving rise to the electric field. But for our

version of the scalar electric AB effect the explanation in terms
of the scalar potential V (t ) is the only available explanation
for the shift in energy levels.

We conclude with observations about this version of the
scalar electric AB effect:

(1) The scalar electric AB phase ϕ(t ) creates energy-level
sidebands, Eq. (16), which can be probed via absorption
spectroscopy. The dominant energy sidebands occur for
n = nmax ≈ α. These energy sidebands are essentially the
quasienergy levels of Zeldovich [15] and studied later in more
detail by Sambe [18].

(2) The setup, here, and the analysis leading to wave-
function (15) and split energy-levels (16) is mathematically
identical to the ac Stark/Autler-Townes effect. In the above,
we have shown how our proposed setup for the scalar electric
AB effect matches the Stark effect, except for the absence of
the quadratic term in the electric field.

(3) One can question this setup for the scalar electric AB
effect since it is possible to gauge away the scalar potential,
V (t ) = V0 cos(�t ). A general gauge transformation of the
scalar and vector potential is

V ′ = V − ∂tλ and A′ = A + ∇λ, (19)

with the gauge function λ(r, t ). By choosing λ(t ) =
V0
�

sin(�t ) one can cancel out V (t ) = V0 cos(�t ) so that V ′ =
0. Also, since ∇λ = 0 the new vector potential will remain
zero A′ = 0. Thus, one has gauge transformed away all elec-
tromagnetic potentials so how can there be any effect? The
resolution to this is that (19) is only half of the gauge transfor-
mation. One must also transform the wave function as

ψ ′
i (r, t ) = exp

(
−i

e

h̄
λ
)
ψi(r, t )

= exp

(
−i

eV0

h̄�
sin(�t )

)
�i(r) exp

(
−i

Eit

h̄

)

= �i(r) exp

(
−i

Eit

h̄
− iϕ(t )

)
. (20)

In arriving at the results in (20) we have used results from
(12) and (13). The wave function ψ ′ from (20), which is in the
gauge where all electromagnetic potentials are zero, matches
the wave function ψ from (12) which has the nonzero, sinu-
soidal scalar potential. The results leading to the energy side
bands are gauge invariant.

(4) This version of the scalar electric AB effect is cleaner
than the original proposal shown in Fig. 1. We do not have to
time the turn on and turn off of the potential difference with
the charge entering or exiting the metal tubes. Also, for the
setup in Fig. 1, there are always fringing fields, whereas for
the Faraday sphere setup, the electric field is zero inside the
shell, modulo very small electric and magnetic fields that arise
whenever there is a time variation in charges/fields.

III. EXPERIMENT FOR TESTING THE SCALAR
ELECTRIC AB EFFECT

In the preceding section, we have shown that our setup
for the scalar electric AB effect is mathematically equivalent
to the ac Stark effect minus the quadratic term. Thus, many
experimental tests for the ac Stark effect should apply to our
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FIG. 4. Electromagnetic-induced transparency as a demonstra-
tion of the scalar AB effect.

setup for the scalar AB effect, but the quantum systems that
act as probes of the effect would be in a region completely
free of electric field, in contrast to the ac Stark effect.

The simplest test for the scalar electric AB effect in our
setup is to look for the splitting of the initial energy-levels
Ei into two levels Ei ± nmax h̄� = Ei ± eV0. This splitting into
these two dominant sidebands rather than into a large num-
ber of sidebands requires eV0 � h̄�. For example, one could
place hydrogenlike atoms inside the Faraday sphere of Fig. 2
with � = 108 s−1 and V0 = 0.5 mV so that the two dominant
sidebands appear shifted by ∼1012 s−1 in the absorption spec-
trum. This set of parameters would give α = eV0

h̄�
∼ 104 for

which eV0 � h̄� is satisfied. For this type of proposed probe
of the scalar AB effect, a vapor of rubidium atoms would be
optimal since the expected tunable AB effect feature can be
compared with the well-known fine and hyperfine lines.

Another possible test of our setup of the scalar AB effect
is electromagnetically induced transparency (EIT). Observing
EIT involves two lasers–a probe laser and coupling laser—
which are tuned to interact with three quantum states. The
probe laser is tuned near resonance between two of the states
and measures the absorption spectrum of the transition. A
stronger coupling laser is tuned near resonance at a different
transition. By properly selecting the states, the presence of the
coupling laser will create a spectral window of transparency,
which can be detected by the probe laser. Figure 4 is a sketch
of the “�” version of EIT. This is a three-level scheme to
observe EIT. Again, we have in mind using rubidium with
the three energy levels being the ground-state 5S1/2, the first
excited state 5P1/2 and the upper sideband of the ground-state
E (+)

1 . Note that for EIT, one needs quantum interference be-
tween two paths in energy space. The original proposal for
both the vector and the scalar AB effect from Ref. [1] also
worked via interference, but interference in coordinate space
rather than energy space. Therefore, it is possible to use a
neutral atom, such as a rubidium atom in order to observe the
scalar AB effect since one could use the two distinct electronic
pathways as depicted in Fig. 4.

Two of the three energy levels are the ground-state E5S1/2

(black) of a two-level atom (rubidium), its Jacobi-Anger
image state E (+)

1 (red), and the other is the unperturbed

excited-state E5P1/2 (black) of this atom. In absence of any per-
turbations, the probe laser (orange) would detect a Lorentzian
absorption lineshape in a strong resonant absorption-line tran-
sition from E5S1/2 to E5P1/2 .

However, in the presence of the external sine-wave gen-
erator driving the outside of the Faraday cage in Fig. 2 with
an ac-voltage V (t ) = V0 cos �t , there arises the third-energy
level E (+)

1 (red), which is a Jacobi-Anger image sideband state
separated by an energy +eV0 from the ground-state E5S1/2 .
This image sideband has the same S-wave character as that
of the ground-state E5S1/2 . As a result of the action of the
coupling laser (deep red), an image of this S-wave state of
the ground state is created at the center of the Lorentzian
line profile (whose linewidth arises from the A coefficient of
spontaneous emission) of the excited P-wave state E5P1/2 . A
selection rule forbids S-wave to S-wave transitions. This leads
to to a central hole of transparency in the middle of the absorp-
tion line profile arising from the E5S1/2 to E5P1/2 transitions that
is detected by the probe laser as it is scanned across the strong
Lorentzian resonance absorption lineshape of this transition.
One can understand this central hole of transparency as arising
from the destructive interference between path 1 and path
2 in the energy-level diagram of Fig. 4. The interference of
the two paths in this energy-level space is analogous to the
interference between the two paths in coordinate space in the
usual vector AB effect.

We note that the experimental setup required to observe our
version of the scalar electric AB effect is very similar to the
setup shown in Fig. 1 of Ref. [19]. There is a crucial difference
between the setup in Ref. [19] and our generic setup from
Fig. 2. In Fig. 2, we have a Faraday shell which screens the
quantum system from the electric field, whereas, in Ref. [19],
the Faraday shell is replaced by a resonating cavity where the
quantum system is embedded in a time-varying electric field.

In this section, we have focused on using rubidium atoms
to probe our version of the scalar electric AB effect. However,
one could replace rubidium atoms by quantum dots as in
Ref. [20] where charged quantum dots were used to probe the
ac Stark effect.

IV. SUMMARY AND CONCLUSIONS

We have presented a setup for the scalar electric AB effect,
which avoids some of the pitfalls of the original set up given
in Fig. 1 (i.e., no fringing electric fields, no need to time the
turn on/turn off of the potential difference with the motion
of the charge). In contrast to the vector AB effect where a
quantum system develops an AB phase by moving through a
time-independent but spatially varying vector potential A(r),
here, the quantum system develops an AB phase by sitting at
rest in a spatially uniform but time-varying scalar potential
V (t ).

In the vector AB effect with the magnetic flux contained
inside an infinite solenoid, the physical consequence of the
AB phase is to shift the interference pattern by an amount that
depends on the magnetic flux. This shift occurs despite the
charged particle moving in a region that is free of magnetic
field. Similar, to the Feynman analysis of the vector AB effect
[17] we first have the scalar electric AB effect setup in Fig. 2
where the quantum system is in a region with a time-varying
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but spatially uniform scalar potential V (t ) with no electric
field. For this setup, we find that the wave function is shifted
by an AB phase [see Eq. (15)] and the energy spectrum de-
velops sidebands [see Eq. (16)]. These features of the wave
function and energy spectrum are mathematically identical to
what is found in the ac Stark or Townes-Autler effect [13]
where the quantum system is placed in a region with a nonzero
and time-varying electric field. This closes the connection
with the Feynman analysis of the vector AB effect since for
the ac Stark setup one can use either the electric field or the
scalar potential to obtain the effect, whereas, for in the setup
in Fig. 2, one can only see these effects as coming from the
scalar electric AB effect since there is no electric field. There
are previous works which have drawn connections between
the ac Stark effect and the AB effect [21–24]. However, these

prior works usually involved the scalar AB effect via the
interaction μ · B, rather than the scalar electric AB effect via
the interaction qV , and the experimental signature was still,
mostly, a phase shift rather than an energy-level shift.

This opens up the possibility to perform a clean test of the
scalar electric AB effect, which looks very different from the
original setup of Ref. [1] illustrated in Fig. 1.
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