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Uncertainty relation for non-Hermitian systems
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We construct an uncertainty relation for arbitrary finite-dimensional PT -invariant non-Hermitian quantum
systems within a special inner product framework. This construction is led by “good observables,” which are
a more general class of operators. We show that the cumulative gain in the quantum Fisher information when
measuring two good observables for such non-Hermitian systems is much better than their Hermitian counterpart.
Minimum uncertainty states being the best candidates for this gain near the exceptional point supports the
intelligent or simultaneous non-Hermitian quantum sensors.
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I. INTRODUCTION

The Heisenberg uncertainty principle [1–3] is one of the
most important tenets of quantum mechanics. It encapsulates
the impossibility of simultaneous measurement of two incom-
patible observables. In standard quantum mechanics, the real
spectrum, complete set of orthonormal eigenstates with the
positive definite norm, and unitary evolution of the system
are guaranteed by the Hermitian Hamiltonian. Operators for
the physical observables are Hermitian with the measurement
result as one of its real eigenvalues. The Heisenberg uncer-
tainty relation rigorously proved by Robertson [2] for the two
general incompatible observables is

�A2�B2 � 1
4 | 〈ψ | [A, B] |ψ〉 |2. (1)

The uncertainty relation has been actively debated in the past
two decades under the two different outlooks of “preparation”
and “measurement” [4–8], followed by various experimental
realizations [9–11].

Inequality (1) saturates for the minimum uncertainty states
(MUS). MUS are vital because these states are expected to
reproduce, as closely as possible, the classical motion, and
those have been of utmost importance in the broad area of
physics starting from quantum optics [12] to theoretical devel-
opments in quantum gravity [13]. If one defines the ratio of the
left-hand side (LHS) and right-hand side (RHS) of Ineq. (1) as
η, then η = 1 corresponds to the MUS. It has also been shown
that the MUS are the eigenstates of the operator A + iλB for
λ = �A/�B [14].

Over the past two decades, there has been great interest
in a certain class of non-Hermitian quantum theories where
the Hermiticity condition on the Hamiltonian of the system
is replaced with a physical and less constraining condition
of PT symmetry [15–25]. Such PT -invariant non-Hermitian
systems generally exhibit a PT -symmetry-breaking transi-
tion that separates two regions: (i) PT -symmetric phase in
which the entire spectrum is real and the eigenfunctions of the
Hamiltonian respect PT symmetry and (ii) PT -broken phase
in which the entire spectrum (or a part of it) is in complex
conjugate pairs and the eigenstates of the Hamiltonian are

not the eigenstates of the PT operator. The phase transi-
tion happens at the exceptional point (EP) for the particular
Hamiltonian. It has been well established that a modified
Hilbert space equipped with a positive definite CPT inner
product [16] can lead to consistent quantum theories in the
PT -symmetric phase, but very little has been explored in
the broken phase which also plays a significant role in de-
veloping non-Hermitian theories [17–21,26]. While the CPT
inner product is restricted to the PT -symmetric phase only,
the recently proposed G-metric inner product based on the
geometry of the quantum states by defining a connection-
compatible positive definite metric operator G [27–30] can be
extended even in the PT -broken phase.

The question of the fate of the Heisenberg uncertainty
relation for the system described by the PT -invariant
non-Hermitian Hamiltonian arises. This question is criti-
cal because the behavior of the uncertainty relation can be
highly validating of the proposed theory of PT -symmetric
non-Hermitian quantum mechanics. The uncertainty relation
for position and momentum for such non-Hermitian systems
has been discussed in a different context for a continuum
model [31]. In this work, we show that the Hermiticity con-
dition on the operator O can be replaced by a more general
condition we call “good observable,” meaning O†G = GO,
and we use it to construct the modified uncertainty relation
for two such good observables A and B,

�A2
G�B2

G � 1
4 | 〈ψ | G[A, B] |ψ〉 |2, (2)

for an arbitrary finite-dimensional system. Here,
�A2

G = 〈ψ |GA2|ψ〉 − (〈ψ |GA|ψ〉)2, �B2
G = 〈ψ |GB2|ψ〉 −

(〈ψ |GB|ψ〉)2, and G is a Hermitian positive definite
matrix. A good observable can be either Hermitian or
non-Hermitian and the uncertainty relation is valid in the
PT -symmetric as well as PT -broken phase. We also show
that the non-Hermitian Hamiltonian itself is one of such
good observables in the PT -symmetric phase but not in the
PT -broken phase, thus indicating the EP for the system.
The pictorial representation of the good observable condition
on the Hamiltonian in Fig. 1 clearly demonstrates that the
usual Hermitian quantum mechanics is a special case of
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FIG. 1. General pictorial representation of the “good observable”
condition on the Hamiltonian in the PT -symmetric and PT -broken
region with the exceptional point γ = γEP. The condition reduces to
Hermiticity at the center with G = 1 and γ = 0.

PT -symmetric non-Hermitian quantum mechanics under
the G-metric inner product formalism in the context of the
observables. Also, MUS in this context are represented by
ηG = 1 for ηG defined as the ratio of the LHS and RHS of
Eq. (2) and ηG = η for Dirac inner product (G = 1). Violation
of the uncertainty relation implies ηG < 1 for Eq. (2) and
η < 1 for Eq. (1).

Quantum Fisher information (QFI) indicates the sensitivity
of a state with respect to the perturbation of parameters and
hence is used in quantum metrology [32]. The gain in QFI
implies the enhancement in the precision of parameter estima-
tion and it has been an active area of investigation [32–35]. We
identify Hermitian good observables for the non-Hermitian
systems and define the cumulative gain in Fisher information
with respect to its Hermitian equivalent when measuring en-
ergy with this Hermitian good observable. We then show that
this cumulative gain shows a drastic improvement near the
EP for the MUS over the random states. We propose to use
this feature as a candidate for the most precise simultaneous
measurement leading to simultaneous quantum sensing near
the EP for such systems [36].

II. 2 × 2 NON-HERMITIAN SYSTEM

To realize the modified uncertainty relation, we begin with
a 2 × 2 model of one parameter PT -invariant system de-
scribed by the Hamiltonian

H (γ ) =
[

iγ 1

1 −iγ

]
, (3)

whose eigenvectors are denoted as |E1〉 and |E2〉. By tuning
the parameter γ , one can go from PT -symmetric phase to the
PT -broken phase; the EP is at γ = γEP = 1.

A state is called PT symmetric if it respects the PT sym-
metry and PT broken otherwise. Thus, in the PT -symmetric
phase, |E1,2〉 are also eigenstates of a PT operator. The
state we choose to demonstrate the behavior of uncertainty
relation is a general superposition of the eigenstates of the
Hamiltonian H in both the PT -symmetric and PT -broken

phases,

|�〉 = N (|E1〉 + peiθ |E2〉), (4)

where N is the normalization constant and p, θ are the state
parameters.

For the non-Hermitian PT -invariant Hamiltonian, it is
necessary to define an inner product that makes the eigen-
vectors of this Hamiltonian orthonormal. The inner product
defined with a positive definite metric operator G satisfies
this property and can be chosen as G = ∑

i |Li〉 〈Li|, with |Li〉
being the ith left eigenvector of H . The dual vector of |ψ〉G in
this formalism is defined as 〈ψ |G = 〈ψ | G and for the corre-
sponding |ψ〉G the inner product reads 〈ψ |ψ〉G = 〈ψ | G |ψ〉.
The matrix G in general is time dependent and satisfies the
equation of motion

∂t G = i[GH − H†G].

In the PT -symmetric phase ∂t G = 0, and it implies that G
is time independent. However, in the PT -broken phase, G is
time dependent. The matrix forms of G for the 2 × 2 systems
in the PT -symmetric and PT -broken phases at t = 0 respec-
tively take the forms

Gs = 1√
1 − γ 2

[
1 −iγ
iγ 1

]
, Gb = 1√

γ 2 − 1

[
γ −i
i γ

]
.

(5)
In the usual quantum mechanics, the real expectation value

of operators imposes the Hermiticity condition on the oper-
ators, i.e., O = O†. However, in the non-Hermitian quantum
mechanics equipped with G-inner product, making the G-
expectation value of an operator O for any state |ψ〉 real leads
to

O†G = GO. (6)

We coin the term “good observable” for the operators that
satisfy this condition. Since G is Hermitian, for Hermitian
operators the condition (6) automatically means [G, O] = 0.
For the Dirac inner product (G = 1) the condition (6) trivially
reduces to the Hermiticity condition on the operators. It is
also straightforward to show from Eq. (6) that there exists
a similarity transformation that maps a non-Hermitian good
observable O to a Hermitian operator Õ = G1/2OG−1/2. Ob-
viously, all the Hermitian operators are good observables for
the Dirac product. However, for the non-Hermitian systems,
what will be a good observable will depend upon the G metric
and it can have different structures in the PT -symmetric and
PT -broken phases. The structure of good observables in the
PT -symmetric phase (γ < 1) is

Os =
(

iγ x x − iy

x + iy −iγ x

)
, (7)

and in the PT -broken phase (γ > 1) for t = 0 is

Ob = 1

γ

(
ix γ (x − iy)

γ (x + iy) −ix

)
, (8)

where x, y are real numbers. We like to emphasize that the
structure of good observables remains the same at all times
in the PT -symmetric phase (since the G metric is time inde-
pendent in this phase), but not in the PT -broken phase. The
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FIG. 2. Contour plots for ηG for observables σx and σz and
generic state (4) in (a) PT -symmetric phase (γ = 0.2), and (b) PT -
broken phase (γ = 1.2). Violation is seen because they are not good
observables in the G-metric inner product framework.

one mentioned in Eq. (8) is the structure of good observable
in the PT -broken phase at the initial time t = 0. The time
dependence of G and hence the good observables is discussed
in the Appendix F. To test our uncertainty relation, one can
choose the observables σx and σz for the generic state (4) with
the G-metric inner product. The uncertainty relation (2) shows
violation for a big segment of states for both PT -symmetric
and PT -broken phases in Fig. 2. Clearly, despite being Her-
mitian, operators σx and σz are not good observables for the
G-metric inner product. However, it is worth mentioning that
within the Dirac product, one can choose Hermitian pairs of
noncommuting observables σx and σz over the state (4) and
see no violation of the uncertainty relation (1) for any value of
the state parameters, as anticipated (see Fig. 3).

For the non-Hermitian systems, an example of the set of
two incompatible good observables is H (γ ), σy in the PT -
symmetric phase and H (1/γ ), σy in the PT -broken phase. As
evident from Fig. 4, the uncertainty relation (2) holds good as
long as one chooses the good observables.

FIG. 3. Contour plots for η for the observables σx and σz

and generic state (4) in (a) PT - symmetric phase (γ = 0.2) and
(b) PT -broken phase (γ = 1.2). Solid blue lines correspond to PT -
symmetric MUS and red dashed lines correspond to PT -broken
MUS.

FIG. 4. Contour plots for ηG and the generic state (4) in (a) PT -
symmetric phase (γ = 0.2) for the good observables H (γ ) and
σy and (b) PT -broken phase (γ = 1.2) for the good observables
H (1/γ ) and σy. Solid blue lines correspond to PT -symmetric MUS
and red dashed lines correspond to PT broken MUS.

In usual quantum mechanics, MUS for the two incompat-
ible observables A and B are the eigenstates of the operator
A + iλB [14], and it is straightforward to see that for the above
pair of incompatible observables, the operator σx + iλσz is
nothing but H (λ) and one can use λ to infer about the states
lying on the MUS lines. However, at the EP (λ = 1), it is
not trivial and requires one to separately check if the state
is an eigenstate of PT operator or not in order to know if
the state is PT symmetric or PT broken. The MUS within
the G-metric inner product framework remain the eigenstates
of A + iλGB operator, where λ2

G = �A2
G/�B2

G, and A, B are
good observables (see Appendix C). We use these facts to
obtain that in the PT -symmetric phase, the MUS line p = 1
contains the PT -broken states and the lines θ = π/2, 3π/2
contain all the PT -symmetric states. In the PT -broken phase,
all the MUS on the lines p = 0, p = ∞, and θ = π/2, 3π/2
are PT -broken states and the ones on the lines θ = 0, π , 2π

are PT -symmetric states. The blue solid lines and red dashed
lines in Fig. 4 are the MUS lines.

III. N × N NON-HERMITIAN SYSTEMS

Indeed, the recipe to derive the condition for good observ-
ables in the previous section can be extended to a general
N × N PT -invariant Hamiltonian. Also, it is straightfor-
ward to show that the non-Hermitian Hamiltonian is a good
observable in the PT -symmetric phase but not in the bro-
ken phase and generalize this 2 × 2 result for an arbitrary
finite-dimensional N × N system (see Appendix A). We pro-
pose the non-Hermitian Hamiltonian H with the nonzero
matrix entries Hj, j+1 = Hj+1, j = 1, Hj, j = i(−1) j+1γ . Here,
j = 1, 2, 3, . . . , N for even integers N . This Hamiltonian has
been examined by two of the authors previously [37] and the
EP shifts toward γ = 0 as N increases and toward γ = 1 as N
approaches 2.

We now construct a Hermitian good observable with the
nonzero matrix entries Oj,N+1− j = i(−1) j for even integers
N . This good observable O reduces to σy for N = 2 and also
remains a good observable in the PT -broken phase.
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FIG. 5. The lower panel shows variation of cumulative Fisher
information τ with respect to γ . All lines correspond to MUS and
symbols correspond to random states. The upper panel shows κ for H
(main) and the Hermitian good observable O (inset) with γ , showing
these are good observables.

To characterize the good observables, we now define an
operator, K = O†G − GO followed by the identifier

κ = N2

∑
rs |Krs|

(
∑

αβ |Oαβ |)(∑lm |Glm|) .

The identifier κ is defined such that κ = 0 for good observable
and nonzero otherwise. Without any loss of generality, κ is
defined such that its order of magnitude remains the same
for different values of N in the PT -broken phase. The upper
panel of Fig. 5 shows γ versus κ for different values of N . It is
evident that κ = 0 in the PT -symmetric phase characterized
by γ < γEP for the Hamiltonian H . Thus, κ can be used as
a parameter to detect the transition from the PT -symmetric
phase to the PT -broken phase. Additionally, Fig. 5 (inset)
also depicts that the Hermitian observables O incompatible
with H is also a good observable.

IV. FISHER INFORMATION GAIN FOR MUS

Generally, non-Hermitian systems provide for better quan-
tum sensors near the EP. The degeneracy lift scales with the
perturbation (ε) for Hermitian versus non-Hermitian systems
as ε versus ε1/2 [35]. Therefore, it is relevant to com-
pare the Fisher information and thus precision in the actual
measurement of the two incompatible observables for the
non-Hermitian systems [38] with its Hermitian counterpart.

In usual Hermitian quantum mechanics, QFI for any pure
states ρ = |ψ〉 〈ψ | is proportional to the variance of the op-
erator A, i.e., FQ = 4�A2. We define the cumulative gain in
the Fisher information in the measurement of incompatible
observables H and O by

τ (H, O) = �H2
G�O2

G

�H̃2�O2
, (9)

where H̃ = G1/2HG−1/2 is the Hermitian counterpart of the
non-Hermitian Hamiltonian and the same applies to O via

an inverse transform. It is important to note that the Her-
mitian counterpart of any good observable is not unique;
e.g., if G = V †V , then Õ = V OV −1 also qualifies as a Her-
mitian counterpart of O. However, we choose V = G1/2 to
ensure that the Hermitian counterpart of a Hermitian good
observable is the observable itself, i.e., for O = O†, its Her-
mitian counterpart Õ = O (see Appendix E). This quantity
τ quantifies the advantage in the measurement precision of
two incompatible observables for non-Hermitian systems over
its Hermitian counterpart. We plot this gain quantity τ with
the parameter γ in the lower panel of Fig. 5 for MUS and
random states, for different N values. It is evident that the
MUS states when averaged over the PT -symmetric states and
PT -broken states show remarkable gain near the EP com-
pared to the random states. Note that the results presented here
are averaged over 20 000 random realizations, and we have
checked the convergence of the results by varying numbers
of random realizations. One can observe this explicitly for
H in Eq. (3) and σy as for the smallest 2 × 2 system in the
PT -symmetric phase. This implies that the best precision can
be achieved near the EP when measuring the observables O
with H in the MUS states. Such a measurement with the
proposed candidates of observables in the MUS may lead to
the simultaneous non-Hermitian quantum sensors near the EP.

V. CONCLUSION

The Heisenberg uncertainty relation (1) does not apply
to the non-Hermitian systems. In this paper, we have shown
that for any finite-dimensional PT -invariant non-Hermitian
systems the observables need not necessarily be Hermitian
operators but good observables (6). We have constructed the
uncertainty relation (2) for these good observables and iden-
tified MUS which mark a boundary for the violation of the
uncertainty relation.

The fact that the non-Hermitian Hamiltonian itself qualifies
a good observable in the PT -symmetric phase can be used as
a diagnostic tool to detect the EP for a general N × N Hamil-
tonians. This can be experimentally realized in an ultracold
fermionic system as a Hamiltonian with gain and loss terms.

The proposed non-Hermitian uncertainty relation has a
potential application in the field of quantum metrology. We
found that the cumulative Fisher information gain increases
near the EP when compared with the corresponding Hermitian
systems. Also, the MUS are shown to be the best candidate
states for measuring two incompatible good observables with
enhanced precision, one of them being the non-Hermitian
Hamiltonian. We propose applying this feature to realize
non-Hermitian quantum sensing near the EP, leading to the
intelligent quantum sensors.
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APPENDIX A: IS HAMILTONIAN A GOOD OBSERVABLE?

In this section, we prove that for any arbitrary finite-
dimensional system, the non-Hermitian Hamiltonian itself is
a good observable in the PT -symmetric phase but not in the
broken phase. In order to find whether the non-Hermitian
Hamiltonian H is a good observable or not, one needs to
check whether H satisfies the condition of good observable,
i.e., H†G = GH , where G = ∑

i |Li〉 〈Li|. |Li〉 and |Ri〉 are left
eigenvector and right eigenvector of H , and they satisfy the
eigenvalue equations H† |Li〉 = hi |Li〉 and H |Ri〉 = h∗

i |Ri〉,
respectively. The vectors |Li〉 and |Ri〉 also satisfy biorthonor-
malization condition, i.e., 〈Ri|Lj〉 = δi j and it automatically
implies

∑
i |Ri〉 〈Li| = 1. All his are completely real (hi = h∗

i )
when H† (or H) belongs to the PT -symmetric phase and
in the broken phase at least two of the eigenvalues must be
complex. Now,

H†G =
∑

i

H† |Li〉 〈Li| =
∑

i

hi |Li〉 〈Li| . (A1)

On the other hand,

GH =
∑

i

|Li〉 〈Li| H =
∑

i

|Li〉 〈Li| H
∑

j

|Rj〉 〈Lj |

=
∑

i j

h∗
j |Li〉 〈Lj | δi j =

∑
i

h∗
i |Li〉 〈Li| . (A2)

It says that H†G = GH will be satisfied only if hi = h∗
i , i.e., H

belongs to the PT -symmetric phase. On the other hand, in the
broken phase, the following condition cannot hold. Hence, H
will be always a good observable in the symmetric phase but
not in the broken phase.

APPENDIX B: UNCERTAINTY RELATION FOR GOOD
OBSERVABLES

We prove the uncertainty relation for the G-inner product
and good observables in this section. In the usual quantum
mechanics where the observables are Hermitian, the Heisen-
berg uncertainty relation for two incompatible observables A
and B is given by

�A2�B2 � 1
4 | 〈ψ | [A, B] |ψ〉 |2, (B1)

where |ψ〉 is a state in the Hilbert space, and �A2 =
〈ψ |A2|ψ〉 − (〈ψ |A|ψ〉)2, �B2 = 〈ψ |B2|ψ〉 − (〈ψ |B|ψ〉)2.
On relaxing the “Hermiticity” condition, the variances are
given by

�A2 = 〈ψ |A†A|ψ〉 − 〈ψ |A†|ψ〉〈ψ |A|ψ〉,
�B2 = 〈ψ |B†B|ψ〉 − 〈ψ |B†|ψ〉〈ψ |B|ψ〉, (B2)

and the commutator term on the RHS of Eq. (B1) can be
written as

1
4 |〈ψ |[A, B]|ψ〉|2

= 1
4 〈ψ |(AB − BA)|ψ〉〈ψ |(B†A† − A†B†)|ψ〉. (B3)

In the G-inner product formalism, the adjoint operators and
the inner product need to be redefined [28] under the rule
A† → G−1A†G, B† → G−1B†G and the inner product under
〈ψ |Q|ψ〉 → 〈ψ |GQ|ψ〉. LHS and RHS of Eq. (B2) can now
be written as

�A2
G = 〈ψ |A†GA|ψ〉 − 〈ψ |A†G|ψ〉〈ψ |GA|ψ〉,

�B2
G = 〈ψ |B†GB|ψ〉 − 〈ψ |B†G|ψ〉〈ψ |GB|ψ〉, (B4)

1
4 |〈ψ |G[A, B]|ψ〉|2

= 1
4 〈ψ |G(AB − BA)|ψ〉〈ψ |(B†A† − A†B†)G|ψ〉. (B5)

The additional constraint of A and B being good observables,
i.e., A†G = GA and B†G = GB, leads to

�A2
G = 〈ψ |GA2|ψ〉 − (〈ψ |GA|ψ〉)2,

�B2
G = 〈ψ |GB2|ψ〉 − (〈ψ |GB|ψ〉)2,

1
4 |〈ψ |G[A, B]|ψ〉|2

= − 1
4 (〈ψ |G(AB − BA)|ψ〉)2 = [

1
2i 〈ψ |G[A, B]|ψ〉]2

.

(B7)

For the uncertainty relation to hold for the two good observ-
ables A and B, the following inequality must satisfy

�A2
G�B2

G � 1
4 | 〈ψ | G[A, B] |ψ〉 |2, (B8)

where �A2
G = 〈ψ |GA2|ψ〉 − (〈ψ |GA|ψ〉)2 and �B2

G =
〈ψ |GB2|ψ〉 − (〈ψ |GB|ψ〉)2.

It is straightforward to show that the above inequality holds
true for good observables in the subsequent steps. Let us
define two vectors in a vector space

| f 〉 = (A − 〈ψ |GA|ψ〉)|ψ〉,
|g〉 = (B − 〈ψ |GB|ψ〉)|ψ〉. (B9)

The dual vectors are

〈 f | = 〈ψ |(A† − 〈ψ |A†G|ψ〉),

〈g| = 〈ψ |(B† − 〈ψ |B†G|ψ〉). (B10)

Given that A and B are good observables,
〈ψ |GA†|ψ〉, 〈ψ |GA|ψ〉, 〈ψ |GB†|ψ〉, 〈ψ |GB|ψ〉 are all real
quantities. On plugging in | f 〉 and |g〉 in the Cauchy-Schwarz
inequality,

〈 f |G| f 〉〈g|G|g〉 � |〈 f |G|g〉|2

� 1
2 |〈 f |G|g〉 − 〈g|G| f 〉|2. (B11)

Different terms in the above inequality can be simplified to

〈 f |G| f 〉 = 〈ψ |(A† − r′)G(A − r)|ψ〉 = 〈ψ |GA2|ψ〉 − r2,

〈g|G|g〉 = 〈ψ |(B† − p′)G(B − p)|ψ〉 = 〈ψ |GB2|ψ〉 − p2,

〈 f |G|g〉 = 〈ψ |(A† − r′)G(B − p)|ψ〉 = 〈ψ |GAB|ψ〉 − r p,

〈g|G| f 〉 = 〈ψ |(B† − p′)G(A − r)|ψ〉 = 〈ψ |GBA|ψ〉 − r p,

for r = 〈ψ |GA|ψ〉, r′ = 〈ψ |GA†|ψ〉, p = 〈ψ |GB|ψ〉, p′ =
〈ψ |GB†|ψ〉, and 〈ψ |G|ψ〉 = 1. For the real r, p and
(GAB)† = GBA we have 〈 f |G|g〉∗ = 〈g|G| f 〉. Collecting
these relations in Eq. (B11) leads to Eq. (B8).

042201-5



SHUKLA, MODAK, AND MANDAL PHYSICAL REVIEW A 107, 042201 (2023)

Therefore, the Heisenberg’s uncertainty relation holds true
for G-metric inner product and good observables. However,
the following derivation does not go through for any arbitrary
operators and the violation of the inequality in Eq. (B8) can
be seen for not good observables as shown in the main text.

APPENDIX C: MINIMUM UNCERTAINTY STATES (MUS)

On the lines of a result in the usual quantum mechan-
ics [14], one would expect that for the G-inner product
formalism and good observables A and B, the MUS are the
eigenstates of operator A + iλGB. We prove it here in this
section. The minimum uncertainty states in the G-metric
formalism and good observables saturate the inequality in
Eq. (B8), i.e.,

�A2
G�B2

G = 1
4 |〈ψ |G[A, B]|ψ〉|2. (C1)

In the context of the Cauchy-Schwarz inequality, for any two
vectors the above equality corresponds to

〈 f |G| f 〉〈g|G|g〉 = |〈 f |G|g〉|2 = (
1
2 |〈 f |G|g〉 − 〈g|G| f 〉|)2

.

(C2)

This implies

1
2 |〈 f |G|g〉 + 〈g|G| f 〉|2 = 0,

〈ψ |GAB|ψ〉 + 〈ψ |GBA|ψ〉 = 2r p. (C3)

Separately, one can infer that | f 〉 = μ|g〉 from
〈 f |G| f 〉〈g|G|g〉 = |〈 f |G|g〉|2 for a complex number μ.
Therefore,

(A − r)|ψ〉 = μ(B − p)|ψ〉. (C4)

Using the conditions in Eqs. (C3) and (C4), one can show that
MUS are the eigenstates of the operator A + iλGB, i.e.,

(A + iλGB)|ψ〉 = (r + iλG p)|ψ〉, (C5)

where λG is a real number given by

λ2
G = (〈ψ |GA2|ψ〉 − r2)/(〈ψ |GB2|ψ〉 − p2).

Note that 〈ψ |GB2|ψ〉 �= p2.
Hence, for the G-inner product formalism and good ob-

servables the MUS condition is perfectly aligned with the
usual quantum mechanics for G = 1.

It is possible to infer some MUS discussed for specific
cases in the main text, from the above result. We have shown
in Fig. 4 (in the main text) that the general state N (|E1〉 +
peiθ |E2〉) are MUS for p = 1 and θ = π/2, 3π/2, for the
operators A = H (γ ), and B = σy in the PT -symmetric phase.
Here N is the normalization constant such that 〈ψ |G|ψ〉 = 1.
Note that both A and B are good observables as per our
definition. At least for θ = π/2, i.e., |ψ〉 = N (|E1〉 + i|E2〉),
it is straightforward to check that indeed the state is one of the
MUS in the following steps:

[H (γ ) + iλGσy]N (|E1〉 + i|E2〉)

= N (ε|E1〉 − iε|E2〉) + iλGσyN (|E1〉 + i|E2〉), (C6)

where ±ε are the eigenvalues of H (γ ). Since σy|E1〉 =
−|E2〉 and σy|E1〉 = −|E2〉, N (|E1〉 + i|E2〉) is an eigenstate

of [H (γ ) + iλGσy] if ε = −λG and

λ2
G = ε2 = (〈ψ |GA2|ψ〉 − r2)

(〈ψ |GB2|ψ〉 − p2)
.

Therefore, the condition for the state |ψ〉 = N (|E1〉 + i|E2〉)
to be one of the MUS is ε = −λG. In fact, the condition for
the state N (|E1〉 + peiθ |E2〉) to be MUS is ε = −λG sin θ .

APPENDIX D: MUS: SYMMETRY OF THE STATE

We have observed for the Dirac inner product formalism
and the observables A = σx and B = σz that the generic state
N (|E1〉 + peiθ |E2〉) corresponds to the lines p = 1, 0, ∞ (for
all values of θ ) or θ = 0, π , 2π (for all values of p) in the
PT -symmetric phase.

It is established that these MUS must be eigenstates of
the operator A + iλB, where λ = �A/�B. If one chooses
A = σx (or σy) and B = σz, then A + iλB will itself be a non-
Hermitian PT -invariant operator with all the real eigenvalues
for λ < 1 and complex eigenvalues for λ > 1. Therefore, it is
self-explanatory that for given MUS if λ < 1(> 1) the MUS
are PT symmetric (broken) states. However, for λ = 1 noth-
ing can be concluded from this analysis. One such example
is N (|E1〉 + |E2〉) in the PT -symmetric phase. One needs
to check separately if such states are eigenstates of the PT
operator.

APPENDIX E: HERMITIAN COUNTERPART OF GOOD
OBSERVABLE FOR 2 × 2 SYSTEM

As we discussed in the main text, the Hermitian coun-
terparts of good observables in a particular G-metric space
is not unique. Given G = V †V , Õ = V OV −1 is Hermitian
counterpart of the good observable O. In this work, we choose
V = G1/2. For the 2 × 2 Hamiltonian, it is straightforward to
check that in the PT -symmetric phase,

G1/2 =
(

(p1 + p2)/2 i(p1 − p2)/2

−i(p1 − p2)/2 (p1 + p2)/2

)
, (E1)

where p1 = ( 1+γ

1−γ
)1/4 and p2 = ( 1−γ

1+γ
)1/4. Now, the Hermitian

counterpart of the good observable σy (Hermitian) in the G-
metric space can be obtained as σ̃y = G1/2σyG−1/2 = σy. On
the other hand, if we choose

V =
(

1
(1−γ 2 )1/4

−iγ
(1−γ 2 )1/4

0 (1 − γ 2)1/4

)
, (E2)

such that G = V †V , it turns out that σ̃y = V σyV −1 = γ σz +
(1 − γ 2)1/2σy �= σy. It shows that for our choice of V = G1/2,
the Hermitian counterpart of the Hermitian good observable
remains the same, which is not the case in general for other
V . This remains true for the N × N Hamiltonian as well. Our
choice of transformation is better to study the comparative
gain in the Fisher information.

APPENDIX F: TIME-DEPENDENT GOOD OBSERVABLE
IN THE PT -BROKEN PHASE

As we discussed in the main text, the G metric is time
dependent in the PT -broken phase. This also makes the good
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observables in general time dependent. In the main text, we
have constructed the good observable at the initial time t = 0.
However, the time-dependent G metric in the broken phase is
given by [30]

Gb(t ) = 1

�

(
g11 g12

g21 g22

)
, (F1)

where � =
√

γ 2 − 1, g11 = γ cosh(2t�) − � sinh(2t�),
g22 = γ cosh(2t�) + � sinh(2t�), g12 = g∗

21 =
−i cosh(2t�). Now, it is straightforward to check using
the identity O†(t )Gb(t ) = Gb(t )O(t ) that the Hermitian

operator

O1(t ) =
(

−� tanh(2t�) −i

i � tanh(2t�)

)
(F2)

is a good observable. Note that O1(t = 0) = σy. Additionally,
one can also see that the time-dependent non-Hermitian oper-
ator

O2(t ) =
(

i s1
γ s1−�s2

γ s1+�s2

γ s1−�s2

1 −i s1
γ s1−�s2

)
, (F3)

where s1 = cosh(2t�) and s2 = sinh(2t�), also satisfies the
good observable condition. In this case, O2(t = 0) = H (1/γ ),
which is indeed our 2 × 2 good observables in the PT -broken
phase.
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