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Critical optical-hysteresis regime and optical-bistability transformation
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In this paper, we study the optical-hysteresis regime in a driven-dissipative Bose-Hubbard dimer under
a symmetric configuration and analyze the classical optical bistability with the Gross-Pitaevskii mean-field
approach. We find that the critical point of the optical-hysteresis regime can be determined by the classical
optical-bistability transformation predicted with a steady state equation, and the critical tunneling rate is given
by analyzing the bistable threshold points. In addition, we apply the same approach to a single nonlinear
microcavity coupled with an atom and the critical atom-cavity coupling strength of the optical-hysteresis regime
is also obtained. Finally, in order to illustrate that the critical point could be determined by the classical
optical-bistability transformation, we analyze the Liouvillian gap and find it opens at the critical point of
the optical-hysteresis regime. This work clarifies the relation between optical hysteresis and classical optical
bistability, which provides theoretical references for the modulation of optical hysteresis in experiment.
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I. INTRODUCTION

In recent years, driven-dissipative systems have garnered
a great deal of interest [1,2]. On the one hand, the physics
could be calculated and predicted by the open quantum
system theory (Lindbladian master equation) for both dy-
namics and steady states [3,4]. On the other hand, various
experimental platforms and novel technologies have been de-
veloped and applied to driven-dissipative systems, which lead
to interesting physical phenomena, such as unconventional
magnetism [5], driven-dissipative superfluids [6], dissipa-
tive time crystals [7], etc. In particular, there is research
emphasizing that a critical phenomenon could emerge in
driven-dissipative systems [8,9], which is the so-called dis-
sipative phase transition (DPT) [10–22]. In analogy to the
quantum phase transition [23], the maximum real part of the
nonzero Liouvillian superoperator eigenvalue, i.e., the Liou-
villian gap, is discontinuous and approaches zero at the critical
point [17–22], which leads to a long relaxation time to evolve
to a steady state. With the advent of new technologies, the
DPT has been probed via optical hysteresis in a nonlinear
semiconductor microcavity experimentally [24]. Optical hys-
teresis is a nonadiabatic response while the parameter crosses
the critical point of DPT [22] and is associated with the clas-
sical optical bistability predicted at the mean-field level.

As a current topic of intense research, the interesting
properties of DPT inspire other experimental investiga-
tions [25–29] as well as theoretical studies in photonic
resonators including the nonlinear Kerr model [30–32]
and Bose-Hubbard model [33–35]. In quantum optics, the
Bose-Hubbard dimer is a major platform for studying en-
tanglement [36,37], spontaneous symmetry breaking [38],
unconventional photon blockades [39,40], and bistable time
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crystals [41]. In addition, there are studies exploring the
self-trapping effect in Bose-Hubbard dimers [42–45]. To our
knowledge, the critical tunneling rate of the self-trapping
regime in a closed Bose-Hubbard dimer (or bosonic Joseph-
son junction) could be solved strictly, which is dependent
on the total photon numbers and the difference of initial
photons between the two microcavities [46–48]. Unfortu-
nately, it is difficult to obtain the critical tunneling rate for
a driven-dissipative Bose-Hubbard dimer because the energy
and particles are not conserved, so that the phase diagram of
the steady state self-trapping regime (the photons are local-
ized more in one of the microcavities corresponding to the
symmetry-breaking state) is given in Ref. [45] numerically.
Motivated by these studies of the critical tunneling rate for the
self-trapping effect in a Bose-Hubbard dimer, we wonder how
the tunneling rate affects the optical-hysteresis regime in a
driven-dissipative scenario and whether can we obtain the crit-
ical tunneling rate? In addition, as emphasized in Ref. [34], the
study of the nature of the critical tunneling rate is necessary
for the optical-hysteresis regime. Therefore, how to pinpoint
the exact location of the onset of the hysteresis regime should
be considered. Here, we will give the answer and clarify the
above issue.

In the present paper, we study the optical-hysteresis regime
in a driven-dissipative Bose-Hubbard dimer, which consists
of two coupled nonlinear microcavities with a dissipative set-
ting and both of them are driven coherently. We first review
the steady state self-trapping effect and give the expression
for the steady state phase for two microcavities with the
Gross-Pitaevskii mean-field approach. Then we investigate
the hysteresis area versus the tunneling rate for different
metastable residence times [27] and the results show that
there is a critical point for the optical-hysteresis regime.
We give the critical tunneling rate by analyzing the bistable
threshold points under the symmetry-preserving steady state
(the photon numbers are equal for two microcavities). The
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FIG. 1. A schematic of a driven-dissipative Bose-Hubbard dimer,
where the two resonant microcavities (frequency ωc) are coupled
by tunneling (rate J) and filled with nonlinear media which induce
effective photon-photon interactions (strength U ). In addition, both
microcavities are driven coherently with an external pumping laser
whose amplitude F is adjustable. The dissipation rates of the two
microcavities are κ1 and κ2, respectively.

semiclassical analysis shows the tunneling rate changes the
resonance frequency of the microcavity so that the bistable
region widens with an increasing tunneling rate beyond the
critical point, which corresponds to two further branches
leading to a large hysteresis area. Next, we explore the
critical atom-cavity coupling strength of a single nonlinear
microcavity coupled with an atom for the optical-hysteresis
regime. The physics induced by the atom-cavity coupling are
shown, weakening the Kerr nonlinearity, changing the reso-
nant frequency and the dissipation rate of the microcavity,
and the critical coupling strength of the optical-hysteresis
regime is also obtained. Finally, in order to illustrate that the
critical point could be determined by the classical optical-
bistability transformation, we analyze the Liouvillian gap and
find it opens at the critical point of the optical-hysteresis
regime.

This paper is structured as follows: We introduce the phys-
ical model and theoretical approach, present some necessary
expressions, and review the self-trapping effect in Sec. II. In
Sec. III, we give the critical tunneling rate for the optical-
hysteresis regime in a Bose-Hubbard dimer. Section IV is
devoted to exploring the critical atom-cavity coupling strength
of the optical-hysteresis regime and discuss the physical
effects induced by the coupling. Section V shows the eigen-
values of the Liouvillian superoperator. Finally, we conclude
and discuss the results in Sec. VI.

II. PHYSICAL MODEL AND THEORETICAL APPROACH

In this section, we first show the physical model and
give the theoretical approach used in the following, including
the Lindblad master equation and the Gross-Pitaevskii ap-
proach for a driven-dissipative Bose-Hubbard dimer, and the
schematic of the dimer is shown in Fig. 1. Some expressions
are given by reviewing the steady state self-trapping effect and
we obtain the analytical solution for the steady state phase
of the symmetry-preserving steady state under a symmetric
configuration.

A. Physical model and master equation

The Bose-Hubbard dimer includes local Kerr nonlinearity
in two microcavities which are coupled by tunneling. In ad-
dition, the microcavities are driven coherently in a dissipative

setting. The total Hamiltonian reads (h̄ = 1)

H = HBH + Hd (t ),

HBH =
∑
j=1,2

(ωca†
j a j + Ua†

j a
†
j a ja j ) − J (a†

1a2 + a†
2a1),

Hd (t ) =
∑
j=1,2

(Fe−iωd t a†
j + F ∗eiωd t a j ), (1)

where a†
j (a j) are the creation (annihilation) operators for the

two microcavities, respectively. ωc is the resonant frequency
of the microcavities and ωd is the frequency of the drive.
In the frame rotating with the driving frequency ωd , which
eliminates the time dependence and the relevant parameter,
is the detuning � = ωc − ωd . J denotes the tunneling rate
and the terms with J represent the intercavity tunneling. U
is the strength of the Kerr nonlinearity and F is the pumping
amplitude of the coherent drive.

Within the Born-Markov approximation, the dissipative
dynamics of the dimer reduced density matrix ρ is described
by the quantum master equation in Lindbladian form,

∂ρ

∂t
= −i[H, ρ] +

∑
j=1,2

κ j (2a jρa†
j − a†

j a jρ − ρa†
j a j )

≡ Lρ, (2)

where H is the Hamiltonian of the system and L is the Li-
ouvillian superoperator. κ1 and κ2 denote the dissipation rate
of the two microcavities, respectively. In the case κ1 = κ2, the
master equation (2) has discrete Z2 symmetry described by
the transformation a1 ↔ a2 [49], which means the steady state
photon numbers are always equal for the two microcavities.
One can find the unique and initial state-independent steady
state ρss by solving Lρss = 0. The expectation value of an ar-
bitrary operator O is calculated through 〈O〉 := Tr[Oρ], where
Tr denotes the trace over the system.

B. Self-trapping effect and steady state phase with the
Gross-Pitaevskii approach

For a closed Bose-Hubbard dimer, we are concerned about
the self-trapping effect of the dynamics due to the energy and
the particles are conserved [46–48]. However, one is more
concerned about the steady state self-trapping effect in such a
driven-dissipative scenario [44,45]. In this section, we review
the steady state self-trapping effect in a driven-dissipative
Bose-Hubbard dimer and present some necessary expressions
with the Gross-Pitaevskii mean-field approach, which will be
used in the next section.

Ignoring quantum fluctuations, the mean-field amplitudes
α1 and α2 for the operators a1 and a2 satisfy the following
nonlinear equations:

i
∂

∂t
α1 = (� + 2U |α1|2 − iκ1)α1 − Jα2 + F,

i
∂

∂t
α2 = (� + 2U |α2|2 − iκ2)α2 − Jα1 + F. (3)

We show the evolution of α j in Figs. 2(a) and 2(b) for dif-
ferent initial conditions, where one shares the same steady
state (symmetry-preserving state) and another shows the
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FIG. 2. (a) and (b) The trajectories describe the evolution of
α1 (blue solid line) and α2 (orange dashed line) with the Gross-
Pitaevskii mean-field approach. The initial conditions are n1 = 4,
n2 = 1 for (a) and n1 = 4, n2 = 2 for (b). The arrows indicate how
the fields evolve with an increase in time towards steady state. (c) The
dotted and dashed-dotted lines show the evolution of the phase for
α1 and α2, respectively, and the solid line is calculated by Eq. (6)
with the symmetry-preserving steady state in (a). The system pa-
rameters chosen are F = 3κ1, J = 0.5κ1, U = 5κ1, � = −10κ1, and
κ1 = κ2 = κ = 0.2 × 2π GHz.

self-trapping steady state (symmetry-breaking state) [45]. Fur-
thermore, we apply the transformation α j = α̃ jeiθ j , where θ j

are the phases for two microcavities and n j = |α j |2 are the
photon numbers. By setting ∂

∂t α j = 0, we obtain the follow-
ing steady state equations,

|F |2 = n1
[
κ2

1 + (2Un1 + �)2
] − 2κ1J

√
n1n2 sin δθ

− 2J
√

n1n2(2Un1 + �) cos δθ + J2n2,

|F |2 = n2
[
κ2

2 + (2Un2 + �)2] + 2κ2J
√

n1n2 sin δθ

− 2J
√

n1n2(2Un2 + �) cos δθ + J2n1, (4)

where δθ = θ1 − θ2 is the relative phase of two microcavities.
Eliminate F in the equations and some algebra yields the
following equation,

4κJ
√

n1n2 sin δθ = �(n1 − n2), (5)

where � = 4U 2(n2
1 + n2

2 + n1n2) + 4U�(n1 + n2) −
4UJ

√
n1n2 cos δθ + κ2 + �2 − J2 and we have set κ1 =

κ2 = κ . One can conclude if n1 = n2, δθ = 0 and n1 �= n2,
δθ �= 0, which correspond to the symmetry-preserving
and symmetry-breaking steady states shown in Figs. 2(a)
and 2(b), respectively. Next, we give the expression of the
symmetry-preserving steady state phase θ1 = θ2 = θ , which
is dependent on the system parameters in the case of a
symmetric configuration,

θ = arcsin

(
−κ

√
n

F

)
, (6)
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FIG. 3. (a) shows the photon numbers nj = 〈a†
j a j〉 as a function

of the sweeping parameter F . The solid line denotes the solution
with the Gross-Pitaevskii mean-field approach under the symmetry-
preserving steady state using Eq. (8), and the dashed lines stand for
the hysteresis loop calculated by the quantum master equation (2),
where the arrows indicate the sweeping direction of F . n− and
n+ are the photon numbers for the threshold points corresponding
to different driving amplitudes F− and F+. (b) is plotted for the
hysteresis area A as a function of the tunneling rate J for different
metastable residence times τ . The black dot Jc corresponds to the
hysteresis area A = 0. The parameter chosen is N = 31 and others
are the same as in Fig. 2.

where n = n1 = n2 are the steady state photon numbers of the
microcavities. As shown in Fig. 2(c), we give the evolution of
θ1 and θ2 using dashed-dotted and dotted lines, respectively,
and the solid line is calculated by Eq. (6) which accords well
with the numerical results for the steady state.

III. OPTICAL-HYSTERESIS REGIME AND THE
CRITICAL TUNNELING RATE

In this section, we study the optical-hysteresis regime by
sweeping the adjustable driving amplitude with a triangular
modulation [22] for both microcavities of the Bose-Hubbard
dimer, which consists of an ascending order from F0 to F0 +
NδF and a descending order from F0 + NδF to F0, and δF
and N are the size and number of steps, where we keep NδF
a constant. We take the steady state by solving the master
equation (2) at F = F0 as an initial state, then sweep F in both
ascending and descending order with a constant speed charac-
terized by δF and the metastable residence time τ [27]. The
results are shown by dashed-dotted lines in Fig. 3(a), where
we plot the optical-hysteresis loop of the photon numbers
n j = 〈a†

j a j〉. Next, in order to study the properties of optical
hysteresis quantitatively, we define a hysteresis area enclosed
by the hysteresis loop [20–22],

A =
∫ Fmax

Fmin

|n↑ − n↓|dF, (7)

where ↑ and ↓ denote the ascending and descending order
of F , respectively. We plot A versus the tunneling rate for
different τ in Fig. 3(b), where the results show that the strong
tunneling rate corresponds to a large hysteresis area and the
system is driven into the optical-hysteresis regime with an
increase in J beyond a critical point. In addition, the critical
point Jc can be determined by A = 0 which is marked with a
black dot in Fig. 3(b). Next, we will give the critical tunneling
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FIG. 4. (a) and (b) show the width of the bistable region ξ as
a function of the tunneling rate J and Kerr nonlinearity strength
U . As the black dot marked in (a), the critical tunneling rate Jc

corresponding to ξ = 0 could be predicted by Eq. (10), which means
a zero bistable region. The other system parameters are the same as
in Fig. 2.

rate Jc by analyzing the bistable threshold points with the
Gross-Pitaevskii mean-field approach based on Sec. II.

Considering the symmetric configuration of the two cav-
ities, a discrete Z2 symmetry of master equation (2) is
described by the transformation a1 ↔ a2 [49]. Therefore, it
is reasonable to study the critical tunneling rate Jc under the
symmetry-preserving steady state, i.e., n1 = n2 = n and θ1 =
θ2 = θ . Thus, we obtain the simplified steady state equation,

|F |2 = n[κ2 + (2Un + � − J )2], (8)

where we have set κ1 = κ2 = κ . In particular, we notice that
there is no limit for the sign of the tunneling rate J . A standard
photonic dimer achieves a positive tunneling rate and negative
tunneling devices can be implemented with coupled pho-
tonic crystal microcavities [50]. However, it brings different
physical effects which decrease or increase the microcavity
resonance frequency, respectively.

By analyzing the threshold points [marked by black dots
in Fig. 3(a) with n±] for optical bistability, we obtain the
following photon numbers of the threshold points by setting
d|F |2/dn = 0 in Eq. (8),

n± = −2(� − J ) ±
√

(� − J )2 − 3κ2

6U
, (9)

the optical-instability region is between n− and n+. Further-
more, considering the photon numbers n± are always positive
and real, it is clear that the optical bistability requires (� −
J )U < 0 and (� − J )2 > 3κ2. Therefore, one can obtain the
critical tunneling rate Jc for optical bistability (here, we only
consider U > 0 for simplicity),

Jc = � +
√

3κ. (10)

For J > Jc, the system is driven into the optical-bistability
regime. In addition, we define ξ ,

ξ = F+ − F−, (11)

to describe the width of the bistable region, where F− and
F+ are marked in Fig. 3(a) corresponding to n− and n+,
respectively. We plot ξ versus the tunneling rate J in Fig. 4(a)

and the results show the bistable region widens with increas-
ing tunneling rate beyond the critical tunneling rate Jc. The
wide bistable region corresponds to two further branches (the
hysteresis loop) predicted by the master equation (2) which
corresponds to the large hysteresis area in Fig. 3(b). Finally,
in Fig. 4(b) we also show ξ decreases with increasing Kerr
nonlinearity strength U . The fundamental physics is the Kerr
nonlinearity increases the effective microcavity resonance fre-
quency [51] which leads to a narrow bistable region.

IV. CRITICAL ATOM-CAVITY COUPLING STRENGTH
FOR THE OPTICAL-HYSTERESIS REGIME

In the previous section, we have given the critical tunneling
rate of the optical-hysteresis regime in a driven-dissipative
Bose-Hubbard dimer. Here, we give the critical atom-cavity
coupling strength for a single nonlinear microcavity coupled
with an atom and discuss other physical effects induced by the
coupling.

The time-independent Hamiltonian of the atom-cavity sys-
tem reads (h̄ = 1)

H = −�

(
a†a + 1

2
σz

)
+ g(aσ+ + σ−a†)

+ U

2
a†a†aa + F (a + a†), (12)

where a† and a are the creation and annihilation operators for
the microcavity, respectively. σ+ and σ− are the raising and
lowering operators for the atom where σ± = 1

2 (σx ± iσy), σi,
i ∈ {x, y, z}, are the Pauli operators. � = ωd − ωc is the drive-
cavity detuning where ωd and ωc stand for the frequency of the
drive and microcavity, respectively. g denotes the atom-cavity
coupling strength, U is the strength of the Kerr nonlinearity,
and F is the amplitude of the drive.

With the Gross-Pitaevskii mean-field approach, we obtain
the following equations with Hamiltonian (12),

α̇ = (i� − iU |α|2 − κ̄ )α − igβ − iF, (13)

β̇ = −(γ⊥ − i�)β + igαχ, (14)

χ̇ = 2ig(α∗β − αβ∗) − γ‖(χ + 1), (15)

where α = 〈a〉, β = 〈σ−〉, and χ = 〈σz〉. κ̄ is the dissipa-
tion rate of the microcavity, and γ⊥ and γ‖ denote the
transverse and longitudinal relaxation rates of the atom, re-
spectively [52]. Some algebra yields the steady state solutions
of α and χ ,

α = iF

i� − κ̄ − iU |α|2 + g2χ

γ⊥−i�

, (16)

χ = −1

1 + 4g2|α|2
γ⊥γ‖

(
1+ �2

γ⊥2

) . (17)

Here, we consider the linear relation γ⊥ = mγ‖ where m is a
constant. In this case, the results reduce to

α = iF

i� − κ̄ − iU |α|2 − g2(γ⊥+i�)
γ⊥2+�2+4mg2|α|2

. (18)
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FIG. 5. (a) shows the hysteresis area A as a function of the atom-
cavity coupling strength g for different τ . The inset is the nearly
enclosed hysteresis loop for the critical point gc. (b) shows ξ as a
function of g for different detuning �. The critical point gc marked
by black dots for ξ = 0 are calculated by Eq. (22). The system
parameters are γ⊥ = 0.01κ̄ and m = 0.02κ̄ .

In the weak-coupling regime defined by [9]

4mg2|α|2 � �2, (19)

and considering γ⊥ is very small compared to the detuning
� [52], we obtain

α = iF

−iŨ |α|2 + i�̃ − κ̃
, (20)

where

Ũ = U − 4mg4

�3
, �̃ = � + g2γ 2

⊥
�3

− g2

�
,

κ̃ = κ̄ + g2γ⊥
�2

− g2γ 3
⊥

�4
, (21)

are the effective Kerr nonlinear strength, detuning, and dis-
sipation rate, respectively, which result from the interaction
between the atom and the microcavity. The term with − 4mg4

�3

weakens the Kerr nonlinearity [53]. g2γ 2
⊥

�3 − g2

�
and g2γ⊥

�2 − g2γ 3
⊥

�4

change the resonant frequency and the dissipation rate of the
microcavity. We show the hysteresis area versus the coupling
strength in Fig. 5(a). In principle, the coupling weakens the
Kerr nonlinearity which should lead to a large hysteresis area
with increasing g. However, it is not the case because the
coupling also decreases the resonance frequency of the mi-
crocavity which makes it far away from the optical-hysteresis
regime, and the latter generates the main effect. Furthermore,
we give the critical atom-cavity coupling strength gc,

gc =
√ √

3κ̄�4 − �5

γ 2
⊥� − �3 − √

3γ⊥�2 + √
3γ 3

⊥
. (22)

For g < gc, the microcavity is driven into the optical-
bistability regime. As the discussion in Ref. [52], γ⊥ � �,
and we can obtain the following expression of gc,

gc =
√

�2 −
√

3κ̄�. (23)

Finally, we numerically calculate the width of the bistable
region ξ versus the atom-cavity coupling strength and show

FIG. 6. The maximum real part of the non-zero Liouvillian
eigenvalue ln[−γmax] vs F and J in a driven-dissipative Bose-
Hubbard dimer. The result shows that the Liouvillian gap is opened
with decreasing J . Meanwhile, the width of the bistable region ξ is
narrow as shown in Fig. 4(a) and the hysteresis area also decreases
in Fig. 3(b). The parameters chosen are the same as in Fig. 2.

the results in Fig. 5(b). As expected, it decreases with in-
creasing g, and the critical coupling strength for ξ = 0 could
be predicted by Eq. (22), which are marked by black dots
corresponding to the closed hysteresis loop as shown in the
inset in Fig. 5(a).

V. ANALYSIS OF THE LIOUVILLIAN GAP

In the previous sections, we have studied the optical-
hysteresis regime and given the critical points in a driven-
dissipative Bose-Hubbard dimer and the single nonlinear
microcavity coupled with an atom. In order to illustrate that
the critical points of the optical-hysteresis regime could be
determined by analyzing the bistable threshold points of a
classical optical-bistability transformation, we analyze the be-
havior of the Liouvillian gap near the critical point in the
following.

The eigenvalues of the Liouvillian superoperator are com-
plex, λ = γ + iω, because of its non-Hermiticity. Also, the
real parts of the eigenvalues are nonpositive, namely, γ � 0,
which ensure the existence of a steady state. The maximum
real part of the nonzero eigenvalue (the Liouvillian gap) de-
termines the relaxation time to the steady state [3,4]. More
specifically, a narrower gap corresponds to a longer relaxation
time. We show the Liouvillian gap in Figs. 6 and 7 for the
Bose-Hubbard dimer and atom-cavity system, respectively. In
Fig. 6, the different curves correspond to different tunneling
rates J , and the dip vanishes with decreasing J until the critical
point predicted by the classical bistability transformation [see
the critical point in Fig. 4(a) calculated by Eq. (10)], which
means the Liouvillian gap is opened, leading to the zero hys-
teresis area [see A = 0 in Fig. 3(b)]. Similarly, as the results
shown in Fig. 7 for an atom-cavity system, we analyze the
corresponding eigenvalue and the dip vanishes with increasing
g until the critical atom-cavity coupling strength given by
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FIG. 7. The maximum real part of the nonzero Liouvillian eigen-
value ln[−γmax] vs F and g in an atom-cavity system. The Liouvillian
gap is opened with increasing g. The parameters chosen are the same
as in Fig. 5.

Eq. (22) and the hysteresis area is closed to zero as shown
in Fig. 5(a). Correspondingly, the bistable region becomes
narrow with increasing g. Therefore, the critical point of the
optical-hysteresis regime could be predicted by analyzing the
classical optical-bistability transformation.

VI. CONCLUSION

In this paper, we have studied the optical-hysteresis regime
in a driven-dissipative Bose-Hubbard dimer and the critical
tunneling rate has been given with the Gross-Pitaevskii mean-
field approach by analyzing the bistable threshold points. We
have given the steady state phase for symmetric microcavities
under a symmetry-preserving steady state. In addition, we
have studied the critical atom-cavity coupling strength of a
single nonlinear microcavity coupled with an atom for the
optical-hysteresis regime. The critical atom-cavity coupling
has been obtained and we have discussed the physical effects
induced by the coupling, which weakens the Kerr nonlinearity,
and changes the resonance frequency and the dissipation rate
of the microcavity. Finally, we have analyzed the Liouvillian
gap and the results show that it opens at the critical point of
the optical-hysteresis regime, which means that the critical
point can be determined by the classical optical-bistability
transformation exactly. This work have clarified the relation
between optical hysteresis and classical optical bistability,
which provides theoretical references for the modulation of
optical hysteresis in experiment.
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