
PHYSICAL REVIEW A 107, 033707 (2023)

Formal relation between Pegg-Barnett and Paul quantum phase frameworks
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The problem of defining a Hermitian quantum phase operator is nearly as old as quantum mechanics itself.
Throughout the years, a number of solutions have been proposed, ranging from abstract operator formalisms
to phase-space methods. In this work, we make an explicit connection between two of the most prominent
approaches by proving that the probability distribution of phase in the Paul formalism follows exactly from
the Pegg-Barnett formalism by combining the latter with the quantum-limited amplifier channel. Our findings
suggest that the Paul framework may be viewed as a semiclassical limit of the Pegg-Barnett approach.
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I. INTRODUCTION

In the history of quantum mechanics, few problems have
received as much attention as the problem of the definition
and measurement of the phase of the quantum electromagnetic
field. Since the early failed attempt by Dirac [1], a plethora
of solutions have been proposed, including phase-space ap-
proaches [2,3], as well as operator formalisms by Susskind
and Glogower [4], Garrison and Wong [5], Paul [6], Lévy-
Leblond [7], Popov and Yarunin [8], and, finally, Pegg and
Barnett [9,10].

Significant interest has been especially devoted to the
Pegg-Barnett formalism, in which the obstacles standing in
the way of a well-defined quantum phase operator are over-
come by reducing the problem to a finite dimension. After
its discovery, the formalism quickly gave rise to an alterna-
tive derivation [11] and extension [12], among other things
[13–16]. Nowadays, the Pegg-Barnett formalism is used, e.g.,
to investigate the phase properties of various nonclassical phe-
nomena, including photon antibunching in the case of photon
addition and substraction [17,18], phase-number squeez-
ing in atom-field interactions [19], and nonlinear squeezed
states [20].

In this work, we focus on the formal aspects of the Pegg-
Barnett framework and relate it to the Paul formalism, a
“competing” solution to the quantum phase problem that is
especially notable for its close connection to phase-space
approaches and a clear experimental interpretation [21,22].
More precisely, we prove that the probability distribution in
the Paul formalism can be exactly obtained from its coun-
terpart in the Pegg-Barnett formalism if the Pegg-Barnett
phase operator is combined with the quantum-limited ampli-
fier channel. Furthermore, due to the amplifier’s association
with classicality [23] (discussed in more detail below), we in-
terpret our result as the Paul framework being a semiclassical
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limit of the Pegg-Barnett formalism. In this way, we bridge
the two approaches mathematically and physically.

Interestingly, our findings are not the first to apply the
quantum-limited amplifier to the Paul formalism, albeit the
context is different. Reference [23] showed that the phase
distribution of a quantum state in the Paul framework can
be realized experimentally through the amplified state. In
Ref. [24], the Paul framework was proved to be the only quan-
tum phase description consistent with the Glauber model of
amplification and the natural expectation that large-amplitude
coherent states should have a well-defined phase.

This paper is organized as follows. In Sec. II, we briefly
summarize the two discussed quantum phase formalisms. In
Sec. III, we introduce our main tool: the quantum-limited
amplifier channel. In Sec. IV, we state and derive our main
result. An in-depth discussion of this result is provided in
Sec. V, with explicit examples being given in Sec. VI. We
conclude in Sec. VII.

II. PAUL AND PEGG-BARNETT PHASE FORMALISMS

As already stated, our main subject of interest concerns
the Paul and Pegg-Barnett formalisms and the connection
between them through the quantum-limited amplifier channel.
Let us briefly introduce and discuss the two phase formalisms.
For a detailed review, see, e.g., [25,26].

A. Paul formalism

Back in 1974, Paul considered the following family of
operators [6]:

Êk :=
∫

d2α

π

(
α

|α|
)k

|α〉〈α|,

Ê−k :=
∫

d2α

π

(
α∗

|α|
)k

|α〉〈α| = Ê†
k , (1)

where k ∈ N and

|α〉 =
∞∑

n=0

αn|n〉, αn = e−|α|2/2 αn

√
n!

(2)
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is a coherent state with amplitude α ∈ C. We discuss the case
of a single mode, for which â is the annihilation operator (so
that â|α〉 = α|α〉) and |n〉 for n = 0, . . . ,∞ denotes the Fock
basis.

The operators (1) correspond to the classical quantities
e±ikφ . This is most easily seen by setting α = reiφ and com-
puting the expectation values for an arbitrary state ρ̂, which
leads to

〈Êk〉ρ̂ =
∫ 2π

0
dφ eikφ

∫ ∞

0

dr

π
r Qρ̂ (reiφ ), (3)

with analogous notation for Ê−k . Here,

Qρ̂ (α) := 〈α|ρ̂|α〉 (4)

is the Husimi Q quasiprobability distribution [27]. Due to the
properties of the Husimi function, the rightmost integral in
Eq. (3) is positive for all φ and, when integrated over φ from
0 to 2π , yields a value of 1. For this reason, it can be regarded
as the probability distribution of φ in the formalism:

PPaul(φ|ρ̂) :=
∫ ∞

0

dr

π
r Qρ̂ (reiφ ). (5)

It is useful to compare the Paul operators with the Glauber-
Sudarshan P representation [28] of an arbitrary operator X̂ ,
defined through

X̂ =
∫

d2α

π
PX̂ (α) |α〉〈α|. (6)

We can see that the Paul operators (1) are essentially oper-
ators whose P distribution is equal to the kth powers of the
quantity eiφ .

As a natural generalization, in this paper we consider
operators whose P representation is rendered by any complex-
valued, bounded function f of eiφ , i.e.,

φ̂Paul[ f ] :=
∫

d2α

π
f

(
α

|α|
)

|α〉〈α|. (7)

Clearly, any such operator has properties similar to the origi-
nal Paul operators. In particular, its expectation value reads

〈φ̂Paul[ f ]〉ρ̂ =
∫ 2π

0
dφ f (eiφ ) PPaul(φ|ρ̂), (8)

with PPaul(φ|ρ̂) being the same probability distribution as in
Eq. (5).

One of the main strengths of the Paul formalism is its
close association with experimental phase detection, such as
homodyne measurements using an eight-port interferometer
[21,22]. In the strong local oscillatory regime of such an
experiment, the phase difference between an arbitrary bosonic
state and a reference coherent state is given precisely by the
Paul probability distribution (5).

B. Pegg-Barnett formalism

Introduced in 1988 [9] and developed further in subsequent
years, the Pegg-Barnett formalism is built upon a family of
s + 1 “number-phase states”

|θt,s〉 := 1√
s + 1

s∑
n=0

einθt,s |n〉, (9)

where

θt,s := 2πt

s + 1
, t ∈ {0, 1, . . . , s}. (10)

Typically, an arbitrary reference phase θ0 is added to the
definition of θt,s. Indeed, from a practical point of view the
phase itself is not well defined, and measurements must be
made relative to an auxiliary state. For example, see [12],
where an operator measuring the phase difference between
two systems was considered. Here, we are concerned with the
relation between the Pegg-Barnett and Paul formalisms and
not the formalisms themselves. For consistency with the Paul
framework, we therefore take the liberty to set the reference
phase θ0 to zero.

For finite s, the number-phase states form an orthonormal
basis of the (s + 1)-dimensional Hilbert space, which is the
s-photon subspace of the single-mode Fock space. Hence, the
Pegg-Barnett phase operator

φ̂
(s)
PB :=

s∑
t=0

θt,s|θt,s〉〈θt,s| (11)

is Hermitian. By considering a formal power series of this
operator, we can associate a Pegg-Barnett operator with any
complex-valued, bounded function f of the phase exponen-
tial:

φ̂
(s)
PB[ f ] :=

s∑
t=0

f (eiθt,s )|θt,s〉〈θt,s|. (12)

Computing its expectation value on state ρ̂, we find

〈
φ̂

(s)
PB[ f ]

〉
ρ̂

=
s∑

t=0

f (eiθt,s )〈θt,s|ρ̂|θt,s〉. (13)

Since f is arbitrary, we conclude that the probability that the
state’s phase is equal to θt,s is therefore given by

〈θt,s|ρ̂|θt,s〉. (14)

Note that the results so far depend on the auxiliary dimen-
sion s. This is resolved by taking the limit s → ∞. As the
limit is considered, the summation over t in Eq. (13) may be
replaced by an integral, so that [29]〈

φ̂
(s)
PB[ f ]

〉
ρ̂

=
∫ 2π

0
dφ f (eiφ )P(s)

PB (φ|ρ̂). (15)

Here,

P(s)
PB (φ|ρ̂) := s + 1

2π
〈φs|ρ̂|φs〉, (16)

where

|φs〉 := 1√
s + 1

s∑
n=0

einφ|n〉 (17)

are the continuous counterparts of the discrete phase states
(9). We remark that in the very limit s = ∞, the continuous
phase states coincide with those in the Susskind-Glogower
formalism [4].

For normalizable states, the limit s → ∞ in Eq. (15) can
be computed under the integral:

lim
s→∞

〈
φ̂

(s)
PB[ f ]

〉
ρ̂

=
∫ 2π

0
dφ f

(
eiφ

)
lim

s→∞ P(s)
PB (φ|ρ̂). (18)
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In such cases, the formalism has a well-defined probability
distribution in the limit of infinite dimension:

lim
s→∞ P(s)

PB (φ|ρ̂), (19)

and the expectation values can be computed after taking the
limit.

However, as Barnett himself pointed out [29], states for
which the order of integration and limit cannot be exchanged
exist, meaning that the formula (18) is not always valid. Then,
the probability distribution does not exist in the limit s → ∞,
and the expectation values have to be computed through either
of the following expressions:

lim
s→∞

〈
φ̂

(s)
PB[ f ]

〉
ρ̂

= lim
s→∞

s∑
t=0

f (eiθt,s )〈θt,s|ρ̂|θt,s〉

= lim
s→∞

∫ 2π

0
dφ f (eiφ )P(s)

PB (φ|ρ̂), (20)

where we stress that in the discussed singular cases the limit
in the bottom line has to be performed after integration. The
postulate that, in general, the expectation values should be
computed first and only then should the limit s → ∞ be taken
is a key feature of the Pegg-Barnett formalism.

III. QUANTUM-LIMITED AMPLIFIER

To make the connection between the Paul and Pegg-Barnett
frameworks, we will use the quantum-limited amplifier (QLA)
channel.

The action of the (one-mode) QLA channel of arbitrary
strength κ � 1 on state ρ̂ is defined as [30,31]

Aκ (ρ̂) := TrB[Ûκ (ρ̂ ⊗ |0〉〈0|)Û †
κ ], (21)

where

Ûκ := exp[arcosh
√

κ (â†b̂† − âb̂)] (22)

is the two-mode squeezing operator. Here, b̂ is the annihilation
operator associated with the ancillary system traced out in
Eq. (21). The case κ = 1 corresponds to the identity channel.

From the physical point of view, QLA may be viewed as
the process of pumping particles into the system. Because of
its properties, it is sometimes viewed as a tool for making
a quantum state more “classical” [23]. In particular, it was
shown that the Glauber-Sudarshan P quasiprobability distri-
bution of an infinitely amplified state is always non-negative
[23], a quality that is associated only with semiclassical
states [32].

The action of the amplifier on a state can be calculated
explicitly in the number basis. Substituting the convenient
decomposition [29] of the squeezing operator (22)

Ûκ = r̂†
+,κ exp[− ln

√
κ (â†â + b̂†b̂ + 1)]r̂−,κ , (23)

where r̂±,κ := exp[±
√

κ−1
κ

âb̂], into the definition (21), we
eventually obtain

Aκ (ρ̂) = 1

κ

∞∑
j=0

(
κ − 1

κ

) j ∞∑
m,n=0

ρmn
1√

κ
m+n

×
√(

j + m

j

)(
j + n

j

)
| j + m〉〈 j + n|, (24)

where ρmn ≡ 〈m|ρ̂|n〉.
As it will prove important later on, we mention that the

QLA channel possesses the semigroup property, according to
which

Ax[Ay(ρ̂ )] = Axy(ρ̂) (25)

for any x, y � 1. Finally, we remark that, occasionally, for
increased readability in subscripts, we will denote QLA by

A(κ, ρ̂) ≡ Aκ (ρ̂). (26)

IV. MAIN RESULTS

We come back to the Pegg-Barnett formalism. From a
practical point of view, to obtain the final, s-independent
measurement of phase, one has to perform a number of mea-
surements of finite-dimensional Pegg-Barnett operators given
by different values of s. For a large enough number of mea-
surement results obtained for large enough s, one can predict
the limiting measurement result for s → ∞.

Let us now imagine that in this setup, before measuring
the s-dimensional Pegg-Barnett operator, we first apply to the
system s times an infinitesimally weak QLA channel A1+ε ,
ε � 1. In other words, before measuring the s-dimensional
Pegg-Barnett operator, we prepare the system in state
As

1+ε (ρ̂), which, due to the semigroup property (25), can be
rewritten as

As
1+ε (ρ̂ ) = A(1+ε)s (ρ̂) ≈ A1+sε (ρ̂). (27)

Here, in the second transition we use the fact that ε � 1.
Again, for a large enough number of measurement results
obtained for large enough s, one can predict the limiting mea-
surement result s → ∞. Our main claim is that, in the limit of
vanishing amplification strength, ε → 0, the results obtained
from this procedure are indistinguishable from analogous re-
sults obtained from the Paul formalism for an unamplified
state.

We are now in the position to state our main result. For
clarity, we present it in the form of a proposition.

Proposition 1. The Paul probability distribution (5) can be
obtained from the Pegg-Barnett continuous probability distri-
bution (16) through the quantum-limited amplifier as

PPaul(φ|ρ̂) = lim
ε→0

lim
s→∞ P(s)

PB[φ|A1+sε (ρ̂)]. (28)

Before we prove Proposition 1, let us make two important
remarks. First, we stress that it is crucial that the order of lim-
its on the right-hand side of Eq. (28) cannot be changed. If we
took the limits in the opposite way, we would obtain no ampli-
fication at all since A1 is the identity channel. Consequently,
in the process described at the beginning of this section, we
would be performing the ordinary Pegg-Barnett measurement,
which is obviously different from the Paul measurement.

Second, in Proposition 1, we called the quantity
P(s)

PB[φ|A1+sε (ρ̂)] the continuous probability distribution in the
Pegg-Barnett formalism. However, as discussed extensively in
Sec. II B, this is true only if, in the formula for the expecta-
tion value (20) for the amplified state, one can take the limit
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s → ∞ under the integral, i.e.,

lim
s→∞

〈
φ̂

(s)
PB[ f ]

〉
A(1+sε, ρ̂ )

=
∫ 2π

0
dφ f (eiφ ) lim

s→∞ P(s)
PB [φ|A1+sε (ρ̂)]. (29)

Remarkably, we find that Eq. (29) always holds, even
if it does not hold for the unamplified state. Thus,
P(s)

PB[φ|A1+sε (ρ̂)] indeed constitutes the continuous probabil-
ity distribution in the Pegg-Barnett formalism. This technical
result is proved in Appendix A.

We now proceed to prove our main result.
Proof of Proposition 1. Setting κ = 1 + sε in Eq. (24) and

making use of definitions (16) and (17) leads to

P(s)
PB [φ|A1+sε (ρ̂)] = 1

2π (1 + sε)

s∑
j=0

(
sε

1 + sε

) j

×
s− j∑

m,n=0

ρmn
ei(n−m)φ

√
(1 + sε)

m+n

×
√(

j + m

j

)(
j + n

j

)
, (30)

where we note that the summation limits on m, n, and j
follow from the fact that the Pegg-Barnett operator is limited
to dimension s, which means that j + m, j + n ∈ {0, . . . , s}.
Our goal is to show that after taking the limits s → ∞ and
ε → 0, in that order, the above quantity is equal to (5).

To simplify our considerations and shorten the notation, let
us observe that Eq. (28) is linear in the density operator. For
this reason, it is enough to restrict ourselves to pure states:
ρ̂ = |ψ〉〈ψ |, for which ρmn = ψmψ∗

n . This assumption has no
impact on the correctness of the proof. We get

P(s)
PB [φ|A1+sε (ρ̂)] = 1

2π (1 + sε)

s∑
j=0

(
sε

1 + sε

) j

×
∣∣∣∣∣∣

s− j∑
m=0

ψm
e−imφ

√
(1 + sε)

m

√(
j + m

j

)∣∣∣∣∣∣
2

.

(31)

In the next step, we rewrite

1

(1 + sε)m

(
j + m

j

)
=

∏m
k=1( j + k)

(1 + sε)mm!
= 1

m!

m∏
k=1

j + k

1 + sε
.

(32)

Thus, Eq. (31) becomes

P(s)
PB [φ|A1+sε (ρ̂)] = 1

2π (1 + sε)

s∑
j=0

(
sε

1 + sε

) j

×
∣∣∣∣∣∣

s− j∑
m=0

ψm
e−imφ

√
m!

√√√√ m∏
k=1

j + k

1 + sε

∣∣∣∣∣∣
2

. (33)

At this point, it will be beneficial to turn the summation
over j into an integral. We do this in complete analogy to
the case of particle in a box approaching infinite volume [33].

Instead of summing over j from 0 to s, we sum over μ j := j/s
from 0 to 1. In the limit of large s, in which we are interested,
the sum approaches an integral. As μ j occupies the volume
1/s in the space of indices, we have

j → sμ,

s∑
j=0

→ s
∫ 1

0
dμ. (34)

Therefore, for very large s,

P(s)
PB [φ|A1+sε (ρ̂ )] = s

2π (1 + sε)

∫ 1

0
dμ

(
sε

1 + sε

)sμ

×
∣∣∣∣∣∣
s−sμ∑
m=0

ψm
e−imφ

√
m!

√√√√ m∏
k=1

sμ + k

1 + sε

∣∣∣∣∣∣
2

. (35)

We are now ready to take the limit s → ∞. We can do this
term by term, which is justified by the fact that each term has
a well-defined limit. We have

s

(1 + sε)
→ 1

ε
,

(
sε

1 + sε

)sμ

→ e−μ/ε. (36)

Finally, the bottom line of Eq. (35) approaches∣∣∣∣∣
s−sμ∑
m=0

ψm
e−imφ

√
m!

√√√√ m∏
k=1

sμ + k

1 + sε

∣∣∣∣∣
2

→
∣∣∣∣∣

∞∑
m=0

ψm
e−imφ

√
m!

√
μ

ε

m
∣∣∣∣∣
2

, (37)

which we prove in Appendix B.
This altogether yields

lim
s→∞ P(s)

PB [φ|A1+sε (ρ̂ )] = 1

2πε

∫ 1

0

dμ

ε
e−μ/ε

×
∣∣∣∣∣

∞∑
m=0

ψm
e−imφ

√
m!

√
μ

ε

m
∣∣∣∣∣
2

, (38)

or, upon substituting r2 := μ/ε and rearranging,

lim
s→∞ P(s)

PB [φ|A1+sε (ρ̂)]

=
∫ √

1/ε

0

dr

π
r

∣∣∣∣∣e−r2/2
∞∑

m=0

ψm
e−imφ

√
m!

rm

∣∣∣∣∣
2

. (39)

From Eq. (2) for the coherent state in the number basis and
the definition (4) of the Husimi distribution one immediately
recognizes that the bottom line equals Qρ̂ (reiφ ). Thus,

lim
s→∞ P(s)

PB [φ|A1+sε (ρ̂)] =
∫ √

1/ε

0

dr

π
r Qρ̂ (reiφ ), (40)

which in the limit ε → 0 becomes the probability distribution
(5) in the Paul formalism. This concludes the proof. �

As an immediate consequence of Proposition 1, the follow-
ing corollary follows from the definitions of the expectation
values in the two formalisms.

Corollary 1. The expectation values (8) in the Paul formal-
ism can be obtained from their Pegg-Barnett counterparts (15)
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through the quantum-limited amplifier as

〈φ̂Paul[ f ]〉ρ̂ = lim
ε→0

lim
s→∞

〈
φ̂

(s)
PB[ f ]

〉
A(1+sε, ρ̂ ) . (41)

V. DISCUSSION

Let us discuss our results, beginning with their physical in-
terpretation. As mentioned before, the amplification process is
associated with making quantum phenomena more classical.
Notably, it is known to transform the Glauber P distribution
into the more semiclassical Husimi Q distribution [23] and
the von Neumann entropy into the more classical-like Wehrl
entropy [31]. In view of our work, this suggests that the Paul
formalism may be viewed as a semiclassical limit of the Pegg-
Barnett formalism.

This interpretation is strengthened by the fact that, while
for a generic quantum state the Pegg-Barnett probability dis-
tribution may not exist in the infinite dimension, it does for
all amplified states, as if all the quantum “singularities” have
been removed. Note also that the Paul formalism, to which the
amplification leads from the Pegg-Barnett framework, is itself
invariant under state amplification:

PPaul[φ|Aκ (ρ̂)] = PPaul(φ|ρ̂) ∀ κ � 1. (42)

To see this, one needs to make use of the known relation [31]

QA(κ, ρ̂ )(α) = κ Qρ̂ (
√

κα) (43)

in Eq. (5) and change the integration variable to r′ =√
κr. Thus, if we consider the Paul formalism to be the

Pegg-Barnett formalism with some of its quantum features
suppressed through infinite amplification, it is only natural
that further amplification leaves it unaffected.

Why do our results assume the specific amplification
choice κ = 1 + sε? In particular, why do they connect the
amplification rate to the Pegg-Barnett dimension in a linear
way? From a mathematical point of view, the necessity of such
a connection is clear: if we were to repeat the derivation of
our main results with amplification strength κ set to be either
independent of s or dependent on it in a nonlinear way (e.g.,
κ = 1 + s2ε), we would quickly find the Pegg-Barnett proba-
bility to be vanishing in the limit of infinite amplification. See
Appendix C, where we show this explicitly. Thus, setting κ

to be linear in s, as we did, is necessary to obtain a nontrivial
limit. This also shows that a result similar to ours cannot hold
in the Susskind-Glogower formalism since there s = ∞ from
the beginning, making it impossible to set κ dependent on s.

This necessity of having κ = 1 + sε can also be un-
derstood from the physical point of view. In the language
of the celebrated Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) equation [34,35], one of the most prominent master
equations for modeling quantum open systems, the GKLS
generator of the evolution corresponding to QLA is given by
[31].

L(ρ̂ ) ∝ A1+ε (ρ̂ ) − A1(ρ̂ ) ∝ â†ρ̂â − 1
2 {ââ†, ρ̂}. (44)

We can see that, due to the action of the creation operator
on the state, the infinitesimally weak QLA increases the di-
mension of the state by one. Combining this with Eq. (27),
we conclude that the change in the amplification parameter
from s to s + 1 also increases the dimension of the state by
one. At the same time, by construction, the change from s to

s + 1 increases the dimension of the Pegg-Barnett formalism
by one. Therefore, setting the amplification parameter κ =
1 + sε, i.e., to be linear in s, is special in that it guarantees that
the change in dimension of the state induced by amplification
is consistent with the limiting procedure in the Pegg-Barnett
formalism.

As a final remark, we observe that Corollary 1 can be alter-
natively formulated as a relation between the phase operators
in the two formalisms. Let us deploy the quantum-limited
attenuator channel, whose action on arbitrary operator Ô reads
[31]

Eλ(Ô) := TrB[V̂λ(Ô ⊗ |0〉〈0|)V̂ †
λ ]. (45)

Here, 0 � λ � 1 (where λ = 1 corresponds to the identity
channel), and

V̂λ := exp[arccos
√

λ(â†b̂ − âb̂†)]. (46)

The quantum-limited attenuator is dual to the quantum-
limited amplifier, by which we mean that for any state ρ̂,
operator Ô, and κ � 1 we have

TrAκ (ρ̂) Ô = Trρ̂
1

κ
E1/κ

(
Ô

)
. (47)

Therefore, infinite amplification of the state κ → ∞ is equiv-
alent to infinite attenuation λ = 1/κ → 0 of the operator.

Applying this to Corollary 1, we find that for any ρ̂ and f ,

Trρ̂

[
φ̂Paul[ f ] − lim

ε→0
lim

s→∞
1

1 + sε
E1/(1+sε)

(
φ̂

(s)
PB[ f ]

)] = 0.

(48)

Because this equation holds for arbitrary input state ρ̂, it is
tempting to say that the Paul operator is equal to the infinitely
attenuated Pegg-Barnett operator, i.e.,

φ̂Paul[ f ] = lim
ε→0

lim
s→∞

1

1 + sε
E1/(1+sε)

(
φ̂

(s)
PB[ f ]

)
. (49)

However, we only showed that the two operators coincide
when traced with a formal density operator, i.e., a non-
negative, Hermitian operator. Therefore, while the Paul and
infinitely attenuated Pegg-Barnett operators are clearly con-
nected, whether they are completely equal, as in Eq. (49),
remains to be proved (or disproved).

In any case, because of the general postulate of the Pegg-
Barnett formalism to calculate the expectation values first and
only then take the limit of infinite dimension, one has to be
careful with such an operator interpretation, as an infinitely
dimensional phase operator is technically not part of the Pegg-
Barnett framework.

VI. EXAMPLES

We illustrate our results with a number of examples. We
begin with the simple case of thermal states, for which the
convergence of the two phase formalisms is easy to see ex-
plicitly.

Example 1. Let us consider the thermal states of the har-
monic oscillator:

ĝβ := e−βâ†â

Tre−βâ†â
, (50)
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where β > 0. For such states, the Paul probability distribution
(5) can be calculated analytically, yielding the flat distribution:

PPaul(φ|ĝβ ) = 1

2π
. (51)

To compare Eq. (51) with the Pegg-Barnett formalism inter-
twined with QLA, we begin with Eq. (24), finding that

Aκ (ĝβ ) = ĝβ(κ ), β(κ ) = ln
κ

e−β + κ − 1
. (52)

Substituting this into Eq. (31) and simplifying yield

P(s)
PB(φ|ĝβ(1+sε) ) = 1

2π

[
1 −

(
e−β + sε

1 + sε

)s+1
]
. (53)

Taking the limit s → ∞, we get

lim
s→∞ P(s)

PB(φ|ĝβ(1+sε) ) = 1

2π
[1 − e−(1−e−β )/ε], (54)

which clearly coincides with the Paul probability distribution
(51) after taking the limit ε → 0.

In the remaining examples, we consider states with non-
trivial phase dependence. To study the convergence of the two
formalisms, we employ numerical methods. To this end, it is
useful to define the following object:

Rs,ε (φ) := P(s)
PB[φ|A1+sε (ρ̂)]

PPaul(φ|ρ̂)
, (55)

which is simply the ratio of the Pegg-Barnett “amplified”
probability distribution to the Paul probability distribution.
According to Proposition 1, this ratio should approach a value
of 1 for large s and small ε.

Example 2. As a second example, let us consider a coherent
state ρ̂α = |α〉〈α| with amplitude α = r′eiψ . This example is
especially relevant for the study of quantum phase since the
phase of such a coherent state is approximately equal to ψ .

In this case, the Husimi Q distribution equals

Qρ̂α
(reiφ ) = e−r2−r′2+2rr′ cos(φ−ψ ), (56)

resulting in the following Paul phase distribution:

PPaul(φ|ρ̂α ) = e−r′2

2π
(1 + √

πr′ cos(φ − ψ )er′2 cos2(φ−ψ )

× {erf[r′ cos(φ − ψ )} + 1]), (57)

where erf stands for the error function. On the other hand,
calculating from definition, the corresponding Pegg-Barnett
phase distribution reads

PPB(φ|ρ̂α ) = e−r′2

2π

∣∣∣∣∣
∞∑

n=0

ein(ψ−φ)r′n
√

n!

∣∣∣∣∣
2

. (58)

Its “amplified” version follows readily by substituting ψm =
αm, with αn as in Eq. (2), into Eq. (33).

We compare the two distributions in Fig. 1(a). As expected
from coherent states, both phase distributions peak at ψ = π ,
with the effect being more pronounced for larger r′. While
the Paul and Pegg-Barnett frameworks both give the same
qualitative results, the Paul framework yields a noticeably
less pronounced peak. Nonetheless, the Paul distribution can

(a)

(b)

FIG. 1. (a) Comparison between the Paul phase distribution
PPaul(φ|ρ̂) (solid lines) and its Pegg-Barnett counterpart PPB(φ|ρ̂)
(dashed lines) for ψ = π and r′ = 0.5 (black) and r′ = 2 (orange).
To calculate PPB(φ|ρ̂), the sum in Eq. (58) was approximated by its
first 100 terms. (b) Point plot of the ratio Rs,ε (φ) for the coherent
state given by r′ = 2 and ψ = π calculated at the points φ = 2πt/10
with t ∈ {1, . . . , 9} for ε = 0.01. Blue squares, red circles, and green
triangles stand for s + 1 ∈ {102, 103, 104}, respectively. As expected,
for large s the ratio approaches the value of 1.

be obtained from the Pegg-Barnett distribution by using the
quantum-limited amplifier, as seen from Fig. 1(b).

Example 3. The purpose of the final example is to test how
the limiting procedure works in practice. In Table I, we pro-
vide approximate numerical values of the ratio (55) for various
values of s and ε numerically averaged over random qubit
density matrices, i.e., single-photon states, sampled from the
Hilbert-Schmidt ensemble [36]. As can be seen, the ratio
approaches a value of 1 in the limit s → ∞, ε → 0, provided
s is much bigger than 1/ε, which we interpret as taking the
limit s → ∞ before taking the limit ε → 0.

VII. CONCLUDING REMARKS

To briefly conclude, we successfully demonstrated that
the Paul formalism can be obtained from the Pegg-Barnett
formalism intertwined with infinite amplification of the state.
Since the process we propose has a clear operational inter-
pretation, the “Pegg-Barnett dimension” s acquires, with the
help of our procedure, a physical underpinning. Namely, the
parameter s determines the number of times we have to apply
the infinitesimally weak QLA channel to the system before we
measure on it an s-dimensional Pegg-Barnett operator to get
the correspondence with the Paul framework.

Our findings suggest a number of closely related direc-
tions for future research. First, the Pegg-Barnett framework
is known to coincide with the Paul framework for small-
amplitude coherent states and with the Paul framework’s
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TABLE I. Numerical values of the ratio Rs,ε (φ) [defined in Eq. (55)] of the Pegg-Barnett probability distribution calculated for an amplified
state to the Paul probability distribution for φ = 0.3. Each entry is an average over 1000 random qubit density matrices (i.e., single-photon
states) sampled from the Hilbert-Schmidt ensemble, with terms after ± standing for the maximum deviation from the mean value. All values
are rounded to two significant digits. As can be seen, the ratio approaches the value R = 1 in the limit of growing s and vanishing ε, as long as
s is much bigger than 1/ε, which we interpret as taking the limit s → ∞ before taking the limit ε → 0.

Rs,ε (0.3)

s = 100 s = 101 s = 102 s = 103 s = 104

ε

1.00 0.61 ± 0.54 0.47 ± 0.37 0.45 ± 0.43 0.45 ± 0.44 0.45 ± 0.44
0.50 1.19 ± 1.01 0.80 ± 0.44 0.73 ± 0.31 0.72 ± 0.30 0.72 ± 0.30
0.10 5.27 ± 4.60 1.79 ± 0.95 1.08 ± 0.14 1.01 ± 0.02 1.00 ± 0.00
0.05 10.17 ± 9.08 2.67 ± 1.80 1.18 ± 0.24 1.02 ± 0.03 1.00 ± 0.00
0.01 49.13 ± 44.92 9.75 ± 8.34 1.95 ± 1.04 1.09 ± 0.14 1.01 ± 0.02

analog based on the Wigner distribution for large-amplitude
coherent states [37]. Given the former association’s loose
resemblance to our main result, perhaps there exists a physical
process akin to amplification which connects the Pegg-Barnett
operator to the Wigner distribution. Second, the phase-
difference operator [12] is based on a construction similar
to the Pegg-Barnett operator. Therefore, one may expect that
it is also connected to the Paul formalism through some
type of system amplification. Finally, our work, as well as
the previously mentioned Refs. [23,31], suggests that further
“quantum-to-classical” transitions are potentially possible by
virtue of the amplification procedure.
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APPENDIX A: PROOF OF EQUATION (29)

In this Appendix, we prove Eq. (29), meaning that in the
formula for the expectation value (20) calculated for an am-
plified state the limiting procedure and the integration can be
swapped. In other words, we prove that

lim
s→∞

∫ 2π

0
dφ Is(φ) =

∫ 2π

0
dφ lim

s→∞ Is(φ), (A1)

where we denote, for short,

Is(φ) := f
(
eiφ

)
P(s)

PB [φ|A1+sε (ρ̂)]. (A2)

According to the dominated convergence theorem, a suffi-
cient condition for Eq. (A1) to hold is that an s-independent
function J (φ) exists such that∫ 2π

0
dφ J (φ) < ∞ (A3)

and for all s and φ

|Is(φ)| � J (φ). (A4)

We make the following guess:

J (φ) = maxx | f (x)|
2πε

( ∞∑
m=0

1√
m!εm

)2

. (A5)

We stress that in Proposition 1, the limit s → ∞ is taken
before the limit ε → 0, meaning that J (φ) is finite. Condition
(A3) is thus obviously fulfilled. It remains to show Eq. (A4).

To this end, we start with expression (33). Using the fact
that s/(1 + sε) � 1/ε and ( sε

1+sε )sμ � 1, as well as basic prop-
erties of absolute value, we get

|Is(φ)| � | f (eiφ )|
2πε

∫ 1

0
dμ

⎛
⎝s−sμ∑

m=0

1√
m!

√√√√ m∏
k=1

sμ + k

1 + sε

⎞
⎠

2

.

(A6)

We then observe that under the product we have k � m � s −
sμ, which yields

|Is(φ)| � | f (eiφ )|
2πε

∫ 1

0
dμ

(
s−sμ∑
m=0

1√
m!

√
s

1 + sε

m
)2

. (A7)

In the last step, we once again use s/(1 + sε) � 1/ε. Further-
more, because all the summands are non-negative, we extend
the sum to infinity. Finally, we can perform the integral over
μ. In the end, we have

|Is(φ)| � | f (eiφ )|
2πε

( ∞∑
m=0

1√
m!εm

)2

. (A8)

Substituting this into the left-hand side of Eq. (A4) and bound-
ing | f | from above by its largest value finish the proof.

Note that this result also shows that one can interchange
the limit s → ∞ with the integral over μ in Eq. (35).

APPENDIX B: PROOF OF EQUATION (37)

In this Appendix, we want to show that the limit s → ∞ in
the bottom line of Eq. (35) is given by Eq. (37).

Let us denote

Sx,y =
y∑

m=x

ψm
e−imφ

√
m!

√√√√ m∏
k=1

sμ + k

1 + sε
, (B1)
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so that the bottom line of Eq. (35) equals |S0,s−sμ|2. We now
introduce the auxiliary parameter d ∈ N, d � s − sμ, and
split the sum over m into two sums: one from 0 to d − 1 and
one from d to s − sμ. We get

|S0,s−sμ|2 = |S0,d−1 + Sd,s−sμ|2. (B2)

We stress that Sx,y is independent of d .
Using basic properties of the absolute value, we get the

following bounds:

|S0,d−1|2 − |Sd,s−sμ|2 � |S0,s−sμ|2 � |S0,d−1|2 + |Sd,s−sμ|2.
(B3)

Our approach is to calculate the limit s → ∞ separately for
the two terms present in the bounds, ultimately showing that
both bounds coincide and are therefore equal to the limit of
|S0,s−sμ|2.

Because |ψm| � 1 and |e−imφ | = 1, we can see that

|Sd,s−sμ| �
s−sμ∑
m=d

1√
m!

√√√√ m∏
k=1

sμ + k

1 + sε
. (B4)

Furthermore, k is bounded from above by m, which is, in turn,
bounded by s − sμ. Thus,

|Sd,s−sμ| �
s−sμ∑
m=d

1√
m!

√√√√ m∏
k=1

s

1 + sε

→
∞∑

m=d

1√
m!

√
1

ε

m

=
∞∑

m=0

1√
(d + m)!

√
1

ε

d+m

,

(B5)

where in the second transition we performed the limit s → ∞
and in the third (final) transition we renumbered the sum.

In the case of S0,d−1, m is bounded from above by the finite
number d , which means that k yields no contribution to the
limit of infinite s and so

|S0,d−1|2 →
∣∣∣∣∣

d−1∑
m=0

ψm
e−imφ

√
m!

√
μ

ε

m
∣∣∣∣∣
2

. (B6)

Since d was chosen to be an arbitrary number smaller than
s − sμ and, as already pointed out, S0,s−sμ is independent of

d , after taking the limit s → ∞, we can pick whatever value
of d ∈ N we want to. In particular, we can now also take
the limit d → ∞. Looking at Eq. (B5), we can see that in
this limit Sd,s−sμ vanishes—because this series is absolutely
convergent, we can interchange the sum with the limit. Thus,
due to Eq. (B3), in the limit of infinite s, the bottom line of
Eq. (35) coincides with Eq. (B6) with d → ∞. This proves
Eq. (37).

APPENDIX C: DISCUSSION OF THE AMPLIFICATION
RATE

In this Appendix, we show why Proposition 1 no longer
holds if the amplification rate is set to be nonlinear in s, as
opposed to the linear dependence κ = 1 + sε.

First, let us briefly discuss the case in which κ is indepen-
dent of s. In this case, we find that the analog of Eq. (30) reads

P(s)
PB [φ|Aκ (ρ̂)] = 1

2πκ

s∑
j=0

(
κ − 1

κ

) j

×
s− j∑

m,n=0

ρmn
ei(n−m)φ

√
κ

m+n

√(
j + m

j

)(
j + n

j

)
.

(C1)

Taking the limit of infinite amplification, κ → ∞, we get
simply zero.

To see what happens for κ depending on s in a nonlinear
way, let us consider κ = 1 + w(s, ε), where w is a polynomial
in s and ε of at least the second degree in s. In this case, by
following exactly the same steps as in the original derivation,
we find that the analog of Eq. (35) reads

P(s)
PB [φ|A1+w(s,ε)(ρ̂)] = (2π )−1s

[1 + w(s, ε)]

∫ 1

0
dμ

(
w(s, ε)

1+w(s, ε)

)sμ

×
∣∣∣∣∣∣
s−sμ∑
m=0

ψm
e−imφ

√
m!

√√√√ m∏
k=1

sμ+k

1+w(s, ε)

∣∣∣∣∣∣
2

.

(C2)

By construction, lims→∞ s/w(s, ε) = 0. From this, it is easy
to see that the whole equation vanishes in the limit s → ∞.
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