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Quantum nonstationary phenomena of spin systems in collision models
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We investigate the nonstationary phenomenon in a tripartite spin-1/2 system in the collision model (CM)
framework. After introducing the dissipation through the system-environment collision for both Markovian and
non-Markovian cases, we find the emergence of long-time oscillation in the dynamics of the system and the
synchronization among subsystems. We connect the CM description and the quantum master equation in the
continuous-time limit and explain the existence of the stable oscillation by means of Liouvillian spectrum
analysis. We investigate the thermodynamics of persistent oscillations in our CM in both Markovian and
non-Markovian regimes. In addition, we find that the imperfection of collective dissipation can be compensated
by the randomness of the interaction sequence in our CM.
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I. INTRODUCTION

The quantum system that is subjected to coupling to an
uncontrollable environment is referred to as an open quan-
tum system. The inevitable interaction with the environment
always leads to the dissipative effect of the open quantum
system and the nonunitary feature of its time evolution [1–3].
In the presence or absence of memory effects, the dynamics of
open quantum systems can be classified into the memoryless
Markovian process and the non-Markovian master process
which allows the backflow of information during the time evo-
lution. In dissipative open quantum systems, in comparison
with their closed counterparts, plenty of intriguing phenomena
emerge, especially in the quantum many-body systems, such
as the steady-state phase transition [4–7], information spread-
ing [8–10], quantum many-body delocalization [11–14], etc.
Generally, the state of an open quantum system asymptoti-
cally evolves to one or more time-independent steady states
in the long-time limit. However, there are exceptional cases
in which the system evolves to nonstationary states. The
time-dependent long-time behavior of the system is intimately
related to the quantum time crystals [15–17], quantum chaos
[18,19], and quantum synchronization [20–24].

As the extension of classical synchronization in the quan-
tum regime, quantum synchronization has attracted much
attention in the last few years. The quantum synchroniza-
tion between self-sustained oscillations can be established
through either the external driving or the internal coupling
[25–29]. The former is known as the forced synchronization
or entrainment [30], while the latter is called spontaneous
synchronization which stems from the quantum correlations
in the systems. Meanwhile, the quantum correlations in the
systems is not limited to direct interactions between subsys-
tems, but also may emerge indirectly through the interactions
of subsystems together with their surrounding environment.
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These quantum correlations can eventually lead to nonsta-
tionary phenomena depicted by the quantum synchronization
measure. In recent years, quantum synchronization in open
quantum systems has been explored at length in a variety of
quantum systems, such as optomechanical arrays [31–33], van
der Pol (VdP) oscillators [28,34], atomic ensembles [35], and
superconducting circuit systems [36–38].

In general, theoretic descriptions for the dynamics of open
quantum systems as well as the nonstationary behavior in the
long-time limit are carried out by calculating the expectation
values of the local observables and correlations over time
through the dynamical equations of the system such as the
quantum master equation and quantum Langevin equation.
In recent years, investigations of the open quantum system
within the framework of the collision model (CM) have been
reported [39–43]. The CM approach can provide intuitive
pictures of the interactions between the system and its en-
vironment, as well as strategies of the information flows in
the time evolution of the state of the system. Recently, it was
shown that the CM can efficiently reproduce the dissipative
collective phenomena of multipartite open quantum systems
[44,45]. In the CM framework, the coupling of the system
and environment is simulated by repeated collisions between
the system and a set of environmental particles. Due to the
flexibility and scalability in designing the collision details,
the CM is a powerful tool for investigating non-Markovian
dynamics [46–54], quantum information scrambling [55,56],
quantum steering [57], quantum friction [58], multipartite
entanglement generation [59], and quantum synchronization
[30,60] in complicated open quantum systems. Recently, the
experimental realization of an all-optical collision model has
been demonstrated [61].

In this work, we utilize the CM to investigate the long-
time behavior of a composite spin system consisting of three
spin-1/2 subsystems subjected to a thermal environment. By
varying the strength of the interactions within the environ-
ment blocks, we can obtain the Markovian dynamics and
non-Markovian dynamics, respectively. We find that without
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additional external driving, the system is able to reach a stable
nonstationary steady state only through its internal interac-
tions and dissipative processes. At this point, synchronization
phenomena are also constructed between subsystems, which
is reminiscent of the results reported by Karpat et al. in
Ref. [62]. Furthermore, after taking the continuous-time limit
for the CM, we establish the connection between the CM and
the Markovian master equation in Lindblad form. We interpret
the appearance of the underlying long-time oscillations of
the subsystems by analyzing the Liouvillian spectrum of the
associated quantum master equation. In addition, we investi-
gate the thermodynamical properties and correlations between
the system and the environment when the dynamics of the
subsystems are synchronized.

The paper is organized as follows. We first explain the
idea of our specific model in the CM framework and its
utility in simulating the dynamics of the composite systems
consisting of three spins in Sec. II. In Sec. III, we then focus
on the Markovian dynamics to show the temporal expectation
values of the local observables. In particular for the case in
which the subsystems enter into the long-time oscillations, we
discuss the quantum synchronization among the subsystems.
We explore the connection between the CM and Lindblad
master equation in describing the underlying system in the
continuous-time limit. We present our understanding of the
appearance of oscillations in the dynamics from the Liou-
villian spectrum, the thermodynamical properties, and the
effects of imperfect collective dissipation on the dynamics. In
Sec. IV, we discuss the time evolution of the systems in the
non-Markovian case. Finally, we summarize in Sec. V.

II. THE FRAMEWORK OF COLLISION MODEL

In the generic CM framework, the entire installation con-
sists of two parts: the system S and its environment E .
Usually, the environment is represented by a set of identical
particles denoted by {E1, E2, . . . , Ej, . . . }, which are initial-
ized in the same state. The interaction between the system
and the environment is simulated by the successive collisions
between system particles and environmental particles in a
stroboscopic manner. In our CM, both the system and envi-
ronment consist of a set of spin-1/2 particles. In particular,
the system of interest is tripartite with interacting subsystems
S1,S2, andS3. The inner interactions between the subsystems
are given by (set h̄ = 1 hereinafter)

HS =
∑

α

3∑
m=1

Jασα
mσα

m+1, (1)

where σα
m (α = x, y, and z) are the Pauli matrices of the mth

subsystem and Jα is the coupling strength between the system
spins. Notice that the periodic boundary condition is imposed
in Eq. (1).

We consider the case in which the environmental spins
are uncorrelated and are prepared in the identical thermal
state η

j
th = e−βHj /tr(e−βHj ), ∀ j. The free Hamiltonian of each

environmental particle is Hj = ωσ z
j /2, where ω describes the

self-energy and β = 1/kBT is the inverse of temperature.
Although the environment spins are initialized in the uncor-
related state, interactions between environment particles are

FIG. 1. Schematic of routes of collision models. (a) Collective
dissipation: At the end of the interaction within the system, the tri-
partite system collides with the environment spin En simultaneously.
(b) Random local dissipation. In this case, the subsystems collide
with the environment blocks one by one and the interaction order is
randomly determined each time.

allowed to take place. As will be seen in the next sections, it is
the intra-environment interactions that generate the memory
effect of the stroboscopic evolution of the system.

Now let us illustrate the setup of our CM, which is
schematically shown in Fig. 1(a). The CM works through the
following steps:

Step 1. The CM starts with the collisions among the subsys-
tems S1, S2, and S3 according to Eq. (1). The time evolution
of the state of the system is then described by the unitary
operator US = exp(−iHSτS) and τS is the interaction time.

Step 2. Collisions take place between the system S and en-
vironmental spin En. In this step, the S-En collision simulates
the interaction between the system and environment, which is
specified by the flip-flop Hamiltonian in our CM as follows:

HI = g
∑

m

σ−
m σ+

En
+ σ+

m σ−
En

, (2)

where g denotes the coupling strength of the system-
environment interaction. The interaction shown in Eq. (2)
describes the collective flip-flop process. This interaction is
known as a good description for the collective spontaneous
emission (Dicke superradiance) [63–65]. From an experimen-
tal point of view, this collective decay can be realized on
the trapped-ion platform and mediated by an auxiliary ion
[66,67]. The corresponding time-evolution operator is UI =
e−iHI τI , where τI denotes the interaction time.

Step 3. The collision takes place between the environment
particles En and En+1, which may induce non-Markovian
dynamics. The interaction Hamiltonian for the En-En+1 inter-
action reads

HE = gE

∑
α

σ α
En

σα
En+1

, (3)
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where gE is the coupling strength between environment spins.
Thus, the unitary time-evolution operator can be expressed
as UE = e−iHE τE , with τE being the corresponding interaction
time. Equation (3) can be reexpressed in the form of a partial
SWAP operation,

UE = cos θI4 + i sin θUSWAP, (4)

where I4 is the 4 × 4 identity operator and the SWAP opera-
tion is given by USWAP = |00〉〈00| + |01〉〈10| + |10〉〈01| +
|11〉〈11|. The parameter θ = 2gEτE controls the strength of
the SWAP operation with θ ∈ [0, π/2]. The non-Markovianity
of the system dynamics can be switched on by tuning the
parameter θ .

After the En-En+1 collision, the spin En+1 carries part of
the information that flows into the environment in step 2.
The system together with the (n + 1)-th environment particle
enters into the next loop and the spin En is discarded, as shown
in Fig. 1(a). Therefore, the state of the system of interest after
the nth loop (n � 2) is transformed into

ρn
S �→ ρn+1

S = trEn,En+1

[
UEUIUS

(
ρn
SEn

⊗ ηn+1
th

)
U †
SU †

I U †
E

]
,

(5)

where ρn
SEn

is the joint state of the system and the nth envi-
ronment unit after collision. The system is initialized in the
state ρ ini

S = |ψ〉S〈ψ | with the separable state |ψ〉S = |ψ〉S1 ⊗
|ψ〉S2 ⊗ |ψ〉S3 . More precisely, since the Hamiltonian has the
symmetry along the spin z axis, we choose the initial state
of each subsystem as the 120◦ state on the equatorial plane
of the Bloch sphere, i.e., ψSm = (|↑〉 + eim 2

3 π |↓〉)/
√

2, with
m = 1, 2, and 3. The chosen 120◦ state will facilitate the
discussion of the evolution of the phase differences among the
state of the subsystems. For simplicity, we set the interaction
time for the each collision as τ = τS = τI = τE in the rest of
the analysis.

III. MARKOVIAN CASE

In this section, we focus on the case in which the intra-
environment collision is absent in the CM, i.e., UE reduces to
an identity matrix, implying that the dynamics of the system
of interest is Markovian. We choose the temporal expecta-
tion value of local observable 〈σ x

m〉 = tr(σ x
mρS) to monitor the

dynamics of the system. We first focus on the effect of the
environmental temperature β on the time evolution of the state
of the system. Note that β is proportional to 1/T .

In Figs. 2(a) and 2(b), we show the time dependence of the
local observables 〈σ x

m〉 for different β. One can see that the
magnetizations of all the spins trivially approach to zero after
a sufficiently large number of collisions for Jx = 3 and β = 2.
As the environmental temperature goes down, the asymptotic
values of the magnetizations of all the spins become unstable,
and eventually the time evolution of the magnetizations enter
into the oscillating trajectories. The time-dependent oscilla-
tions of 〈σ x

m(n)〉 for β = 10 can be observed in Fig. 2(b).
Moreover, as shown in Fig. 2(c), the fast Fourier transform
analysis on the numerics of 〈σ x

m(n)〉 reveals that the oscilla-
tions share the same dominant frequency. A zoom-in at the
vicinity of the peak in the frequency domain shows that the
dominant frequency is f d ≈ 0.32.

(e)
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FIG. 2. The stroboscopic time evolution of the local observables
〈σ x

m〉 (m = 1, 2, 3) with (a) Jx = 3, β = 2 and (b) Jx = −1, β = 10.
(c) The fast Fourier transform for the 〈σ x

m〉s shown in (b); the zoom-in
hints at those three local observables sharing an identical dominant
frequency f d ≈ 0.32. (d) The cross correlations X1k, (k = 2, 3) of
the 〈σ x

m〉s shown in (b). (e) The absolute value of the synchronization
measure Q12(n) (computed up to n = 20 000 collisions) as a function
of the environment temperature β = 1/kBT and the coupling strength
Jx . The black dots A and B mark the parameters (Jx = 3, β = 2) and
(Jx = −1, β = 10), respectively. (f) The quantum coherence C in the
system, as measured by the l1 norm of coherence; the parameters
are chosen the same as in (e). Other parameters in all the panels are
chosen as Jy = −1, Jz = 1, g = 10, and τ = 0.01.

The phase-locking feature of the oscillations can be ver-
ified by checking the cross correlation between the time
evolutions of 〈σ x

m(n)〉. Generally, the cross correlation quan-
tifies the degree of the association between these two
time-dependent functions f (n) and g(n) and is defined as their
convolutionlike function. Here, we analogously express the
cross correlation for the discrete evolutions of 〈σ x

m(n)〉 as

Xjk (�n) =
N∑

n=1

〈
σ x

j (n)
〉〈
σ x

k (n − �n)
〉
, (6)
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where �n is the amount of translation and N is the total num-
ber of collisions. The cross-correlation function is actually
an inner product of two vectors representing the projection
of one onto another in the linear space. Therefore the cross
correlation can faithfully capture the similarity of two vectors
under different amounts of translation within a period. The
maximum of Xjk (�n) in Eq. (6) reveals the optimal translation
that shifts the trajectory of 〈σ x

j 〉 closest to 〈σ x
k 〉 and thus in

turn reflects the phase difference �φS jSk . In Fig. 2(d), we
show the cross correlation Xjk (�n) produced by the data in
Fig. 2(b); one can see that the maxima of the cross corre-
lation X12(�n1) and X13(�n2) appear at �n1 = −101 and
�n2 = −205, respectively. Recall the previously calculated
dominant frequency f d ≈ 0.32; the phase differences can be
obtained as �φS1S2 = 2π f d/�n1τ ≈ −2π/3 and �φS1S3 =
2π f d/�n2τ ≈ −4π/3. The initial phase differences between
the sublattices are conserved after the dissipative evolution.
Note that we have rescaled the number of collisions, n, into
time nτ with time interval τ = 0.01.

The phase-locking oscillation in the long-time dynamics of
the system indicates the emergence of the spontaneous syn-
chronization among the subsystems. In the following, we will
employ the nonlocal synchronization measure proposed by
Es’haqi-Sani et al. in Ref. [68] to quantify the synchronization
features in our CM. The mentioned measure is a temporal
complex-valued correlator and is defined as follows:

Qjk (n) = 〈σ+
j σ−

k 〉n√
〈σ+

j σ−
j 〉n〈σ+

k σ−
k 〉n

, (7)

where 〈O〉n = Tr[Oρn
S] is the expectation value of the ob-

servable O after the nth collision. The modulus of Qjk (n)
characterizes the degree of nonlocal correlation; for instance,
two subsystems are completely correlated when |Qjk (t )| → 1.
Combining the dynamics of the local observable of the system
and the behavior of this nonlocal correlation, we are able to in-
vestigate the synchronization properties. When the dynamics
of the subsystems are oscillating and the nonlocal correlation
function tends to a stable value, the subsystem can be consid-
ered to be synchronized. In Fig. 2(e), we show the modulus
for the steady state |Q12|ss in the β-Jx plane. One can see that
the lower environmental temperature (β → ∞) could facili-
tate the synchronization among the subsystems. Moreover, for
β � 4, the long-time oscillation of the subsystems becomes
almost fully synchronized at an optimal interaction strength
Jx = Jy. Namely, the anisotropy of the system Hamiltonian
tends to drive the dynamics of the subsystems far away from
the synchronization.

On the other hand, the coherence property is also related to
synchronization [69], which has already been considered as a
synchronization measure [62,70]. In Fig. 2(f), we present the
l1 norm of coherence of the state of the system in the β − Jx

plane. The l1 norm of coherence is defined as follows:

C =
∑
p�=q

|〈p|ρS|q〉|, (8)

where {|p〉} are the computational basis of ρS [71]. Indeed,
we find that there are many similar behaviors in Figs. 2(e) and
2(f). For a lower environmental temperature or an anisotropic
Hamiltonian, the coherence of the system is poorly present

in the system, which implies that the synchronization is more
likely to be established when the state of system ρS contains
more coherence.

A. Continuous-time limit

In the preceding, we have found that the emergence of the
synchronization depends on both the properties of the system
Hamiltonian and the environment temperature. In order to
figure out the underlying physics, we are going to analyze
the dynamics of the system by taking the continuous-time
limit for the Markovian CM. We start with a discussion of
a single loop, say, the nth loop, in a more general CM with
the system-environment interaction Hamiltonian in the form
of V = g

∑
kAk ⊗ Ek , where Ak and Ek are the operators of

the system and environment spins. Notice that since we are
only concerned with the final state of the system after the nth
loop in the Markovian CM, the collision between En and En+1

is not considered for the moment. The map for the system state
is thus given by

ρn
S �→ ρn+1

S = trEn+1

[
UIUS

(
ρn
S ⊗ ηn+1

th

)
U †
SU †

I

] = �
[
ρn
S
]
,

(9)

where �[·] is a completely positive trace-preserving (CPTP)
map acting on the system density matrix ρS and UI = e−iV τ is
a unitary operator describing the collision between the system
and environment. In the continuous-time limit (τ → 0), we
can expand the unitary operators as follows:

UI = I − iτV − τ 2V 2/2 + o(τ n) (10)

and

US = I − iτHS + o(τ n). (11)

Therefore, the variation of ρS between two consecutive loops
can be obtained as follows:

δρS = ρn+1
S − ρn

S = (� − I)
[
ρn
S
]
. (12)

By substituting Eqs. (A2) and (A3) into Eq. (12), we have

δρS ≈ − iτ
[
HSS, ρ

n
S
] + τ 2

2
trE

(
2V ρn

S ⊗ ηn+1
th V

− {
V 2, ρn

S ⊗ ηn+1
th

}) − iτ trE
([

V, ρn
S ⊗ ηn+1

th

])
− τ 2trE

({
ρn
S ⊗ ηn+1

th , HSV
}) − τ 2trE

(
V ρn
S ⊗ ηn+1

th HS

− HSρ
n
S ⊗ ηn+1

th V
)
. (13)

Under the assumptions trE [ηn+1
th V ] = 0 and trE [ηn+1

th V 2] �= 0,
which is trivially satisfied in the cases in which the initial
environment states have zero first-order moment, we divide
both sides of Eq. (13) by the collision time τ and may obtain
the following quantum master equation in Lindblad form:

d

dt
ρS(t ) = − i[HS, ρS] + g2τ

2

∑
k,l

�k,l (2AkρSAl

− {AlAk, ρS}), (14)

where �k,l = 〈ElEk〉ηn+1
th

is the environment correlation func-

tion and the dimensionless parameter g2τ is the effective
decay rate. In our CM, the jump operators in Eq. (14) are
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FIG. 3. Top panels: The time evolution of the expectation values 〈σ x
m〉 (m = 1, 2, 3) of the system S (different subsystems are distinguished

by the transparency of the line) in the description of the master equation (solid lines) and collision model (dashed lines). Bottom panels: The
Liouvillian spectra in the complex planes. The environmental temperatures are (a),(d) β = 1, (b),(e) 5, and (c),(f) 10. All of the zoom-ins show
the details of the eigenvalues around the zero real part. Other parameters are chosen as Jx = Jy = −1, Jz = 1, γ = 1, g = 10, and τ = 0.01 for
all the panels.

determine to be the collective lowering and raising operators
A± = ∑

m σ±
m , and we end up with the master equation in the

Lindblad form,

d

dt
ρS(t ) = − i[HS, ρS(t )] + γ (1 − ξ )

4
[2A−ρS(t )A+

− {A+A−, ρS(t )}] + γ (1 + ξ )

4
[2A+ρS(t )A−

− {A−A+, ρS(t )}], (15)

where ξ = tanh(−βω) is the environment correlation func-
tion and γ = g2τ describes the decay rate. Moreover, it is
important to emphasize that when the temperature of the envi-
ronment state is low (ξ → −1), we can eventually obtain the
master equation in a vacuum environment,

d

dt
ρS(t ) = −i[HS, ρS(t )]+γ

2
[2A−ρS(t )A+−{A+A−, ρS(t )}].

(16)

To corroborate the equivalence between the CM and quan-
tum master equation descriptions for different temperatures,
we show the stroboscopic and continuous-time evolution of
〈σ x

m〉 for the subsystems in Figs. 3(a)–3(c). Note that the
timeline for the CM has been rescaled to t = nτ . One can see
that the results calculated through both descriptions agree well
with each other in the continuous-time limit τ → 0, regardless
of the temperature of the environment. Moreover, we observe
again that the synchronization of the subsystems is established
when the temperature of the environment is low. In the case of

the vacuum environment, the synchronized oscillations of the
local observable of each subsystem always persist.

B. Liouvillian spectrum

So far, we have verified the equivalence between the CM
and master equation descriptions for the Markovian dynamics
of open systems. In this section, we will concentrate on the
case of vacuum environment since the oscillations in the dy-
namics survive in the long-time limit. Actually, the Lindblad
master equation (16) always hints at a linear CPTP map,
which can be described as d

dt ρS(t ) = L[ρS(t )], where L[·] is
the Liouvillian superoperator acting on the density matrix of
the system. The LiouvillianL is the generator of the dynamics
semigroup eLt (t � 0). This reminds us to figure out the origin
of the synchronization in our model via the symmetry of the
Liouvillian.

In Fock-Liouville space, the Liouvillian can be recast in a
non-Hermitian matrix ¯̄L as follows:

¯̄L = − i[(H ⊗ I) − (I ⊗ HT)]

+ γ

2
(2L ⊗ L∗ − L†L ⊗ I − I ⊗ LTL∗), (17)

where I denotes the identity operator and L is the correspond-
ing jump operator in the master equation (the superscript T
denotes the transpose of the matrix). The eigenvalue decom-
position on the Liouvillian matrix reads [72,73]

¯̄L|ρ j〉〉 = λ j |ρ j〉〉, (18)
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where |ρ j〉〉 are the eigenvectors and λ j are the associated
complex eigenvalues. The real parts of the eigenvalues λ j are
always negative semidefinite and can be sorted in descending
order as 0 � Re[λ0] > Re[λ1] > Re[λ2] > · · · > Re[λn]. An
arbitrary initial state can always be represented in a superpo-
sition of ρ j as ρS(0) = ∑

j c jρ j , where c j is the probability
amplitude. Therefore, at any time t > 0, the system evolves to
the following state:

ρS(t ) ∝ ρ0

tr(ρ0)
+

∑
j �=0

c je
λ j tρ j . (19)

It is obvious that the eigenstate ρ0, which is associated with
the zero eigenvalues, i.e., Re[λ0] = Im[λ0] = 0, will remain
unchanged and is the asymptotic steady state. On the other
hand, the components in the summation will vanish in the
long-time limit (t → ∞) because of the negative real part
of λ j . However, it is remarkable that the pure imaginary
eigenvalues, Re[λ j] = 0 and Im[λ j] �= 0, may protect the cor-
responding eigenstates from decaying and lead to a persistent
oscillation with time. Therefore, the emergence of the oscil-
lations of the local observables stems from the appearance of
the pure imaginary eigenvalues of the underlying Liouvillian
superoperator.

In Figs. 3(d)–3(f), we show the Liouvillian spectra in the
complex plane. One can see that the eigenvalues are always
symmetrically distributed about the real axis (Im[λ] = 0). We
are interested in the eigenvalues with large real parts that
are close to the imaginary axis. As shown in Fig. 3(d), zero
eigenvalues exist for high temperature β = 1, indicating the
existence of the asymptotic steady states. Note, also, that zero
eigenvalues have degenerated. As the temperature lowers, a
pair of conjugate eigenvalues gets closer to the imaginary axis,
as shown Fig. 3(e). Although the dynamics of the system is yet
a damped oscillation, it is a precursor of the birth of persistent
oscillations in the dynamics. For β = 10, we observe a pair
of conjugated pure imaginary eigenvalues λ = ±2i which is
responsible for the emergence of the persistent oscillation in
the dynamics. Moreover, according to Eq. (19), we are able to
deduce the frequency of the oscillation as f = | ± 2i|/2π ≈
0.32, which is consistent with the fast Fourier transform (FFT)
analysis in Fig. 2(c).

C. The structure of the steady-state density matrix

As mentioned in Eq. (19), the long-time density matrix of
the system is constructed of the eigenstates of the Liouvillian
associated to the eigenvalues with vanishing real parts. In
particular, the long-time oscillating behavior of the system
requires the basis matrix Mj of the density matrix satisfying

[Mj, HS] = mjMj, [A−, Mj] = [A+, Mj] = 0, (20)

where mj is real [74,75].
In our CM, the equivalent master equation (16) always has

a fixed solution with all spins pointing down along the z di-
rection, i.e., |ψ↓〉 = |↓↓↓〉, corresponding to the eigenenergy
ε↓. Meanwhile, the Hamiltonian of the system has at least one
pair of degenerate eigenstates |ψm〉 and |ψn〉 with εm = εn.
These two degenerate eigenstates together with the state |ψ↓〉
can construct nine eigenoperators: M1 = |ψm〉〈ψm|, M2 =
|ψn〉〈ψn|, M3 = |ψ↓〉〈ψ↓|, M4 = |ψm〉〈ψn|, M5 = |ψn〉〈ψm|,

M6 = |ψ↓〉〈ψm|, M7 = |ψ↓〉〈ψn|, M8 = |ψn〉〈ψ↓|, and M9 =
|ψn〉〈ψ↓|, which fulfill the requirements in Eq. (20). As a
consequence, we can obtain the equation of the dynamics of
those eigenoperators as

d

dt
Mj = −im jMj = −i(εl − εk )|ψl〉〈ψk|, l, k = ↓, m, n.

(21)

The matrices M1, . . . , M5 are the dark states in the dynamical
process; matrices M6, . . . , M9 denote the mixed coherence
oscillation. Choosing the same parameter as in Fig. 3, we can
obtain a pair of degenerate eigenstates with pn = pm = 3 and
p↓ = 1. In the long-time limit, the system eventually evolves
in the eigenstate subspace consisting of |ψn〉, |ψm〉, |ψ↓〉, and
oscillates in the following ways: |ψn〉 ↔ |ψ↓〉 and |ψm〉 ↔
|ψ↓〉 with the frequencies fn↔↓ = fm↔↓ = |pn,m − p↓|/2π ≈
0.32, consistent with the previous results.

Actually, the conditions in Eq. (20) suggest that the emer-
gence of persistent oscillations is supported by the so-called
strong dynamical symmetry of the system. To be specific, in
Eq. (20), the former commutator defines a dynamical symme-
try of the autonomous evolution of the system, while the latter
commutator ensures that such dynamical symmetry survives
in the presence of dissipation [75,76]. Recently, the dynamical
symmetry has been shown to be powerful in analyzing the
properties of the limit cycles in the dynamics of the open
quantum system, for example, the antisynchronization in a
three spin-1/2 system (with one of the spins acting as a bath)
[77], and the robustness of the persistent oscillations in a
periodically arranged four-site spin chain in a collision model
with random time for the system’s autonomous evolution [76].

In particular, as shown in Ref. [76], the CPTP map in
Eq. (9) can be described by the time-evolution and Kraus
operators, without taking the continuous-time limit for the
derivation of the Lindblad master equation; the oscillation
frequency is unrelated to any timescale of the system-
environment interaction and is just of a matter of the spectrum
of the CPTP map. As will be seen in the ultrastrong non-
Markovian case, the failure of the composition of CPTP maps
in describing the time evolution breaks the persistence oscil-
lation in our CM in the ultrastrong non-Markovian case.

D. Entropy and correlations

In this section, we discuss the dynamics of the system from
the thermodynamic viewpoint. In the general description of
the dynamics of an open quantum system, the nonunitary time
evolution of the state of the system of interest is given by the
following dynamical map, given the initial state of the system
as ρ ini:

ρ ini
S �→ ρS(t ) = trE

[
U (t )

(
ρ ini
S ⊗ ηth

)
U †(t )

]
, (22)

where U (t ) is the unitary time evolution of the system and
environment and trE is the partial trace taken over the degree
of freedom of the environment. In Eq. (22), it is assumed
that the system is uncorrelated with the environment at the
initial time and the environment is in the thermal state char-
acterized by a temperature. Note that a constant temperature
makes sense only in the thermodynamic limit, i.e., when the
number of degrees of freedom approaches infinity. In the CM,
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such thermal environment is represented by a set of qubits
that collide with systems at each step. Thus, the state of the
system is stroboscopically transformed as ρn−1

S → ρn
S at each

step, which can be implemented by only involving the nth
environment qubit. The specific form of the time evolution
in the CM simplifies the computation of the dynamics of open
systems and makes the formulation of thermodynamics in the
CM tractable.

One can formulate the thermodynamics in each step of the
CM. For example, the entropy production �n in the nth step
is given by �n = �Sn + �n, where �Sn = S(ρn

S) − S(ρn−1
S )

(ρ0
S is the initial state) is the entropy increment of the sys-

tem after time evolution with S(ρ) = −tr(ρ ln ρ) the von
Neumann entropy, and �n = β�Qn

E = βtr[H (ρn
E − ηn

th)] is
entropy flux after the nth system-environment interaction. But
one should pay special attention to the fact that �n, �Sn, and
�n are defined as the corresponding thermodynamic quanti-
ties in a single step of the CM and only the environmental
qubits that couple to the system in this step can be used
to calculate these thermodynamic quantities. Recall that the
thermal environment in the CM consists of all the environ-
mental qubits, in which a thermodynamic quantity (entropy
production, work, heat, etc.) up to a time t = nτ , with τ being
the time interval between two successive collisions, should be
the cumulative sum of the same quantity per step up to the nth
step [78–80]. Therefore, the entropy production after n steps
of the CM reads

�(n) = �S(n) + �(n), (23)

with the cumulated thermodynamic quantity defined by
A(n) = ∑n

j=1 Aj . We noticed that when the persistent oscil-
lation is absent in the long-time limit, the entropy production
for the nth step can be interpreted as the entropy production
rate by simply reexpressing �n as �n = �(n) − �(n − 1).
It is shown that the entropy production is equal to a relative
entropy and thus, by construction, is positive [78–80]. Never-
theless, the entropy production rate need not be positive and
the Landauer’s principle by means of the entropy production
rate has been discussed in Refs. [81,82]. Since we are inter-
ested in the case in which the persistent oscillation is present
in the long-time limit, and the physical meaning of �n is not
well understood, we will focus on the cumulative quantities in
the following.

In Fig. 4(a), we show the time evolutions of the relevant
thermodynamic quantities in our CM for the case in which the
long-time oscillation survives. One can see that all quantities
are always positive after each collision step, especially the
entropy production. The always-positive entropy production
shows that the system always obeys Landauer’s principle, and
the second law of thermodynamics is not violated.

In addition, the entropy production keeps increasing mono-
tonically and remains constant after the system gradually
establishes stable oscillations [combined with the results of
〈σ x

1 〉 in Fig. 4(b)]. This can be understood as the following. On
the one hand, it is the coupling to the environment that leads
the entropy production to rise and go to a constant (the value is
proportional to the coupling strength). On the other hand, due
to the dynamical symmetries, as presented in Eq. (20), there
is a subspace of the system that is effectively decoupled from

FIG. 4. (a) The n dependence of the entropy production �, en-
tropy increment of the system �S(ρS ), and entropy flux �; all results
are obtained through Eq. (23). (b) The n dependence of expectation
〈σ x

1 〉 (left y axis), the work W (left y axis), the two-point spin-spin
correlation function 〈σ x

1 σ x
2 〉 (left y axis), and the bipartite mutual in-

formation of sublattices I2(S1 : S2 ) (right y axis). The parameters for
the two panels are chosen as Jx = Jy = −1, Jz = 1, g = 10, β = 10,
and τ = 0.01.

the environment throughout the time evolution. The remaining
subspace couples to the environment and approaches to an
asymptotic steady state in the long-time limit. The contribu-
tions from both subspaces lead the observables to oscillate
persistently.

In our CM, the total energy of the system is not con-
served due to [HS, HI ] �= 0. It means that the work W may
be performed during the whole evolution process [78,83].
According to the first law of thermodynamics, the work up
to the nth step is defined by the mismatch of the internal
energy of the system �U and the heat �QE dissipated to
the environment as W (n) = �U (n) + �QE (n). Again, the
internal energy up to the nth step, �U (n) = ∑n

j=1 �U j , is
the cumulation of the change in internal energy at each step,
�U j = tr[HS(ρ j

S − ρ
j−1
S )].

Here we show the results of the work in Fig. 4(b). The plus
or minus signs of W mean the energy is either poured into
or extracted from the system, respectively. In Fig. 4(b), we
compare the time-evolution value of W and the expectation
value 〈σ x

1 〉. One can see that at the beginning of the evolution,
the value of the work is taken as negative. This behavior
corresponds to the rapid dissipation of the system energy
into the environment, which is in accordance with the rapid
decay of 〈σ x

1 〉. Then, after a short evolutionary process up to
the time t = nτ ≈ 6, the work rapidly approaches a constant.
Comparing with the numerics of the steady-state value of the
entropy flux in Fig. 4(a), we find that the work is equal to
the heat W = ∑

j �Q j
E = �/β, namely, the energy poured

into the system happens to be completely dissipated into the
environment. We note that the initial state of system is chosen
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as the 120◦ state mentioned in Sec. II. In this case, after the
system undergoes long-term evolution, the internal energy of
the system is completely consistent with that of the system at
the initial time.

Although a subspace of the system has decoupled from its
environment, the system does not enter into a stable oscillation
immediately (〈σ x

1 〉 has not yet reached a stable oscillation
when the work reaches constant). This can be attributed to
the fact that the establishment of the long-time oscillation is
not only induced by the dissipation, but is also a result of
the self-adjusting of the correlations among the subsystems.
The evidence can be found in the time evolutions of the
correlator 〈σ x

1 σ x
2 〉 and the bipartite mutual information I2(S1 :

S2) = S(ρS1 ) + S(ρS2 ) − S(ρS1S2 ). As shown in Fig. 4(b),
both 〈σ x

1 σ x
2 〉 and I2(S1 : S2) approach the steady-state values

simultaneously with the establishment of the stable oscilla-
tions at n ≈ 1200.

E. Imperfect interaction

So far, we have considered that the system-environment in-
teraction is in the collective fashion, namely, the three system
spins interact with the environment particle at the same time.
However, from the experimental point of view, it is difficult
to realize the simultaneous interactions between the system
and the environment spins. A more realistic scenario is that
the system spins interact with the environment spin sequen-
tially in a fixed order, e.g., S1-En → S2-En → S3-En. The
system-environment collision in the sequential way is thus
ruled by the unitary operator U seq

I,123 = US3EnUS2EnUS1En , with
USmEn = exp [−igτ (σ+

Sm
σ−

En
+ H.c.)] (m = 1, 2, 3). Following

the expansion method mentioned in the Sec. III A, we can
obtain the master equation for the sequential collision case.
We show the details of derivation in the Appendix.

In Fig. 5(a), we show the stroboscopic evolution of 〈σ x
1 〉

in the CM where system-environment interactions act se-
quentially in various orders (labeled by the subscripts of the
time-evolution operators U seq). In contrast to the case of col-
lective interactions, the oscillations of 〈σ x

1 〉 are observed in
the initial stage of the time evolution for all U seqs, while as
time passes, the amplitudes of the oscillations are suppressed
and the magnetization 〈σ x

1 〉 asymptotically decays to zero. We
show the Liouvillian spectrum for the case in which the time-
evolution operator is U seq

I,123 in the inset of Fig. 5(a). One finds
the largest real part of the eigenvalue of the Liouvillian to be
Re[λ1] = 0.0115 and the magnetization 〈σ x

1 〉 asymptotically
decays to zero within the timescale ∼1/Re[λ1].

However, the subsystem spins interact with the environ-
ment spin sequentially in a fixed order during the entire
evolution, which is still demanding for experimental real-
ization. We now investigate the effects of the imperfections
of the interaction order on the dynamics of the system. We
simulate the imperfections by randomly permuting the system
spins in the queue at each step. As shown in Fig. 5(b), it
is interesting that the random orders of interaction between
the system and environment spins significantly prolong the
oscillations and even recover the behavior of 〈σ x

1 〉 appearing
in the case in which the system spins collectively interact with
the environment spin.

FIG. 5. (a) The stroboscopic evolution of 〈σ x
1 〉 in collision mod-

els with different sequences in the system-environment collision.
The zoom-in shows the Liouvillian spectrum of the U seq

I,123 case.
(b) The stroboscopic evolution expectation values 〈σ x

1 〉 in the col-
lision models with collective system-environment collision (red line)
and individual subsystem-environment collisions in random order
(blue line). The parameters are chosen as Jx = Jy = −1, Jz = 1, g =
10, τ = 0.01, and β = 10.

To address this point, we recall the sequential collision
master equation shown in the Appendix. Comparing with
Eq. (16), one finds that some additional terms appear in
Eq. (A6) which are determined by the collision sequence.
These extra terms will be mixed destructively due to the rapid
permutation of the subsystems in the system-environment
interaction during the whole time evolution. For instance,
the term σ+

1 σ−
3 ρS(t ) appearing in the S1-En → S2-En →

S3-En sequence cancels the term −σ+
1 σ−

3 ρS(t ) appearing
in the S3-En → S2-En → S1-En sequence. Therefore, in the
short-term evolution, the time evolution of 〈σ x

1 〉 in the ran-
dom collision strategy agrees well with that in the collective
collision strategy. However, after sufficiently long time, the
difference between the two cases is accumulated so that the
amplitude of the oscillation differs.

IV. NON-MARKOVIAN CASE

We turn to the non-Markovian case in this section by
switching on the interaction between neighboring environ-
mental spins. As we mentioned in Sec. II, in the CM
framework, the non-Markovian dynamic can be implemented
by introducing the inner collision between the environment
spins UE . The idea is the following: At the collision step n,
the system S collides with the environment spin En, and the
information from the system partially flows into the environ-
ment. Then the environment inner collision takes place, and
the environment spin En collides with the fresh environment
spin En+1. In this way, the spin En+1 also partially carries the
system information. In the next collision step n + 1, when a
collision happens between the system S and the environment
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FIG. 6. The degree of non-Markovianity as a function of θ/π .
The number of collisions is n = 500. Other parameters are chosen as
Jx = Jy = −1, Jz = 1, β = 10, g = 5, and τ = 0.08.

En+1, the information that flowed into the environment has the
possibility to flow back to the system.

Although the En-En+1 collision enables the information
backflow, a measure still needs to quantify the degree of the
non-Markovianity of the dynamics of the system. To this
aim, we employ the well-known Breuer-Laine-Piilo (BLP)
measure [84] and generalize it to the discrete time evolution.

The idea of the BLP measure is to quantify the non-
Markovianity through the trace distance change of the system
state as follows:

N = max
ρ1,ρ2

∑
�D(n)>0

�D(n), (24)

with �D(n) = D[ρ1(n + 1), ρ2(n + 1)] −D[ρ1(n), ρ2(n)]
and D(ρ1, ρ2) = tr(

√
(ρ1 − ρ2)†(ρ1 − ρ2)/2 is the trace

distance between the two density matrices ρ1 and ρ2. The trace
distance quantifies the degree of distinguishability between
the two states with 0 � D(ρ1, ρ2) � 1 and D(ρ1, ρ2) = 1
corresponds to the case where the two states are orthogonal.
In the Markovian process, because the information of the
system is one-way flows into the environment, all distinct
initial states will eventually approach a unique steady state
manifested by �D(n) < 0 for all n. However, if �D(n) > 0
exists for some n, namely, the distinguishability of the two
initial states increases, it is a signal that the information
have flowed back to the system at some point and thus
the dynamics is non-Markovian. The non-Markovianity is
obtained by the sum of all the increases of the trace distance
during the time evolution.

In principle, the maximization in Eq. (24) should run over
all the possible initial states. Here we performed K = 200
simulations, with ρ1 being a random state and ρ2 = ρ⊥

1 being
the orthogonal state of ρ1. The non-Markovianity N is thus
given by the optimal pair of ρ1 and ρ2 within all the per-
formed simulations. The non-Markovianity N as a function
of the strength of the En-En+1 collision θ is shown in Fig. 6.
Note that according to the equation θ = 2gEτ in Sec. II, the

FIG. 7. The time evolution of the expectation values of 〈σ x
m〉 (m = 1, 2, 3) and the modulus of the synchronization measure Q12 (top

panels), the trace distance D[ρ1(n), ρ2(n)] (middle panels), and entropy production � (bottom panels) for case I: weak non-Markovian case
with θ = π/3; case II: strong non-Markovian case with θ = π/2.1; and case III: ultrastrong non-Markovian case with θ = π/2. The initial
state of the system is chosen as ρ1 to be the 120◦ state and ρ2 to be the orthogonal state of ρ1, i.e., D(ρ ini

S , ρ ini
S,⊥) = 1. Other parameters are

chosen as Jx = Jy = −1, Jz = 1, β = 10, g = 5, and τ = 0.08.
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FIG. 8. The time evolution of 〈σ x
m〉 (m = 1, 2, 3) of the system S

(the subsystems are distinguished by the transparency of the lines) in
the description of master equation (A5) and the collision model for
β = 1 (left) and 10 (right). Other parameters are chosen as Jx = Jy =
−1, Jz = 1, g = 10, and τ = 0.01.

coupling strength between environmental spins is proportional
to θ . One can find that the non-Markovianity of the dynamics
is not induced as soon as the En-En+1 collision is switched on.
When the En-En+1 collision is weak, e.g., θ/π < 0.2, after
n = 500 collisions, the non-Markovianity N is always zero.
As we continue to increase the strength of the En-En+1 colli-
sion, the dynamics becomes non-Markovian and N increases
monotonically with θ increasing.

For the non-Markovian region (θ/π = 0.2), we discuss the
following three cases:

Case I. The weak non-Markovian case with θ = π/3.
Case II. The strong non-Markovian case with θ = π/2.1.
Case III. The ultrastrong non-Markovian case with θ =

π/2.
Meanwhile, the unitary-evolution operator within the envi-

ronment blocks UEnEn+1 is the SWAP gate when θ = π/2. The
state of the system is initialized to the 120◦ state. As for initial
states of the system in the calculation of the trace distance
D(ρ1, ρ2), the state ρ1 is the 120◦ state and the other one is
the orthogonal state of ρ2 = ρ⊥

1 .
Since the correlation between environment blocks has been

established in the non-Markovian case, we have to redefine the
entropy production before proceeding to a specific discussion.
What is noteworthy in the non-Markovian case is that in each
collision cycle, two environment blocks are involved. To be
more precise, the detailed expression of the interval entropy
flux in each collision cycle has to contain the total energy of
those two environment parts [85], that is,

�n = β�Qn
E = βtr

[
(Hn ⊗ Hn+1)

(
ρ

post
EnEn+1

− ρ
pre
EnEn+1

)]
. (25)

For the sake of understanding, let us recall the entail collision
evolution introduced before:

ρ
pre
SEnEn+1

≡ ρSEn ⊗ ηn+1
n ,

ρ
post
SEnEn+1

≡ UEUIUSρ
pre
SEnEn+1

U †
SU †

I U †
E . (26)

Here, once again, to avoid misunderstanding, we emphasize
that H is the free Hamiltonian of the thermal environment
particle.

In Fig. 7, we show the time evolution of 〈σ x
m〉 and the

modulus of the synchronization measure Q12. For the weak
non-Markovian case, one can find that the dynamics of the

system do not suffer from non-Markovianity and oscillations
can be rapidly built up in the evolution. As shown in the
left-middle panel of Fig. 7, although the dynamic is non-
Markovian, the information backflow (�D > 0) only occurs
in the early stage of the evolution and then the trace distance
decreases monotonically. As for the entropy production, in
case I, the entropy production is always a positive value,
which is far from a zero value and rapidly reaches a constant.
The phenomena are similar to the Markovian case, and a
subspace of the system will rapidly decouple from the en-
vironment during evolution and the weak non-Markovianity
does not have a significant effect on the system dynamic.

In case II, by contrast, both the expectation values of
〈σ x

m〉 and |Q12| show irregular oscillations at the beginning
of the evolution; see the second column of Fig. 7. In spite
of the early-stage haphazard behavior, the system evolution
gradually becomes regular and stabilizes around n = 2500
(not shown in Fig. 7), and the system eventually reaches
stable oscillations. The modulus of the quantum synchro-
nization measure |Q12| also reaches a constant value in the
long-time evolution, which hints at the existence of good
synchronization. The time dependence of the trace distance
for case II shows a rapid oscillation until n > 1000, which
is a typical evidence for the strong non-Markovian dynam-
ics. In particular, at some moments (marked by red dashed
lines), the trace distance instantaneously recovers the initial
value.

The strong non-Markovianity significantly impacts the en-
tropy production in the time evolution. One can see that the
entropy production does not monotonically increase and may
decrease drastically close to zero at some n in the discrete time
evolution. This indicates that the entropy production at the
nth step �n becomes negative. This can be understood by, for
example, focusing on the steps n = 9 and 17 (the red dashed
lines in Fig. 7) at which the trace distance (almost) recovers
to unity; it is the strong information backflow that diminishes
the vague of different states and decreases the entropy of the
system and thus leads to the negative �n at n = 9 and 17. But
when we look at �(n) through the entire time evolution, the
boundary of violation of the second law of thermodynamics is
untouchable [85].

In case III, the collision between neighboring environmen-
tal spins is set to be the SWAP operation. As shown in the
right column of Fig. 7, one can find that the dynamics of the
system always exhibit irregular oscillations, even in the long-
time limit (n ∼ 5000). In addition, the measure |Q12| fails
to reach an asymptotic steady-state value, implying the ab-
sence of synchronization in such ultrastrong non-Markovian
dynamics. The time dependence of both the trace distance as
well as the entropy production oscillate irregularly. Again, the
nonmonotonic behavior of the entropy production is observed
in the ultrastrong non-Markovian case. The negative entropy
production �n during the time evolution is due to the creation
of the correlations in the system and environmental qubits
[82,85].

We would finish by emphasizing again that in the CM
scenario, since the thermal environment is represented by a
series of qubits, the thermodynamic quantities should be the
cumulation of the same quantities at each step to ensure all
the changes in the involved environmental qubits are taken
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into account. In this sense, the second law of thermodynamics
still holds in our model from a macroscopic point of view.

V. SUMMARY

In summary, we have investigated the dissipative dynamics
of a tripartite spin system in the framework of the CM. With
the introduction of successive collisions between the system
and environment spins, collective dissipation has been simu-
lated. We have found that when the environment temperature
is low, the dynamics of the system exhibit a well-defined
oscillation and the mutual synchronization can be estab-
lished among the subsystems. We proceeded the discussion by
classifying the present CM into the Markovian and the non-
Markovian cases, according to whether or not the collision
between neighboring environmental spins is allowed.

In the Markovian case, we have discussed the effects of the
coupling strength and environment temperature on the dynam-
ics of the systems, as well as the property of synchronization
among subsystems. We find that the dynamics of the sys-
tem may show periodical oscillations when the environmental
temperature is low and the anisotropy of the interactions be-
tween the subsystems tends to destroy the stable oscillation.
In addition, we have extracted the frequency of the oscillation
by means of FFT.

To understand the establishment of the stable oscillations
in the Markovian dynamics, we have connected the descrip-
tions of the CM and master equation by virtue of taking
the continuous-time limit on the interval collisions. We then
analyzed the Liouvillian spectrum of the master equation and
found that there indeed exist purely imaginary eigenvalues
when the environment temperature is low. In particular, the
inverse of the modulus of the pure imaginary eigenvalues
is consistent with the oscillation frequency accessed by the
FFT. We further investigated the structure of the density ma-
trix of the system and found that the system’s oscillatory
behavior is actually a process of leapfrogging between de-
generate Hamiltonian eigenstates and other energy eigenstates

within a subspace consisting of eigenoperators. Finally, we
investigated the temporal behaviors of entropy production and
quantum correlations, which shows the oscillation of the sys-
tem is induced not only by the coupling to the environment,
but also as a result of self-adjusting the correlations among the
subsystems. We also discussed the effects of the imperfection
of the collective interactions on the long-time oscillations.

For the non-Markovian case, we utilized the BLP measure
of non-Markovianity in the stroboscopic time evolution in the
CM. We found, in the strong (and ultrastrong) non-Markovian
dynamics, that the entropy production is always positive and
may exhibit nonmonotonic behavior in the time evolution,
implying that the entropy production in some collision steps
becomes negative. This can be understood by the fact that the
backflow of information in strong non-Markovianity dynam-
ics compensates the energy in erasing the information. Finally,
the dynamic of the system exhibits chaoslike behavior, even
after a sufficiently long time in the ultrastrong non-Markovian
case. In future work, it will be interesting to check the chaotic
behavior of the system and investigate the influence of the
system-environment correlations on the system dynamics be-
havior.
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APPENDIX

In this Appendix, we take the collision sequence given in
Sec. III E as an example to show the specific form of the
master equation for the sequential collision case. Here we re-
call the unitary-evolution operator U seq

I,123 = US3EnUS2EnUS1En ,
with USmEn = exp [−igτ (σ+

Sm
σ−

En
+ H.c.)] (m = 1, 2, 3), and

the environment particles are still located in the thermal state
without off-diagonal matrix elements.

The dynamical map for the system also can be given by

ρn
S �→ ρn+1

S = trEn+1

[
U seq

I,123US
(
ρn
S ⊗ ηn+1

th

)
U †
SU seq,†

I,123

] = �
[
ρn
S
]
. (A1)

Based on the requirements of the continuous-time limit, which hints at τ → 0, we still expand the unitary operators as
follows:

USmEn = I − iτVm − τ 2V 2
m/2 + o(τ n) ≈ I − igτ

(
σ+
Sm

σ−
En

+ H.c.
) − g2τ 2

(
σ+
Sm

σ−
En

+ H.c.
)2/

2, (A2)

and

US = I − iτHS + o(τ n). (A3)

Then we can directly obtain the mapping of the collision,

ρn+1
S = �

[
ρn
S
] = trEn

[
US3EnUS2EnUS1EnUS

(
ρn
S ⊗ ηn+1

th

)
U †
SUS1EnUS2EnUS3En

] = trEn

[{
I − iτ (V1 + V2 + V3 + HS)

− τ 2

2

(
V 2

1 + V 2
2 + V 2

3

) − τ 2(V3V2 + V2V1 + V3V1) − τ 2(V3 + V2 + V1)HS

}
· {

ρn
S ⊗ ηn+1

th

}

×
{
I + iτ (V1 + V2 + V3 + HS) − τ 2

2

(
V 2

1 + V 2
2 + V 2

3

) − τ 2(V2V3 + V1V2 + V1V3) − τ 2HS(V3 + V2 + V1)

}]
. (A4)
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Recall the timescale τ → 0 and g2τ = const. We have

ρn+1
S = trEn

[
ρn
S ⊗ ηn+1

th − iτHS
(
ρn
S ⊗ ηn+1

th

) − τ 2

2

(
V 2

1 + V 2
2 + V 2

3

)(
ρn
S ⊗ ηn+1

th

) − τ 2(V3V2 + V2V1 + V3V1)
(
ρn
S ⊗ ηn+1

th

)

+ iτ
(
ρn
S ⊗ ηn+1

th

)
HS + τ 2(V3 + V2 + V1)

(
ρn
S ⊗ ηn+1

th

)
(V1 + V2 + V3) − τ 2

2

(
ρn
S ⊗ ηn+1

th

)(
V 2

1 + V 2
2 + V 2

3

)]

= ρn
S − iτ

[
HS, ρ

n
S
] + g2τ 2

2

∑
m

〈
σ+

En
σ+

En

〉
ηn+1

th

(
2σ−

m ρn
Sσ

−
m − {

σ−
m σ−

m , ρn
S
})+g2τ 2

2

∑
m

〈
σ−

En
σ−

En

〉
ηn+1

th

(
2σ+

m ρn
Sσ

+
m − {

σ+
m σ+

m , ρn
S
})

+ g2τ 2

2

∑
m

〈
σ−

En
σ+

En

〉
ηn+1

th

(
2σ−

m ρn
Sσ

+
m − {

σ+
m σ−

m , ρn
S
}) + g2τ 2

2

∑
m

〈
σ+

En
σ−

En

〉
ηn+1

th

(
2σ+

m ρn
Sσ

−
m − {

σ−
m σ+

m , ρn
S
})

+ g2τ 2

2

∑
m �=k

〈
σ+

En
σ+

En

〉
ηn+1

th

(
2σ−

m ρn
Sσ

−
k − σ−

m σ−
k ρn
S − ρn

Sσ
−
k σ−

m

)+g2τ 2

2

∑
m �=k

〈
σ−

En
σ−

En

〉
ηn+1

th

(
2σ+

m ρn
Sσ

+
k − σ+

m σ+
k ρn
S − ρn

Sσ
+
k σ+

m

)

+ g2τ 2

2

∑
m>k

〈
σ+

En
σ−

En

〉
ηn+1

th

(
2σ+

m ρn
Sσ

−
k − σ−

m σ+
k ρn
S − ρn

Sσ
−
k σ+

m

)+g2τ 2

2

∑
m>k

〈
σ−

En
σ+

En

〉
ηn+1

th

(
2σ−

m ρn
Sσ

+
k − σ+

m σ−
k ρn
S − ρn

Sσ
+
k σ−

m

)

+ g2τ 2

2

∑
m<k

〈
σ−

En
σ+

En

〉
ηn+1

th

(
2σ+

m ρn
Sσ

−
k −σ−

m σ+
k ρn
S − ρn

Sσ
−
k σ+

m

)+g2τ 2

2

∑
m<k

〈
σ+

En
σ−

En

〉
ηn+1

th

(
2σ−

m ρn
Sσ

+
k − σ+

m σ−
k ρn
S − ρn

Sσ
+
k σ−

m

)
.

(A5)

In the above equation, the terms with τ 2 and gτ 2 are all
neglected, and the summations run over m, k = 1, 2, 3. We
have to especially emphasis that the relation between m and
k in the summations is related to and satisfies the current
collision sequence. Then, we again emphasize the specific
form of the state of the environment particle; the state with-
out the off-diagonal elements will lead to 〈σ+

En
σ+

En
〉ηn+1

th
=

〈σ−
En

σ−
En

〉ηn+1
th

= 0, and the results of 〈σ−
En

σ+
En

〉ηn+1
th

= (1 − ξ )/2

and 〈σ+
En

σ−
En

〉ηn+1
th

= (1 + ξ )/2 with ξ = tanh(−βω). The pa-
rameters β and ω are environmental conditions which we have
mentioned in Sec. III E. We also present the comparison of
the above master equation and the CM in Fig. 8. Following
the identical method in the previous section, we still consider

the environment state in low temperature, e.g., ξ ≈ −1, and
we can finally obtain the master equation,

d

dt
ρS(t )= − i[HS, ρS(t )]+γ

2
[2A−ρS(t )A+−{ρS(t ), A+A−}]

+ γ

2
[σ+

2 σ−
3 + σ+

1 σ−
3 + σ+

1 σ−
2 , ρS(t )]

+ γ

2
[ρS(t ), σ+

3 σ−
2 + σ+

3 σ−
1 + σ+

2 σ−
1 ], (A6)

where A± = ∑
m σ±

m are the collective lowering and raising
operators. The corresponding Liouvillian spectrum is shown
in the zoom-in of Fig. 5, which hints that the system is unable
to govern the stable oscillations.
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