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Quantum thermodynamics in nonequilibrium reservoirs: Landauer-like bound and its implications
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We study quantum thermodynamics in nonequilibrium reservoirs (NERs) that are prepared from initially
thermal ones via unitary driving processes. Based on the formulation of entropy production in NERs, we establish
a Landauer-like bound and show that the bound can be violated under a definite condition depending on the states
of NERs. It is found that the breakdown of this Landauer-like bound implies occurrences of several anomalous
phenomena in NERs, namely, the efficiency enhancement of quantum thermal machines beyond the Carnot limit,
the extraction of work from a single reservoir, and the spontaneous heat flow from a cold reservoir to a hot one.
The results are illustrated through a physical model taking the preparation processes of NERs into account. Our
work sheds light on the reason and condition of some unusual phenomena occurring in NERs and is helpful for
one to prepare effective NERs that can be used as quantum resources to realize certain thermodynamic tasks.
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I. INTRODUCTION

Recent years have seen a growing development of quan-
tum thermodynamics (QT) [1–6] which incorporates the latest
achievements of quantum theory, such as quantum informa-
tion and the dynamics of open quantum systems, into classical
thermodynamics. The main aims of QT include extensions
of conventional thermodynamic laws to quantum domains
and designs of quantum thermal machines (QTMs) utilizing
quantum resources and/or quantum effects. The pursuit of
quantum advantage of QTMs over their classical counter-
parts is an ongoing issue in QT. In a pioneering work [7],
Scully et al. showed that, by replacing atoms (bath) in regular
thermal states with nonequilibrium states containing certain
coherence, the cavity field (system) can arrive at a higher tem-
perature allowing the efficiency of a photonic Carnot engine to
surpass the limit imposed by the thermal bath. Since then, the
nonequilibrium reservoir (NER) [8–15], as a type of quantum
resource, is extensively used to power thermodynamic tasks.
Reservoirs with quantum coherence or correlation are shown
to be able to enhance the performance of QTMs [16–25],
improve the extraction of work [26–28], and increase the
thermalization temperature of quantum systems [29–31]. For
a configuration in which two NERs are bridged by coupled
systems, the heat in the steady-state regime can be transferred
spontaneously from the cold reservoir to the hot one for spe-
cific phase differences of initial coherent states of reservoirs
[32]. The Otto engine in contact with squeezed reservoirs
can be led to surpass the Otto and Carnot limits [33–37]. It
also turns out that depending on whether energy exchanges
in the preparation process of NERs are involved, QTMs in
the NERs can perform different functions, and a complete
consideration is always consistent with thermodynamic laws,
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whereas a partial scenario may not [38]. Hence, a complete
picture involving initial preparations of NERs is necessary for
reconciling some thermodynamic inconsistencies that arise in
the presence of NERs.

Being different from the relatively simple thermal reser-
voir, the NER is generally characterized by many factors, such
as coherence and squeezing parameters in their states. To real-
ize certain tasks resorting to the power of NERs, in particular
the ones that cannot be achieved by thermal reservoirs, one
has to choose suitable NERs by adjusting various parameters.
The construction of a general condition under which some
unusual tasks can be realized by the NERs is thus useful not
only in understanding of characters of NERs but also in their
applications. To shed some light on this issue, in this work,
we establish a Landauer-like inequality for NERs generated
from thermal reservoirs through driving processes. We show
that the violation of this inequality under a definite condition
signifies the appearance of several unusual results in NERs
including the excess of Carnot efficiency for QTMs, the ex-
traction of work from a single reservoir, and the spontaneous
heat flow from a cold reservoir to a hot one.

A quantum master equation is a popular approach for de-
scribing the dynamics of an open quantum system; however,
it may bring about thermodynamic inconsistencies [39–44]
in the treatment of QT if the assumptions needed for its
derivation are not respected. The collision model [45], as an
alternative tool, enabling one to keep track of the information
of reservoirs, is widely applied in simulating the dynamics
of open quantum systems [46–54] as well as dealing with
QT [55–71]. In the framework of the collision model, the
reservoir is modeled as a series of identical ancillas, and the
system of interest interacts/collides with them successively.
At each step of the collisions, a fresh ancilla is used to interact
with the system and then discarded. Due to the simplicity
of the mechanism, collision models are suitable for dealing
with thermodynamics in the presence of nonthermal reservoirs
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[29–34,38,67–71]. In Ref. [68], the authors developed weakly
coherent collision models, by which the first and second laws
of thermodynamics were formulated with a nontrivial contri-
bution of quantum coherence. In Ref. [69], thanks to collision
models, the authors demonstrated advantages of utilizing co-
herence in nonthermal baths as a resource in enhancing the
performance of thermal machines. The collision model can
also be utilized to describe the micromaser, which is an exper-
imental setup with a lossy cavity being pumped by a beam of
atoms [46]. In this work, we shall adopt a collision model to
describe the dynamics of a system interacting with NERs and
construct thermodynamic quantities and laws.

The paper is organized as follows. Section II is devoted to
the construction of a Landauer-like bound for NERs and the
condition for its breakdown. After introducing the preparation
process of a NER in Sec. II A, we describe the dynamics of the
system in NERs and define associated thermodynamic quanti-
ties in Sec. II B by virtue of a collision model. The entropy
production is derived in Sec. II C, which takes the driving
process for a NER into account. In analogy to the conventional
Landauer bound for thermal baths, a Landauer-like bound
for the NERs is established, and its violating condition is
presented in Sec. II D. In Sec. III, we address the implications
of violation of the Landauer-like bound for several unusual
phenomena. It turns out that under the condition of the break-
down of this Landauer-like bound, the efficiency of QTMs
can be enhanced to surpass the Carnot limit (Sec. III A), the
work can be extracted from a single reservoir (Sec. III B),
and the heat can be transferred from a cold reservoir to a
hot one spontaneously (Sec. III C). The obtained results are
illustrated in Sec. IV by considering a concrete physical model
in which both the system and the NERs are modeled as qubits.
In Sec. IV A, it is found that in addition to the usual machines
with efficiency being less than the Carnot limit, the system can
work as a superengine or as a superrefrigerator with efficiency
surpassing the Carnot limit when the Landauer-like bound is
violated. In Sec. IV B, we illustrate the extraction of work
from a single NER and the spontaneous heat flow from a cold
reservoir to a hot one under exactly the same condition of the
violation of our Landauer-like bound. The conclusion is made
in Sec. V.

II. THERMODYNAMIC QUANTITIES
AND LANDAUER-LIKE BOUND IN NERs

A. Preparing NERs via unitary driving process

In our model, the system S interacts with M reservoirs
labeled by Ri with i = 1, 2, . . . , M and each Ri is modeled
as an ensemble of identical ancillas in the sense of a collision
model (see Fig. 1 for M = 1). Albeit our purpose is to ex-
plore the thermodynamics of NERs, we do not regard them
as free resources but as produced from thermal reservoirs
through driving processes. Therefore, our model consists of
two stages, i.e., the preparation stage for NERs (cf. the left
part of Fig. 1) and the collision stage between the system and
NERs (cf. the right part of Fig. 1).

As the starting point of Ri, it is initially prepared in a
thermal state being of the form

ρth
Ri

= e−βi Ĥ0
Ri /Z0

i , (1)

FIG. 1. Sketch of our model (with M = 1) which consists of
two stages, i.e., the preparation stage for the NER and the collision
stage between the system and the NER. Each ancilla in Ri with
Hamiltonian Ĥ 0

Ri
is initially prepared in thermal equilibrium state

ρ th
Ri

at inverse temperature βi (labeled by green circles), which is
then driven out of equilibrium by a protocol gt to the nonequilibrium
state ρRi = Ûi(τ )ρ th

Ri
Ûi

†
(τ ) (labeled by red circles). We associate the

nonequilibrium state ρRi with a reference thermal state ρ̃ th
Ri

(labeled
by purple circles) which possesses the same inverse temperature βi

as ρ th
Ri

and the final Hamiltonian ĤRi after the driving.

where Z0
i = Tr[e−βiĤ0

Ri ] is the partition function with the in-
verse temperature βi = 1/Ti. We set kB = h̄ = 1 throughout
the paper. To acquire a nonequilibrium state, a driving pro-
tocol characterized by gt is exerted on Ri, which transforms
the Hamiltonian ĤRi (t ) = ĤRi (gt ) of Ri from Ĥ0

Ri
≡ ĤRi (0) at

t = 0 to ĤRi ≡ ĤRi (τ ) at t = τ . The thermal state ρ th
Ri

of Ri in
Eq. (1) after the driving process becomes

ρRi = Ûi(τ )ρ th
Ri

Ûi
†
(τ ), (2)

in which the unitary time-evolution operator Ûi(τ ) =
T exp(− i

h̄

∫ τ

0 ĤRi (t )dt ) with T the time-ordering operator.
Generally, the stronger the driving process, the farther the

state ρRi in Eq. (2) deviates from the thermal equilibrium state
ρ th

Ri
in Eq. (1). We adopt quantum relative entropy, defined for

states �1 and �2 as D(�1 ‖ �2) = Tr[�1 ln �1] − Tr[�1 ln �2],
to quantify the distance between two states. Therefore, the
driving process can be characterized by the relative entropy
D(ρRi ‖ ρ th

Ri
). Apart from it, an equivalent depiction for the

driving process is the so-called irreversible entropy D(ρRi ‖
ρ̃ th

Ri
) [72–75] with ρ̃ th

Ri
= e−βi ĤRi /Z̃i (with Z̃i = Tr[e−βiĤRi ] the

partition function) being a reference thermal state associated
with ρRi . The state ρ̃ th

Ri
could be achieved through a qua-

sistatic isothermal evolution from the initial thermal state ρ th
Ri

in Eq. (1), which features the same inverse temperature βi as
ρ th

Ri
on the one hand, and the Hamiltonian ĤRi of Ri after the

actual driving process on the other hand.

B. Dynamics of the system and thermodynamic quantities

After the nonequilibrium preparation for reservoirs, the
system-reservoirs collisions are turned on. At each shot of the
collision, the system S collides simultaneously with M fresh
ancillas for a short duration τ ′ with each ancilla being taken
from a different reservoir. The ancillas after collisions are
discarded and the procedure is iterated. A generic Hamiltonian
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governing system-reservoirs collisions reads

ĤSR =
M∑

i=1

ĤSRi =
M∑

i=1

∑
α

λi,αÂα ⊗ B̂α
i , (3)

where Âα and B̂α
i are Hermitian operators acting on S and the

ancilla in Ri, respectively, while λi,α denotes the interaction
strength. Although in the collision stage we assume that the
free Hamiltonians of both the system and the reservoirs are
time independent, the system-reservoirs collisions are actu-
ally time dependent since they exist only in time intervals
[(n − 1)τ ′, nτ ′] (with n � 1 denoting the number of colli-
sions) and vanish otherwise. The total Hamiltonian for the
collision process can thus be formulated as

Ĥtot(t ) = ĤS + ĤR + h(t )ĤSR, (4)

where ĤS and ĤR = ∑M
i=1 ĤRi are free Hamiltonians of the

system and total reservoirs, respectively, and the Heaviside
function h(t ) is equal to 1 for t ∈ [(n − 1)τ ′, nτ ′] and zero
otherwise. After the nth step of the collision, the system’s state
ρn−1

S ≡ ρS[(n − 1)τ ′] is transformed to ρn
S ≡ ρS (nτ ′) as

ρn
S = TrRρn

SR = TrR
{
ÛSR(τ ′)ρn−1

SR Û †
SR(τ ′)

}
, (5)

where ρn−1
SR = ρn−1

S ⊗ ρR with ρR = ∏M
i=1 ρRi and ÛSR(τ ′) =

exp[−i(ĤS + ĤR + ĤSR)τ ′]. The state ρRi of the ancilla in
Ri is correspondingly transformed to ρn

Ri
= TrSR̄i

ρn
SR with R̄i

denoting M − 1 ancillas other than Ri. Note that the state of
the ancilla after collision is n dependent.

In the collision model, the energetic cost in terms of work is
generally required to switch on and off the system-reservoirs
collisions unless the collisions fulfill strict energy conser-
vation given by [ĤSR, ĤS + ĤR] = 0 [76]. The work in the
nth round of collision injected by an external agent can be
formulated as

�W n =
∫ nτ ′

(n−1)τ ′
dt

d

dt
TrSR[Ĥtot(t )ρSR(t )]

=
∫ nτ ′

(n−1)τ ′
TrSR

[
dĤtot(t )

dt
ρSR(t )

]
dt

= TrSR(ĤSR{ρSR[(n − 1)τ ′] − ρSR(nτ ′)}), (6)

where we have used TrSR[Ĥtot(t ) dρSR (t )
dt ] = 0. Note that in

Eq. (6) ρSR[(n − 1)τ ′] ≡ ρn−1
SR = ρn−1

S ⊗ ρR and ρSR(nτ ′) ≡
ρn

SR. The heat flowing out of reservoir Ri in the nth collision is
defined as

�Qn
i = −Tr

[
ĤRi

(
ρn

Ri
− ρRi

)]
, (7)

which is just the energy change of Ri during the collision.
Here, we have attributed all the energy changes of reservoir
Ri whether in thermal state or in nonequilibrium state to heat.
This could be regarded as an assumption since a generic
system in a nonequilibrium state interacting with another
one can also exchange energy in the form of work [68]. As
TrSR[(ĤS + ĤR + ĤSR)(ρn

SR − ρn−1
SR )] = 0, we can obtain by

the quantities in Eqs. (6) and (7) that the change in internal

energy of the system is

�U n
S = Tr

[
ĤS

(
ρn

S − ρn−1
S

)] =
M∑
i

�Qn
i + �W n, (8)

which complies with the first law of thermodynamics.

C. Entropy production

The second law is embodied by the non-negativity of the
entropy production, which can be expressed for the nth colli-
sion as [77]

	 = Iρn
SR

(S : R) + D
[
ρn

R

∥∥ρR
]

� 0. (9)

The first term of Eq. (9) is quantum mutual information quan-
tifying correlations between the system and all the reservoirs
established in the nth collision, which is defined as Iρn

SR
(S :

R) = S(ρn
S ) + S(ρn

R) − S(ρn
SR) with S(�) = −Tr[� ln �] being

the von Neumann entropy of � and ρn
R = TrSρ

n
SR. The second

term of Eq. (9) is quantum relative entropy for the states
of reservoirs before and after the collision. Therefore, the
irreversibility of a collision process originates from cutting off
correlations of the system and reservoirs, as well as discarding
the information of reservoirs. Since the system and reservoirs
are initially uncorrelated and the von Neumann entropy re-
mains invariant in unitary dynamics, we obtain that Iρn

SR
(S :

R) = −�S̃(ρn
S ) + �S(ρn

R), with �S̃(ρn
S ) = S(ρn−1

S ) − S(ρn
S )

the entropy decrease of the system and �S(ρn
R) = S(ρn

R) −
S(ρR) the entropy increase of reservoirs. The entropy produc-
tion can thus be updated to

	 = −�S̃
(
ρn

S

) + �S
(
ρn

R

) + D
[
ρn

R

∥∥ρR
]

� 0. (10)

For the later construction of a Landauer-like bound, we
integrate the heat current �Qn

i into the expression of entropy
production by associating the state ρR with reference thermal
state ρ̃ th

R = ∏M
i=1 ρ̃ th

Ri
with ρ̃ th

Ri
= e−βi ĤRi /Z̃i being introduced

previously in Sec. II A. With the state ρ̃ th
R , the entropy increase

�S(ρn
R) of reservoirs can be expanded as

�S(ρn
R) = −Tr

[
ρn

R ln ρn
R

] + Tr
[
ρR ln ρR

]
= −Tr

[
ρn

R ln ρn
R

] + Tr
[
ρn

R ln ρ̃ th
R

] − Tr
[
ρn

R ln ρ̃ th
R

]
+Tr

[
ρR ln ρ̃ th

R

] − Tr
[
ρR ln ρ̃ th

R

] + Tr
[
ρR ln ρR

]
= −D

[
ρn

R

∥∥ρ̃ th
R

] +
M∑
i

βi�Q̃n
i + D

[
ρR

∥∥ρ̃ th
R

]
, (11)

where �Q̃n
i = −�Qn

i is the heat flowing from S to Ri. By
inserting the expression �S(ρn

R) in Eq. (11) into Eq. (10), the
entropy production can be reformulated as

	 =
M∑
i

βi�Q̃n
i − �S̃(ρn

S ) + D
[
ρn

R‖ρR
]

+D
[
ρR

∥∥ρ̃ th
R

] − D
[
ρn

R

∥∥ρ̃ th
R

]
� 0. (12)

In Eq. (12), the term D[ρR‖ρ̃ th
R ] characterizes the driving

process for the preparation of NERs whose influences on
the entropy production in the collision process can be exam-
ined more precisely when we identify two contributions to
a nonequilibrium state: one is due to population mismatch
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FIG. 2. Plots of the LHS (solid symbols) and RHS (hollow symbols) of our Landauer-like principle in the equality form, Eq. (16), against
the collision number n for the system in contact with a reservoir Rh (M = 1) (a) and two reservoirs Rh and Rc (M = 2) (b). We set ω0

h = 2ωS ,
βh = ωS , and gx

h = gy
h = 10ωS for the case of M = 1, while ω0

h = ω0
c = 2ωS , βh = 0.5ωS , βc = ωS , and gx

h(c) = gy
h(c) = 10ωS for the case of

M = 2. The system is initially prepared in its ground state and the other parameters are set as τ = ωS and τ ′ = 0.01ωS .

with respect to the thermal state and the other one is due to
the coherence generated in the preparation process. Therefore,
D[ρR‖ρ̃ th

R ] can be decomposed into two components being of
the forms [72–75]

D
[
ρR

∥∥ρ̃ th
R

] = D
[
�[ρR]

∥∥ρ̃ th
R

] + C(ρR), (13)

where D[�[ρR]‖ρ̃ th
R ] denotes the imbalance of population be-

tween ρR and ρ̃ th
R with �[�] meaning a dephasing map for �

by which only diagonal matrix elements are left, while C(ρR)
is the relative entropy of coherence of ρR generated in the
driving process defined as

C(ρR) = D[ρR‖�[ρR]] = S(�[ρR]) − S(ρR). (14)

D. Landauer-like bound

Having obtained explicit forms of entropy production, we
proceed to explore the possible constraint on the dissipated
heat of the system in NERs by information-theoretic entropy
in the sense of the Landauer principle. To provide a bench-
mark for NERs, we temporarily return to the scenario without
the driving process, namely, the reservoirs are prepared in
thermal states with ρR = ρ th

R = ρ̃ th
R , under which the usual

Landauer principle, in forms of both equality and inequality,
can be recovered from Eqs. (9) and (12) as [78]

M∑
i

βi�Q̃n
i = �S̃

(
ρn

S

) + Iρn
SR

(S : R)

+D[
ρn

R

∥∥ρR
]

� �S̃
(
ρn

S

)
, (15)

where we use the calligraphy fonts to represent the thermody-
namic quantities in thermal reservoirs. Turning back to NERs,
a Landauer-like principle in the equality form can also be
constructed by means of Eqs. (9) and (12) as

M∑
i

βi�Q̃n
i = �S̃

(
ρn

S

) + Iρn
SR

(S : R)

+ D
[
ρn

R

∥∥ρ̃ th
R

] − D
[
ρR

∥∥ρ̃ th
R

]
. (16)

Here, we should point out that although a NER cannot be
endowed with a definite temperature (βi is the temperature
of thermal reservoir Ri before driving), we still call equality
(16) the Landauer-like principle in the presence of NERs, as
an analogy of the conventional one in the presence of thermal
reservoirs. We will numerically verify the validity of equality
(16) by comparing its left-hand side (LHS) with the right-hand
side (RHS) for a concrete model (see Fig. 2). Even though
the Landauer-like principle of equality from (16) in NERs is
established, the corresponding inequality form

M∑
i

βi�Q̃n
i � �S̃

(
ρn

S

)
(17)

cannot always hold and will be violated under the condition

D
[
ρR

∥∥ρ̃ th
R

]
> Iρn

SR
(S : R) + D

[
ρn

R

∥∥ρ̃ th
R

]
. (18)

Recall that ρR is the nonequilibrium state of reservoirs driven
from initial thermal state ρ th

R , while ρ̃ th
R is the associated refer-

ence thermal state. From the condition (18), we find that the
bound (17) is more likely to be violated when the distance of
ρR from the state ρ̃ th

R in terms of D[ρR‖ρ̃ th
R ] is larger. In other

words, whether the condition (18) can be reached depends
on the state ρR of NERs which in turn is determined by the
costs of the driving process in our scheme. Therefore, the
Landauer-like bound (17) can still work for NERs that do
not arrive at the condition (18), while being violated for ones
satisfying it. The implications of this latter case are studied
in the following. Here, we should clarify that although the
condition (18) can indicate qualitatively the costs of prepara-
tion of NERs that may induce the violation of Landauer-like
bound (17) via the term D[ρR‖ρ̃ th

R ], the concrete costs in terms
of thermodynamic quantities, such as work, for creating the
NERs is yet to be addressed.

III. IMPLICATIONS OF VIOLATION OF LANDAUER-LIKE
BOUND IN NERs

In the following, we address the implications of break-
down of the Landauer-like bound (17) in several anomalous
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phenomena occurring in the presence of NERs. We show that
the violation of Eq. (17) signifies the possibility of increasing
the efficiency of QTMs beyond the Carnot limit, extracting
work from a single reservoir as well as transferring heat from
a cold reservoir to a hot one spontaneously. That is, these
unusual results appear when the state of NERs satisfies the
condition (18) under which the Landauer-like bound (17)
breaks down. As an illustration, we consider that the system
S (i.e., the working substance) is coupled to two NERs, Rh

and Rc, and both of them are driven from thermal states with
inverse temperatures βh and βc (βh < βc), respectively.

A. Enhancing efficiency of QTMs beyond Carnot limits

We first show that the efficiency of QTMs operated in
NERs can be enhanced to exceed the Carnot bound for corre-
sponding thermal reservoirs. It is known that in the presence
of thermal reservoirs, i.e., Rh and Rc are in thermal states when
interacting with S, the efficiency ηth of an engine and the coef-
ficient of performance (COP) ζth of a refrigerator are bounded
by Carnot efficiency ηc = 1 − βh/βc and Carnot COP ζc =
βh/(βc − βh), respectively, in the sense of ηth = ηc − ηe and
ζth = ζc − ζe with ηe and ζe being strictly non-negative. The
explicit forms of ηe and ζe can be expressed as

ηe = Iρ∗
SR

(S : R) +D[
ρ∗

R

∥∥ρR
]

βc�Q∗
h

, (19a)

ζe = Iρ∗
SR

(S : R) +D[
ρ∗

R

∥∥ρR
]

(βc − βh)�W∗ , (19b)

in which the notation X ∗ represents quantity X in the steady-
state regime and the numerator Iρ∗

SR
(S : R) +D[ρ∗

R‖ρR] is just
the entropy production in thermal reservoirs [cf. Eq. (15)]
implying that ηth < ηc and ζth < ζc are guaranteed by the
second law of thermodynamics. As to be shown, however, in
the presence of NERs, the efficiency (COP) of an engine (a
refrigerator) can be enhanced to exceed the Carnot efficiency
ηc (COP ζc) as long as the state of NERs fulfills the condition
(18) under which the Landauer-like bound (17) is violated.

The efficiency η of an engine and the COP ζ of a refriger-
ator are defined as

η = |�W ∗|
�Q∗

h

, (20a)

ζ = �Q∗
c

�W ∗ . (20b)

By combining the relation �Q∗
h + �Q∗

c + �W ∗ = 0 and our
Landauer-like principle (16), the efficiency (20a) and COP
(20b) can be further decomposed into two terms (see the
Appendix for the derivation)

η = ηc − ηne, (21a)

ζ = ζc − ζne, (21b)

with ηne and ζne being of the forms

ηne = Iρ∗
SR

(S : R) + D
[
ρ∗

R

∥∥ρ̃ th
R

] − D
[
ρR

∥∥ρ̃ th
R

]
βc�Q∗

h

, (22a)

ζne = Iρ∗
SR

(S : R) + D
[
ρ∗

R

∥∥ρ̃ th
R

] − D
[
ρR

∥∥ρ̃ th
R

]
(βc − βh)�W ∗ . (22b)

Obviously, only when ηne � 0 (ζne � 0) can the efficiency
of an engine (the COP of a refrigerator) be bounded by the
Carnot efficiency ηc (Carnot COP ζc). However, we find that
ηne < 0 (ζne < 0), namely, η > ηc (ζ > ζc), if Iρ∗

SR
(S : R) +

D[ρ∗
R‖ρ̃ th

R ] − D[ρR‖ρ̃ th
R ] < 0, which is just the condition (18)

for the breakdown of Landauer-like bound (17). Therefore, the
Carnot efficiency (Carnot COP) can be surpassed in the pres-
ence of NERs when the Landauer-like bound (17) is violated
under the condition (18).

B. Extracting work from a single NER

To show the extraction of work from a single NER, we set
�Q∗

c = 0, i.e., the system is only in contact with Rh. In this
case, the first law �Q∗

h + �Q∗
c + �W ∗ = 0 in the steady-state

regime is reduced to �W ∗ = −�Q∗
h, in which �W ∗ is the

work performed on the system by an external agent so that
�W ∗ < 0 means the extraction of work from Rh. If the reser-
voir Rh is in the thermal state, the usual Landauer principle
(15) can be simplified as

βh�W∗ = −βh�Q∗
h = Iρ∗

SR
(S : R) +D[ρ∗

R‖ρR] � 0, (23)

which shows that no work can be extracted from a single ther-
mal bath. Nevertheless, when Rh is a NER, our Landauer-like
principle (16) is reduced to

βh�W ∗ = − βh�Q∗
h = Iρ∗

SR
(S : R)

+ D
[
ρ∗

R

∥∥ρ̃ th
R

] − D
[
ρR

∥∥ρ̃ th
R

]
, (24)

which implies that work can be extracted from Rh

with �W ∗ < 0 under precisely the condition (18), i.e.,
D[ρR‖ρ̃ th

R ] > Iρ∗
SR

(S : R) + D[ρ∗
R‖ρ̃ th

R ].

C. Transferring heat from a cold reservoir
to a hot one spontaneously

Here, we show that breakdown of the Landauer-like bound
(17) leads to spontaneous heat flow from a cold reservoir to
a hot one. To exclude the involvement of work, we assume
�W ∗ = 0 so that �Q∗

h = −�Q∗
c . If both reservoirs Rh and Rc

are in thermal states with βc > βh, one obtains from the usual
Landauer principle (15) the expression

(βc − βh)�Q∗
c = −Iρ∗

SR
(S : R) −D[ρ∗

R‖ρR] � 0, (25)

which indicates that the heat is transferred in the normal
manner with �Q∗

c � 0. However, when the thermal reservoirs
are driven to NERs, our Landauer-like principle (16) brings
about

(βc − βh)�Q∗
c = −Iρ∗

SR
(S : R) − D

[
ρ∗

R

∥∥ρ̃ th
R

] + D
[
ρR

∥∥ρ̃ th
R

]
,

(26)

which implies that the spontaneous heat flow from Rc to
Rh with �Q∗

c > 0 is possible under the condition (18), i.e.,
D[ρR‖ρ̃ th

R ] > Iρ∗
SR

(S : R) + D[ρ∗
R‖ρ̃ th

R ].
So far, we have shown the implications of breakdown of

the Landauer-like bound (17) for three unusual phenomena
that arise in the presence of NERs. The underlying reason
for these phenomena can be attributed to the fact that the
NERs are taken as free resources. When energetic costs for
the preparations of NERs are reasonably taken into account,
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these unconventional results could be recovered [7]. On the
other hand, if the preparation costs are acceptable, the NERs
can be regarded as useful resources to power thermodynamic
tasks that are prohibitive by means of thermal reservoirs. Our
findings provide guidelines for the preparation of effective
NERs that can achieve certain tasks in practical applications.

IV. ILLUSTRATION VIA A CONCRETE MODEL

In this section, we illustrate the obtained results through
a concrete physical model in which both the system and the
reservoirs are modeled as qubits (see Fig. 1). To implement
the driving process, we set a time-dependent Hamiltonian to a
generic ancilla in the reservoir Ri being of the form [79,80]

ĤRi (t ) = ωi(t )

2

[
cos

(
πt

2τ

)
σ x

i + sin

(
πt

2τ

)
σ z

i

]
, (27)

where the frequency of each ancilla varies linearly as ωi(t ) =
ω0

i (1 − t/τ ) + (ωτ
i t )/τ and {σ x

i , σ
y
i , σ z

i } are Pauli operators.
At initial time t = 0, the ancillas in Ri are prepared in
identical thermal states ρ th

Ri
= e−βi Ĥ0

Ri /Z0
i with Ĥ0

Ri
≡ ĤRi (0) =

(ω0
i σ

x
i )/2 at inverse temperature βi. By exerting a driving

protocol for a duration τ , the initial thermal state ρ th
Ri

of Ri is

transformed to ρRi = Ûi(τ )ρ th
Ri

Ûi
†
(τ ) with the time-evolution

operator Ûi(τ ) = T exp(− i
h̄

∫ τ

0 ĤRi (t )dt ) generated by the
Hamiltonian (27). The reference thermal state associated with
ρRi reads ρ̃ th

Ri
= e−βi ĤRi /Z̃i with ĤRi ≡ ĤRi (τ ) = (ωτ

i σ
z
i )/2. By

varying the parameter ωτ
i in the Hamiltonian ĤRi (t ) for a fixed

τ , we can obtain distinct NERs, which allows us to show that
only when the state of NERs fulfills condition (18) can those
unconventional phenomena appear.

The system S is governed by ĤS = (ωSσ
z
S )/2 with the

frequency ωS and the interaction Hamiltonian of system reser-
voirs in the collision process is chosen as

ĤSR =
M∑

i=1

ĤSRi =
M∑

i=1

(
gx

i σ
x
S ⊗ σ x

i + gy
i σ

y
S ⊗ σ

y
i ), (28)

where gx
i and gy

i stand for coupling strengths between S and
Ri. Only when both gx

i = gy
i and ωS = ωτ

i for i = 1, 2, . . . , M
are satisfied can the strict energy conservation of the system-
reservoirs interaction be ensured, otherwise the work is
required to sustain system-reservoirs collisions.

With this physical model, we first numerically verify the
validity of equality (16), i.e., the Landauer-like principle in
NERs. We plot the LHS and RHS of (16) in the dynamical
evolution for the system interacting with a reservoir Rh (M =
1) and two reservoirs Rh and Rc (M = 2) in Figs. 2(a) and 2(b),
respectively. One can see that the LHS exactly coincides with
the RHS for all the cases confirming the validity of equality
(16).

A. Performances of QTMs

In this section, we illustrate the performances of QTMs in
NERs by considering a configuration in which the system S
is coupled to two reservoirs Rh and Rc and only one of them
is driven out of equilibrium. Here, for simplicity we assume
that if the initial thermal reservoir does not undergo a driving

FIG. 3. Three operational regimes of QTMs in the steady state of
the system for the hot reservoir Rh being driven out of equilibrium.
(a) Thermodynamic quantities �Q∗

h , �Q∗
c , �W ∗, and Landauer-

like bound (17) in terms of the difference
∑h,c

i βi�Q̃∗
i − �S̃(ρ∗

S )
as a function of ωτ

h/ωS . (b) The terms D[ρR‖ρ̃ th
R ] and Iρ∗

SR
(S :

R) + D[ρ∗
R‖ρ̃ th

R ] of the LHS and RHS of the condition (18) as
well as two components of D[ρR‖ρ̃ th

R ], namely, nonequilibrium
population D[�[ρR]‖ρ̃ th

R ] and relative entropy of coherence C(ρR),
against ωτ

h/ωS . The other parameters are set as ω0
h = 3ωS , ωc =

ωS , τ = ωS , τ ′ = 0.01ωS , gx
h(c) = gy

h(c) = 10ωS , βh = 0.5ωS , and
βc = ωS .

process, its Hamiltonian is given as ĤRh (c) = ωh(c)σ
z
h(c)/2, oth-

erwise it is governed by the time-dependent Hamiltonian in
Eq. (27).

First, we consider that the hot reservoir Rh, being prepared
initially in thermal state ρ th

Rh
= e−βhω

0
hσ

x
h /2/Z0

h with inverse
temperature βh, undergoes a driving process, while the cold
one Rc remains in its thermal state ρ th

Rc
= e−βcωcσ

z
c /2/Zc with

βc = 2βh before colliding with the system. We show in
Fig. 3(a) the steady-state heat currents �Q∗

h, �Q∗
c , and the

steady-state work �W ∗ with respect to ωτ
h/ωS . It is found that

the machine can operate as an accelerator (with �W ∗ > 0,
�Q∗

h > 0, and �Q∗
c < 0) or as an engine (with �W ∗ < 0,

�Q∗
h > 0, and �Q∗

c < 0) depending on intervals of ωτ
h/ωS .

Remarkably, when ωτ
h > 2ωS , there appears an engine with ef-

ficiency being larger than the Carnot value ηc = 1 − βh/βc =
0.5, which is called here superengine to distinguish it from
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the usual engine. Therefore, we can identify three operat-
ing regimes of the machine, i.e., accelerator, usual engine,
and superengine, as labeled in Fig. 3. In Fig. 3(a), we also
examine the Landauer-like bound (17) by plotting the dif-
ference

∑h,c
i βi�Q̃∗

i − �S̃(ρ∗
S ), which is positive, i.e., the

bound still holds, in the regimes of accelerator and engine,
whereas it becomes negative, i.e., the bound breaks down, in
the domain of superengine (i.e., ωτ

h > 2ωS). Therefore, the
appearance of superengine is related to the breakdown of
the Landauer-like bound (17). The violating condition (18) is
manifested in Fig. 3(b), in which one can see that the value of
D[ρR‖ρ̃ th

R ] becomes larger than that of Iρ∗
SR

(S : R) + D[ρ∗
R‖ρ̃ th

R ]
once ωτ

h > 2ωS is consistent with the interval of occurrence
of super-engine shown in Fig. 3(a). In Fig. 3(b), we also
display two contributions of D[ρR‖ρ̃ th

R ] [see Eq. (13)], i.e., the
relative entropy of coherence C(ρR) and the nonequilibrium
population D[�[ρR]‖ρ̃ th

R ] of ρR. As can be visualized, the
coherence of ρR in terms of C(ρR) generated in the driv-
ing process makes a major contribution to D[ρR‖ρ̃ th

R ] for the
relatively small values of ωτ

h/ωS , while the nonequilibrium
population dominates when the values of ωτ

h/ωS become
large.

Next, we assume that the cold reservoir Rc is driven out
of equilibrium from initial thermal state ρ th

Rc
= e−βcω

0
c σ

x
c /2/Z0

c
with inverse temperature βc, while the hot one Rh remains
in thermal state ρ th

Rh
= e−βhωhσ

z
h /2/Zh with βc = 2βh before

colliding with the system. In this case, as shown in Fig. 4(a),
the machine can work as a refrigerator (�W ∗ > 0, �Q∗

c > 0,
and �Q∗

h < 0) but with the COP being either smaller than
the Carnot limit ζc = βh/(βc − βh) = 1 in the interval 0 <

ωτ
c /ωS < 0.5 or larger than ζc in the interval 0.5 < ωτ

c /ωS <

1. We call the refrigerator in the latter case superrefrigerator
to distinguish it from the usual refrigerator. In the region of
ωτ

c /ωS > 1, the machine also exhibits anomalous functions,
namely, it can extract work from the system with �W ∗ <

0 and at the same time transfer heat from Rc to Rh with
�Q∗

c > 0 and �Q∗
h < 0, which is thus called hybrid refrig-

erator. Both the superrefrigerator and the hybrid refrigerator
appear in the intervals in which the Landauer-like bound (17)
is violated, as shown in Fig. 4(a), implying the connection
between these two events. Figure 4(b) displays two sides of
the condition (18) confirming that D[ρR‖ρ̃ th

R ] > Iρ∗
SR

(S : R) +
D[ρ∗

R‖ρ̃ th
R ] in the region of ωτ

c /ωS > 0.5 being consistent with
that of occurrences of the superrefrigerator and the hybrid
refrigerator. Two contributions of D[ρR‖ρ̃ th

R ], i.e., the relative
entropy of coherence C(ρR) and the nonequilibrium popula-
tion D[�[ρR]‖ρ̃ th

R ] of ρR, are also illustrated in Fig. 4(b).
By means of a simple model consisting of a qubit in contact

with two reservoirs, we have illustrated that, by changing
the states of the NER, the system as a thermal machine can
exhibit not only normal functions but also those that cannot
be realized in thermal reservoirs once the Landauer-like bound
in Eq. (17) breaks down. Since our results are derived without
putting any restriction on the dimension of the system and the
number of reservoirs, they can apply to other configurations
such as a multilevel system in contact with multiple reservoirs.
It can be expected that more interesting operating regimes
with greatly enhanced performances would occur for those
complex scenarios.

FIG. 4. The same as Fig. 3 but for the case of driving the cold
reservoir Rc out of equilibrium so that all the plotted quantities are
against ωτ

c /ωS . The parameters are set here as ω0
c = ωS , ωh = ωS ,

τ = ωS , τ ′ = 0.01ωS , gx
h(c) = gy

h(c) = 10ωS , βh = 0.5ωS , and βc =
ωS .

B. Work extraction from a single NER and spontaneous heat
transfer from a cold reservoir to a hot one

In this section, we first show the extracting work from a
single NER by assuming that the system S is coupled only to
Rh. From Fig. 5(a), we can see that the work can be extracted
from the single NER Rh characterized by �W ∗ < 0 in certain
intervals of ωτ

h/ωS . In Fig. 5(b), we illustrate the LHS and the
RHS of the condition (18), i.e., D[ρR‖ρ̃ th

R ] and Iρ∗
SR

(S : R) +
D[ρ∗

R‖ρ̃ th
R ], against ωτ

h/ωS . A comparison between Figs. 5(a)
and 5(b) clearly indicates that the work extraction from a
single reservoir is possible when the condition (18) is reached,
namely, D[ρR‖ρ̃ th

R ] > Iρ∗
SR

(S : R) + D[ρ∗
R‖ρ̃ th

R ].
Next, we turn to the unconventional phenomenon of spon-

taneous heat flow from the cold reservoir Rc to the hot one
Rh. We assume that both Rc and Rh are transformed to NERs
from initially thermal ones. In order to ensure that no work
is involved in the process of heat transfer, we set strict en-
ergy conservation for system-reservoirs interactions in terms
of ωS = ωτ

h = ωτ
c and meanwhile gx

h(c) = gy
h(c). We display

in Fig. 6(a) steady-state heat currents �Q∗
c and �Q∗

h and in
Fig. 6(b) the values of D[ρR‖ρ̃ th

R ] and Iρ∗
SR

(S : R) + D[ρ∗
R‖ρ̃ th

R ]
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FIG. 5. The work �W ∗ (a) and the LHS and the RHS of the
condition (18), i.e., D[ρR‖ρ̃ th

R ] and Iρ∗
SR

(S : R) + D[ρ∗
R‖ρ̃ th

R ] (b), as a
function of ωτ

h/ωS for the system being coupled to a single NER
Rh. The remaining parameters are ω0

h = 3ωS , τ = ωS , τ ′ = 0.01ωS ,
gx

h = 10ωS , gy
h = 5ωS , and βh = ωS .

with respect to ω0
h/ωS , respectively. It turns out that sponta-

neous heat flow from Rc to Rh with �Q∗
c > 0 occurs under the

condition (18), i.e., D[ρR‖ρ̃ th
R ] > Iρ∗

SR
(S : R) + D[ρ∗

R‖ρ̃ th
R ].

V. CONCLUSION

In conclusion, we have studied quantum thermodynamics
in the presence of NERs by considering a two-stage scheme,
in which the NERs are firstly prepared from initial thermal
reservoirs through a unitary driving process and then proceed
to interact with the system of interest. On the analogy of con-
ventional Landauer principle in thermal baths [see Eq. (15)]
[78], we establish a similar equality (16) for NERs connecting
the dissipated heat with information theory entropy. From the
equality (16), it is found that a Landauer-like bound, Eq. (17),
cannot always hold in NERs. The condition (18) for its viola-
tion is derived, which proves to be closely related to the states
of NERs generated in the prior preparation process. We then
show that the breakdown of Landauer-like bound (17) implies
several anomalous phenomena occurring in NERs, namely,
the excess of Carnot efficiency for QTMs, the extraction of
work from a single reservoir, and the spontaneous heat flow

FIG. 6. The steady-state currents �Q∗
c and �Q∗

h (a) and the LHS
and the RHS of the condition (18), i.e., D[ρR‖ρ̃ th

R ] and Iρ∗
SR

(S : R) +
D[ρ∗

R‖ρ̃ th
R ] (b), as a function of ω0

h/ωS for the system being coupled to
two NERs Rh and Rc. The remaining parameters are ωτ

h = ωτ
c = ωS ,

ω0
c = 2ωS , τ = ωS , τ ′ = 0.01ωS , gx

h(c) = gy
h(c) = 10ωS , βh = 0.5ωS ,

and βc = 10ωS .

from a cold reservoir to a hot one. By considering a con-
crete physical model, we have illustrated and confirmed the
obtained results. Our work sheds some light on the reason and
condition for several unusual phenomena occurring in NERs
and is helpful for one to prepare and exploit effective NERs to
realize thermodynamic tasks.
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APPENDIX: DERIVATIONS OF EQS. (21a)–(22b)

In the steady-state regime, the first law and the Landauer-
like principle (16) are reduced, respectively, to

�Q∗
h + �Q∗

c + �W ∗ = 0 (A1)
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and

βh�Q∗
h + βc�Q∗

c = −Iρ∗
SR

(S : R) − D
[
ρ∗

R

∥∥ρ̃ th
R

] + D
[
ρR

∥∥ρ̃ th
R

]
.

(A2)

The efficiency of an engine given by (20a) can be written as

η = |�W ∗|
�Q∗

h

= �Q∗
h + �Q∗

c

�Q∗
h

= 1 + βc�Q∗
c

βc�Q∗
h

= ηc + βh�Q∗
h + βc�Q∗

c

βc�Q∗
h

(A3)

with ηc = 1 − βh

βc
. By inserting Eq. (A2) into Eq. (A3), we

obtain

η = ηc − Iρ∗
SR

(S : R) + D
[
ρ∗

R

∥∥ρ̃ th
R

] − D
[
ρR

∥∥ρ̃ th
R

]
βc�Q∗

h

. (A4)

In the same way, we can express the COP of a refrigerator
given in (20b) as

ζ = �Q∗
c

�W ∗ = βh(−�Q∗
c − �Q∗

h ) + βc�Q∗
c + βh�Q∗

h

(βc − βh)�W ∗

= ζc + βc�Q∗
c + βh�Q∗

h

(βc − βh)�W ∗

= ζc − Iρ∗
SR

(S : R) + D
[
ρ∗

R

∥∥ρ̃ th
R

] − D
[
ρR

∥∥ρ̃ th
R

]
(βc − βh)�W ∗ , (A5)

with ζc = βh

βc−βh
.
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Kurizki, Multiatom quantum coherences in micromasers as
fuel for thermal and nonthermal machines, Entropy 18, 244
(2016).

[68] F. L. S. Rodrigues, G. De Chiara, M. Paternostro, and G. T.
Landi, Thermodynamics of Weakly Coherent Collisional Mod-
els, Phys. Rev. Lett. 123, 140601 (2019).

[69] K. Hammam, H. Leitch, Y. Hassouni, and G. De Chiara,
Exploiting coherence for quantum thermodynamic advantage,
New J. Phys. 24, 113053 (2022).

[70] B. Çakmak, A. Manatuly, and Ö. E. Müstecaplıoğlu, Thermal
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