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Leggett and Garg formulated macrorealist models encoding our intuition on classical systems, i.e., physical
quantities have a definite value that can be measured with minimal disturbance, and with the goal of testing
macroscopic quantum coherence effects. The associated inequalities, involving the statistics of sequential mea-
surements on the system, are violated by quantum-mechanical predictions and experimental observations. Such
tests, however, are subject to loopholes: a classical explanation can be recovered assuming specific models of
measurement disturbance. We review recent theoretical and experimental progress in characterizing macrorealist
and quantum temporal correlations, and in closing loopholes associated with Leggett-Garg tests. Finally, we
review recent definitions of nonclassical temporal correlations, which go beyond macrorealist models by relaxing
the assumption on the measurement disturbance, and their applications in sequential quantum information
processing.
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I. INTRODUCTION

The question of whether quantum mechanics is compatible
with the assumption that physical quantities have a defi-
nite value at each instant of time can be traced back to
Heisenberg’s argument about uncertainties for position and
momentum [1,2]. In the same years, the question of whether
quantum effects can be witnessed at the macroscopic level
was addressed by Schrödinger [3] in his famous cat thought
experiment.

Leggett and Garg (LG) combined these intuitions into the
notion of macroscopic realism, or simply macrorealism [4,5].
In a macrorealist model, a macroscopic physical quantity is
considered, e.g., the position of a massive object that is dis-
placed over macroscopic distances, and it is assumed that
this quantity has a definite value at each time and that it is
possible to measure it with an arbitrary small disturbance on
its subsequent dynamics. These assumptions give rise to a
hidden-variable model, similar to those introduced by Bell
(see Refs. [6,7]) and Kochen and Specker (see Refs. [8,9]),
and open the possibility of subjecting macrorealist (MR) mod-
els to experimental tests. Such tests are based on Leggett-Garg
inequalities (LGIs), namely, bounds on the observed statistics
coming from sequential measurements on a physical system
that are respected by MR models, but violated by quantum-
mechanical predictions.

Similarly to Bell tests [10], Leggett-Garg tests are subject
to loopholes [11], either due to practical reasons related to
the realization of the experiment or to more fundamental
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ones. A considerable effort has been devoted into closing such
loopholes in experimental tests of LGIs in recent years. This
resulted in a variety of approaches, both on the experimental
side and on the theoretical analysis of the results.

The notion of macrorealism, involving sequences of mea-
surements in time, has become the standard notion of
nonclassical temporal correlations. However, the assumption
that measurements cause no disturbance on the subsequent
dynamics of the system is rather strong and it is explicitly
violated in many experimental setups, even simply because
of limitations in the noise reduction in the measurement
apparatus.

Moreover, there is an interest in developing notions of
nonclassical temporal correlations that can be applied to the
investigation of quantum advantages in information process-
ing tasks. For instance, a classical device with memory, which
is updated at each time step, clearly violates the LG assump-
tion of nondisturbing measurements. This stimulated several
approaches to redefine the notion of nonclassical temporal
correlations from an operational perspective [12–15]. In the
light of this, the assumption of a nondisturbing measurement
can be relaxed to that of a bounded memory, i.e., a finite
number of internal states, for the physical system. Leggett-
Garg nondisturbing measurements are recovered in the case
of a single internal state [12,13]. Besides this, a variety of
different assumptions have been employed also in the attempt
of closing the loopholes in LG tests.

In this Perspective paper, we aim to cover the recent
developments on LG tests, including the theoretical and ex-
perimental efforts to close all the loopholes, as well as the
more recent extensions of LG ideas on nonclassical temporal
correlations to the investigation of quantum information pro-
cessing tasks. In particular, we consider experiments that are
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not covered by the previous review of Emary et al. on LGIs
[5].

The paper is organized as follows. In Sec. II, we recall the
basic definition of macrorealism and introduce the theoretical
tools for characterizing the set of macrorealist correlations and
the quantum correlations arising in the temporal scenario. In
Sec. III, we address the problem of loopholes in LG tests, the
theoretical proposals to address them, and the recent exper-
iments that have implemented them. In Sec. IV, we discuss
operational notions of nonclassical temporal correlations that
go beyond the LG proposal by relaxing the assumption of
noninvasive measurements, as well as their applications in
quantum information processing. Finally in Sec. V, we con-
clude discussing future directions in the research on LG tests
and temporal correlations.

II. LEGGETT-GARG MACROREALISM

A. Original formulation

Let us start with the basic definition of macrorealism in-
troduced by Leggett and Garg [4]. A macrorealist theory is
defined by two main assumptions.

(1) Macroscopic realism (per se) (MRPS): The value of a
macroscopic quantity Q(t ) is well defined at each time t .

(2) Noninvasive measurability (NIM): It is possible, in
principle, to measure the quantity Q(t ) with an arbitrarily
small perturbation of its subsequent dynamics.

The adjective subsequent in the NIM assumption implic-
itly contains an assumption on the causality properties of
the scenario sometimes denoted as induction (I), namely, the
outcome of a measurement is not influenced by what will be
measured on the system at a later time.

This assumption is usually taken for granted in most the-
oretical and experimental investigations of Leggett-Garg MR
models, unless one is interested in exotic causal structures or
even models with retrocausal influences [16,17]

To derive the original LGI from these basic assumptions,
we consider the measurement scenario in Fig. 1. A measure-
ment of the physical quantity Q is performed sequentially for
each possible pair of three time instants t1, t2, and t3, namely,
at (t1, t2), (t1, t3), or (t2, t3). We use the convention of denoting
by Q the physical quantity under consideration, and by Q the
associated quantum operator. The corresponding outcomes
qi = ±1, i =, 1, 2, 3 are observed, giving rise to the statistical
distributions

p12(q1, q2), p13(q1, q3), p23(q2, q3). (1)

Under the assumption MRPS, at each time instant ti there
exists a definite value qi for the physical quantity Q(ti). This
implies that there exists a joint distribution p123(q1, q2, q3)
that describes the possible values of Q during each experimen-
tal run. Moreover, the assumption NIM implies that the act of
measurement does not change such a quantity. In other words,
measuring a quantity and discarding the result is equivalent to
not measuring it at all. In mathematical terms, this implies that
the observed distributions pi j (qi, q j ), obtained by measuring
only at two time steps, are precisely the marginals of the

|Ψ〉 Q(t1)

q1

Q(t2)

q2

|Ψ〉 Q(t1)

q1

Q(t3)

q3

|Ψ〉 Q(t2)

q2

Q(t3)

q3

FIG. 1. Three-time measurement for the basic Leggett-Garg sce-
nario. In each experimental run, the system is measured at two
different time steps, ti and t j , with (i, j) = (1, 2), (1, 3), or (2,3). The
observed statistics is used to estimate the correlators 〈QiQj〉.

global distribution p123(q1, q2, q3), obtained by measuring at
all times, namely,

p12(q1, q2) =
∑

q3

p123(q1, q2, q3), (2)

p13(q1, q3) =
∑

q2

p123(q1, q2, q3), (3)

p23(q2, q3) =
∑

q1

p123(q1, q2, q3). (4)

Notice that the first condition, i.e., on the marginal p12,
automatically follows from the assumption I , even if the mea-
surement is actually invasive.

If a global distribution p123 exists and the observations
come from this distribution, one can verify that the observed
correlators 〈QiQj〉 := ∑

qiq j
qiq j pi j (qi, q j ) satisfy the condi-

tion

〈Q1Q2〉 + 〈Q2Q3〉 − 〈Q1Q3〉 � 1. (5)

A straightforward proof of the validity of Eq. (5) is obtained
by noticing that

〈Q1Q2〉 + 〈Q2Q3〉 − 〈Q1Q3〉
=

∑
q1,q2,q3=±1

(q1q2 + q2q3 − q1q3)p(q1, q2, q3)

� max
q1,q2,q3

(q1q2 + q2q3 − q1q3) = 1, (6)

where we used the fact that p(q1, q2, q3) � 0 and∑
q1,q2,q3

p(q1, q2, q3) = 1. It is clear, then, that the derivation
of the LGI completely relies on the existence of a global
distribution for (q1, q2, q3). This is the same assumption
we find in the definition of Bell local theories [6,7] and
Kochen-Specker noncontextual theories [8,9,18,19]. As Avis
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et al. [20] noticed, this allows us to use powerful methods
developed in those frameworks, such as the correlation
polytope approach [21], to analyze LGIs.

To conclude this section, we show the simplest viola-
tion of the inequality in Eq. (5) in a two-level system.
Consider a qubit prepared in the state |0〉, and rotating
in the (y, z) plane, i.e., evolving according to the unitary
e−iσxt , on which we measure σz, where σx, σy, and σz are
the Pauli matrices. In the Heisenberg picture, the rotated
observables will be Q(ti ) = ni · σ, where σ = (σx, σy, σz ),
and the vectors ni are rotated by π/3 at each step,
i.e., n1 = (0, 0, 1), n2 = (0, sin(π/3), cos(π/3)), and n3 =
(0, sin(2π/3), cos(2π/3)). It can be easily shown that in
this case of qubit observables, and more in general for
dichotomic (i.e., two-outcome) observables, the correla-
tors arising from the standard projective measurement are
calculated simply from the anticommutator between the ob-
servables [22]: 〈QiQj〉 = 1

2 〈{Q(ti ), Q(t j )}〉 = 1
2 ni · nj. Using

this, it is straightforward to verify that

〈Q1Q2〉 + 〈Q2Q3〉 − 〈Q1Q3〉 = 3

2
> 1, (7)

thus giving a violation of the macrorealist bound. Note that
quantum mechanics allows for more general implementations
of sequences of measurements, as we will explain in the
following sections, which can also lead to stronger violations
of the LGIs.

B. Arrow-of-time and macrorealist polytopes

In this section, we introduce a powerful method to study
both (non)macrorealist correlations and more general tem-
poral correlations, namely, a geometric description of such
correlations in terms of convex polytopes [23]. This method
has been developed by several authors for Bell inequalities
[21,24–26] and explored by Avis et al. [20] in relation to LGIs.
An extensive treatment of the macrorealist polytope and other
related polytopes was given by Clemente and Kofler [27].

It is convenient to first introduce some notation. Let us de-
note a sequence of measurement settings as s := (s1, . . . , sn).
For a LG test, si could be either 0 (no measurement) or 1
(measurement). Of course, nothing forbids us from consid-
ering more general measurement settings, but for the moment
we restrict to this case to keep the notation simpler. Similarly,
we denote by q = (q1, . . . , qn) the sequence of measurement
outcomes, e.g., qi = ±1 for LG tests. For the case of si = 0,
i.e., no measurement, we follow the convention of Ref. [27]
of assigning the outcome 0 with probability 1.

In the simplest LGI, we had qi = ±1, but, again, more gen-
eral situations can be considered. The observed correlations
are, then, of the form

p(q|s) = p(q1, . . . , qn|s1, . . . , sn), (8)

representing the probability of the sequence of outcomes
q1, . . . , qn given the measurement settings s1, . . . , sn. For
instance, we have p13(q1, q3) = p(q1, 0, q2|1, 0, 1) with the
convention for the setting s = 0 described above.

We now want to write the conditions on the correlations
imposed by I . To do so, it is convenient to introduce the fol-
lowing notation. We denote by q1→n the sequence of qi from

1 to n, i.e., q1→n = (q1, . . . , qn), and similarly for the settings
s1→n. With this, we can write the condition imposed by I ,
also called arrow of time (AOT) constraints [27]. Notice that
similar constraints are also defined in terms of no backward
in time signaling [28]. For the case of Leggett-Garg tests, i.e.,
for settings si = 0, 1, they have the form

p(q1→n|s1→n) =
∑
qn+1

p(q1→n, qn+1|s1→n, 1)

for all n.

(9)

The above constraints, defined recursively for all n and
together with the positivity, i.e., p(q1→n|s1→n) � 0, and nor-
malization, i.e., p(0|0) = 1, of probability, define a convex
polytope, known as the AOT polytope [27]. In fact, all con-
straints are given by linear equalities or inequalities.

This definition of the AOT polytope can be extended
beyond the one needed in LG tests, to include more measure-
ment settings for each time step. The AOT polytope can be
thought of as an analog of the nonsignaling (NS) polytope
[29] in Bell nonlocality [7]. As such, it represents corre-
lations obtainable in classical, quantum, and more general
probability theories, provided that the causality constraint of
I is satisfied. In fact, it can be shown that all points of the
polytope are reachable by quantum strategies [22] (see also
the discussion in Ref. [27]) and even that all the extremal
points of the polytope can be reached by classical strategies,
i.e., satisfying the assumption of MR, but involving invasive
measurements [30–32]. We provide a sketch of this argument
and an extended discussion of AOT polytopes for more gen-
eral measurement scenarios in Sec. II C 2

While AOT constraints are satisfied by any theory obeying
causality, NIM imposes a stronger constraint on the set of
possible correlations. The example we provided in Eqs. (3)
and (4) can be generalized to arbitrary sequences as

p(q1→i−1, 0, qi+1→n|s1→i−1, 0, si+1→n)

=
∑

qi

p(q1→n|s1→n), (10)

for all i, q1→n, and s1→n with (si+1, . . . , sn) �= (0, . . . , 0).
Equation (10) encodes the fact that we cannot detect whether a
measurement has been performed, and its outcome discarded,
at some point in the measurement sequence. For this reason,
it is called the no signaling in time (NSIT) condition [33]; see
also the formulation in Ref. [34].

Differences between the temporal and spatial scenarios

Notice that AOT and NSIT constraints recover the standard
NS constraints. Of course, these conditions have a different in-
terpretation in the temporal scenario and most of the intuition
developed in the spatial scenario does not hold. In fact, while
in the spatial scenario one is limited in the joint measurements
that can be performed, there is no such restriction in the
temporal scenario. To clarify this aspect, it is helpful to con-
sider a basic example, i.e., the Clauser-Horne-Shimony-Holt
[35] (CHSH) Bell inequality and its temporal analog, i.e., the
four-term LGI.

In the CHSH scenario, Alice can choose between
two possible settings, i.e., x = 0, 1 corresponding to local

040101-3



GIUSEPPE VITAGLIANO AND COSTANTINO BUDRONI PHYSICAL REVIEW A 107, 040101 (2023)

measurements A0 and A1, and similarly Bob can choose be-
tween B0 and B1, and the observed correlators are {〈AxBy〉}x,y,
defined similarly to Eq. (5). One would like to test whether the
observed statistics comes from a local hidden-variable (LHV)
model, namely,

p(ab|xy) =
∑

λ

p(λ)p(a|x, λ)p(b|y, λ), (11)

or equivalently [36] there exists a global distribution
p(a0, a1, b0, b1) giving the p(ax, by) as marginals, e.g.,

p(a0, b0) =
∑
a1b1

p(a0, a1, b0, b1). (12)

If that is the case, then the correlators satisfy the CHSH
inequality

〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 � 2. (13)

In the temporal scenario, an analogous LGI can be derived,
by considering a measurement Qi := Q(ti ) at four time steps
t1, . . . , t4, namely,

〈Q1Q2〉 + 〈Q2Q3〉 + 〈Q3Q4〉 − 〈Q1Q4〉 � 2. (14)

Despite the analogies, the temporal and spatial scenarios
have a fundamental difference. While one can never perform
a joint measurement of A0 and A1, or B0 and B1, as they are
incompatible measurements, in the temporal scenario nothing
forbids us from performing a sequential measurement of all
time steps, namely, to observe p(q1, q2, q3, q4). From the AOT
and NSIT conditions discussed above, one can straightfor-
wardly show that this distribution is analogous in the temporal
scenario to the LHV model appearing in Eq. (12). We recall
that Bell inequalities arise as a projection of the probabil-
ity simplex, i.e., the set P = {p ∈ Rn | ∑

i pi = 1, pi �
0 ∀i}, associated with a global distribution over all variables,
e.g., via Fourier-Motzkin elimination [37]. This projection is
needed to write the constraints only in terms of the statistics
that can be directly observed, e.g., measurements of pairs
Ai and Bj in the Bell scenario. The most commonly used
LGIs, such as Eqs. (5) and (14), can be defined in a similar
way as the hyperplanes delimiting the projection of the sim-
plex associated with the global distribution of measurements
over all times. However, since this global distribution, e.g.,
p(q1, q2, q3, q4) in the above example, is directly observable,
there is in principle no need to use these LGIs.

Let us make a concrete example to clarify this point. Let
us assume we are in the experimental scenario where the
correlators appearing in Eq. (14) are observed, i.e., 〈QiQj〉obs,
and we want to understand whether they admit a MR model.
If there are no restrictions on the possible measurements we
can perform, the easiest way is to measure the probability
for the full sequence pobs(q1, q2, q3, q4) and verify whether
the observed correlators are compatible with it, for instance,
verify that 〈Q3Q4〉obs = ∑

q1,q2,q3,q4
q3q4 pobs(q1, q2, q3, q4).

In more abstract terms, we can say that MR correlations are
completely described by the probability simplex associated
with the global distribution p(q|1, . . . , 1) over all possible
measurements in a sequence and all MR conditions are sat-
isfied if and only if the statistics of shorter sequences can be
interpreted as marginals of such a global distribution. This

follows directly from the AOT and NSIT conditions discussed
in the previous subsection. Similar conclusions on the sim-
plicial structure of MR models are presented in Ref. [38]
by investigating the problem from a generalized-probability-
theory perspective. In this sense, one can claim that LGIs in
the usual formulation as inequalities on some marginals of the
global distributions, such as Eq. (14) derived in analogy with
Bell inequalities, are not needed to detect nonmacrorealism.
Moreover, correlations in a LG experiment are fundamentally
different, as observed by Clemente and Kofler [27], since they
do not necessarily have compatible marginals, as the NSIT
condition may be violated in the first place.

It is a matter of terminology, however, what the distinction
between LGIs and NSIT conditions is. Clemente and Kofler
[27] define LGIs in analogy with Bell inequalities, in terms
of the projected hyperplanes of the probability simplex, but,
arguably, this choice can be motivated only by historical rea-
sons. If one accepts the broader definition of Emary et al.
review [5], LGIs are “a class of inequalities. . .that any system
behaving in accord with our macroscopic intuition should
obey.” This would include also NSIT conditions, which rep-
resent necessary and sufficient conditions for the existence of
a MR model compatible with the observed correlations, pro-
vided that a sequence of measurements at all times considered
is performed, e.g., p(q1, q2, q3, q4) in the example above.

We recall that the question of MR is always the following:
are the observed correlations compatible with a MR model? In
this sense, there may be practical limitations on the admissible
measurable sequences, e.g., it may be impossible to perform
more than two measurements in a row. In this case, one may
still use “standard LGIs” in combination with NSIT condi-
tions to conclude that the observed correlations are compatible
or incompatible with a MR model.

Finally, we remark that the notions of NSIT and AOT need
not be restricted to the case of a single physical quantity
evolving in time, corresponding to the choice of settings 1
(measurement) or 0 (no measurement). For instance, the case
of several different measurements at each instant of time is
still consistent with the notion of macrorealism and noninva-
sive measurability for multiple physical quantities, as well as
with the notion of nonsignaling in time.

C. Quantum correlations in time

The most general quantum measurement is described by a
positive operator valued measure (POVM), namely, a collec-
tion of operators M = {Mq}q, one for each outcome q, that are
positive semidefinite, i.e., Mq � 0, and sum up to the identity,
i.e.,

∑
q Mq = 1. POVMs provide a way of computing the

probability of an outcome q given an initial state � via the
Born rule, i.e., p(q) = tr[�Mq]. We recall the basic properties
of quantum measurements; see, e.g., Ref. [39] for more de-
tails. Standard projective measurements are a special case of
POVMs, in which each effect Mq is a projector: M2

q = Mq :=
�q. These special POVMs are also called projection valued
measures (PVMs). A state update rule is also associated with
projective measurements, called the Lüders rule [40], given by
the transformation � �→ �q��q, whenever the outcome q is
observed. Notice that the resulting state is subnormalized, and
its normalization tr[�q��q] = tr[��q] precisely represents
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the probability of observing the outcome q. The Lüders rule
can also be defined for general POVMs as the transforma-
tion � �→ √

Mq�
√

Mq, whenever the outcome q is observed.
Again, notice that the state is subnormalized, with the normal-
ization representing the probability of observing the outcome
q. The Lüders rule, however, is not the most general state
transformation that follows a measurement. In general, a
transformation associated with a POVM is described by a
quantum instrument {Iq}q, where Iq is a completely positive
(CP) map for all q and

∑
q Iq is a CP and trace-preserving

map.
Quantum instruments, as all CP maps, can be defined

via their Kraus representation, namely, Iq(�) = ∑
i Kq

i �Kq
i

†,
where {Kq

i }i are the Kraus operators associated with the
outcome q, and all together they satisfy the relation∑

i,q Kq
i

†Kq
i = 1. Notice how the Lüders rule corresponds to

a special choice of Kraus operators, i.e., {Kq
i }i = {√Mq}, but

this choice is not unique. In fact, any instrument that satisfies∑
i Kq

i
†Kq

i = Mq for all q is an instrument compatible with M.
All quantum measurements are, in principle, admissible for

LG tests, provided that the NIM assumption can be reasonably
justified. Indeed, we see in the next section that in some
cases nonprojective measurements, as well as state-update
rules more general than the Lüders rule, provide perfectly
reasonable alternatives.

1. Temporal correlations for projective measurements

In this section, we summarize how to compute temporal
quantum correlations for the case of projective measurements,
when the dimension of the system is unrestricted. This method
can be used, among other things, to calculate maximal viola-
tions of LGIs under projective measurements and the Lüders
rule. Consider a sequence of measurements s = (s1, . . . , sn)
and outcomes q = (q1, . . . , qn), each obtained via measure-
ments on a quantum system through a PVM {�q|s}q. The
probability of the sequence can be written as

p(q|s) = tr[�qn|sn . . . �q1|s1��q1|s1 . . . �qn|sn ]

= tr[�†
q|s��q|s] = tr[��q|s�†

q|s], (15)

where we defined �q|s := �q1|s1 . . . �qn|sn . Coming from a
PVM, the operators {�q|s}s, for any given s, satisfy addi-
tional constraints, namely, �q|s = �

†
q|s for all q, s, �q|s�q′|s =

δqq′�q|s, and
∑

q �q|s = 1, i.e., Hermiticity, orthogonality,
idempotence, and completeness.

Whenever we have a quantum state � and a collection of
PVMs {�q|s}q,s we can define the matrix

Cq|s;q′|s′ = 〈�q|s�†
q′|s′ 〉, (16)

where the expectation value is taken with respect to the state
�, i.e., 〈·〉 = tr[·�]. Such a matrix satisfies two constraints:
(a) C � 0, i.e., it is positive semidefinite, since v†Cv can
be written in the form 〈B†B〉 for any vector v, and (b) C
satisfies a number of linear constraints coming from the lin-
ear constraints of the PVMs, i.e., Hermiticity, orthogonality,
idempotence, and completeness, meaning that certain ele-
ments will either be equal to each other or equal to zero.
As we showed in Eq. (15), diagonal elements correspond to
observable probabilities.

We call C a moment matrix associated with outcomes {q}q,
settings {s}s, and length L if it is a positive semidefinite matrix
that satisfies the linear constraints discussed above, where
all elements associated with probabilities of sequences of
measurements of length L appear, i.e., Cq|s;q|s, for all q and s
vectors of length L. This implies that any optimization of a
linear function of these probabilities, such as the maximal
quantum violation of an LGI via projective measurements, can
be upper bounded via semidefinite programming (SDP) [41],
based on the moment matrix defined by Eq. (16). However, a
stronger result holds, namely, that for any moment matrix sat-
isfying the positivity and linear constraints discussed above,
one can reconstruct the quantum state and PVMs that provide
the diagonal matrix entries as probabilities. This implies that
the bound obtained with this method is exact.

It is important to remark that this method makes no as-
sumption on the dimension of the quantum system. In fact,
an explicit solution, i.e., quantum state and PVMs, can be
extracted from the explicit solution of the SDP, i.e., an optimal
matrix C∗, and it corresponds to a Hilbert space dimension
equal to the rank of C∗. This is the method for bounding
temporal correlations for projective measurements introduced
in Ref. [42].

A typical example application of this method is to find the
quantum bound of 3/2 for the three-term LGI of Eq. (5) and,
more generally, for the N-term inequality

N−1∑
i=0

〈QiQi+1〉 − 〈Q0QN−1〉
MR
� N − 2

QM
� N cos

(
π

N

)
, (17)

which can be derived analytically; see Ref. [43] for the classi-
cal and Ref. [42] for the quantum bound.

These quantum bounds are derived under the assumption
of projective measurements and the Lüders rule. However,
if more general measurements and transformation rules (i.e.,
quantum instruments) are considered and no additional con-
straints are imposed, trivial bounds appear. This happens
also in the case of projective measurements, if a different
transformation rule, called the von Neumann rule, is used.
According to von Neumann’s original formulation of the pro-
jection postulate [44], the state is always updated through
rank-1 projections, even if the projector associated with a
given outcome (i.e., eigenvalue of the physical observable)
is degenerate. This rule was firmly criticized by Lüders [40],
who introduced what is now the textbook projection rule.
Nevertheless, the von Neumann state-update rule can still be
a valid description of a physical situation, for instance, when
the system strongly interacts with the measurement apparatus,
but we are not able to properly read the classical outcome.
Think about a Stern-Gerlach measurement of a spin- j particle
in which we are only able to assess whether the particle hit
the upper or the lower part of the screen. This corresponds to
a measurement on N = 2 j + 1 quantum levels, which are then
coarse grained at the level of classical outcomes into just two.
In this case, different bounds can appear, which now explicitly
depend on the system dimension N . In fact, the higher the
dimension, the higher the number of outcomes that can be
coarse grained.

Optimal values for the corresponding LGI, or any other
linear function of the probabilities, can be computed for a
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given dimension of the Hilbert space with a combination of
upper bound (the SDP method discussed above) and explicit
numerical or analytical solutions [45]. In particular, it was
shown [45] that for a spin- j particle the following value is
achieved for the three-term LGI of Eq. (5):

〈Q1Q2〉 + 〈Q2Q3〉 − 〈Q1Q3〉 = 3 −
√

2

π j
, (18)

which tends to the algebraic bound of 3 for the limit j → ∞,
and where the measurement is coarse grained according to
the relabeling −1 for the outcome − j and +1 for all other
outcomes.

A very elegant treatment of the same phenomenon, provid-
ing exact and analytical bounds for any dimension, is given
by Schild and Emary [46] for the case of the quantum witness
[34], or equivalently the NSIT condition for a sequence of
length 2 [33], namely,

W = |p2(q2) −
∑

q1

p12(q1, q2)| (19)

for a fixed outcome q2. The witness W ranges from 0, for MR
models, to 1, the algebraic maximum imposed by the fact that
p2 and p12 are probabilities. Schild and Emary [46] showed
that for a N-level quantum system subject to projective mea-
surements with the von Neumann state-update rule, one can
obtain

W vN
max = 1 − 1

N
, (20)

which, again, tends to the algebraic maximum in the limit of
infinite dimension. Finally, a systematic treatment of this phe-
nomenon for different types of classical postprocessing, and
including a discussion on possible experimental realizations,
has been provided by Lambert et al. [47].

From this observation, one can already see that the min-
imal dimension needed for the description of a quantum
experiment can be learned from the value of an LGI ex-
pression. Another similar approach to the certification of the
dimension of a quantum system, which combines the mo-
ment matrix approach of Budroni and Emary [45] together
with the Navascués-Vertesi method for imposing dimension
constraints on moment-matrix approaches, was presented by
Sohbi et al. [48]. In contrast with the approaches previously
presented [45–47], this paper does not involve any classical
coarse graining of the measurement outcomes. We also dis-
cuss more concretely applications of temporal correlations
to witness the dimension of a physical system afterwards, in
Sec. IV B.

2. Temporal correlations for more general measurements

The situation changes drastically for the case of nonpro-
jective measurements, more precisely, for measurements that
do not obey the Lüders (or von Neumann) state-update rule.
In fact, Fritz [22] showed that any correlation belonging to
the AOT polytope can be achieved by quantum systems if
enough internal memory is available; see also the discussion
in Ref. [27].

Since this result holds in more general settings than usual
LG tests, it is convenient to take a step back and define the

AOT polytope for arbitrary measurement inputs, instead of
just 0 (no measurement) and 1 (measurement), as discussed so
far. In order to understand the general idea, it is sufficient to
look at the simple case of sequences of length 2 described by a
distribution p(ab|xy). In particular, we follow the presentation
in Ref. [31]. Due to the AOT constraints, we have that∑

b

p(ab|xy) =
∑

b

p(ab|xy′), for all y, y′. (21)

This implies that we can always define p(a|x) := ∑
b p(ab|xy)

and p(b|a; xy) := p(ab|xy)/p(a|x), defined to be zero if
p(a|x) = 0. We can then write

p(ab|xy) = p(a|x)p(b|a; xy). (22)

From this expression, it is clear that any pair of determin-
istic strategies, i.e., distributions {p(a|x)}x, {p(b|a; xy)}a,x,y

with values 0 or 1, corresponds to extreme points of the
AOT polytope, as they cannot be further decomposed. Con-
versely, arbitrary nondeterministic distributions {p(a|x)}x,
{p(b|a; xy)}a,x,y can always be decomposed as convex mix-
tures of deterministic ones. This implies that the extreme
points of the AOT polytope are all and only the determinis-
tic strategies [30–32]. In particular, this also implies that all
temporal correlations can be reproduced by classical systems,
in stark contrast to the spatial case.

The first observation is that such strategies clearly involve
an invasive measurement: The outcome-generation strategy at
later time steps explicitly depends on the previous time steps.
The second is that the resource necessary for generating such
correlations is given by the number of internal states of the
system: One needs to store the information about the past
inputs and outputs, e.g., (a, x) in the example in Eq. (22), in
different states in order to generate the correct output at the
subsequent time steps. Moreover, it is also clear that any clas-
sical model can be simulated by a quantum one, for instance,
with projective measurements in a fixed basis followed by uni-
tary rotations corresponding to the classical state transition.

These results can be used to investigate temporal correla-
tions beyond the original approach of Leggett and Garg by
relaxing the assumption of noninvasive measurements and
substituting it with the condition of finite number of states.
The NIM condition, then, simply corresponds to the case of
a single internal state (i.e., zero internal memory). A detailed
discussion of this approach is presented in Sec. IV.

3. Temporal steering

A different approach to temporal correlations that com-
bines elements of macrorealist and quantum models is that
of temporal steering. Chen et al. [49] introduced the concept
of temporal steering inspired by the analogous notion in the
spatial scenario [50]. Instead of looking at a macrorealist
model for the observed correlations, as in standard LG tests,
one assumes a higher control over the physical system that
is necessary to perform state tomography. The object of a
temporal steering test is then the state assemblage {σa|x}a,x ob-
tained by performing measurements described by instruments
{Ia|x}a,x. More precisely, for an initial state � we have

σa|x := Ia|x(�). (23)
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Notice that σa|x is subnormalized, i.e., tr[σa|x] � 1, where the
normalization factor represents the probability of the outcome
a. The question of temporal steering is then whether the
assemblage {σa|x}a,x admits a temporal hidden state model,
namely,

σa|x =
∑

λ

p(λ)p(a|x, λ)σ̃λ, (24)

where {σ̃λ}λ is a set of normalized states and in which case
the assemblage is unsteerable. In other words, a state assem-
blage is unsteerable if it can be interpreted as coming from
a classical postprocessing, given by the distribution p(a|x, λ),
of an initial collection of states {σ̃λ}λ distributed according
to p(λ). It is clear that an unsteerable assemblage satisfies
all LG conditions. In fact, for an assemblage described by
Eq. (24) it is impossible to detect which measurement has
been performed, as the state resulting from discarding the
outcome is always

∑
λ σ̃λ, regardless of the input x.

Temporal steering needs a stronger set of assumptions
and a more detailed characterization of the physical system
since we need to assign a quantum state to each measure-
ment outcome. At the same time, this allows the use of
temporal steering for a broader range of quantum informa-
tion applications. For instance, temporal steering has been
applied to the analysis of security bounds in quantum cryp-
tography [49,51], the quantification of non-Markovianity [52]
and causality [53], and the investigation of the radical-pair
model of magnetoreception [54]. Finally, the relation between
spatial, temporal, and channel steering has been investigated
in Ref. [55], where also a unified mathematical framework has
been introduced; see also Refs. [56,57].

III. EXPERIMENTAL TESTS OF MACROREALISM

A successful experimental violation of macrorealism
should consist in a clear demonstration of a preparation of a
superposition between two “macroscopically distinct” states,
for example, a large massive object in a superposition of two
(macroscopically) different locations. However, several prac-
tical difficulties arise even at the stage of designing such a test,
from the very definition of macroscopically distinct states, to
the issue of performing measurements that are convincingly
nondisturbing from a macrorealist perspective. In this section,
we review the approaches designed to overcome typical loop-
holes, prominently the so-called clumsiness loophole [11],
together with the experiments that have been performed in
recent years.

A. Loopholes in macrorealist tests

As in the case of Bell tests, practical tests of macrorealism
suffer from loopholes. For example in a Bell test, a problem
may arise when the detector does not register all events, which
imposes, under a certain efficiency threshold, to either assume
that the registered events are a fair sampling of all possible
events or admit the possibility of a local hidden-variable de-
scription [10,58]. Analogously, a low detection efficiency in
a LG test may open the door for MR explanations that take
advantage of the undetected events.

|Ψ〉 Πq1
Jz

Q(t1) = Jz

q1

Πq2
Jx

Q(t2) = Jx

q2

U(t1, t2)

Jz

Jx

|Ψ〉

Q(t1) =

0

Πq2
Jx

Q(t2) = Jx

q2

U(t1, t2)

FIG. 2. Two simple sequences of two measurements that lead to
a violation of macrorealism: From an initial state |�〉 either a pro-
jective measurement of Jz or no measurement is performed, followed
by a unitary rotation Jz �→ Jx and a projective measurement of Jx .
For an initial superposition state |�〉 = 1√

2
(|1〉z + | − 1〉z ) violation

of macrorealism can be observed.

Another important loophole in Bell experiments is the lo-
cality loophole appearing when the choice of the measurement
setting on one particle is not spacelike separated from the
measurement performed on a distant one [10,59]. This allows
for an explanation in terms of communication or influences
traveling at the speed of light or below. The correspond-
ing situation in the temporal scenario is the violation of the
NIM assumption. Here, we no longer have spatial separation
among the different measurements, so without any additional
assumption, one may admit the possibility that past measure-
ments influences future ones. To make matters worse such
influences do not even need to be conspiratorial to violate
some LG condition. Simply performing a clumsy (i.e., noisy)
measurement is enough to obtain a violation of LGIs. In fact,
all temporal correlations arising from a quantum model can be
simulated with a classical hidden-variable theory that allows
for measurements disturbance. We already discussed this at
an abstract level in Sec. II C 2. Let us see this now with a
paradigmatic example; see Fig. 2. Consider a sequence of two
measurements of a (ideally macroscopic) quantum observable
at two time steps, i.e., Q(t1) = {Mq

t1}q and Q(t2) = {Mq
t2}q, on

a quantum state �. According to the Born rule we can compute
the joint probability of outcomes (q1, q2) as

p(q1, q2) = Tr
[
Mq2

t2 I
q1
t1 (�)

]
, (25)

where we indicated with Iq1
t1 (·) the quantum instrument as-

sociated with outcome q1 of observable Q(t1). On the other
hand, when the first measurement is not performed we have

p(q2) = Tr
[
Mq2

t2 �
]
. (26)
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As we mentioned, macrorealism is equivalent to NSIT, i.e., it
implies the condition

p(q2) =
∑

q1

p(q1, q2). (27)

A violation of Eq. (27) can be observed when the
triple ({Mq2

t2 }q2 , {Iq1
t1 }q1 , �) is such that Tr[Mq2

t2 �] �=∑
q1

Tr[Mq2
t2 I

q1
t1 (�)]. This can be interpreted as caused by any

of the three elements. In particular, it can be realized even in
a trivial scenario where Q(t1) and Q(t2) are compatible (e.g.,
projective commuting) observables and � is one of their (pure)
eigenstates, with just the instrument {Iq1

t1 }q1 being clumsy
(i.e., noisy). On the other hand, the effect that we would like to
witness should be ideally due to a preparation that is made on
a state that is a superposition of two (macroscopically) distinct
eigenvalues of Q and we should ensure that the measurement
just reads off the value of Q without disturbance. With this,
we emphasize again that the notion of macrorealism is deeply
connected with the preparations as well as measurement
implementations. Even quantitatively, these different effects
cannot be distinguished by witnesses of macrorealism alone.
Therefore, since the introduction of the LGIs, different ideas
for proving that a measurement is nondisturbing from a
macrorealism perspective have been discussed.

1. Ideal-negative-result measurements

The first idea, due to Leggett and Garg themselves [4],
was to use ideal-negative-result measurements: The measure-
ment apparatus is made such that it interacts with the system
only when one of two outputs (say, +1) is observed, e.g., a
microscope that detects a particle in a precise position only,
which is afterwards discarded, while only null results are
kept, implying that the opposite output (say, −1) has been
observed without interacting with the system. A macroreal-
ist would then believe that the value −1 was preexistent to
the measurement; e.g., in a two-well potential, a particle not
detected in one well must have been in the other. However, a
number of criticisms to this approach can be made (see, e.g.,
Ref. [5]), and can be traced back even to early discussions
about quantum measurements [60]. In short, in this approach
one still has to make a rather strong assumption on the inter-
action model behind the measurement process. For example,
a particle that is not visible at the microscope may have just
absorbed the photons. This approach has been employed in
several experiments, from the early ones [5] to the recent
ones performed with single particles making random walks
on an optical lattice [61], in nuclear spins [62,63], and in
heralded photons [64]. In some cases [63], the negative results
measurements were employed as a benchmark to support the
nondisturbance arguments made with other approaches.

2. Weak and ambiguous measurements

Weak measurements arise from models with a small inter-
action between system and measurement apparatus. A typical
concrete model for such a detector is obtained by means of
an ancillary system usually considered as continuous variable
with quadrature x in a Gaussian state |φ(x)〉 = ∫

dx φ(x)|x〉,
with φ(x) = (2πs)−1/4 exp(−x2/4s2) being a Gaussian wave
function with standard deviation s. The canonical form of a

POVM associated with the weak measurement of a projective
observable Q, i.e., a Hermitian operator with spectral decom-
position Q = ∑

q q|q〉〈q|, is then given by [5,65] W(Q) =
{Wx}x = {K†

x Kx}x, with Kraus operators

Kx = (2πσ )−1/4 exp[−(x − Q)2/4s2]. (28)

Here, s gives the weakness of the measurement: In the limit
s → ∞ one obtains a weak measurement, while in the limit
s → 0 one obtains the projective measurement Q itself. Note
also that the outcomes x are referred to the ancillary system
and are different from q. In fact, x is usually a continuous
variable whereas q can be from a discrete set of outcomes.
Still, the Kraus operators can be defined in a way such that
the expectation value of W(Q) coincides with that of Q, i.e.,∫

xTr[Wx�]dx = ∑
q qTr[�q�].

With this idea in mind, continuous weak measurements
have been considered in early experiments [5,66] and in more
recent approaches [63,67]. The continuous version of weak
measurements can be modeled by a linear input/output rela-
tion between the measured variable and the inferred one:

W (t ) = aQ(t ) + b(t ), (29)

where b(t ) is a noise term that is typically assumed uncorre-
lated with Q(t ), which corresponds to a vanishing backaction
on the system in the limit of a weak measurement, i.e., a → 0.
For instance, in Refs. [68,69] the quasiprobability approach is
combined with weak measurements and ideal-negative results
to justify the NIM assumption in an experimental setting.

Note however, that here NIM still relies mostly on the
weakness of the measurement in itself, and in fact, in some
experiments it has been employed complemented with the
negative-result measurement idea [63]. In this respect, note
once more that a quantum model for a weak measurement
has no meaning for a stubborn macrorealist. In a macrore-
alist perspective the measurement process is described in a
device-independent fashion based solely on MRPS, NIM, and
I assumptions.

To address this problem, Emary [70] proposed to substi-
tute the NIM assumption with a different one, namely, the
equivalently invasive measurability (EIM) assumption: The
invasive influence of ambiguous measurements on any given
macroreal state is the same as that of unambiguous ones. Here,
an ambiguous measurement is intended as one not reveal-
ing the exact value of an observable, but rather giving some
noisy information. One example is given by Eq. (29), where
the term b(t ) is a noise term uncorrelated with the actual
measurement of the observable Q(t ). The simplest example
of an ambiguous measurement discussed by Emary [70] is
the following. Instead of performing a projective measure-
ment Q = ∑2

q=0 q|q〉〈q|, one considers the three projectors
{1 − |q〉〈q|}2

q=0. Each of them detects the state in which the
system is not, which we denote as q, with a certain probability
pA(q) = tr[�(1 − |q〉〈q|)]. Note that {1 − |q〉〈q|}q=0,1,2 is not
a valid POVM, thus the measurement process involves some
postselection of the favorable outcomes.

From a macrorealist perspective, identifying |0〉, |1〉, and
|2〉 with the possible states of the system, one can recover the
probability as

p(q) = 1
2 [pA(q′) + pA(q′′) − pA(q)], (30)
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for every triple of distinct values q, q′, q′′ = 0, 1, 2. Note that
this is, in principle, a quasiprobability distribution, i.e., it
may become negative depending on how these quantities are
measured. However, in quantum mechanics for the specific
choice of Q above this identification works at the level of
probabilities, namely,

1
2

(
1 − |q′〉〈q′| + 1 − |q′′〉〈q′′| − 1 + |q〉〈q|)
= 1

2

(
1 − |q′〉〈q′| − |q′′〉〈q′′| + |q〉〈q|) = |q〉〈q|. (31)

EIM then assumes that the disturbance caused by this
measurement is the same as the one caused by the direct
measurement of Q. In practice, one performs first the am-
biguous measurement, with the Lüders instrument, and then
the projective one. Then, via the relation in Eq. (30) it is
possible to estimate the probability p(q1, q2). EIM assumes
that the disturbance from the direct measurement, defined via
the NSIT condition

δ(q2) = p(q2) −
∑

q1

p(q1, q2), (32)

is the same as the one from the ambiguous measurement:

δA(q2) = p(q2) −
∑

q1

pA(q1, q2). (33)

This quantity becomes then the correction to the three-term
LGI, with measurements Q(ti ) for i = 0, 1, 2 and the first
measurement being trivial, namely,

〈Q1〉 + 〈Q1Q2〉 − 〈Q2〉 � 1 +
∑

q2

|δA(q2)|. (34)

This expression is intended to be obtained by estimating the
quantity δA(q2) via the ambiguous measurement and the corre-
lators 〈Qi〉 and 〈Q1Q2〉 via the unambiguous one. It was shown
theoretically [70] and experimentally [71] that this inequality
can be violated, thus proving a violation of macrorealism
based on the EIM, rather than NIM. The same approach can be
extended to include weak measurements, but not to systems of
lower dimension: at least a three-level system is needed [70].

3. Quantum nondemolition measurements

As we mentioned, all of the proposals based on weak
measurements rely on the idea that in such models the system
is weakly perturbed after the measurement. We recall that an
ideal weak measurement should be understood in the limit,
e.g., s → ∞ in the model (28). However, it has been argued
[5,72] that a weak measurement by itself does not guarantee
nondisturbance. In contrast, even a strong measurement, i.e.,
projective, may be nondisturbing with respect to the statistics
obtained by certain subsequent measurements. This is the
case, for instance, of a sequential measurement of commuting
projective observables. An example of this is given by the
quantum nondemolition measurement (QND) [73]. In general
terms, a QND measurement is performed via a probe that
interacts with the system in a way that the measured variable is
not disturbed, e.g., via an interaction Hamiltonian HI such that
[HI , Q] = 0. The idea is that even in the presence of noise, the
observable Q should not be perturbed by the measurement,
as it can be shown via rapid and repeated measurements of
it [74]. In this sense, the QND measurement represents a

practical implementation of the ideal projective measurement
in a nondestructive way, which then allows one to repeat the
measurement multiple times. This makes it ideal for LG tests.
In fact, this direction has been explored in early works on
macrorealism [75,76], which reached the conclusion that LGI
violations could not be observed with QND measurements.
Subsequent works, however, showed that QND measurements
can indeed lead to a violation of LGIs, even in macroscopic
systems [77,78].

From a quantum-mechanical perspective what happens is
that, even if Q is not perturbed, some other incompatible
variable (let us denote it by P) is perturbed. A paradigmatic
example is the QND measurement of a particle’s position Q,
which disturbs its momentum P, as in the original Heisen-
berg’s microscope model [1]. This is, of course, not enough
to conclude that the measurement is completely noninva-
sive. Nevertheless, confronted with these facts, a macrorealist
would conclude that the disturbance is not on Q, but in some
other variable, P, which then transforms into Q due to the
time evolution. In other words, to explain the experiment a
macrorealist would be forced to introduce a classical version
of the quantum backaction [77].

4. Wilde-Mizel adroit measurements

Wilde and Mizel [11] introduced the terminology “clum-
siness loophole” and proposed a possible solution via the
so-called adroit measurements. The idea is to decompose the
measurement into a number of intermediate steps Si that
taken individually do not have any disturbance effect on the
sequence. Control experiments are then made with each of the
individual operations forming the full measurement and the
observations should confirm their individual nondisturbance.
Thus, it is the joint effect of all operations that collude to
disturb the initial state of the system. A simple example of
this idea is to make a projective measurement with the Lüders
instrument Iq1

t1 (X ) = �
q1
t1 X�

q1
t1 in such a way that �

q1
t1 is de-

composed into two measurements �(1)
s2

and �(1)
s1

, i.e., �
q1
t1 =

�(2)
s2

�(1)
s1

. One chooses �(1)
s1

that commutes with the prepara-
tion � and �(2)

s2
that commutes with the POVM elements Mq2

t2 .
This way, a sequence with each of the steps Si taken individu-
ally satisfies NSIT, i.e., Tr[Mq2

t2 �] = ∑
si

Tr[Mq2
t2 �(i)

si
��(i)

si
] for

i = 1, 2. Such measurements are called adroit measurements
[11]. However, when performed together, the two processes
collude to give rise to the disturbing measurement of Q(t1).
This way, the assumption of NIM is replaced with that of
noncolluding measurements. Moreover, this notion can be
generalized to allow for a small amount of noise, introducing
the idea of ε-adroit measurements. Via extra control experi-
ments, this deviation ε from the ideal case can be quantified
and, under certain assumptions, used to modify the macroreal-
ist bound for the corresponding LGI. Recently, this approach
has been employed to disprove macrorealism in a supercon-
ducting qubit in the IBM cloud platform [79].

This idea was generalized in Ref. [72], with the goal
of exploring the connections between macrorealism and
nondisturbance of quantum measurements, defined in a
state-independent fashion and beyond the simplest case of
projective measurements. In fact, in the case of projective
measurements it is known that nondisturbance coincides with
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commutativity of the two observable operators, i.e., that two
projective measurements P and Q can be performed in a
sequence that is nondisturbing regardless on the preparation,
if and only if [P, Q] = 0, which implies also the commu-
tativity of all spectral projectors. Moreover, the instrument
that achieves a nondisturbing sequence is simply given by the
Lüders rule IP

p (X ) = �pX�p.
In other words, if two measurements are given by

commuting projectors, then the Lüders instrument gives a
nondisturbing implementation of the sequence for every pos-
sible initial state, while if they are given by noncommuting
projectors there is always one preparation such that some
disturbance is observed, independently of which instrument
is implemented. Moreover, sequences involving more pro-
jective measurements are nondisturbing if and only if the
measurements are pairwise nondisturbing. Note also that in
this context weak measurements can be seen as classical post-
processings of projective quantum measurements, i.e., noisy
versions of them, which cannot improve their nondisturbance.
In contrast, if anything, such postprocessing might increase
the disturbance; see the detailed discussion in Ref. [72].

For more general POVMs, in contrast, it is actually
possible to find triples of measurements that are pairwise
nondisturbing (i.e., when performed in a sequence of two of
them, there exists an instrument such that NSIT is satisfied for
all possible state preparations), while a sequence of all three of
them would violate NSIT for some preparations. In this sense,
such a triple can be seen as a state-independent generalization
of the notion of adroit measurements [72]. Moreover, it is con-
jectured in Ref. [72] that, in analogy with joint measurability
structures, this structure of state-independent nondisturbance
relations generalizes to more complex ones. This suggests
that it should be possible to perform LG tests with n-adroit
measurements, namely, measurements that are nondisturbing
for any quantum state whenever a sequence of n of them is
measured, but they are nevertheless able to violate a LGI if
sequences of n + 1 of them are considered. Of course, this
does not close completely the door to a classical explanation,
but it puts much stronger constraints on the possible MR
models able to describe such an experiment.

5. Macroscopic limit: Coarse-grained measurements and
quantum-to-classical transition

A crucial difference between LG and Bell tests is the em-
phasis of the former on macroscopic systems, namely, on the
fact that quantum effects should be, in principle, observable
at a macroscopic level. Nevertheless, many different notions
of macroscopicity have been given in the literature, with no
common agreement on a single one [80]. Ideally, LG tests
should involve observables that are “extensive”, i.e., whose
value should scale as N for an N-body system, with a state
preparation that (i) is a superposition of two extensively dif-
ferent values, like Q = N and −N , and (ii) has large N .

Following this idea, the first quantifier of macroscopicity
was introduced by Leggett and Garg [4]. It consists of a pair:
the extensive difference that is the difference between the max-
imum and minimum observed values of Q, divided by some
relevant unit scale for the system, and the disconnectivity that

loosely speaking quantifies the quantumness of the state, via,
e.g., a suitable entanglement measure between the N particles.

However, further elaborations of this idea have led to many
different measures that are completely independent and in
some cases unrelated to the LG approach, such as cat states in
quantum optics; see the recent review [80]. For example, one
other relevant measure that has been discussed in the context
of LG tests is based on the idea of disproving certain collapse
theories based on gravitational forces: a macroscopic quantum
state in that sense has a large total mass and is displaced along
large distances [81]. This has been discussed also in recent
experiments [61].

The notion that one wants to capture is similar to the
old Schrödinger cat idea: that microscopic quantum effects,
such as superpositions, could be amplified to the macroscopic
regime, as opposed to a so-called quantum-to-classical transi-
tion that should happen at a fundamental scale, as argued in
collapse models [82]. In short, the question that is a source of
quite intense debate even to this date is whether the difficulty
in detecting quantum effects at macroscopic scales is due to
technological reasons, e.g., decoherence effects that increase
at the macroscopic scales [83], or to a more fundamental
reason, such as a collapse mechanism [82]. An intermediate
position was given in Ref. [84], where it was hypothesized
that at macroscopic scales measurements must be necessarily
coarse grained and that would prevent us from witnessing
quantum effects. See also Ref. [85] for a similar conclusion.
This latter idea, however, seems to be contradicted by recent
works [45–47,77], which showed that coarse-grained mea-
surements do not necessarily shade away quantum effects, but
in fact can even enhance their visibility.

B. Recent experiments

Macrorealism tests have been performed in recent years in
a wide variety of systems. Despite them being still performed
mostly on microscopic systems, we have seen in recent years a
growing interest in performing experiments that take seriously
the different loopholes associated with LG tests, especially
the problem of NIM, and devising ingenious ways to address
them. In the following, we review some of the most recent
experiments, which were not covered by the previous review
on the topic [5].

1. Single atoms in optical lattices

Robens et al. [61] performed a LG test with a Cs atom in
an optical lattice that performs a quantum walk; see Fig. 3.
The experiment worked as follows: a Cs atom with two ad-
dressable internal states, |↑〉 and |↓〉, is controlled via two
independent optical lattices. The atom “experiences” only the
field of one of the lattices, depending on whether it is in the
state |↑〉 or in the state |↓〉.

Therefore, a coherent superposition (|↑〉 + |↓〉)/
√

2 fol-
lows a quantum random walk, i.e., two independent paths
simultaneously, according to a quantum description, whereas
it follows a random walk according to a MR description. The
atom is then allowed to displace four times, and measurements
are performed at t1 = τ , t2 = 2τ , and t3 = 4τ , where τ is
approximately 26 µs; see Fig. 3(a). The LG test works as
follows. At step 1 the atom is just prepared in state |↑〉 and
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FIG. 3. (Reproduced from Ref. [61]). (a) A Cs atom performs a
four-step random walk on a 1D lattice with spin-dependent shifts.
(b) The intermediate measurement at t2 is an ideal-negative-result
measurement: if the atom is spin down it interacts with the field, it
is displaced far away, and the measurement is discarded, otherwise it
experiences no interaction.

at position x = 0, with a deterministic assignment Q(t1) = 1.
At the intermediate time t2 a measurement is performed with
an ideal-negative-result strategy: if the atom is in the state
|↓〉 it experiences one field that displaces it far away and the
corresponding result is discarded. In contrast, the atom in the
state |↑〉 does not experience this shift and it is consequently
kept and allowed to further evolve according to the quantum
walk until the final measurement at t3; see Fig. 3(b). From
a macrorealist perspective, the atoms that interact with the
field and are discarded are only those in the state |↓〉, so the
measurement of the state |↑〉 is performed in a noninvasive
way. The expression Robens et al. [61] consider is

W :=
∑
q3q2

q3 p(q3q2) −
∑

q3

q3 p(q3) � 0, (35)

obtained by a specific choice of some trivial measurements
in the three-term LGI. Interestingly, this expression closely
resembles the inequality version of the NSIT condition. In
addition, the authors also estimate the quantum witness |W |
[34].

The authors evaluated the macroscopicity measure defined
by Nimmrichter and Hornberger in Ref. [81]. Such a measure,
called μ, sets a lower limit for the time (expressed in log-
arithmic scale) during which an electron is delocalized over
distances larger than a certain length scale �, which represents
a phenomenological parameter. The value estimated in the
experiment is μ = log10(T M2

a/m2
e ) ≈ 6.8, with Ma and me

being the masses of the Cs atom and of an electron and T
being the total duration of the walk. The reference distance
is thus set to � = 2 µm, which is the maximal distance along
which the atom is displaced.

The measurement implemented here can indeed be called
the ideal-negative result from a macrorealist perspective.
However, one needs to rely on the measurement model as-
sumed by the experimenter, i.e., that the system interacts only
with one of the two fields, depending on its internal state.
Thus, the class of macrorealist theories ruled out by this
experiment is of those describing the interaction between the
field and the atom as a classical version of the quantum one.

2. Single-photon excitation in macroscopically separated crystals

A different approach was pursued by Zhou et al. in Ref.
[86], see also Fig. 4. Note that this experiment has been
discussed also in the review [5]. However, since then, the

FIG. 4. (Reproduced from Ref. [86]). A delocalized atomic ex-
citation is created between two pieces of Nd3+:YVO4 crystal which
sandwich a 45◦ half-wave plate (HWP). The evolution of the exci-
tation is controlled with a polarization-dependent atomic-frequency
comb (AFC). Photon pairs are generated in the PPKTP crystal and
then spectrally filtered and separated by the polarization beam splitter
(PBS). The H- and V-polarized photons are independently stored
in the two pieces of crystal and acquire a different phase shift.
After a programmable delay, the polarization of retrieved signal
photons is analyzed with a quarter-wave plate (QWP), a HWP, and a
PBS. Single-photon signals are detected with single-photon detectors
(SPDs) and analyzed with time interval analyzers (TIA).

experiment has been updated, and especially further control
runs have been made to test the Markovianity assumption on
the two basis states. We recall that variants of the LGI based
on Markovianity assumptions have been first derived in the
context of quantum transport problems by Lambert et al. [87],
and widely used for investigating macrorealism; see Ref. [5]
for more details. In Ref. [86] a LGI-type inequality was tested,
which relied on two assumptions different from the traditional
macrorealism assumptions. The first assumption is stationar-
ity, meaning that the conditional probabilities of finding the
system in state i at time t + τ , conditioned on it being in state
j at time t , only depend on τ , and the second assumption is
Markovianity.

The systems consists of a single-photon atomic ex-
citation displaced over two spatially separated crystals,
whose dynamical evolution is controlled with a polarization-
dependent atomic-frequency comb. This system can be
described as a qubit, using a collective Dicke state aris-
ing from the absorption of a photon. The two basis states
are |e〉 = ∑N

j=1 c je−ikz j ei2πδ j t |g1, . . . , e j, . . . , gN 〉 and |g〉 =
|g1, . . . , g j, . . . , gN 〉, where N is the total number of atoms
in the comb, and |e j〉 and |g j〉 are the excited and ground
state of the atom in position z j . The other parameters are
the wave number k of the input field, the detuning δ j of the
atom with respect to the light frequency, and the amplitudes
c j which depend on the frequency and on the position of
atom j.

In the experiment, the system evolves with an oscilla-
tory dynamics between these two basis states. Measurement
performed in the qubit basis provides evidence that both sta-
tionarity and Markovianity hold. In particular, the authors
measured at different times the four conditional probabilities
p(i, t + τ | j, t ) with i, j = {g, e} referring to the two different
states, ground and excited, and the evolution is an oscilla-
tory dynamics between them. They also estimated the trace
distance between the two basis states as it evolves in time,
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seeing that it decreases monotonically over time as it should
for a Markovian dynamics. Thus, in a sense they tested both
assumptions with independent experiments. However, they
still rely strongly on the assumption that only two basis
states are involved in the dynamics. Then, they tested the
inequality 〈Q(0)Q(2t )〉 ± 2〈Q(0)Q(t )〉 � −1 by measuring
over time the correlations of the dichotomic observable given
by Q = |g〉〈g| − |e〉〈e|, observing a sensible violation that
follows perfectly the predictions of the quantum-mechanical
model. Thus, given also the control tests performed, one could
argue that the experiment disproves classical theories with two
states. Macroscopicity, as quantified by the disconnectivity, is
very low (D = 1) in the experiment, although the excitation
was displaced between two macroscopic crystals separated
by a length of the millimeter scale. Finally, we remark that
a subsequent experiment by the same group [88] managed to
obtain a violation of the quantum witness constraint [34], in
the form presented in Ref. [89], together with the additional
experimental runs to estimate the invasivity of the measure-
ment according to the scheme proposed in Ref. [89] and
discussed in more details in Sec. III B 5 below. They obtained
superpositions of up to 76 atomic excitations shared by 1010

ions in two separated solids, corresponding to a disconnectiv-
ity of D = 5.

3. Neutrino oscillations

A similar test of LG combined with the assumption of
stationarity was performed on neutrino flavor oscillation [90].
One additional motivation for this test was that neutrinos can
maintain coherence in very large distances due to their low
interaction with the environment. In fact, neutrino oscillations
were detected after a distance of approximately 735 km in the
data analyzed in Ref. [90] and taken from the MINOS collab-
oration [91]. In particular, violations of LG inequalities (with
the assumption of stationarity) were detected in oscillations
between muon and electron-flavored neutrinos, i.e., between
the two states |νμ〉 and |νe〉 treated as a qubit system. After
this initial experiment, several other tested violations of LGIs
with two- and three-flavored neutrino oscillations appeared
[92–94]. The assumption of stationarity as a substitute for
noninvasivity was employed in order to sample identically
prepared copies of the system rather than a single system
evolving in time; technically, the authors analyzed the data
at different frequencies, which correspond to different times.
In fact, for the case of neutrino oscillations it is impossible
to perform sequential measurement, so different assumptions,
such as stationarity, are necessary.

4. Nuclear magnetic resonance

Over recent years, a number of macrorealism tests have
been performed using nuclear spin systems, such as nitrogen-
vacancy centers or nuclear magnetic resonance (NMR)
spectrometers. In particular, two recent experiments appeared
[62,63] which used a Bruker DRX 700-MHz spectrometer,
where the NMR samples are given by 13C nuclei of a chlo-
roform molecule, representing the system qubits, probed by
1H nuclei, playing the role of the ancillary qubits. A pro-
totype dynamics for these experiments, as well as for other
macrorealism tests, is given by a rotating spin, i.e., a sys-

tem governed by the Hamiltonian HS = �Jx, where Jx is
the spin operator in a direction x (not necessarily spin 1/2)
and � is the rotation frequency (cf. Sec. II A and Fig. 2).
The measurement is performed along the Q = Jz direction
through the ancillary spins and in these systems is typi-
cally employed the ideal-negative-result scheme of neglecting
the rounds in which a system-ancilla interaction is detected,
which is meant to address the clumsiness loophole. However,
note that in liquid NMR samples another problem arises typ-
ically, which is the fact that the system is extremely noisy,
with the preparation typically being � = ε|0〉〈0| + (1 − ε)1
for ε ≈ 10−5 or even smaller. This raises the issue of a fair-
sampling assumption, which has to be made in such systems;
see also Sec. 6 in Ref. [5] for a discussion about this point.
In Ref. [62] the experiment followed the idea of Ref. [45] of
testing macrorealism in multilevel systems and implemented
the dynamics of a spin-1 system taken from the symmet-
ric triplet subspace of two 13C qubits. In Ref. [63] instead,
they considered single qubits, but probed several versions of
Leggett-Garg inequalities, especially regimes in which viola-
tion of macrorealism was detected with only subsets of them
[68]. Moreover, they employed the approach of Ref. [67], in
which a time-continuous measurement was performed of the
velocity v(t ) = Q̇ = �Jy (so-called waiting detector). With
this measurement, they read off the time integrated quantity∫ t j

ti
v(t )dt = Q(ti) − Q(t j ) and could thus readily estimate the

correlators from the second moments 〈(Q(ti ) − Q(t j ))2〉. As
they point out, this measurement scheme allows us to substi-
tute the noninvasivity assumption with that of the observable
making only one change of sign [63,67]. In the experiment,
this was also complemented by an independent set of ex-
periments with the negative-result measurements, in order to
provide further evidence of negligible classical disturbance.

5. Superconducting qubits

Several experiments have been also made with super-
conducting qubit systems. Knee et al. [89] performed a
macrorealism test that rules out classical models based on
two-level systems. Concretely, they used a flux supercon-
ducting qubit and prepared it in an equal superposition of
the two quantum states |ψ〉 = (|0〉 + |1〉)/

√
2 and afterwards

made a projective measurement in the computational basis.
Then they performed some runs of the experiment with an
additional blind measurement in between (i.e., a measurement
without outputs) and evaluated the quantum witness W . To
exclude classical theories larger than just macrorealism, they
performed control experiments calculating the disturbance of
the blind measurement in each of the two states {|0〉, |1〉}
separately and subtracted from W the value of the largest
disturbance. As a result, all interpretations based on classical
mixtures of the two computational basis states are excluded,
thus ruling out essentially a classical two-state model for their
intermediate operation.

After this, a number of experiments with superconducting
qubits have been implemented using the IBM 5Q Quantum
Experience [79,95,96], which is a system of five supercon-
ducting qubits that can be programed via a publicly accessible
website interface [97]. In particular, Huffman and Mizel [79]
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FIG. 5. (Reproduced from Ref. [79]). The target qubit is prepared
in an eigenstate of σθ for θ = −3π/4, which corresponds to opera-
tion O1. Protocol (a) is implemented by performing a measurement
in the σz eigenbasis after the preparation |1〉〈1|θ ; for protocols (b) and
(d) the state is transferred to a different ancillary qubit with a CNOT
gate and then the ancilla is measured in the σz eigenbasis; protocols
(c) and (e) work similarly, just with the measurement preceded by a
rotation of the state so that θ will be aligned to z. Finally, in protocol
(f) all the measurements are implemented by sending sequentially
the state of the target qubit to the four different ancillary qubits and
making the measurements as in the corresponding protocols (b), (c),
(d), and (e).

implemented the protocol adroit-measurement protocol devel-
oped by Wilde and Mizel [11]; see Fig. 5.

Concretely, the test was performed on one of the qubits,
using the others as ancillas for implementing the protocol
fulfilling the limitations and constraints of the IBM platform.
The protocols (b), (c), (d), and (e), as described in Fig. 5,
were used to estimate the adroitness of each intermediate
measurement as εi = |〈O3〉i − 〈O3〉a| where i = {b, c, d, e} is
a label indicating that the average is computed from the corre-
sponding protocol containing one intermediate measurement.
The reasoning is then that a violation of the LG inequality
L := 〈O3〉a + 〈O2〉 f + 〈O2O3〉 f + 1 � 0 with the additional
verification that |L| � εb + εc + εd + εe signals a violation of
macrorealism or some sort of collusion between the measure-
ment disturbances.

An upgraded version of the same platform was used by Ku
et al. [95] to perform a macrorealism test preparing at time

t1 an optical cat state cos θ
2 |0〉⊗n + sin θ

2 |1〉⊗n of n = 2, 3, 4, 6
qubits and then evolving it to the state |0〉⊗n at time t2. The
idea is that these states have increasing disconnectivity for
increasing n. The authors test the violation of an inequality
of the form |W | � I (q = 1), where the quantum witness is
obtained as in Eq. (35) with the measured observable being
Q = |0〉〈0|⊗n. Here, the additional quantity on the right-hand
side gives a measure of the invasivity and is given by I (q) =
|1 − p(q|q)|, where p(q2|q1) is the probability that the mea-
surement changes the value of the observable from q1 to q2.
This quantity has been independently measured in order to
ensure a nonclumsy violation of macrorealism. In their proto-
col, the outcome q = 1 is ideally obtained at t2 with certainty
if there are no measurements at t1. However, when a mea-
surement is performed at t1 the ideal probability of observing
outcome 1 becomes

∑
q1

p(q2 = 1, q1) = cos4 θ
2 + sin4 θ

2 . It
is worth noticing here that ideally a higher difference is ob-
tained with the state 1√

2
n (|0〉 + |1〉)⊗n, which has minimal

value of the disconnectivity (and in fact it is just a product
state). With this, we emphasize once more the fact that a
macroscopically entangled state is not strictly needed for the
violation of macrorealism.

6. Heralded single photons

Finally, experiments were recently also conducted with
heralded single photons. In the experiment discussed in
Ref. [71], the idea of Emary [70] was implemented, namely,
that of making ambiguous negative-result measurements on
a three-level system. This allows for a replacement of the
assumption of NIM with that of EIM, as discussed Sec. III A.
Here, the three levels are encoded in different polariza-
tion/path states of one photon, and the measurements are
performed to detect coincidences with a trigger photon, which
is created in a pair with the target photon through para-
metric down-conversion. This also has a consequence that
not all rounds are valid and thus a fair-sampling assumption
has to be employed. In fact, notice that the “measurement”
{1 − |q〉〈q|}q is not a POVM, so it must necessarily be
implemented via some postprocessing operation, in which
the undesired results, in this case a no-detection event, are
discarded.

Joarder et al. [64] also use heralded single photons, but
perform a more traditional LG test; see Fig. 6. This test has
the merit of addressing very carefully the loopholes that arise
from the detection of the events, in particular, problems such
as the imperfect detection efficiency, the emission of multi-
ple photons from the source or from different other sources,
and the registration of coincidence events. The clumsiness
loophole here is addressed by performing negative-result mea-
surements, and additionally ensuring that all the two-time
NSIT conditions like Eq. (27) are satisfied. Thus, in this
case the violation of LG inequalities comes from the gen-
uine violation of a three-time NSIT condition. This is the
case of two-adroit measurements that violate a LGI for se-
quences of three; see also the discussion in Sec. III A 4.
Furthermore, the argument for making classical explanations
of the disturbance unlikely relies on the fact that measure-
ments of the two different outcomes are performed in spatially
well-separated regions, which makes it an argument for the
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FIG. 6. (Reproduced from Ref. [64]). Schematic picture of the
experimental setup of Ref. [64]. The BS are beam splitters, while the
θ are phase modulators. As indicated in the figure, the two different
paths in the interferometers correspond to the two different outcomes
and the three time instants correspond to the paths after each BS.

experiment to have a nontrivial degree of macroscopicity, in
a similar sense as the experiment with neutrinos [90]. Note
also that the particular case of macrorealism violation in in-
terference experiments has been also discussed in more detail
in other recent theoretical works [98,99]. Similarly as other
experiments involving detections of photons (e.g., Ref. [86])
or neutrinos [90], it was not possible to perform an actual
sequence of measurements, but only a single (coincidence)
measurement was performed at the end. The different times
are then associated to longer paths taken by the photons (see
Fig. 6).

To conclude this section, we note that experimental tests of
LGI have significantly improved over the years: an increas-
ing attention has been devoted to the analysis of possible
loopholes, with the development of more refined theoret-
ical arguments and experimental implementations. These
approaches still rely on some description of the experi-
mental apparatus and the measurement process and some
additional assumptions that substitute the strong hypothesis
of NIM. Nevertheless, one must admit that there are fun-
damental limitations in performing a LG test completely
removing any assumption on the invasivity of the measure-
ment. These efforts in the design and implementation of
more elaborated experiments addressing the loopholes in
LG tests contribute to disproving a larger set of MR mod-
els, thus providing increasingly stronger arguments against
them.

IV. NONCLASSICAL TEMPORAL CORRELATIONS
BEYOND NONINVASIVE MEASUREMENTS

A. Operational relaxations of noninvasive measurability

Information processing tasks, classical or quantum, nor-
mally involve a series of steps where data are read from a
memory, manipulated, and written again. The sequentiality
of such operations suggests that temporal correlations may
play a role in explaining quantum advantages in information
processing. However, Leggett-Garg NIM assumption imposes
a strong restriction on which tasks can be analyzed: Any
classical device with an internal memory that is updated se-

p0

s1

q1

s2

q2

s3

q3

FIG. 7. A device-independent temporal sequence. Boxes are ei-
ther classical or quantum operations with input si and output qi that
act on a finite amount of states. The initial input can be taken as the
vector representing, e.g., the first level �p0 = (1, . . . , 0).

quentially would violate NIM. A similar drawback holds for
the proposals that we have just analyzed to substitute the
NIM assumption with an arguably weaker assumption on
the measurement invasivity, which is then tested via control
experiments.

In the light of this, a natural way to relax NIM assump-
tion in a systematic way that is suitable for applications in
information-theoretic tasks is to allow a bounded internal
memory: The operations are allowed to be invasive, but they
can modify an internal memory of at most n bits; NIM is
recovered for the special case n = 0. This idea was first pro-
posed by Żukowski [12] in the context of LGIs, and further
explored in Ref. [13]. This relaxation can be well formulated
in information theoretic terms via a finite-state machine or
automaton [100] a box that receives an input s1, produces an
output q1, then receives another input s2 and produces another
output q2, and so on; see Fig. 7. It is described in terms of a
classical probability as

p(q1→n|s1→n) =
∑

r0,...,rn

p0(r0)pT(q1, r1, |r0, s1)

. . . pT(qn, rn|rn−1sn), (36)

where {ri} are the internal states of the machines, p0 is their
initial distribution, and pT(qi, ri, |ri−1, si ) is the probability
of emitting the output qi and transition to the internal state
ri, given that the internal state was ri−1 and the measure-
ment setting was si. This model corresponds to a classical
model in which the system evolves through a sequence of
internal states that are not observed and updated after every
measurement. The number of internal states, called also the
dimension or the memory of the system, is considered to be
finite. Finally, notice that the transition rule pT(qi, ri, |ri−1, si )
is fixed throughout the process, i.e., we have time-independent
operations.

When the dimension d is allowed to go to infinity, the set of
probabilities generated by such a model can cover the whole
AOT polytope [31], as it happens for quantum models. This is
due to the fact that the extreme points of the AOT polytope are
reached by deterministic strategies, as discussed in Sec. II C 2.
To implement such strategies, one needs sufficiently many
states to store the whole past history at a given point in the
sequence.

In contrast, when the number of states d is kept con-
stant, the extreme points of the AOT polytope, for given
length and number of inputs and outputs, cannot in general
be reached. Consequently, the set of finite-dimensional quan-
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tum temporal correlations is strictly larger than the classical
one. This fact can be explicitly witnessed by the violation
of LG-type inequalities [13,101,102]. The memory resources
needed to simulate the extreme points of the AOT polytope,
i.e., the minimal number of internal states to reproduce the
corresponding deterministic outcome-generation strategy via
a classical model, were investigated by Spee et al. [103], who
showed that it scales at least exponentially in the length n.
In particular, a general criterion to compute such minimal
dimension necessary to simulate the extreme points has been
introduced in Ref. [103], based on the reuse of the internal
states to generate an output sequence. It can be introduced
via a basic example. Consider the sequence 010101. It has
length 6, no inputs, and two possible outputs. It is clear that
it can be generated with probability 1 by a model with two
internal states. Intuitively, the state at each time step fixes
(deterministically) the future sequence, so the same internal
state must correspond to the same future. It is clear that in
this case there are only two possible futures: (a) generate
an alternating sequence starting from 0 and (b) generate an
alternating sequence starting from 1. The general criterion
then counts the number of inequivalent futures associated with
an input-output sequence. In the case n = 2 one obtains that
the minimal dimension to reproduce all extreme points of the
AOT polytope is given by d = S + 1 where S is the total
number of settings [103]. This idea has been further developed
into the notion of deterministic complexity (DC) [102] defined
as the minimal number of internal states necessary to deter-
ministically simulate a sequence q and denoted as DC(q).
Differences between classical and quantum correlations, thus,
arise for a sequence q only if d < DC(q). Moreover, DC can
be efficiently computed in the case of sequences without input
[102].

LG-type inequalities that bound classical and quantum
models can then be derived by looking at AOT extreme points
that cannot be reproduced deterministically. This was used
in Ref. [31] to derive an inequality witnessing the quan-
tum dimension. In Ref. [13], the case of different theories,
i.e., classical, quantum, and generalized probability theories
(GPTs), was investigated. For the two-input/two-output sce-
nario one has

p(01|00) + p(10|10) + p(10|11) � �C
2 < �

Q
2 < �

gbit
2 = 3,

(37)
where the classical bound for a single bit �C

2 = 9/4 is strictly
smaller than the bound for a single qubit �

Q
2 ≈ 2.355 70, and

the gbit bound refers to a two-state GPT.
The assumption of a finite number of internal states has

been used also in recent experiments [86,89] to substitute
NIM with a weaker assumption. In fact, those are also
experiments with two inputs (i.e., “measurement” or “no mea-
surement” at a certain time instant) and two outputs. However,
in those experiments the two operations corresponding to the
two different inputs are concretely given and independent
control experiments were needed to exclude classical theories
of a given dimension for those concrete operations; see also
Ref. [38] for a comment on this assumption in the experiments
[86,89] and a proposed solution based on theory-agnostic
tomography. Instead, inequalities like (37) are semi-device-
independent [104], namely, they assume nothing about the

device except the dimension of the physical system. As such,
a violation of the classical bound �C

2 would imply that there
is no possible model for a single bit that can account for the
observed probabilities.

In contrast to the standard spatial scenario, in the temporal
one classical and quantum correlations can be distinguished
even in the case of no inputs (or equivalently, just one in-
put), due to the constraints of time-independent operations.
A family of inequalities, each valid for all classical automata
of dimension d , is given by

p(0 . . . 01) � �C
d,n, (38)

where the sequence consists of n − 1 0s and one 1 at the end
and the bound �C

d,n depends on both d and n. Here, upper
bounds on the value �C

d,n can be computed for sequences up
to length 20 and a quantum model that violates this bound
can be explicitly constructed [101]. Intuitively this sequence,
called the one-tick sequence in analogy with the problem of
ticking clocks [105], is the one requiring the higher dimension
to be reproduced deterministically. In fact, the system must
“count” that n − 1 steps passed, then emit the output 1. Such
a deterministic model requires n states. On the other hand, any
sequence of length n can be reproduced deterministically by a
machine with n states.

This sequence seems to play a special role among all
sequences, as investigated in Ref. [102]. The numerical op-
timizations performed on all sequences with no input and two
outputs up to length 10 suggest that the maximum probability
for a sequence q for a model of dimension d is upper bounded
by the maximum probability, over models of the same dimen-
sion, of the one-tick sequence of length DC(q). In addition,
the numerics also suggest the existence of a universal upper
bound of 1/e for all sequences with no input and two outputs,
whenever d < DC. In contrast, even a simple quantum model
with a single Kraus operator can reach the algebraic bound
p(0 . . . 01) = 1 when n = DC = d + 1 and we take the limit
of both the length and the dimension going to infinity [102].

More generally, the idea of using some sort of memory
complexity for quantifying the degree of nonclassicality of
sequential protocols has appeared also in contexts indepen-
dent from macrorealism. In particular, the concept of the
dimension witness, which has been first introduced in the con-
text of Bell nonlocality [106], has been extended also to the
temporal scenario. One of the first proposals involved a prepa-
ration and a (projective) measurement device [107], which
has been extended in a number of ways, from a dimension
witness based on the system’s dynamics [108], to prepare-
and-measure scenarios [109,110], contextuality [111], and
sequential measurements [48], which stimulated several ex-
perimental tests [112–115].

A notion of temporal correlations naturally arises in
communication scenarios, such as quantum random access
codes (QRACs) [110,116–120], communication complexity
[121,122], or communication cost for simulating Bell non-
locality [15,123,124]. Within this framework, Brierley et al.
[14] introduced a notion of nonclassical temporal correla-
tions. According to their definition, a temporal correlation
p(q|s) generated by transmitting a d-dimensional quantum
system through several parties that perform local measure-
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ments is nonclassical if its classical simulation requires more
than log(d ) classical bits of communication. In other words,
whenever a distribution can be generated by transmitting a
d-dimensional quantum system, but not by transmitting a
d-dimensional classical system, then such a correlation is non-
classical. To detect these nonclassical temporal correlations,
the authors introduce a communication-complexity task called
the sequential n-point modulo-(m; d ) problem. In this task,
n parties receive each some initial input, with a promise on
the sum modulo d of the inputs, and they have to generate
an output, with m possible values, satisfying a condition on
the total sum modulo d of the outputs. They showed a gap
in the amount of communication needed in the classical and
quantum setup to solve the problem with probability 1, thus
providing examples of nonclassical temporal correlations ac-
cording to the definition given. Here the communication plays
the role of the memory previously discussed: the message
must be encoded in a classical or quantum memory that is then
transmitted. A similar idea appears also in a recent proposal
to relax NIM assumption called retrievability of information
(ROI) [125]. In simple terms, ROI assumes that the informa-
tion “disturbed” by performing a first (invasive) measurement
can be retrieved by adapting the second one depending on the
outcome of the first. In terms of a model satisfying MRPS (and
not necessarily NIM) this assumption is precisely formulated
as follows:∑

λ

p(λ)p(b|0, y, λ) =
∑
λ,a

p(λ)p(a, b|x, ya, λ), ∀y, x. (39)

If Eq. (39) holds, the corresponding MRPS model satisfies

p(b|0, y) =
∑

a

p(a, b|x, ya). (40)

Uola et al. [125] connect the violation of this condition to
joint-measurability properties of the corresponding POVMs
and the optimal retrieving protocols to the minimal value
for the Busch-Lahti-Werner uncertainty relations [126]. We
conclude this section by remarking that all the approaches that
substitute NIM assumption with a weaker one, e.g., limited
memory, limited communication, or retrievable information,
are all applicable to devise more and more stringent tests of
macrorealism, even if they were not initially designed specif-
ically for this goal.

B. Applications of temporal correlations

We discussed how temporal correlations can be a means
of witnessing the minimal number of internal states, or levels,
of a physical system needed to describe a given experiment.
This number can be interpreted as the memory, from a more
information-theoretical perspective such as that of automata
theory. The minimal amount of memory can be different for
classical and quantum systems, giving rise to a notion of
nonclassical temporal correlations and potential quantum ad-
vantages in sequential information processing tasks. A typical
question is the following: how much, in terms of classical
memory, is the cost of a given task that needs sequential
operations? This was the motivation of some early works on
the subject, including the more abstract introduction of the
so-called ontological models [127,128].

For quantum models, the question of the minimal Hilbert
space dimension needed to explain some observed set of out-
come probabilities p(a| j, r), given preparation r ∈ {1, . . . , m}
and measurement input j ∈ {1, . . . , l}, was addressed first in
Ref. [107] making a parallel with the QRAC. Note that a sim-
ilar question was also addressed in Ref. [106] and subsequent
works in the context of spatial correlations.

A different approach was followed in Ref. [108], where
the authors considered a (discretized) temporal evolution
of expectation values of observables 〈A(t )〉 and, under the
assumptions of Markovianity and time homogeneity, they
proved a lower bound on the Hilbert space dimension d given
(i) the number of conserved quantities D under a given evolu-
tion and (ii) the number V of linearly independent sequences
vt := (〈A(t )〉, 〈A(t + 1), . . . 〉) for t ∈ N (called delayed vec-
tors). Such a bound is given by D + V � d2 + 1 and can be
always attained by a quantum model. Remarkably, instead, a
classical d-state model does not necessarily exist that saturates
the bound.

Back to the static case, still in the prepare-and-measure
scenario, classical and quantum dimension witnesses resem-
bling the CHSH inequality were derived in Ref. [109] with
bounds �C

d < �
Q
d for the two cases; see also Ref. [129] for

an analysis of their noise robustness and Refs. [112–114] for
an implementation in photonic experiments. Later, other di-
mension witnesses beyond the prepare-and-measure scenario
were derived [48,115,130]. Recently, it has been also observed
that dimension witnesses provide also lower bounds on the
purity of the pre- and postmeasurement states [131]. Another
early observation [132] was that contextual models can be
simulated via classical finite-state machines, having thus an
associated memory cost. In particular, the case of the Peres-
Mermin square [133,134] was analyzed in detail [132,135],
showing a gap between the classical and quantum memory
necessary to reproduce the temporal correlations. Moreover
several noncontextuality tests involving sequential measure-
ments were translated into proper dimension witnesses [111].

A classical ontological model was proposed for quantum
computation with magic states, a model for universal quantum
computation [136]. The operations allowed in the model are
the state preparation, including preparation of magic states,
Clifford gates, and Pauli measurements. The model can be
easily mapped into a model based only on Pauli measure-
ments. The classical model, then, is simply the model for
a sequence of Pauli measurements on an n-qubit state. The
authors essentially find a classical finite-state machine rep-
resentation for such measurement sequence, as it was to be
expected from the result of Sec. II C 2. Such a model, how-
ever, requires a classical state space with dimension scaling
exponentially with respect to the number of qubits. It is pos-
sible that such a model can be improved, as no argument of
optimality was provided.

Temporal correlations were shown to play a central role
in the performance of time-keeping devices [101,105,137].
Specifically, one can model a clock as a device that ticks at
regular time intervals according to a distribution p(t ), i.e., the
probability of ticking at a background time value t . In this
model, a notion of accuracy can be given as R = μ2/σ 2 where
μ := ∑∞

t=1 t p(t ) is the mean and σ 2 := ∑∞
t=1(t − μ)2 p(t ) is

the variance. R can be interpreted as the average number of
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ticks after which the clock uncertainty is greater than the
interval between two ticks. It has been observed that R is
bounded by O(d ) and by O(d2) for, respectively, classical and
quantum d-state models [101,137]. Here we use a notation
for a discrete-time clock, but the continuous limit has been
also considered [101,137]. Furthermore, optimal or close-to-
optimal classical and quantum models have been investigated
for this task, which also triggered subsequent investigations
into dimension witnesses based on sequences without inputs
[102]. Note, in fact, that such a ticking-clock model can be
seen as a machine that has no input (i.e., it is repeated equally
at each time step) and two outputs (tick and no-tick). The
investigation of quantum clocks naturally involves discussions
about thermodynamical irreversibility and entropy production
[105]. In addition to that, temporal correlations for a system of
finite size were also investigated [138,139] from the perspec-
tive of irreversibility and Landauer’s principle [140], showing
that the requirement of reversible transformations limits the
amount of temporal correlations obtainable from a quantum
system; see also Refs. [141,142] for a discussion of finite-size
effects on Landauer’s principle.

V. OUTLOOK AND CHALLENGES FOR THE FUTURE

Let us conclude this Perspective paper by discussing the
possible future directions of the research on Leggett-Garg
macrorealism and temporal quantum correlations. We have
seen that the notion of macrorealism arises as a hidden-
variable model in the temporal scenario, in analogy with the
early works of Bell and Kochen-Specker on local realism
and contextuality. As such, many of the techniques developed
for these fields, like the correlation polytope approach to the
computation of Bell and noncontextuality inequalities, can
be applied also to macrorealism. However, MR models have
a very peculiar property, namely, the possibility of measur-
ing directly the global probability distribution from which
all possible observations should arise as marginals. As such,
the problem can be straightforwardly solved by checking the
NSIT conditions, unless additional limitations are imposed on
the sequences of measurements that can be performed; see
Sec. II. The question remains open of what the optimal tests
are, not only with respect to MR models, but also with respect
to quantum violations of LGIs and possibly additional fig-
ures of merit, such as quantitative estimates of measurement
disturbance and more convoluted measurement procedures
that appear when trying to close the loopholes. In particu-
lar, in future experiments it would make sense to consider
measurements which are more general than projective, and
potentially also with different state-transformation rules, and
to make model-independent tests, which have the weakest
possible assumptions.

Indeed, Leggett-Garg tests are subject to several loopholes,
as it happens to Bell and contextuality tests. The hardest
condition to verify experimentally is the fact that the measure-
ment is noninvasive. Performing a LG test without the NIM
assumption may indeed be fundamentally impossible. How-
ever, what can be done and what has been done in experiments
is to substitute NIM with some weaker assumption that can be
supported by additional experimental evidence. This approach
may not provide a complete loophole-free experiment, but

it can certainly disprove an increasingly large class of MR
models. Recent years have seen a considerable progress in this
direction, both from the perspective of theoretical arguments
and experimental implementations; see Sec. III.

A systematic approach to the relaxation of the NIM
assumption is to use the notion of finite-state machines
[13,31,103], i.e., automata with a finite number of internal
states. This approach provides a hierarchical and mathemat-
ically well-formulated set of conditions able to distinguish
between classical and quantum correlations. With this notion,
MR models are recovered as a machine with only one internal
state. A natural relaxation of this condition consists of models
with an increasing number of internal states, which, in the
limit of an infinite number of them, are able to simulate all
possible temporal correlations; see Sec. IV. Some of the LG
experiments already went in this direction, by disproving with
extra control experiments a classical model with the same
number of states as the quantum model. In other words, the
classical model is analyzed under the assumption of a finite
number of internal states. Typically a classical model with
two states is compared with a qubit experiment [88,89]. How-
ever, these experiments using control tests of invasivity only
disprove a particular classical model, i.e., they are not model
independent. The assumption of finite system size, described
in Sec. IV, provides a systematic approach to address the
loopholes in LGI tests by replacing the NIM assumption with
a weaker one, namely, that of finite system size. Moreover, as
discussed in Sec. IV the corresponding temporal inequalities
are independent of the particular classical model chosen, but
depend only on the system size. Future experiments may
consider this direction for tightening the loopholes in tests
of macrorealism and disproving an increasing number of MR
models.

Inequalities that are valid for all of either the classical or
the quantum models with a certain number of states have been
derived theoretically and also tested in some experiments with
the purpose of witnessing the dimension of the state space, in
a way that is independent of any macrorealist consideration.
This kind of approach has also the advantage of finding more
concrete applications in other quantum information tasks; see
Sec. IV B.

The problem of the characterization of temporal correla-
tions and sequential quantum information processing tasks
can be addressed in the more general framework of spatiotem-
poral correlations. For instance, spatiotemporal correlations
can be described via the quantum comb formalism [143],
when events have a well-defined temporal order, or the pro-
cess matrix formalism [144,145] when they do not. These
approaches try to capture a general notion of quantum process
that involves a multipartite and multitime scenario, and in
general can weaken the assumption of causality, intended as
a definite time ordering of the events. See also Ref. [146]
for an approach that tries to unify the notion of spatial and
temporal quantum correlations within this framework. Simi-
larly, MR models can be generalized to more complex sets
of causal relations, described by Bayesian networks [147].
Some recent research in this direction attempts to relax some
of the LG assumptions and substitute them with some lim-
itations on the causal influences between classical variables
[15].
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Furthermore, we mention that temporal correlations are in-
timately connected to the problem of non-Markovian dynam-
ics. Several works explored these connections [52,148] and
assumptions of Markovianity play a role in experimental tests
of macrorealism [86]. Similar assumptions are also used in the
context of dimension witnesses [108]. These results elucidate
to some extent the connections between Markovianity, supple-
mented by stationarity (i.e., loosely speaking time-translation
invariance) and the original LG formulation of macroreal-
ism. Moreover, they can be similarly related to finite-state
automata with just a single state. At the same time, the in-
vestigations around the notion of Markovianity are far wider
[149–151] and the precise relation with macrorealism has not
been explored in full detail, especially in the light of the latest
developments in both fields. As a potential outlook, the con-
cept of Markovianity can turn out to be crucial also for extend-
ing the notion of temporal hidden-variable theories to the case
of systems with an infinite number of internal states. Similarly,
one can look at a definition of automata with an unlimited
number of states. In other words, the notion of finite memory,
in terms of a state space (n states), could be substituted with
the notion of a finite memory in terms of a time interval (n
time steps). In this scenario, it is still an open challenge to
make a meaningful and perhaps operational distinction be-
tween classical and quantum models for a sequential scenario.

Another important challenge is to explicitly characterize
temporal correlations as resources for specific quantum infor-
mation processing tasks, such as phase estimations, quantum

computation, or the classical simulation of a sequence of
quantum operations. A natural question, for instance, is
whether the classical model of Zurel et al. [136] can be
optimized to further reduce the number of classical states nec-
essary for the simulation of quantum computation and what is
the minimal number. An answer to this question may have
important consequences for our understanding of quantum
advantages in computation.

Finally, these quantum information applications provide a
further motivation for conducting increasingly elaborated LG
tests. The finer control of quantum systems over many degrees
of freedom, possibly even at some macroscopic level, and over
sequences of operations, developed to address the loopholes
in LG tests, may turn out to be crucial for the realization
of sequential information processing tasks inspired by the
study of temporal correlations. At the same time, efforts in
that direction are also required to tackle further foundational
questions, as well as for new technological developments,
such as better sensors, communication networks, or quantum
computers.
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