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Quantum steering ellipsoid formalism provides a faithful representation of all two-qubit states and is useful
for obtaining their correlation properties. The steering ellipsoids of two-qubit states that have undergone local
operations on both the qubits, in order to bring the state to its canonical form, are the so-called canonical
steering ellipsoids. The steering ellipsoids corresponding to the two-qubit subsystems of permutation-symmetric
N-qubit states are considered here. We construct and analyze the geometric features of the canonical steering
ellipsoids corresponding to pure permutation-symmetric N-qubit states with two distinct spinors. Depending
on the degeneracy of the two spinors in the pure symmetric N-qubit state, several families arise which cannot
be converted into one another through stochastic local operations and classical communication (SLOCC). The
canonical steering ellipsoids of the two-qubit states drawn from the pure symmetric N-qubit states with two
distinct spinors allow for a geometric visualization of the SLOCC-equivalent class of states. We show that the
states belonging to the W class correspond to oblate spheroids centered at (0, 0, 1/(N − 1)) with fixed semiaxis
lengths 1/

√
N − 1 and 1/(N − 1). The states belonging to all other SLOCC-inequivalent families correspond

to ellipsoids centered at the origin of the Bloch sphere. We also explore volume monogamy relations of states
belonging to these families, mainly the W class of states.

DOI: 10.1103/PhysRevA.107.042207

I. INTRODUCTION

The Bloch sphere representation of a single qubit con-
tains valuable geometric information needed for quantum
information processing tasks. A natural generalization and an
analogous picture for a two-qubit system are provided by the
quantum steering ellipsoid [1–3] and are helpful for under-
standing correlation properties such as quantum discord [4,5],
volume monogamy of steering [2,3], and so on. A quantum
steering ellipsoid is the set of all Bloch vectors to which one
party’s qubit could be “steered” when all possible measure-
ments are carried out on the qubit belonging to other party.
The volume of the steering ellipsoids [1] corresponding to
the two-qubit subsystems of an N-qubit state, N > 3, captures
monogamy properties of the state effectively [2,3] and pro-
vides insightful information about two-qubit entanglement.

While the quantum steering ellipsoid [1–3] is the set of all
Bloch vectors of the first qubit steered by local operations on
the second qubit, the so-called canonical steering ellipsoid
[6–8] is the steering ellipsoid of a two-qubit state that has
attained a canonical form under suitable stochastic local op-
erations and classical communication (SLOCC) operations on
both the qubits. It has been shown that the SLOCC canonical
forms of a two-qubit state can be either a Bell diagonal form or
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a nondiagonal one (when the two-qubit state is rank deficient)
[6,8]. The canonical steering ellipsoids corresponding to the
two-qubit states can thus have only two distinct forms [6,8]
and provide a much simpler geometric picture representing
the set of all SLOCC-equivalent two-qubit states.

The canonical steering ellipsoids corresponding to the two-
qubit subsystems of pure three-qubit permutation-symmetric
states are analyzed in Ref. [9]. It has been shown that [9]
the two SLOCC-inequivalent families of pure three-qubit
permutation-symmetric states, the W class of states (with two
distinct spinors) and the Greenberger-Horne-Zeilinger (GHZ)
class of states (with three distinct spinors), correspond to dis-
tinct canonical steering ellipsoids. While an ellipsoid centered
at the origin of the Bloch sphere is the canonical steering
ellipsoid for the GHZ class of states, an oblate spheroid with
its center shifted along the polar axis is the one for the W class
of states. Using these, the volume monogamy relations are
established, and the obesity of the steering ellipsoids is used
to obtain expressions for the concurrence of states belonging
to these two SLOCC-inequivalent families in Ref. [9].

In this paper, we extend the analysis to a class of N-qubit
pure states which are symmetric under the exchange of qubits.
Through the SLOCC canonical forms of the two-qubit re-
duced state, extracted from pure symmetric multiqubit states
with two distinct spinors and the Lorentz canonical forms of
their real-matrix representation, we examine the features of
the canonical steering ellipsoids associated with them. We
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identify the special features of the canonical steering ellipsoid
representing N-qubit states of the W class, and these fea-
tures distinguish this class from all other SLOCC-inequivalent
families of pure symmetric N-qubit states. We discuss the vol-
ume monogamy of steering for pure permutation-symmetric
N-qubit states and obtain the volume monogamy relation sat-
isfied by the W class of states. An expression for the obesity of
the steering ellipsoid, and thereby an expression for the con-
currence of two-qubit subsystems of N-qubit states belonging
to the W class, is obtained.

The contents of this paper are organized as follows: In
Sec. II, we give a brief review of the SLOCC classification
of pure permutation-symmetric multiqubit states based on the
Majorana representation [10–13] and obtain the two-qubit
subsystems of the states belonging to SLOCC-inequivalent
families of pure symmetric multiqubit states with two distinct
spinors. Section III provides an outline of the real-matrix
representation of a two-qubit density matrix and their Lorentz
canonical forms under SLOCC transformation of the two-
qubit density matrix. We also obtain the Lorentz canonical
forms of two-qubit subsystems corresponding to SLOCC-
inequivalent families in Sec. III. In Sec. IV, we analyze
the nature of steering ellipsoids associated with the distinct
Lorentz canonical forms obtained in Sec. III. The volume
monogamy of the steering for pure symmetric multiqubit
states with two distinct spinors is discussed, along with illus-
tration of the W class of states, in Sec. V. A summary of our
results is presented in Sec. VI.

II. MAJORANA GEOMETRIC REPRESENTATION OF
PURE SYMMETRIC N-QUBIT STATES WITH TWO

DISTINCT SPINORS

Ettore Majorana, in his 1932 paper [10], proposed that
a pure spin j = N

2 quantum state can be represented as a
symmetrized combination of N constituent spinors as follows:

|�sym〉 = N
∑

P

P̂ {|ε1, ε2, . . . εN 〉}, (1)

where

|εl〉=e−iβl /2 cos
αl

2
|0〉 + eiβl /2 sin

αl

2
|1〉, l =1, 2, . . . , N.

(2)

The symbol P̂ in (1) corresponds to the set of all N! per-
mutations of the spinors (qubits), and N corresponds to an
overall normalization factor. The name Majorana geometric
representation is due to the fact that it leads to an intrinsic
geometric picture of the state in terms of N points on the
unit sphere. In fact, the spinors |εl〉, l = 1, 2, . . . , N , in (2)
correspond geometrically to N points on the unit sphere S2,
with the pair of angles (αl , βl ) determining the orientation of
each point on the sphere.

The pure symmetric N-qubit states characterized by two
distinct qubits are given by [11–13]

|DN−k,k〉 = N
∑

P

P̂ {| ε1, ε1, . . . , ε1︸ ︷︷ ︸
N−k

; ε2, ε2, . . . , ε2︸ ︷︷ ︸
k

〉}. (3)

Here, one of the spinors, say, |ε1〉, occurs N − k times,
whereas the other spinor, |ε2〉, occurs k times in each term
of the symmetrized combination.

Under identical local unitary transformations, the pure
symmetric N-qubit states with two distinct spinors can be
brought to the following canonical form [13]:

|DN−k,k〉 ≡
k∑

r=0

β (k)
r

∣∣∣∣N

2
,

N

2
− r

〉
, (4)

β (k)
r = N

√
N!(N − r)!

r!

ak−r br

(N − k)!(k − r)!
, (5)

where k = 1, 2, 3, . . . , [N/2] = N/2 if N is even and k =
1, 2, 3, . . . , [N/2] = (N − 1)/2 when N is odd. Here, a and
b are two real parameters constrained by the normalization
condition a2 + b2 = 1. Thus, the class of pure symmetric
N-qubit states constituted by two distinct spinors is charac-
terized by a single real parameter 0 � a < 1. We denote this
one-parameter family of states by {DN−k,k} [13,14]. Notice
that |N

2 , N
2 − r〉, r = 0, 1, 2 . . . , are the Dicke states, which

are common eigenstates of collective angular momentum op-
erators J2 and Jz. They correspond to the basis states of
the (N + 1)-dimensional symmetric subspace indexed by the
maximum angular momentum N/2.

When a = 0, the states |DN−k,k〉 reduce to the Dicke states
|N/2, N/2 − k〉 [13,14] in which |ε1〉 = |0〉 and |ε2〉 = |1〉
[see (3)]. When a approaches the value 1, the state |DN−k,k〉
turns out to be a product state of N qubits consisting of only
one spinor, |ε1〉 or |ε2〉.

It is important to note that in the family {DN−k,k}, differ-
ent values of k (k = 1, 2, 3, . . . , [ N

2 ]) correspond to different
SLOCC-inequivalent classes [13]. That is, a state |DN−k,k〉
cannot be converted into |DN−k′,k′ 〉, k �= k′, through any choice
of local unitary (identical) transformations. In fact, different
values of k lead to different degeneracy configurations [13]
of the two spinors, |ε1〉 and |ε2〉, in the state |DN−k,k〉. When
k = 1, one gets the W class of states {DN−1,1} in which one
of the qubits, say, |ε1〉, repeats only once in each term of the
symmetrized combination [see (3)] and the other qubit, |ε2〉,
repeats N − 1 times. The N-qubit W state

|WN 〉 = 1√
N

(|000 · · · 1〉 + |000 · · · 10〉

+ · · · + |100 · · · 00〉) ≡
∣∣∣∣N

2
,

N

2
− 1

〉
belongs to the family {DN−1,1}, hence the name W class of
states. The Dicke state∣∣∣∣N

2
,

N

2
− 2

〉
=

√
2

N (N − 1)
(|110 · · · 000〉 + |011 · · · 000〉

+ · · · + |000 · · · 011〉)

is a typical state of the family {DN−2,2}. In all, there
are [ N

2 ] SLOCC-inequivalent families in the set of all
pure permutation-symmetric N-qubit states with two-distinct
spinors [15].
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A. Two-qubit reduced density matrices of the states |DN−k, k〉
The two-qubit marginal ρ (k) corresponding to any random

pair of qubits in the pure symmetric N-qubit state |DN−k, k〉 ∈
{DN−k,k} is obtained by tracing over the remaining N − 2
qubits in it. In Ref. [16], it has been shown, using the algebra
of addition of angular momenta, j1 = 1 (corresponding to
the two-qubit marginal) and j2 = (N − 2)/2 (corresponding
to the remaining N − 2 qubits), that the two-qubit reduced

density matrix ρ (k) has the form

ρ (k) =

⎛⎜⎜⎝
A(k) B(k) B(k) C(k)

B(k) D(k) D(k) E (k)

B(k) D(k) D(k) E (k)

C(k) E (k) E (k) F (k)

⎞⎟⎟⎠. (6)

The elements A(k), B(k), C(k), D(k), E (k), and F (k) are real and
are explicitly given by [16]

A(k) =
k∑

r=0

(
βk

r

)2(
c(r)

1

)2
, B(k) = 1√

2

k−1∑
r=0

β (k)
r β

(k)
r+1 c(r)

1 c(r+1)
0 , C(k) =

k−2∑
r=0

β (k)
r β

(k)
r+2 c(r)

1 c(r+2)
−1 ,

D(k) = 1

2

k∑
r=1

(
β (k)

r

)2(
c(r)

0

)2
, E (k) = 1√

2

k−1∑
r=0

β (k)
r β

(k)
r+1 c(r)

0 c(r+1)
−1 , F (k) =

k∑
r=0

(
β (k)

r

)2(
c(r)
−1

)2
, (7)

where β (k)
r are given as functions of the real parameter a in (5)

and

c(r)
1 =

√
(N − r)(N − r − 1)

N (N − 1)
, c(r)

−1 =
√

r (r − 1)

N (N − 1)
,

c(r)
0 =

√
2r (N − r)

N (N − 1)
(8)

are the Clebsch-Gordan coefficients c(r)
m2

= C( N
2 −

1, 1, N
2 ; m − m2, m2, m), with m = N

2 − r and m2 =
1, 0, −1 [17]. In particular, for the W class of states,
i.e., when k = 1, we have

ρ (1) = TrN−2(|DN−1, 1〉〈DN−1, 1|)
= [(

β
(1)
0

)2 + (
β

(1)
1 c(1)

1

)2]|1, 1〉〈1, 1|
+ (

β
(1)
1 c(1)

0

)2|1, 0〉〈1, 0| + β
(1)
0 β

(1)
1 c(1)

0 |1, 1〉〈1, 0|
+β

(1)
0 β

(1)
1 c(1)

0 |1, 0〉〈1, 1|. (9)

Here [see (5)], we have β
(1)
0 = NN a and β

(1)
1 =

N
√

N (1 − a2), with N = 1√
N2 a2+N (1−a2 )

, and the associated

nonzero Clebsch-Gordan coefficients [see (8)] are given by

c(1)
1 =

√
N − 2

N
, c(1)

0 =
√

2

N
. (10)

In the standard two-qubit basis
{|0A, 0B〉, |0A, 1B〉, |1A, 0B〉, |1A, 1B〉}, the two-qubit density
matrix ρ (1) drawn from the states |DN−1,1〉 takes the form

ρ (1) =

⎛⎜⎜⎝
A(1) B(1) B(1) 0
B(1) D(1) D(1) 0
B(1) D(1) D(1) 0

0 0 0 0

⎞⎟⎟⎠, (11)

where

A(1) = N2a2 + (N − 2)(1 − a2)

N2 a2 + N (1 − a2)
, B(1) = a

√
1 − a2

1 + a2(N − 1)
,

D(1) = 1 − a2

N2 a2 + N (1 − a2)
. (12)

In a similar manner, the two-qubit subsystems of pure
symmetric N-qubit states |DN−k,k〉 belonging to each SLOCC-
inequivalent family {DN−k, k}, k = 2, 3, . . . , [ N

2 ], can be
obtained as a function of N and the parameter a characterizing
the family of states using Eqs. (6), (7), and (8). As shown
in Refs. [8,9], the real-matrix representation �(k) of the two-
qubit subsystem ρ (k) and its Lorentz canonical form �̃(k) are
essential for obtaining the geometric representation of states
|DN−k,k〉 for all k. We thus proceed to obtain �(k) and its
Lorentz canonical form �̃(k) in the following.

III. THE REAL-MATRIX REPRESENTATION OF ρ(k) AND
ITS LORENTZ CANONICAL FORMS

The real-matrix representation �(k) of the two-qubit state
ρ (k) is a 4 × 4 real matrix, whose elements are given by [8]

�(k)
μ ν = Tr [ρ (k) (σμ ⊗ σν ) ]. (13)

More specifically, �(k)
μ ν , μ, ν = 0, 1, 2, 3, are the coefficients

of expansion in the Hilbert-Schmidt basis {σμ ⊗ σν} of the
density matrix ρ (k):

ρ (k) = 1

4

3∑
μ, ν=0

�(k)
μ ν (σμ ⊗ σν ). (14)

Here, σi, i = 1, 2, 3, are the Pauli spin matrices, and σ0 is the
2 × 2 identity matrix:

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, (15)

σ2 =
(

0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

It can be readily seen that [see (13) and (14)] the real 4 × 4
matrix �(k) has the form

�(k) =

⎛⎜⎜⎝
1 r1 r2 r3

s1 t11 t12 t13

s2 t21 t22 t23

s3 t31 t32 t33

⎞⎟⎟⎠, (16)
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where r = (r1, r2, r3)T and s = (s1, s2, s3)T are Bloch vec-
tors of the individual qubits and T = (ti j ) is the correlation
matrix:

ri = �
(k)
i 0 = Tr [ρ (k) (σi ⊗ σ0) ], (17)

s j = �
(k)
0 j = Tr [ρ (k) (σ0 ⊗ σ j ) ], (18)

ti j = �
(k)
i j = Tr [ρ (k) (σi ⊗ σ j ) ], i, j = 1, 2, 3. (19)

For a symmetric two-qubit density matrix, the Bloch vec-
tors r and s are identical, and hence, ri = si, i = 1, 2, 3.
From the structure of ρ (k) in (6) and using (17), (18), and
(19), we obtain the general form of the real matrix �(k)

as follows:

�(k) =

⎛⎜⎜⎜⎜⎜⎝
1 2(B(k)+E (k) )

A(k)+2D(k)+F (k) 0 A(k)−F (k)

A(k)+2D(k)+F (k)

2(B(k)+E (k) )
A(k)+2D(k)+F (k)

2(C(k)+D(k) )
A(k)+2D(k)+F (k) 0 2(B(k)−E (k) )

A(k)+2D(k)+F (k)

0 0 2(D(k)−C(k) )
A(k)+2D(k)+F (k) 0

A(k)−F (k)

A(k)+2D(k)+F (k)
2(B(k)−E (k) )

A(k)+2D(k)+F (k) 0 1 − 4D(k)

A(k)+2D(k)+F (k)

⎞⎟⎟⎟⎟⎟⎠. (20)

The elements of �(k) for different k can be evaluated using (7)
and (8).

A. Lorentz canonical forms of �(k)

Under SLOCC transformation, the two-qubit density ma-
trix ρ (k) transforms to ρ̃ (k) as

ρ (k) −→ ρ̃ (k) = (A ⊗ B) ρ (k) (A† ⊗ B†)

Tr[ρ (k) (A† A ⊗ B† B)]
. (21)

Here, A, B ∈ SL(2, C) denote 2 × 2 complex matrices with
unit determinant. A suitable choice of A and B takes the
two-qubit density matrix ρ (k) to its canonical form ρ̃ (k).

The transformation of ρ (k) in (21) leads to the transforma-
tion [8,9]

�(k) −→ �̃(k) = LA �(k) LT
B(

LA �(k) LT
B

)
00

(22)

of its real-matrix representation �(k). In (22), LA, LB ∈
SO(3, 1) are 4 × 4 proper orthochronous Lorentz transfor-
mation matrices [18] corresponding, respectively, to A, B ∈
SL(2,C), and the superscript T denotes transpose operation.
The Lorentz canonical form �̃(k) of �(k) and thus the SLOCC
canonical form of the two-qubit density matrix ρ (k) [see (21)]
can be obtained by constructing the 4 × 4 real symmetric ma-
trix 
(k) = �(k) G (�(k) )T , where G = diag (1,−1,−1,−1)
denotes the Lorentz metric. Using the defining property [18]
LT G L = G of Lorentz transformation L, it can be seen that

(k) undergoes a Lorentz-congruent transformation under
SLOCC (up to an overall factor) [8] as


(k) → 
̃
(k)
A = �̃(k) G (�̃(k) )T

= LA �(k) LT
B G LB �(k)T

LT
A

= LA 
(k) LT
A . (23)

In Ref. [8], it has been shown that �̃(k) can be either a real
4 × 4 diagonal matrix or a nondiagonal matrix with only
one off-diagonal element, depending on the eigenvalues and
eigenvectors of G 
(k) = G(�(k) G (�(k) )T ).

(i) The diagonal canonical form �̃
(k)
Ic

results when the
eigenvector X0 associated with the highest eigenvalue λ0 of

G 
(k) obeys the Lorentz-invariant condition X T
0 G X0 > 0.

The diagonal canonical form �̃
(k)
Ic

is explicitly given by

�(k) −→ �̃
(k)
Ic

= LA1 �(k) LT
B1(

LA1 �(k) LT
B1

)
00

= diag

⎛⎝1,

√
λ1

λ0
,

√
λ2

λ0
, ±

√
λ3

λ0

⎞⎠, (24)

where λ0 � λ1 � λ2 � λ3 > 0 are the non-negative eigen-
values of G 
(k). The Lorentz transformations LA1 , LB1 ∈
SO(3, 1) in (24) respectively correspond to SL(2,C) transfor-
mation matrices A1 and B1, which take the two-qubit density
matrix ρ (k) to its SLOCC canonical form ρ̃

(k)
Ic

through the

transformation (21). The diagonal form of �̃
(k)
Ic

readily leads,
on using (14), to the Bell-diagonal form

ρ̃
(k)
Ic

= 1

4

⎛⎝σ0 ⊗ σ0 +
∑
i=1,2

√
λi

λ0
(σi ⊗ σi )

±
√

λ3

λ0
(σ3 ⊗ σ3)

⎞⎠ (25)

as the canonical form of the two-qubit state ρ (k).
(ii) The Lorentz canonical form of �(k) turns out to be

a nondiagonal matrix (with only one nondiagonal element)
given by

�(k) −→ �̃
(k)
IIc

= LA2 �(k) LT
B2(

LA2 �(k) LT
B2

)
00

=

⎛⎜⎜⎝
1 0 0 0
0 a1 0 0
0 0 −a1 0

1 − a0 0 0 a0

⎞⎟⎟⎠ (26)

when the non-negative eigenvalues of G
(k) are doubly de-
generate with λ0 � λ1 and the eigenvector X0 belonging to
the highest eigenvalue λ0 satisfies the Lorentz-invariant con-
dition X T

0 G X0 = 0. In Ref. [16], it has been shown that when
the maximum of the doubly degenerate eigenvalues of G
(k)
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possesses an eigenvector X0 satisfying the condition
X T

0 G X0 = 0, the real symmetric matrix 
(k) = �(k)G(�(k) )T

attains the nondiagonal Lorentz canonical form given by



(k)
IIc

= �̃
(k)
IIc

G
(
�̃

(k)
IIc

)T = LA2 
(k) LT
A2

=

⎛⎜⎜⎝
φ0 0 0 φ0 − λ0

0 −λ1 0 0
0 0 −λ1 0

φ0 − λ0 0 0 φ0 − 2λ0

⎞⎟⎟⎠. (27)

The parameters a0 and a1 in (26) are related to the eigenvalues
λ0 and λ1 of G
(k) and the 00th element of 
̃

(k)
IIc

[see (27)]. It
can be seen that [8]

a0 = λ0

φ0
, a1 =

√
λ1

φ0
,

where

φ0 = (



(k)
IIc

)
00

= [(
LA2 �(k) LT

B2

)
00

]2
. (28)

The Lorentz matrices LA2 , LB2 ∈ SO(3, 1) correspond to the
SL(2,C) transformations A2 and B2 that transform ρ (k) to
its SLOCC canonical form ρ

(k)
IIc

[see (21)]. The nondiagonal

canonical form �̃
(k)
IIc

leads to the SLOCC canonical form ρ̃
(k)
IIc

of the two-qubit density matrix ρ (k) on using (14):

ρ̃
(k)
IIc

= 1

2

⎛⎜⎜⎝
1 0 0 a1

0 1 − a0 0 0
0 0 0 0
a1 0 0 a0

⎞⎟⎟⎠, 0 � a2
1 � a0 � 1.

(29)

B. Lorentz canonical form of �(1) corresponding to the W class
of states {DN−1,1}:

Using the explicit structure of the two-qubit state ρ (1) given
in (11) and (12), its real-matrix representation �(1) is obtained
as [see (13)]

�(1) =

⎛⎜⎜⎜⎜⎝
1 2a

√
1−a2

1+a2(N−1) 0 1 + 2a2

1+a2(N−1) − 2
N

2a
√

1−a2

1+a2(N−1)
2(1−a2 )

N (1+a2(N−1)) 0 2a
√

1−a2

1+a2(N−1)

0 0 2(1−a2 )
N (1+a2(N−1)) 0

1 + 2a2

1+a2(N−1) − 2
N

2a
√

1−a2

1+a2(N−1) 0 1 + 4a2

1+a2(N−1) − 4
N

⎞⎟⎟⎟⎟⎠ = (�(1) )T . (30)

We now construct the 4 × 4 symmetric matrix 
(1) and obtain


(1) = �(1) G (�(1) )T = �(1) G �(1)

= χ

⎛⎜⎜⎝
N − 1 0 0 N − 2

0 −1 0 0
0 0 −1 0

N − 2 0 0 N − 3

⎞⎟⎟⎠, (31)

where χ = [ 2(1−a2 )
N[1+a2(N−1)] ]

2. The eigenvalues of the matrix

G 
(1), G = diag (1, −1, −1, −1), are readily seen to be
fourfold degenerate and are given by

λ0 = λ1 = λ2 = λ3 = χ =
[

2(1 − a2)

N[1 + a2(N − 1)]

]2

. (32)

It can be seen that X0 = (1, 0, 0, −1) is an eigenvector of
G 
(1) belonging to the fourfold-degenerate eigenvalue λ0

and obeys the Lorentz-invariant condition X T
0 G X0 = 0. We

note here that 
(1) is already in the canonical form (27). On
comparing (31) with (27), we get

φ0 = (
(1) )00 = (N − 1)χ. (33)

On substituting the parameters a0 and a1 [see (28), (32), and
(33)] in (26), we arrive at the Lorentz canonical form of the
real matrix �(1):

�̃(1) =

⎛⎜⎜⎜⎝
1 0 0 0
0 1√

N−1
0 0

0 0 − 1√
N−1

0
N−2
N−1 0 0 1

N−1

⎞⎟⎟⎟⎠. (34)

It can be readily seen that �̃(1), the Lorentz canonical form
corresponding to the W class of states, is independent of the
parameter a.

C. Lorentz canonical form of �(k), k = 2, 3, . . . , [ N
2 ]

Here, we evaluate the real-matrix representation �(k) of
ρ (k) for different values of k (k = 2, 3, . . . , [ N

2 ]) making use
of Eqs. (7), (8), and (20). We then construct the real sym-
metric matrix 
(k) = �(k) G(�(k) )T for k = 2, 3, . . . , [ N

2 ]

and observe that G
(k) = G�(k) G (�(k) )
T

has nondegenerate
eigenvalues λ0 �= λ1 �= λ2 �= λ3 when k = 2, 3, . . . , [ N

2 ] and
the highest eigenvalue λ0 possesses an eigenvector X0 satis-
fying the relation X T

0 G X0 > 0. The Lorentz canonical form
�̃(k), k = 2, 3, . . . , [ N

2 ], is thus given by the diagonal matrix
[see (24)]:

�̃(k) = diag (1,
√

λ1/λ0,
√

λ2/λ0, ±
√

λ3/λ0).

The eigenvalues λμ (μ = 0, 1, 2, 3) of G
(k) are dependent
on the parameters a, k, and N characterizing the state |DN−k, k〉
when k takes any of the integral values greater than 1 and less
than [ N

2 ]. Hence, the canonical form �̃(k), k = 2, 3, . . . , [ N
2 ],

is different for different states |DN−k, k〉, unlike in the case of
�̃(1) [see (34)], the canonical form of the W class of states,
which depends only on the number of qubits N .

IV. GEOMETRIC REPRESENTATION OF THE STATES
|DN−k,k〉

In this section, based on the two different canonical
forms of �(k) obtained in Sec. III, we find the nature of
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canonical steering ellipsoids associated with the pure sym-
metric multiqubit states |DN−k,k〉 belonging to SLOCC-
inequivalent families {DN−k, k}. To begin with, we give a brief
outline [8,9] of obtaining the steering ellipsoids of a two-
qubit density matrix ρ (k) based on the form of its real-matrix
representation �(k).

In the two-qubit state ρ (k), local projection-valued
measurements (PVMs) Q > 0, Q = ∑3

μ=0 qμ σμ, q0 = 1,∑3
i=1 q2

i = 1 on Bob’s qubit lead to a collapsed state
of Alice’s qubit characterized by its Bloch vector pA =
(p1, p2, p3)T through the transformation [8]

(1, p1, p2, p3)T = �(k) (1, q1, q2, q3)T . (35)

Note that the vector qB = (q1, q2, q3)T , q2
1 + q2

2 + q2
3 = 1,

represents the entire Bloch sphere and the steered Bloch vec-
tors pA of Alice’s qubit constitute an ellipsoidal surface EA| B

enclosed within the Bloch sphere. When Bob employs convex
combinations of PVMs, i.e., positive operator-valued mea-
sures, to steer Alice’s qubit, he can access the points inside the
steering ellipsoid. The case will be similar when Bob’s qubit
is steered by Alice through local operations on her qubit.

For the Lorentz canonical form �̃
(k)
Ic

[see (24)] of the two-

qubit state ρ̃
(k)
Ic

, it follows from (35) that

p1 =
√

λ1

λ0
q1, p2 =

√
λ2

λ0
q2, p3 = ±

√
λ3

λ0
q3 (36)

are steered Bloch points pA of Alice’s qubit. They are seen to
obey the equation

λ0 p2
1

λ1
+ λ0 p2

2

λ2
+ λ0 p2

3

λ3
= 1 (37)

for an ellipsoid with semiaxes (
√

λ1/λ0,
√

λ2/λ0,
√

λ3/λ0)
and center (0,0,0) inside the Bloch sphere q2

1 + q2
2 + q2

3 = 1.
We refer to this as the canonical steering ellipsoid represent-
ing the set of all two-qubit density matrices which are on the
SLOCC orbit of the state ρ̃

(k)
Ic

[see (21)].
For the second Lorentz canonical form �̃IIc [see (26)], we

get the coordinates of Alice’s steered Bloch vector pA on using
(35):

p1 = a1q1, p2 = −a1q2, p3 = (1 − a0) + a0q3,

q2
1 + q2

2 + q2
3 = 1, (38)

and they satisfy the equation

p2
1

a2
1

+ p2
2

a2
1

+ [p3 − (1 − a0)]2

a2
0

= 1. (39)

Equation (39) represents the canonical steering spheroid
(traced by Alice’s Bloch vector pA) inside the Bloch sphere
with its center at (0, 0, 1 − a0) and lengths of the semiaxes
given by a0 = λ0/φ0 and a1 = √

λ1/φ0 [see (28)]. In other
words, a shifted spheroid inscribed within the Bloch sphere
represents two-qubit states that are SLOCC equivalent to ρ̃

(k)
IIc

[see (29)].

A. Canonical steering ellipsoids of the W class of states

We saw in Sec. III B that the Lorentz canonical form of
�(1), the real-matrix representation of the symmetric two-

FIG. 1. Steering spheroids inscribed within the Bloch sphere
representing the Lorentz canonical form �̃(1) [see (34)] of the W
class of states {DN−1, 1}. The spheroids are centered at (0, 0, N−2

N−1 ),
and the length of the semiaxes is given by ( 1√

N−1
, 1√

N−1
, 1

N−1 ). The
reduction in the volume of the spheroids with the increase in N is
a clear indication of the monogamous nature of the states |DN−1, 1〉.
(All quantities plotted are dimensionless.)

qubit state ρ (1) drawn from the W class of states |DN−1,1〉,
has a nondiagonal form [see (34)]. On comparing (34) with
the canonical form in (26), we get

a1 = 1√
N − 1

, a0 = 1

N − 1
. (40)

From (39) and the discussions prior to it, it can readily be
seen that the quantum steering ellipsoid associated with �̃(1)

in (34) is a spheroid centered at (0, 0, N−2
N−1 ) inside the Bloch

sphere, with fixed semiaxes lengths ( 1√
N−1

, 1√
N−1

, 1
N−1 ) (see

Fig. 1). It is interesting to note that the Lorentz canonical
form �̃(1) is not dependent on the state parameter a and hence
all states |DN−1, 1〉 in the family {DN−1, 1} are represented by
a spheroid; all its parameters, such as center, semiaxes, and
volume, depend only on the number of qubits N . Another
feature worth observing is the decrease in the volume of the
spheroid (depicting two-qubit subsystems of |DN−1, 1〉) with
the increase in N (see Fig. 1). The inherent monogamous
nature [19] of the states |DN−1, 1〉 readily follows from this
observation.

B. Canonical steering ellipsoids of the states |DN−k,k〉,
k = 2, 3, . . . , [ N

2 ]

As seen in Sec. III C, the Lorentz canonical form of �(k),
k = 2, 3, . . . , [ N

2 ], the real-matrix representation of the two-
qubit states ρ (k) drawn from the pure symmetric N-qubit states
|DN−k,k〉, has a diagonal form [see (24)]. The values of λ0,

042207-6



CANONICAL STEERING ELLIPSOIDS OF PURE … PHYSICAL REVIEW A 107, 042207 (2023)

FIG. 2. Steering ellipsoids centered at the origin of the
Bloch sphere representing the Lorentz canonical form of pure
symmetric 10-qubit states |D10−k,k〉 for k = 2 to k = 5. The
lengths of the semiaxes of the ellipsoids depicted above
are given by (a) (0.91, 0.71, 0, 62), (b) (0.83, 0.59, 0.42),
(c) (0.74, 0.53, 0.28), and (d) (0.66, 0.53, 0.18). (All quantities
plotted are dimensionless.)

λ1, λ2, and λ3, the eigenvalues of the matrix G 
k , can be
evaluated for each value of k, k = 2, 3, . . . , [ N

2 ], for a chosen
N . From (37) and the corresponding discussion, it follows
that the canonical steering ellipsoids of the states |DN−k,k〉,
k = 2, 3, . . . , [ N

2 ], are ellipsoids centered at the origin of
the Bloch sphere with the lengths of the semiaxes given by√

λ1/λ0,
√

λ2/λ0, and
√

λ3/λ0. In this case the eigenvalues
λμ, μ = 0, 1, 2, 3, of G
(k) depend on the state parameter
a (unlike in the case of the W class of states, where they
depended only on N , the number of qubits). Thus, each state
|DN−k,k〉 belonging to the family {DN−k, k}, k = 2, 3, . . . , [ N

2 ],
is represented by an ellipsoid whose semiaxes depend on
the values of k, N , and a. The canonical steering ellipsoids
corresponding to the 10-qubit pure symmetric states |D10−k,k〉
with chosen values of k and a are shown in Fig. 2.

In particular, the canonical steering ellipsoids correspond-
ing to Dicke states |N/2, N/2 − k〉 are oblate spheroids
centered at the origin (see Fig. 3).

V. VOLUME MONOGAMY RELATIONS FOR PURE
SYMMETRIC MULTIQUBIT STATES |DN−k,k〉

Monogamy relations restrict the shareability of quantum
correlations in a multipartite state. They have potential ap-
plications in ensuring security in quantum key distribution
[20,21]. Milne et al. [2,3] introduced a geometrically in-
tuitive monogamy relation for the volumes of the steering
ellipsoids representing the two-qubit subsystems of multiqubit
pure states which is stronger than the well-known Coffman-

FIG. 3. Oblate spheroids centered at the origin representing the
Lorentz canonical form of the N-qubit Dicke states |N/2, N/2 − k〉
(equivalently, the states |DN−k,k〉, with a = 0). (All quantities plotted
are dimensionless.)

Kundu-Wootters monogamy relation [19]. In this section we
explore how the volume monogamy relation [2] imposes lim-
its on volumes of the quantum steering ellipsoids representing
the two-qubit subsystems ρ (k) = TrN−2 [|DN−k,k〉〈DN−k,k|] of
pure symmetric multiqubit states |DN−k,k〉.

For the two-qubit state ρAB(= ρ (k) ) [see (14)], we denote
by EA| B the quantum steering ellipsoid containing all steered
Bloch vectors belonging to Alice when Bob carries out local
operations on his qubit. The volume of EA| B is given by [1]

VA|B =
(

4π

3

) | det �|
(1 − r2)2

, (41)

where r2 = r · r = r2
1 + r2

2 + r2
3 [see (17)]. As the steering

ellipsoid is constrained to lie within the Bloch sphere, i.e.,
VA|B � Vunit = (4π/3), one can choose to work with the nor-
malized volumes vA|B = VA|B

4π/3 , the ratio of the volume of the
steering ellipsoid to the volume of a unit sphere [3].

The volume monogamy relation satisfied by a pure three-
qubit state shared by Alice, Bob, and Charlie is given by [1–3]

√
VA|B + √

VC|B �
√

4π

3
. (42)

where VA|B, VC|B are respectively the volumes of the ellipsoids
corresponding to steered states of Alice and Charlie when Bob
performs all possible local measurements on his qubit. The
normalized form of the volume monogamy relation (42) turns
out to be

√
vA|B + √

vC|B � 1, (43)

where vA|B = VA|B
4π/3 are the normalized volumes.
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The monogamy relation (43) is not, in general, satisfied by
mixed three-qubit states [3], and it has been shown that

(vA|B)
2
3 + (vC|B)

2
3 � 1 (44)

is the volume monogamy relation for pure as well as mixed
three-qubit states [3].

As there are 1
2 (N − 2)(N − 1) three-qubit subsystems in an

N-qubit state, each of which obeys monogamy relation (44),
after adding these relations and simplifying, one gets [3]

(vA|B)
2
3 + (vC|B)

2
3 + (vD|B)

2
3 + · · · � N − 1

2
. (45)

Relation (45) is the volume monogamy relation satisfied by
pure as well as mixed N-qubit states [3]. For N = 3, it reduces
to (44).

For multiqubit states that are invariant under the exchange
of qubits, vA|B = vC|B = vD|B = · · · = vN , where vN denotes
the normalized volume of the steering ellipsoid corresponding
to any of the N − 1 qubits, the steering performed by, say, the
N th qubit. Equation (45) thus reduces to

(N − 1)(vN )
2
3 � N − 1

2
�⇒ (vN )

2
3 � 1

2
, (46)

implying that (vN )
2
3 � 1

2 is the volume monogamy relation for
permutation-symmetric multiqubit states.

A. Volume monogamy relations governing the W class of states
{DN−1,1}

On denoting the normalized volume of a steering ellipsoid
corresponding to the states |DN−1,1〉 by v

(1)
N , we have [see

(41)]

v
(1)
N = | det �(1)|

(1 − r2)2
, (47)

where �(1) is given in (30) and

r1 = 2a
√

1 − a2

1 + a2(N − 1)
, r2 =0, r3 =1+ 2a2

1 + a2(N − 1)
− 2

N
.

(48)

Under suitable Lorentz transformations, the real matrix �(1)

[see (30)] associated with the state ρ (1) [see (11)] gets trans-
formed to its Lorentz canonical form �̃(1) [see (34)]. It follows
that [see (28), (31), and (32)](

LA �(1) LT
B

)
00 =

√
φ0 =2

√
N − 1

[
1 − a2

N (1 + (N − 1) a2)

]
.

(49)

Using the property det LA = det LB = 1 of orthochronous
proper Lorentz transformations [18] and substituting
| det �̃(1)| = 1

(N−1)2 in (22), we obtain

| det �̃(1)| = 1

(N − 1)2

= | det LA| | det LB|
∣∣∣∣det

(
�(1)

√
φ0

)∣∣∣∣
= | det �(1)|

φ2
0

. (50)

FIG. 4. The left-hand side of the monogamy relation (N −
1)−

4
3 � 1

2 is seen to be less than 1
2 for the W class of states |DN−1, 1〉

for any N � 3. (All quantities plotted are dimensionless.)

Equation (50) leads to | det �(1)| = φ2
0 | det �̃(1)|. The nor-

malized volume v
(1)
N of the quantum steering ellipsoid

corresponding to the W class of states thus becomes [see (47)]

v
(1)
N = | det �̃(1)| φ2

0

(1 − r2)2
. (51)

From (48) and (49) it readily follows that φ2
0 = (1 − r2)2, and

hence [see (51)], the simple form for the normalized volume
of the corresponding steering ellipsoid associated with the
two-qubit state ρ (1) turns out to be

v
(1)
N = φ2

0

(N − 1)2 (1 − r2)2
= 1

(N − 1)2
. (52)

The volume monogamy relation (v(1)
N )

2
3 � 1

2 [see (46)] takes
the form (

1

(N − 1)2

)2/3

� 1

2
�⇒ (N − 1)−

4
3 � 1

2
(53)

and is readily satisfied for any N � 3, as can be seen in Fig. 4.

B. Relation between obesity of steering ellipsoids
and concurrence

We recall here that the obesity O(ρAB) = | det �|1/4 of the
quantum steering ellipsoid [2] depicting a two-qubit state ρAB

is an upper bound for the concurrence C(ρAB):

C(ρAB) � O(ρAB) = | det �|1/4. (54)

Furthermore, if ρAB −→ ρ̃AB = (A ⊗ B)ρAB (A† ⊗
B†)/[Tr(A† A ⊗ B†B)ρAB], A, B ∈ SL(2,C), it follows that
[2]

O(ρAB)

C(ρAB)
= O (̃ρAB)

C (̃ρAB)
. (55)

Relation (55) can be used to obtain a relation for concurrence
[22] of a pair of qubits in the symmetric N-qubit pure states
|DN−k,k〉, k = 1, 2, . . . , [ N

2 ]. For the states |DN−1,1〉 belonging
to the W class, we readily get [see (30) and (34)]

det �(1) =
(

2(1 − a2)

N[1 + a2(N − 1)]

)4

, det �̃(1) =
(

1

N − 1

)2

(56)
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and therefore the obesities O(ρ (1) ) and O (̃ρ (1) ):

O(ρ (1) ) = 2(1 − a2)

N[1 + a2(N − 1)]
, O (̃ρ (1) ) = 1√

N − 1
. (57)

It is not difficult to evaluate the concurrence of the canonical
state ρ̃ (1), and it is seen that

C (̃ρ (1) ) = O (̃ρ (1) ) = 1√
N − 1

. (58)

We thus obtain [see (55) and (58)]

C(ρ (1) ) = O(ρ (1) ) = 2(1 − a2)

N[1 + a2(N − 1)]
. (59)

The value of concurrence in (59) matches exactly with that ob-
tained using C(ρ (1) ) = max(0, μ1 − μ2 − μ3 − μ4), where
μ1 � μ2 � μ3 � μ4 are square roots of the eigenvalues of the
matrix R = ρ (1) (σ2 ⊗ σ2) ρ (1)∗ (σ2 ⊗ σ2) [22]. We have seen
that the state |DN−1, 1〉 reduces to the W state when a = 0,
and hence for the N-qubit W state, concurrence of any pair
of qubits is given by C(ρ (1)

W ) = 2
N [see (59)]. The decrease in

concurrence with the increase in the number of qubits in the
W class of states {DN−1,1} is pictorially indicated in Fig. 1 (the
reduction in size of the canonical steering spheroids with an
increase in N).

VI. SUMMARY

In this work, we have analyzed the canonical steering
ellipsoids and volume monogamy relations of the pure sym-
metric N-qubit states characterized by two distinct Majorana
spinors. We have shown that the entire W class of states
has a geometric representation in terms of a shifted oblate
spheroid inscribed within the Bloch sphere. The center of the
spheroid, the length of its semiaxes, and its volume are shown

to be dependent only on the number of qubits N , implying
that all states in the N-qubit W class are characterized by
a single spheroid, shifted along the polar axis of the Bloch
sphere. All other SLOCC-inequivalent families of pure sym-
metric N-qubit states with two distinct spinors are shown to
be geometrically represented by ellipsoids centered at the
origin. Except for the W state (and its obverse counterpart),
which is represented by a shifted spheroid, all other N-qubit
Dicke states are represented by an oblate spheroid centered at
the origin. A discussion of the volume monogamy relations
applicable to the identical subsystems of a pure symmetric
N-qubit state is given here, and a volume monogamy relation
applicable for the W class of states is obtained. A relation
connecting the concurrence of the two-qubit state and obesity
of the associated quantum steering ellipsoid with its canonical
counterparts is used to obtain the concurrence of the states
belonging to the W class. It would be interesting to exam-
ine the features of canonical steering ellipsoids and volume
monogamy relations for the SLOCC-inequivalent families of
pure symmetric multiqubit states with more than two distinct
spinors, in particular, the class of pure symmetric N-qubit
states belonging to the GHZ class (with three distinct spinors).
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