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Proposal of multidimensional quantum walks to explore Dirac and Schrödinger systems
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We propose a multidimensional discrete-time quantum walk (DTQW), whose continuum limit is an extended
multidimensional Dirac equation, which can be further mapped to the Schrödinger equation. We show in
two ways that our DTQW is an excellent measure to investigate the two-dimensional (2D) extended Dirac
Hamiltonian and higher-order topological materials. First, we show that the dynamics of our DTQW resembles
that of a 2D Schrödinger harmonic oscillator. Second, we find in our DTQW topological features of the extended
Dirac system. By manipulating the coin operators, we can generate not only standard edge states but also corner
states.
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I. INTRODUCTION

The quantum walk is a quantum analog of a random
walk. Instead of stochastic fluctuations of a classical random
walker, a quantum walker moves under interference of quan-
tum fluctuations at each site, which deterministically governs
the walker’s dynamics. The quantum walk was originally
introduced by Aharonov et al. [1], who first referred to it
as a “quantum random walk.” Meyer [2] built a systematic
model and found a correspondence to Feynman’s path integral
[3] of the Dirac equation. Starting with Farhi and Gutmann
[4], quantum walks have been well studied in the context of
quantum information [5,6]. To this day, studies of quantum
walks have become even more interdisciplinary and extended
over a variety of research fields, such as biophysics [7,8]
and condensed-matter physics [9], particularly topological
materials [10–12].

There are two types of time evolution: continuum-time
quantum walks and discrete-time quantum walks (DTQWs).
We focus on the latter, in which the space and time are both
discrete. Strauch [13] showed that the continuum limit of
the unitary time evolution of a one-dimensional (1D) DTQW
gives that of a Dirac particle. This correspondence of DTQW
has enabled us to understand the physical meaning of quantum
walks better. Since squaring the Dirac Hamiltonian with a
linear potential produces the Schrödinger Hamiltonian with
a harmonic potential, we can make further correspondence
between a quantum walker and a Schrödinger particle in 1D.
However, such investigation has been limited to 1D systems.
In two-dimensional (2D) systems, some quantum walks give
a Dirac Hamiltonian in its continuum limit [14–16], but there
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are usually only two internal states and hence one cannot
obtain the 2D Schrödinger Hamiltonian by squaring it.

In this paper, we show in two ways that our DTQW is
an excellent measure to investigate an extended 2D Dirac
Hamiltonian with additional internal degrees of freedom. We
analyze its dynamics and topological properties, especially
as higher-order topological insulators [17–19]. We start with
proposing a 2D extended Dirac Hamiltonian,

H (2)
D := HDx ⊗ τ 0 + σ x ⊗ HDy

:= [εσ z px + mx(x)σ y] ⊗ τ 0 + σ x ⊗ [ετ z py + my(y)τ y].

(1)

that can be mapped to a 2D DTQW as well as to a Schrödinger
Hamiltonian, as we will show below. Our key trick is to
introduce σ x in the second term so that upon squaring the
Hamiltonian (1) all crossing terms may vanish and the result
can be the standard 2D Schrödinger Hamiltonian. With the
additional internal degrees of freedom due to the introduction
of σ x, we refer to the Dirac Hamiltonian (1) as the extended
Dirac Hamiltonian. The same applies to higher-dimensional
cases; see Eq. (15) below for the three-dimensional (3D) case
with an eight-dimensional internal degree of freedom.

Remember that the original 3D Dirac equation is written
with a four-dimensional spinor degree of freedom, which
Dirac assigned to a particle and an antiparticle each with
a spin 1/2 degree of freedom. This is partly because the
four-dimensional degree of freedom is the minimal represen-
tation of gamma matrices that satisfies the anticommutation
relation necessary in deriving the Dirac equation from the
Klein-Gordon equation; see, e.g., Ref. [20]. However, it does
not mean that we cannot go beyond Dirac’s minimal repre-
sentation. As far as the dimensionality of the spinor degree of
freedom is a multiple of four in the spatial three-dimensional
case as in Eq. (15) below, it is possible to construct Dirac-type
equations with additional internal degrees of freedom, which
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FIG. 1. The expectation values 〈x〉 and 〈y〉 of the position of a
2D DTQW for (a) 0 � T � 500 and for (b) 500 � T � 1000. Black
circles indicate the values at the beginning of time evolution; they
turn into orange as time goes on. We set h̄ = a = �t = 1.

is what we have done here. Thus we refer to our model as the
extended Dirac Hamiltonian.

As another point, we might have had to refer to the square
of the Dirac Hamiltonian as the Klein-Gordon equation, but
we will below refer to it as the Schrödinger Hamiltonian
because we will demonstrate the behavior of a harmonic os-
cillator under the linear spatial dependence of the mass terms
mx(x) and my(y). Indeed, the existence of the two mass terms
in Eq. (1) is also a feature of our extended Dirac Hamiltonian.

The introduction of σ x in Eq. (1) also enables cor-
ner states, the second-order topological states, to emerge.
The higher-order topological states have come under inten-
sive investigation lately (see, e.g., Refs. [17–19,21–26]). A
systematic construction of Hamiltonians that harbors higher-
order topological states was developed recently by Hayashi
[22]. The extended Dirac Hamiltonian proposed in the present
paper turns out to follow the construction of higher-order
topological states, and hence the present two-dimensional
DTQW explicitly exhibits corner states. In other words, the
present DTQW models simulate quantum dynamics of higher-
order topological insulators.

We numerically find that our 2D quantum walker behaves
like a 2D harmonic oscillator, as shown in Fig. 1, to which
we will get back below. We also reveal nontrivial topological
properties of our DTQW using the implication of the Dirac
Hamiltonian [27]. We also numerically find two different
types of topological bound states, namely edge states of the
topology of type 2Z (which are robust against randomness in
Fig. 2) and corner states, by manipulating the coin operators
of our DTQW. (See below for the definitions of the notations
in Figs. 1 and 2.)

FIG. 2. Dispersion relation of the quasienergy spectra E (ky ) with
θ1 = −θ2 = π/3. (a) θy = 0 and (b) θy = π/50 without randomness,
and (c) θy = 0 with randomness �θx0(x) ∈ [−0.25, 0.25]. The cen-
tral part of the dispersion is enlarged in the upper right corner in each
panel. We set h̄ = a = �t = 1.

A. Review of the one-dimensional case

Let us first review the continuum limit of the 1D DTQW.
We define the time evolution of the standard 1D quantum walk
|ψ (T )〉 = U (1)T |ψ (0)〉 for T ∈ Z in terms of the following
coin and shift operators:

C :=
∑
x∈aZ

|x〉〈x| ⊗ e−iθx (x)σ y
, (2)

S :=
∑
x∈aZ

(|x − a〉〈x| ⊗ |L〉〈L| + |x + a〉〈x| ⊗ |R〉〈R|) (3)

with U (1) := SC. Here, θx(x) is a coefficient set to a linear
function of x below, a is the lattice constant, and {σ x, σ y, σ z}
are the Pauli matrices in the space spanned by the leftward
state, |L〉 = (1, 0)�, and the rightward state, |R〉 = (0, 1)�.
We set h̄ to unity throughout the paper.

Let us express the shift operator (3) in the form

S = exp

(
−aσ z d

dx

)
= exp(−iaσ z px ) (4)

with px = −i d
dx . Scaling the parameters a and θx(x) as in ε :=

a/�t and mx(x) := θx(x)/�t with t := T �t and taking the
limit �t → 0 with T → ∞ under a fixed value of t , we find
the continuum limit of the time-evolution operator in the form
of the Trotter formula [13]

lim
�t→0

U (1)T = lim
�t→0

[e−iε�tσ z px e−imx (x)�tσ y
]T = e−iH (1)

D t , (5)

where

H (1)
D = εσ z px + mx(x)σ y (6)

represents the Hamiltonian of a Dirac particle with mass mx(x)
in 1D. We can analyze its dynamics approximately by squar-
ing it:(

H (1)
D

)2 = (ε 2 px
2 +mx(x)2)σ 0 − iεσ x[px, mx(x)] =: H (1)

S ,

(7)

where σ 0 denotes the 2 × 2 identity matrix for the space
spanned by |L〉 and |R〉. Let us assume that mx(x) = θx(x)/�t
is linear in x as in θx(x) = bx and mx(x) = βx with β = b/�t .
This reduces the last term of H (1)

S to −εβσ x. A unitary
transformation V = exp(iσ yπ/4) turns the last term further to
εβσ z, diagonalizing the Hamiltonian H (1)

S to the two blocks
of

H̃ (1)
S± := ε 2 px

2 +β2x2 ± εβ, (8)

each of which is the Schrödinger Hamiltonian in a 1D har-
monic potential with a constant term under the following
identification:

ε2 ↔ 1

2mS
, β2 ↔ mSω

2

2
, εβ ↔ ω

2
. (9)

The preceding argument shows that the Dirac and
Schrödinger Hamiltonians share the same eigenvectors. In-
deed, the time evolution of H (1)

D is approximately given by
H̃ (1)

S . We can numerically confirm that the Dirac Hamiltonian
makes a wave packet oscillate around x = 0 approximately
like a harmonic oscillator.
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II. TWO-DIMENSIONAL MODEL

Our first point of the paper is to extend the argument
to higher dimensions. There have been two major kinds of
2D DTQW: the Grover walk [28] and an alternative quan-
tum walk [14]. However, we cannot map either of them to
the Schrödinger equation. Instead of these two DTQWs, we
here introduce a DTQW whose continuum limit yields the
extended Dirac Hamiltonian (1). Let |L〉, |R〉, |D〉, and |U〉
denote the basis vectors for the leftward, rightward, down-
ward, and upward states, respectively. In Eq. (1), {σ x, σ y, σ z}
are the the Pauli matrices for the space spanned by |L〉 and
|R〉, while {τ x, τ y, τ z} and τ 0 are the Pauli matrices and the
identity matrix for the space spanned by |D〉 and |U〉. We
let mx(x) and my(y) denote the mass terms. The momenta px

and py can be rewritten in the forms of −i∂/∂x and −i∂/∂y,
respectively.

We can easily confirm that the extended Dirac Hamiltonian
(1) is, by squaring it, mapped to the Schrödinger Hamiltonian

H (2)
S := HSx ⊗ τ 0 + σ 0 ⊗ HSy , (10)

where

HSx := (ε 2 px
2 +mx(x)2)σ0 − iεσ x[px, mx(x)], (11)

HSy := (ε 2 py
2 +my(y)2)τ 0 − iετ x[py, my(y)]. (12)

Assumptions

mx(x) = βx and my(y) = βy (13)

reduce Eq. (10) to

H (2)
S := (ε 2 px

2 +β2x2 − εβσ x ) ⊗ τ 0

+ σ 0 ⊗ (ε 2 py
2 + β2y2 − εβτ x ), (14)

which represents a 2D harmonic oscillator under the identifi-
cation (9).

We can further extend the argument into the 3D model with
the extended Dirac Hamiltonian

H (3)
D := HDx ⊗ τ 0 ⊗ v0 + σ x ⊗ HDy ⊗ v0 + σ x ⊗ τ x ⊗ HDz

(15)

although it may not be a standard 3D Dirac Hamiltonian
because we have now 2 × 2 × 2 degrees of freedom at each
site. In Eq. (15), v0 is the identity matrix for the space spanned
by the backward state |B〉 and the forward state |F〉 of the
additional inner degree of freedom, while {vx, vy, vz} are the
Pauli matrices for the same space. Extension to even higher
dimensions should be obvious.

A. Two-dimensional oscillator

We next construct our DTQW model from the extended
Dirac Hamiltonian (1). The Hilbert space for the inner degrees
of freedom at each site is now spanned by

(|L〉 + |R〉) ⊕ (|D〉 + |U〉) = |LD〉 + |RD〉 + |LU〉 + |RU〉.
(16)

We hereafter fix the ordering of the basis vectors in this way.
After conducting the Trotter decomposition on exp(−iH (2)

D t ),

we obtain the time-evolution operator U (2) in the form of
U (2) = SyCySxCx with

Cx := e−iθx (x)(σ y⊗τ 0 ), Sx := e−a(σ z⊗τ 0 )∂x ,

Cy := e−iθy (y)(σ x⊗τ y ), Sy := e−a(σ x⊗τ z )∂y . (17)

Let us here assume that θx(x) and θy(y) are linear in x and
y, respectively, as in

θx(x) = bx and θy(y) = by, (18)

which are related to Eq. (13) as in θx(x) = mx(x)�t and
θy(y) = my(y)�t . We can regard this as effective linear po-
tentials for the corresponding Dirac particle. The operators
Cx and Sx in the x direction are given by straightforwardly
extending the corresponding operators (2) and (3) for the 1D
DTQW, respectively. On the other hand, the operators Cy and
Sy read

Cy =

⎛
⎜⎜⎝

+c −s
+c −s
+s +c

+s +c

⎞
⎟⎟⎠,

Sy =

⎛
⎜⎜⎝

P Q
Q P

P −Q
−Q P

⎞
⎟⎟⎠, (19)

where

c := cos (by), s := sin (by),

P := 1
2 (|y − a〉〈y| + |y + a〉〈y|),

Q := 1
2 (|y − a〉〈y| − |y + a〉〈y|). (20)

These coin and shift operators in Eq. (19) look different from
the Grover walk [28] and the alternative quantum walk [14]
because of the σ x term in the extended Dirac Hamiltonian
(1). We believe our DTQW to be better in representing 2D
physics in the sense that it exhibits dynamics of a 2D harmonic
oscillator, as we demonstrated in Fig. 1.

In the numerical calculation for Fig. 1, we set the system
size to Lx = Ly = 101 with −50 � x � 50 and −50 � y �
50 under periodic boundary conditions in both directions. We
used the effective potential of the form

θxμ
(xμ) =

⎧⎨
⎩

π/4 for 5 < xμ � 50,

bxμ for |xμ| � 5,

−π/4 for −50 � xμ < −5,

(21)

where x1 = x, x2 = y, and b = π/20. We repeated numerical
multiplication of U (2) to the initial state. For the initial state,
we used an eigenstate of the eigenvalue unity of the time-
evolution operator U (2) shifted in the x direction by two sites
and imposed the initial velocity in the form of ei(kxx+kyy) with
(kx, ky) = (0, π ). The eigenstate of the eigenvalue unity of
U (2) is in the Trotter limit given by the Gaussian form of the
zero-energy eigenvalue of our extended 2D Dirac Hamiltonian
(1), which we explicitly obtain in Appendix A 2 b.

Figure 1 shows the expectation values,

〈x(T )〉 :=
∑
x,y

xP(x, y, T ),

〈y(T )〉 :=
∑
x,y

yP(x, y, T ), (22)
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FIG. 3. The time-step dependence of the standard deviations �x
(thin purple line) and �y (thick dark green line) of the quantum
walker in 2D. We set h̄ = a = �t = 1.

at each time step, where P(x, y, T ) is the quantum probability
at site (x, y) at time step T and satisfies

∑
x,y P(x, y, T ) = 1.

We observe the circular trajectory in Fig. 1; after some time
it converges to an orbit of a limit cycle [Fig. 1(b)], which
closely resembles the one of a Schrödinger dynamics under a
2D harmonic potential. In Fig. 3, we can see that the standard
deviations almost converge to a constant after T ∼ 500, which
implies that the walker reaches a steady state of a circling
wave packet around the time. With these facts, we believe
that we successfully observe dynamics that resembles the 2D
harmonic oscillator. We confirm in Appendix A 2 b that all the
eigenstates of the corresponding 2D extended Dirac Hamil-
tonian (1) are composed of the eigenstates of a 2D harmonic
oscillator.

The fact that the present 2D DTQW behaves like a 2D
harmonic oscillator is particularly important to some of the
present authors for studies of quantum active matter. They
defined in Ref. [29] a quantum version of the active Brow-
nian particle [30], in which Schweitzer et al. numerically
demonstrated that a classical active particle climbs up the 2D
harmonic potential and makes a circular orbit. Some of the
present authors [29] are reproducing similar movement of the
quantum version, using the present oscillator behavior of the
2D DTQW. This is why the present quantum walker making
the circular orbit is critically important.

B. Topological edge states of two-dimensional DTQW

Let us turn to topological properties of DTQW. Jackiw and
Rebbi [27] suggested that when a Dirac system, e.g., Eq. (6)
(presumed to be extended to infinity), has two domains in each
of which the mass term takes a different value, e.g.,

mx(x) =
{

m1 for x > 0,

m2 for x < 0,
(23)

then a robust zero-energy state spatially localized in the vicin-
ity of the domain wall emerges in the mass gap iff the signs
of m1 and m2 differ [31]. In other words, the zero-energy
domain-wall state is protected by an index ν1 defined as
(−1)ν1 = sgn(m1)sgn(m2), which takes two integral values
ν1 = 0, 1 in this particular case. Now that the concept of a
topological insulator is well established, Jackiw and Rebbi’s
example is recognized as its earliest realization, and the index

ν1 is interpreted as a topological number. Indeed, the model
(6) belongs to the symmetry class DIII with the topology of
type Z2 in 1D [32,33].

We checked it numerically using the 1D DTQW prescribed
by Eqs. (2) and (3) with θx(x) having two domains,

θx(x) =
{
θ1 for |x| < L1,

θ2 for L1 < |x| < [Lx/2]. (24)

Note that each of the domain walls at x = ±L1 corresponds to
the one in Eq. (23) as in θx(x) = mx(x)�t . Since our DTQW is
under the periodic boundary condition, there are two domain
walls with discontinuities in mx(x) at x = ±L1, and therefore
we observed two topologically protected zero-energy states,
each of which is localized at a different domain wall. [In-
cidentally, squaring the Dirac Hamiltonian as in Eq. (7), we
find that the last term of H (1)

S yields delta functions at the
discontinuities of mx(x), and thus the edge states of the Dirac
Hamiltonian can also be interpreted as bound states of the
corresponding Schrödinger particle to the delta potentials.]

In the 2D realization of our DTQW prescribed by Eqs. (17)
and (19), using again the domain-wall configuration of θx(x)
introduced in the 1D case with θy(y) ≡ 0 in Eq. (17),
the protected zero-energy states acquire a dispersion; see
Appendix A 3 b for the solution in the case of the 2D extended
Dirac Hamiltonian (1). Figure 2(a) shows quasienergy spec-
trum En = −i ln U (2)

n for each kyn = 2nπ/Ly with θy = 0. We
observe that two linear dispersions with positive and negative
slopes completely traverse the bulk energy gap, manifesting
the feature of protected gapless edge states. Their gaplessness
is protected by a topological number ν1 = 1 introduced above;
when ν1 changes upon changing θx(x), the bulk energy gap
must close once and reopen in the space of control parameters,
where different topological phases are defined.

The extended Dirac Hamiltonian (1) with my = 0 has a
time-reversal symmetry under  = σ x ⊗ τ yK with K being
complex conjugation, a particle-hole symmetry under � =
I4×4K , and a chiral symmetry under � = σ x ⊗ τ y, and hence
belongs to the symmetry class DIII with a topology of type Z2

in 2D [32,33]. However, the time-evolution operator U (2) =
SySxCx (with θy = 0) only has the particle-hole symmetry
under � = I4×4K because of the specific ordering of SySx

( =SxSy), and hence our DTQW belongs to the symmetry class
D with a topology of type Z in 2D [32,33]. (Incidentally,
we have an additional sublattice symmetry in Sy. Adding the
phase eiπ to the every other y and shifting ky with π do not
change Sy. This results in a π periodicity in ky in the spectra
in Fig. 2.)

We can understand the structure of the dispersion of edge
states in Fig. 2(a) as in Fig. 4. Let us first note that our
time-evolution operator U (2) = SySxCx for θy = 0 is block
diagonalized for the blocks τ z = ±1 with the same absolute
value of ky but with a different sign. Since each block belongs
to the class D, we have a topology of type 2Z. In the block
of τ z = 1, namely |D〉, an edge state localized at x = −L1 =
−25 in Fig. 5 has the dispersion of a positive slope and one
at x = L1 = 25 has one with a negative slope as shown in
Fig. 4. In the block of τ z = −1, namely |U〉, on the other
hand, an edge state at x = −L1 = −25 has the dispersion with
a negative slope and the other at x = L1 has one with a positive
slope. Since the two blocks have opposite signs of ky, the
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FIG. 4. Schematic representation of the dispersion around ky = 0
in Fig. 2(a). We set h̄ = a = �t = 1.

dispersion has a mirror symmetry, and hence the eigenstates
on the two solid lines in Fig. 4 are common to each other;
the same applies to the eigenstates on the broken lines. This
is why we observe the lines with both positive and negative
slope crossing at ky = 0. Two eigenvalues are degenerate on
each line.

Upon introducing a nonzero value of θy, which is in-
compatible with the dictated symmetry of class D, a gap
emerges around ky = 0 as shown in Fig. 2(b). Meanwhile,
the topological edge states are robust against other types of
small perturbation, which we numerically confirm by intro-
ducing randomness. We added to θx(x) a random perturbation
�θx0(x), randomly choosing independently for each site uni-
formly from the range [−0.25, 0.25]. As we see in Fig. 2(c),
the degeneracy for τ z = ±1 is lifted but the crossing at ky = 0
remains.

C. Chiral symmetry and higher-order topology

In Fig. 2(b) and in its description, we saw that the presence
of a finite value of θy is incompatible with the symmetry dic-
tated in the periodic table for the symmetry class D, and hence
the edge states protected by the standard first-order topology
have been gapped out. However, we now see that the chiral
symmetry inherent to the 1D Dirac Hamiltonian (6) leads to
the emergence of the so-called higher-order topology [21–26],
which is beyond the standard classification of topological
insulators dictated by the periodic table given in Refs. [32,33].

FIG. 5. Probability density of an edge state localized around
x = −25 (solid blue line) and one localized around x = 25 (red
broken line) with ky = 0 and the zero quasienergy in the spectrum
of Fig. 2(a). We set h̄ = a = �t = 1.

The standard topological insulator is characterized by the
existence of protected gapless or zero-energy surface states.
In d space dimensions, such surface states appear on (d − 1)-
dimensional surfaces of the system. In the case of the recently
proposed higher-order topological insulator [21–26], not only
the d-dimensional bulk but also the (d − 1)-dimensional sur-
faces are both gapped, and yet some higher-order, e.g., (d −
n)-dimensional “surfaces” (an extremity of the system with
co-dimension n), remain gapless with n � 2. To represent
such a higher-order surface, the word “corner” is most com-
monly employed, which in the case of d = 2 and n = 2 as in
the present case is consistent with the common usage of the
word, as we will see below.

Let us note that the Pauli matrix σ x introduced along with
HDy in Eq. (1) is nothing but the chiral operator, i.e., �1 = σ x,
associated with the 1D Dirac Hamiltonian HDx :

{�1, HDx } = 0 with �1
2 = 1. (25)

This being said, we notice that the construction of the 2D
extended Dirac Hamiltonian in Eq. (1) is done precisely in the
same manner as in the recipe in Ref. [22] for constructing the
second- and higher-order (nth-order) topological insulators,
starting with the standard first-order topological insulators
H1 and H2 as its building blocks, where H1 must have the
chiral symmetry �1 as in {�1, H1} = 0 with �1

2 = 1. One can
indeed show that the Hamiltonian H (2) constructed as

H (2) = H1 ⊗ 1 + �1 ⊗ H2 (26)

has the designed property of the second-order topological
insulator [22]. Higher-order (nth-order) topological insula-
tors H (n) are constructed with n − 1 chiral operators and n
Hamiltonian of which at least n − 1 anticommute with the
corresponding chiral operators:

H (n) = H1 ⊗ 1 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ 1︸ ︷︷ ︸
n

+ �1 ⊗ H2 ⊗ 1 ⊗ · · · ⊗ 1 ⊗ 1︸ ︷︷ ︸
n

+ · · · + �1 ⊗ �2 ⊗ �3 ⊗ · · · ⊗ �n−1 ⊗ Hn︸ ︷︷ ︸
n

(27)

with

{�i, Hi} = 0, �i
2 = 1, i = 1, . . . , n − 1. (28)

In the present case of our 2D extended Dirac Hamiltonian
(1), we can naturally identify the constituents as H1 = HDx and
H2 = HDy . Appendix A 3 c shows that the zero-energy eigen-
state of our 2D extended Dirac Hamiltonian is the product of
the zero-energy edge state running in the y direction and that
running in the x direction, which results in the corner states
demonstrated below in Fig. 6 for our 2D DTQW model. Sur-
prisingly, our 3D extended Dirac Hamiltonian (15) naturally
satisfies the conditions (27) and (28) under the identification
of H1 = HDx , H2 = HDy , and H3 = HDz . We can naturally
apply the same argument to the 3D case as in the 2D case.

The appearance or nonappearance of a higher-order topo-
logical state (specifically a zero-energy corner state in the case
of n = 2) is encoded in a topological index ν (n) expressed (at
least for a corner with a right angle [24,34]) as a product of

042206-5



YAMAGISHI, HATANO, IMURA, AND OBUSE PHYSICAL REVIEW A 107, 042206 (2023)

FIG. 6. Probability distribution of zero-energy corner states with
the potential θx (x) and θy(y) specified in the main text. We here plot
one out of the totally eight corner states that are degenerate to a
nearly zero eigenvalue. We set h̄ = a = �t = 1.

conventional topological indices

ν (n) =
n∏

m=1

νm, (29)

where each νm provides information on the existence and
the absence of a gapless (d − 1)-dimensional surface state
of the constituent first-order topological insulators Hm in d
dimensions.

Specifically for n = 2 and d = 2 in the present case, as
each of the two indices ν1 and ν2 encodes information on
the existence and the absence of a gapless one-dimensional
surface state, the situation ν1, ν2 = 0 corresponds to the ab-
sence, indicating that the system is trivial, while the situation
ν1, ν2 = 0 signifies that the system is topologically nontrivial,
so that ν (2) encodes information on the existence and absence
of a gapless zero-dimensional corner state.

In order to let corner states emerge in our 2D DTQW
model, we introduce the domain structure in the x direction
also in the y direction; we set θy(y) such that

θy(y) =
{
θ1 for |y| < L2,

θ2 for L2 < |y| < [Ly/2] (30)

in addition to the one in Eq. (24). We chose the parameter
values specifically as θ1 = −θ2 = π/3, Lx = Ly = 101, and
L1 = L2 = 25 for numerical calculation for Fig. 6. We can
observe four zero-energy corner states localized at the four
corners of the domain |x| < L1 with |y| < L2. Note that each
corner state is defined as localized at one of the four corners of
the domain; the state represented in Fig. 6 is a superposition
of the four corner states.

III. SUMMARY

To summarize, we proposed a DTQW in multidimen-
sional systems, whose continuum limit is the extended Dirac
equation which can be further mapped to the Schrödinger
equation. We successfully reproduced with our DTQW the
dynamics similar to that of a Schrödinger particle under a
harmonic potential. We also observed topological edge and
corner states with discontinuous effective potentials in one-
and two-dimensional systems simply by manipulating the coin
operators of our DTQW. We thereby claim that the present
DTQW is a powerful platform of numerical simulation and
experimental implementation of the Dirac and Schrödinger
particles.

FIG. 7. Dispersion relation of the quasienergy spectra E (ky ) for
the domain-wall structure in θx (x) as specified in the main text
with (a) θy = π/6, (b) θy = π/4, and (c) θy = π/3. We set h̄ = a =
�t = 1.

As a final remark, increasing θy further from the case in
Fig. 2(b), we find the spectrum in Fig. 7. We have numer-
ically confirmed that the states enclosed in the openings of
the bulk bands are edge states; see Appendix B of the bulk
band structure. This implies that our DTQW accommodates a
further symmetry that protects these enclosed edge states, but
we have not resolved yet what symmetry it is.
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APPENDIX A: EIGENVALUES OF THE 2D EXTENDED
DIRAC HAMILTONIAN

In the present Appendix, we describe how to obtain
the eigenvalues and eigenvectors of our 2D extended Dirac
Hamiltonian (1) out of those of the 1D Dirac Hamiltonian
(6). The former should give the quasienergy eigenvalues and
eigenvectors of our 2D DTQW within the Trotter approxima-
tion, particularly near zero energy, that is, near the eigenvalue
unity of the time-evolution operator.

We first introduce the general formalism in Appendix A 1.
We then present the explicit solutions in the case of linear
mass terms in Appendix A 2 and in the case of stepwise mass
terms in Appendix A 3.

1. General formalism

We first set the eigenstates of HDx HDy as in

HDx

∣∣ψD,(1)
Ex

〉 = Ex

∣∣ψD,(1)
Ex

〉
, (A1)

HDy

∣∣ψD,(1)
Ey

〉 = Ey

∣∣ψD,(1)
Ey

〉
(A2)

with the normalization〈
ψ

D,(1)
Ex

∣∣ψD,(1)
Ex

〉 = 〈
ψ

D,(1)
Ey

∣∣ψD,(1)
Ey

〉 = 1. (A3)

As shorthand, let their direct product be denoted by∣∣ψD,(1)
Ex,Ey

〉
:= ∣∣ψD,(1)

Ex

〉∣∣ψD,(1)
Ey

〉
. (A4)

We now assume the ansatz for the eigenstate of our 2D
extended Dirac Hamiltonian

H (2)
D := HDx ⊗ τ 0 + σ x ⊗ HDy (A5)
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of the form ∣∣ψD,(2)
E

〉 = (γ + δσ x )
∣∣ψD,(1)

Ex,Ey

〉
, (A6)

where γ and δ are real coefficients to be determined hereafter.
From the eigenvalue equation

H (2)
D

∣∣ψD,(2)
E

〉 = E
∣∣ψD,(2)

E

〉
, (A7)

we obtain

[γ (Ex + Eyσ
x ) + δ(−Exσ

x + Ey)]
∣∣ψD,(1)

Ex,Ey

〉
= E (γ + δσ x )

∣∣ψD,(1)
Ex,Ey

〉
, (A8)

where we used the anticommutation relation

{HDx , σ
x} = {(εσ z px + mx(x)σ y), σ x} = 0. (A9)

We thereby find the equations for the coefficients as

γ Ex + δEy = γ E , (A10)

γ Ey − δEx = δE . (A11)

First, let us eliminate E from the set of the equations. We
then find

2γ δEx = (γ 2 − δ2)Ey, (A12)

which motivates us to define the transformations of the coef-
ficients of the forms

γ = A cos φ, δ = A sin φ. (A13)

We then have from Eq. (A12)

tan 2φ = Ey

Ex
, (A14)

which determines the phase coefficient φ for the specific solu-
tions of Eqs. (A1) and (A2). The amplitude coefficient A, on
the other hand, is found from the normalization

1 = 〈
ψ

D,(2)
E

∣∣ψD,(2)
E

〉 = γ 2 + δ2 + 2γ δs

= A2(1 + s sin 2φ), (A15)

where s := 〈ψD,(1)
Ex

|σ x|ψD,(1)
Ex

〉. We let A be undetermined in
the present Appendix since it depends on the specific form of
the eigenstate |ψD,(1)

Ex
〉.

The set of equations (A10) and (A11) further produces

Ex = E cos 2φ, Ey = E sin 2φ, (A16)

and hence

E = ±
√

Ex
2 + Ey

2. (A17)

This implies that our 2D extended Dirac Hamiltonian (1) is
indeed a precise direct product of independent components
of 1D Dirac Hamiltonians HDx and HDy, and further implies
that the 2D DTQW presented in Sec. II is also a precise direct
product of independent components of 1D DTQW in the x and
y directions

From Eq. (A17) we can conclude the following. First, the
zero-energy eigenstate of H (2)

D , if any, can be constructed only
from the zero-energy eigenstates of HDx and HDy , which is
indeed simply given by∣∣ψD,(2)

E=0

〉 = ∣∣ψD,(1)
Ex=0

〉∣∣ψD,(1)
Ey=0

〉
. (A18)

Second, if there is an energy gap in the spectrum of either of
HDx or HDy , then the spectrum of H (2)

D has an energy gap.

2. Case of the linear potentials (13)

We here explicitly obtain the Gaussian form of the zero-
energy eigenstate of the 2D extended Dirac Hamiltonian (1)
under the linear potentials (13). The eigenstate of the eigen-
value unity of the time-evolution operator U (2), which is the
state that we used for the initial state of our simulation in
Sec. II A, is given by the state given here within the Trotter
approximation.

a. Eigenvalues of the 1D Dirac Hamiltonian (6)

Let us first derive eigenstates of the 1D Dirac Hamiltonian
(6) with mx(x) = βx. The Schrödinger Hamiltonian after the
unitary transformation V = exp(iσ yπ/4) reads

H̃ (1)
S :=

(
H̃ (1)

S+ 0
0 H̃ (1)

S−

)
, (A19)

where H̃ (1)
S± := ε 2 px

2 + β2x2 ± εβ as in Eq. (8). Each of the
block Hamiltonians can be rewritten in the form

H̃ (1)
S± = ω

(
â†â + 1

2 ± 1
2

)
(A20)

with the ladder operators

â† = 1√
2

(
−
√

ε

β

d

dx
+
√

β

ε
x

)
,

â = 1√
2

(√
ε

β

d

dx
+
√

β

ε
x

)
, (A21)

where we employed the same identification for ε, β, and ω as
in Eq. (9). Therefore, the Hamiltonian (A19) is rewritten as
follows:

H̃ (1)
S = ω

(
â†â + 1

2
+ 1

2
σ z

)
= ω

(
â†â + 1 0

0 â†â

)
. (A22)

We thus find for the Hamiltonian (A22) that the following
two eigenstates are degenerate in the energy eigenvalue nω

with n > 0:∣∣ψ̃S,(1)
Ex 1

〉 = (|n − 1〉
0

)
and

∣∣ψ̃S,(1)
Ex 2

〉 = (
0
|n〉

)
. (A23)

On the other hand, the eigenstate of the zero-energy eigen-
value is uniquely given by∣∣ψ̃S,(1)

Ex=0

〉 = (
0
|0〉

)
. (A24)

We then obtain the eigenstates of energy eigenvalue nω (with
n > 0) of the Hamiltonian H (1)

S defined in Eq. (7) by a unitary
transformation V † = exp(−iσ yπ/4) as arbitrary superposi-
tions of the following two states:∣∣ψS,(1)

Ex 1

〉 = 1√
2

(|n − 1〉
|n − 1〉

)
and

∣∣ψS,(1)
Ex 2

〉 = 1√
2

(−|n〉
|n〉

)
.

(A25)

The unitary transformation above, upon being applied to
Eq. (A24), gives the eigenstate of the zero-energy eigenvalue
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of the Hamiltonian (7) as follows:

∣∣ψS,(1)
Ex=0

〉 = 1√
2

(−|0〉
|0〉

)
. (A26)

More specifically, the eigenfunction of the zero-energy eigen-
value takes the Gaussian form

ψ
(1)
0 (x) := 〈

x
∣∣ψS,(1)

Ex=0

〉 = (
β

4πε

)1/4(−1
1

)
exp

[
− β

2ε
x2

]
.

(A27)

Since the Schrödinger Hamiltonian H (1)
S in Eq. (7) is the

square of the 1D Dirac Hamiltonian (6), we anticipate that
the two degenerate eigenstates in the eigenvalue nω of the
former Hamiltonian split into the eigenstates of the eigenval-
ues ±√

nω of the latter Hamiltonian. In fact, by superposing
the two states in Eq. (A25), we obtain a unique eigenstate of
each of the energy eigenvalues

√
nω and −√

nω. Since the
eigenstates are superpositions of the two states in Eq. (A25),
we first write the eigenstates as

A√
2

(|n − 1〉
|n − 1〉

)
+ B√

2

(−|n〉
|n〉

)
(A28)

and determine the relationship between the coefficients A
and B.

Let us operate the 1D Dirac Hamiltonian (6) from the left
to the state above. We can utilize the following expressions of
x and px in terms of the ladder operators in Eq. (A21):

x = 1√
2

√
ε

β
(â† + â), px = i

1√
2

√
β

ε
(â† − â). (A29)

These expressions let us rewrite the 1D Dirac Hamiltonian (6)
with its mass being mx(x) = βx as follows:

H (1)
D = εσ z px + βxσ y

=
(

εpx −iβx
iβx −εpx

)

=
√

ω

2

(−i(â† − â) −i(â† + â)
i(â† + â) i(â† − â)

)
. (A30)

Hence operating the 1D Dirac Hamiltonian (6) to the state
(A28) from the left yields

H (1)
D

[
A√
2

(|n − 1〉
|n − 1〉

)
+ B√

2

(−|n〉
|n〉

)]

= √
nω

[
−i

B√
2

(|n − 1〉
|n − 1〉

)
+ i

A√
2

(−|n〉
|n〉

)]
. (A31)

We take iA = ±B and ∓iB = A in order for the state (A28) to
be the eigenstates of the eigenvalues ±√

nω.
Thus, the eigenstate of the eigenvalue +√

nω of the 1D
Dirac Hamiltonian (6) is uniquely given in the form of

∣∣ψD,(1)
Ex=+√

n

〉 = 1√
2

(|n − 1〉
|n − 1〉

)
+ i√

2

(−|n〉
|n〉

)
, (A32)

while the eigenstate of the eigenvalue −√
nω of the 1D Dirac

Hamiltonian (6) is uniquely given in the form of

∣∣ψD,(1)
Ex=−√

n

〉 = 1√
2

(|n − 1〉
|n − 1〉

)
− i√

2

(−|n〉
|n〉

)
. (A33)

Meanwhile, we can easily confirm that the eigenstate of the
zero-energy eigenvalue of the Schrödinger Hamiltonian (7) is
also the eigenstate of the zero-energy eigenvalue of the Dirac
Hamiltonian (6) by operating it to the state (A26):

∣∣ψD,(1)
Ex=0

〉 = 1√
2

(−|0〉
|0〉

)
. (A34)

b. Eigenvalues of the 2D extended Dirac Hamiltonian (1)

We now construct the eigenstates of the 2D Dirac Hamil-
tonian (1) out of the eigenstates (A32)–(A34) of the 1D Dirac
Hamiltonian (6) following the general formalism presented in
Appendix A 1.

Let us first find the state of the zero eigenvalue. According
to Eq. (A18) of the general formalism, the zero-energy eigen-
state of the 2D Hamiltonian H (2)

D is the direct product of the
zero-energy eigenstates of the 1D Hamiltonians HDx and HDy :

∣∣ψD,(1)
Ex=0

〉∣∣ψD,(1)
Ey=0

〉 = 1

2

(−|0〉
|0〉

)
⊗
(−|0〉

|0〉
)

. (A35)

More specifically, the eigenfunction of the zero-energy eigen-
value takes the following 2D Gaussian form:

ψ
(2)
0 (x, y) = 〈

x
∣∣ψD,(1)

Ex=0

〉〈
y
∣∣ψD,(1)

Ey=0

〉
=
√

β

4πε

(−1
1

)
⊗
(−1

1

)
exp

[
− β

2ε
(x2 + y2)

]
.

(A36)

This 2D Gaussian form is indeed close to what we used for
the initial state in the numerical simulation of Fig. 1.

For nonzero eigenvalues, combinations of the 1D states
with the eigenvalues ±√

mω and with the eigenvalues ±√
nω

produce the 2D states with the eigenvalues ±√
(m + n)ω as in

Eq. (A17). The eigenstates are given in the form (A6) with the
coefficients specified by Eqs. (A13)–(A15), or more specifi-
cally by tan 2φ = ±√

n/m. The degeneracy of the eigenvalues
is the same as in the case of the 2D harmonic oscillator.

3. Topological edge states and higher-order
topological corner state

We finally show that our 2D extended Dirac Hamiltonian
(1) with Eqs. (24) and (30) has a zero-energy eigenstate in the
product form of the zero-energy eigenstates of the 1D Dirac
Hamiltonians (6) in the x and y directions, each of which is
under one of Eqs. (24) and (30), respectively. Since the zero-
energy eigenstate of each of the latter Hamiltonians is an edge
state, the zero-energy eigenstate of the former Hamiltonian is
a corner state, being the product of edge states in different
directions.
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a. First-order topological edge state in 1D

We first solve the eigenvalue problem of the 1D Dirac
Hamiltonian (6)

H (1)
D

∣∣ψD,(1)
Ex

〉 = (εσ z px + mx(x)σ y)
∣∣ψD,(1)

Ex

〉
= Ex

∣∣ψD,(1)
Ex

〉
, (A37)

where the mass term has a domain wall of the form

mx(x) =
{+m0 for x > 0,

−m0 for x < 0.
(A38)

We show that there is a bound state with the zero-energy
eigenstate and scattering states with continuum spectra but
with an energy gap.

Let us first focus on the bound state, assuming the zero-
energy eigenvalue for explanatory purposes; see Ref. [31] for
a solution without the assumption. When we are focused on
the zero-energy eigenvalue, the right-hand side of Eq. (A37)
vanishes, and therefore

(εσ z px + mx(x)σ y)
∣∣ψD,(1)

Ex=0

〉 = 0. (A39)

For x > 0, we have mx(x) = +m0, and hence the two rows of
Eq. (A39) respectively read

−iε
d

dx
ψ1 − im0ψ2 = 0, (A40)

iε
d

dx
ψ2 + im0ψ1 = 0, (A41)

where we used the notation〈
x
∣∣ψD,(1)

Ex=0

〉 = (
ψ1(x)
ψ2(x)

)
. (A42)

Since we obtain

d2

dx2
ψ1 = m0

ε

d

dx
ψ2 =

(m0

ε

)2
ψ1, (A43)

the convergent solution for x > 0 is found to be ψ1 ∝ ψ2 ∝
e−(m0/ε)x. For x < 0, instead of Eq. (A43), we have

d2

dx2
ψ1 = −m0

ε

d

dx
ψ2 =

(m0

ε

)2
ψ1, (A44)

and hence the convergent solution for x < 0 is given by ψ1 ∝
ψ2 ∝ e+(m0/ε)x. To summarize after normalization, we obtain
the eigenfunction of the zero-energy eigenvalue in the form of
a bound state:

ψ
D,(1)
0 (x) := 〈

x
∣∣ψD,(1)

Ex=0

〉
=
√

m0

2ε

(
1
1

)
e−m0|x|/ε. (A45)

Let us next find a scattering state, with an incoming wave
proportional to Aeikxx for x < 0, a reflection wave proportional
to Be−ikxx for x < 0, and a transmission wave proportional to
Ceikxx for x > 0, where kx > 0. For the incoming wave for
x < 0, the eigenvalue problem (A37) reads(

εky im0

−im0 −εky

)(
ψ1

ψ2

)
= Ex

(
ψ1

ψ2

)
, (A46)

FIG. 8. (a) The energy spectrum of the 1D Dirac Hamiltonian
with a domain wall in the mass term. (b) The dispersion relation of
our 2D extended Dirac Hamiltonian with a domain wall only in the
mass term mx (x), whereas my(y) ≡ 0. (c) The energy spectrum of our
2D extended Dirac Hamiltonian with domain walls in both the mass
terms mx (x) and my(y).

which yields

∣∣ψD,(1)
Ex

〉 =
⎧⎪⎪⎨
⎪⎪⎩
(i cos ϕ

sin ϕ

)
for Ex = +

√
(εkx )2 + m0

2,(−i sin ϕ

cos ϕ

)
for Ex = −

√
(εkx )2 + m0

2,

(A47)

where the coefficient ϕ is defined in

tan 2ϕ = m0

εky
. (A48)

Let us hereafter focus on the scattering state with the pos-
itive energy eigenvalue Ex = +

√
(εkx )2 + m0

2. We therefore
assume the incoming wave of the form

Aeikxx

(
i cos ϕ

sin ϕ

)
(A49)

for x < 0. Similarly, the reflection wave is given by

Be−ikxx

(
i sin ϕ

cos ϕ

)
(A50)

for x < 0, while the transmission wave is given by

Ceikxx

(−i cos ϕ

sin ϕ

)
(A51)

for x > 0. In order for the first two on the left and the last on
the right to be continuous at the origin, the amplitudes must
satisfy

A cos ϕ + B sin ϕ = −C cos ϕ, (A52)

A sin ϕ + B cos ϕ = C sin ϕ. (A53)

They are followed by

B = −A sin 2ϕ, (A54)

C = −A cos 2ϕ, (A55)
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FIG. 9. Band structure for θx = π/3 and θy = 0. (a) and (b) Energy bands from two different viewpoints. (c), (d), and (e) Cross sections of
the bands at kx = 0, kx = π/2, and kx = π , respectively. (f) Projection of the bands over the kx axis onto the ky axis. We set h̄ = a = �t = 1.

which indeed satisfy the flux conservation kx|A|2 = kx|B|2 +
kx|C|2. We can similarly find a solution for the negative energy
eigenvalue Ex = −

√
(εkx )2 + m0

2.
We thereby conclude that the scattering states have the

energy continua of the forms Ex = ±
√

(εkx )2 + m0
2 with the

energy gap −m0 < Ex < m0, in the middle of which exists
the point-spectral bound state of the zero-energy eigenvalue;
see Fig. 8(a). This implies that the bound state is actually a
topological edge state.

b. First-order topological edge states in 2D

We now find the eigenspectrum of our 2D extended Dirac
Hamiltonian (1) but with my(y) ≡ 0. This corresponds to the
situation of 2D DTQW in Sec. II B.

Following the general formulation in Appendix A 1 again,
we can find the eigenstates of H (2)

D out of the eigenstates of
HDx and HDy . For HDx , we set the domain wall (A38), and

hence its eigenstates are the ones given in Appendix A 3 a,
namely the topological edge state (A45) with a point spectrum
Ex = 0 and the scattering states (A49)–(A51) with the en-
ergy continuum Ex = ±

√
(εkx )2 + m0

2. For HDy , on the other
hand, we have only the kinetic term εpyσx ⊗ τz, and therefore
the eigenvalues have the linear dispersions Ey = ±εky for the
eigenvectors

1√
2

(
1

±1

)
⊗
(

e±ikyy

0

)
and

1√
2

(
1

±1

)
⊗
(

0
e±ikyy

)
.

(A56)

We now combine the eigenvalues of the two Hamiltonians
as in Eq. (A17). Combining the point spectrum Ex = 0 and
the linear dispersions Ey = ±εky produces E = ±εky. Com-
bining the continuum with the linear dispersions gives

E = ±
√

(εkx )2 + (εky)2 + m0
2. (A57)
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FIG. 10. Band structure for θx = π/3 and θy = π/3. (a) and (b) Energy bands from two different viewpoints. (c), (d), and (e) Cross
sections of the bands at kx = 0, kx = π/2, and kx = π , respectively. (f) Projection of the bands over the kx axis onto the ky axis. We set
h̄ = a = �t = 1.

When we plot these eigenvalues for ky, the former is the
linear dispersions while the latter is hyperbolic curves filled by
scanning kx; see Fig. 8(b). This describes the region near the
origin of the energy spectrum in Fig. 2(a) within the Trotter
approximation.

c. Higher-order topological corner state in 2D

We finally find the eigenspectrum of the 2D extended Dirac
Hamiltonian (1) with domain walls both in x and y directions:

my(y) =
{+m0 for y > 0,

−m0 for y < 0,
(A58)

in addition to Eq. (A38). This corresponds to the situation of
2D DTQW in Sec. II C.

Both HDx and HDy now have the spectrum given in
Appendix A 3 a. Combining them, we have the following four
types of eigenvalues:

(i) Ex = 0 and Ey = 0 combine to produce E = 0. This
zero-energy eigenstate will be identified below as a second-
order topological corner state.

(ii) Ex = ±
√

(εkx )2 + m0
2 and Ey = 0 combine to pro-

duce E = ±
√

(εkx )2 + m0
2. This is an edge state (the

first-order topological state) in the y direction, but a scattering
state in the x direction. In other words, an edge continues in
the x direction, localized in the y direction, on which a state
propagates with the momentum kx.

(iii) Ex = 0 and Ey = ±√
(εky)2 + m0

2 combine to pro-

duce E = ±
√

(εky)2 + m0
2. In this case, an edge continues

in the y direction, localized in the x direction, on which the
state propagates with the momentum ky.
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FIG. 11. Cross sections of the bands at kx = 0, kx = π/2, and kx = π on the first, second and third columns, respectively. We vary θy to 0,
π/12, π/6, π/4, and π/3 on the five rows from top to bottom, respectively. We set h̄ = a = �t = 1.
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(iv) Ex = ±
√

(εkx )2 + m0
2 and Ey = ±

√
(εky)2 + m0

2

combine to produce E = ±
√

(εkx )2 + (εky)2 + 2m0
2. Here

the state propagates both in the x and y directions.
We thereby find a zero-energy eigenvalue, the energy con-

tinua starting from ±m0, and the energy continua starting from
±2m0; see Fig. 8(c).

We can find the zero-energy eigenfunction based on
Eq. (A18). The zero-energy eigenfunction of HDx with
Eq. (A38) takes the form of the bound state (A45) in the x
direction and the one of HDy with Eq. (A58) takes the similar
form of the bound state in the y direction. Multiplying them,
we obtain the zero-energy eigenfunction of the 2D Hamilto-
nian in the form

ψ
D,(2)
E=0 (x, y) := 〈

x
∣∣ψD,(1)

Ex=0

〉〈
y
∣∣ψD,(1)

Ey=0

〉
= m0

2ε

(
1
1

)
⊗
(

1
1

)
exp

[
−m0

ε
(|x| + |y|)

]
.

(A59)

This has a peak in the xy plane because an edge state run-
ning in the x direction and the edge state running in the y
direction were multiplied together, and hence it is identified
as a second-order topological state, namely the corner state.
This describes each peak that our 2D DTQW demonstrates in
Fig. 6.

APPENDIX B: BAND STRUCTURE FOR FINITE θx AND θy

We here show the band structure for finite θx and θy. In the
following, let us fix θx = π/3 and vary θy from 0 to π/3.

The model generally has four bands. For θy = 0, the first
and second bands as well as the third and fourth bands are
closed on the lines kx = 0,±π and ky = 0,±π ; see Fig. 9.
When projected on the ky axis, each of the upper and lower
energy bands appears to be filled.

For θy = π/3, on the other hand, all bands are open on the
lines kx = 0,±π and ky = 0,±π except for the Dirac points
(kx, ky) = (0, 0), (±π/2,±π/2), (±π,±, π ); see Fig. 10.
When projected on the ky axis, we can now see large openings
in each of the upper and lower bands. When we introduce the
effective potential

θx(x) =
{−π/3 for |x| > Lx/2,

π/3 for |x| � Lx/2,
(B1)

we see edge modes in the openings as in Fig. 7 of the main
text.

Figure 11 shows the variation of the cross sections on kx =
0, kx = π/2 and kx = π for θy = 0, π/12, π/6, π/4, π/3.
We can see the openings at each cross section become wider
as we increase θy.
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