
PHYSICAL REVIEW A 107, 033706 (2023)
Editors’ Suggestion

Position measurement and the Huygens-Fresnel principle: A quantum model of Fraunhofer
diffraction for polarized pure states
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In most theories of diffraction by a diaphragm, the amplitude of the diffracted wave, and hence the position
wave function of the associated particle, is calculated directly without prior calculation of the quantum state.
Few models express the state of the particle to then deduce the position and momentum wave functions related
to the diffracted wave. We present a model of this type for Fraunhofer diffraction. The diaphragm is assumed to
be a device for measuring the three spatial coordinates of the particles passing through the aperture. A matrix
similar to the S matrix of the scattering theory describes the process, which turns out to be more complex
than a simple position measurement. Some predictions can be tested. The wavelet emission involved in the
Huygens-Fresnel principle occurs from several neighboring wavefronts instead of just one, causing typical
damping of the diffracted wave intensity. An angular factor plausibly accounts for the decrease in intensity
at large diffraction angles, unlike the obliquity factors of the wave optics theories. The position measurement
modifies the polarization states and for an incident photon in an elliptically polarized pure state, the ellipse axes
can undergo a rotation which depends on the diffraction angles.
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I. INTRODUCTION

Quantum mechanics is involved in many studies on diffrac-
tion. Since the first quantum theory of Fraunhofer diffraction
by a grating [1], several models have emerged, using the
formalism of path integrals [2–4], the calculation of trajec-
tories in the framework of hidden variable theories [5,6] or
the resolution of the wave equation combined with the use
of the Kirchhoff integral [7]. In more recent studies, various
topics are discussed such as the effects of diffraction on the
transmission of information in quantum optical systems [8],
the role of the quantum behavior of the diaphragm electrons
in diffraction of light by a small hole [9], the interactions
between the quantum states of different modes in diffracted
Gaussian beams [10], and the connection between orbital
angular momentum transfer and helicity in the diffraction of
light [11].

However, one question does not seem to have received
much attention: the possibility of starting from the postulates
of quantum mechanics to treat diffraction by a diaphragm
as a consequence of a measurement of the position of the
particle associated with the wave as it passes through the
aperture. The first model based on this approach relates to
the measurement of one transverse coordinate and provides
the same predictions as those of wave optics for the case
of Fraunhofer diffraction with slits [12]. Afterward, several
aspects of this model were discussed [13]. More recently,
quantum trajectories have been used to describe the motion of
the particle after the measurement of one transverse coordi-
nate in a model giving predictions for Fraunhofer and Fresnel
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diffractions by a slit [14]. There does not seem to have been
any other publications on this issue so far.

In the model presented below, we start from the observation
that the detection of a particle in the far-field region beyond a
diaphragm provides a measurement of its momentum. Then
we assume that the distribution of this momentum results
from a measurement of the three spatial coordinates of the
particle during its passage through the aperture and that this
position measurement has an effect on the polarization if the
particle has spin. The change in momentum and polarization
is described by a diffraction matrix similar to the S matrix of
the scattering theory [15]. Although this model only applies
to the far field, it nevertheless provides specific predictions
about the Huygens-Fresnel principle, the diffraction at large
angles, and, in the case of light, the polarization of the photons
detected beyond the diaphragm.

We present the model in Sec. II. Next, some predictions
regarding intensity and polarization measurements are de-
scribed in Sec. III. Finally, we summarize in Sec. IV.

II. QUANTUM MODEL OF FRAUNHOFER DIFFRACTION
BY AN APERTURE

A. Measurement of quantities related to the detected particles

1. Experimental setup and first assumptions

The model applies for an experimental setup with the
following characteristics (Fig. 1). The diaphragm is a plane
assumed to be of zero thickness and perfectly opaque. The
aperture, of finite area, can be of any shape and possi-
bly formed of several parts. The origin of the laboratory
frame of reference (O; x, y, z) is located at the aperture and
the (Ox, Oy) plane is that of the diaphragm. The source is
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FIG. 1. Experimental setup and laboratory frame of reference
(right-handed coordinate system).

located on the z axis. Detectors placed beyond the diaphragm
measure the local counting rate and possibly the polarization.
The position of a detection point is denoted by its radius
vector d.

It is assumed that there is neither creation nor annihilation
of particles during the passage of the wave through the aper-
ture. It is also assumed that the particles are free when they
move between the source and the diaphragm and between the
diaphragm and the detectors. Moreover, we consider the case
of a low-intensity source emitting either nonrelativistic parti-
cles or photons. We can then individually assign a quantum
state to each nonrelativistic particle or a one-photon state of
the electromagnetic field to each photon, both for the incident
wave and for the diffracted wave.

Finally, we suppose that the source-diaphragm and
diaphragm-detector distances are large enough for the aper-
ture to be viewed as a point from the detectors and for the
incident wave to be close to a plane wave when it arrives at
the aperture. For simplicity, this plane wave is supposed to be
monochromatic with the wave vector k0 in the direction of the
z axis.

2. Measurement of the momentum of the detected particles

From the above assumptions and conditions, we can assign
the momentum h̄k0 to the incident particle and a momentum
h̄k such that

k = k

d
d (1)

for the particle detected at point of radius vector d, provided
the modulus k is measured. However, no significant difference
between the wavelength of the diffracted wave and that of the
incident wave is observed in diffraction experiments with a
diaphragm. Hence

k � k0, (2)

which is in accordance with kinematics because the particle
transfers a very small part of its energy to the diaphragm. So
it is not required to determine k by a special measurement.
Furthermore, the part of the diffracted wave returning from
the aperture to the region where the source is located is very
weak. For simplicity, we assume that the momentum of the
particle associated with the diffracted wave is always such that

kz > 0. (3)

The relations (1)–(3) imply that it is possible to measure
the momentum probability density function (PDF) of the par-

ticle after its passage through the aperture in the case of the
diffraction at infinity. The measurement can be performed, for
example, by arranging detectors on a hemisphere of center O
and radius d in the half space z > 0. The radius must be such
that � � d , where � is the size of the aperture; otherwise (1)
cannot be used. The Fraunhofer diffraction criterion, that is,
�2/(λd ) � 1 [16–18], is then satisfied if d is large enough,
whatever the value of λ/�.

3. Measurement of the polarization of the detected particles

The polarization measuring device (analyzer for photons,
Stern and Gerlach apparatus for atoms, etc.) is placed in front
of the detector which is located, given (1), in the direction of
the momentum h̄k of the detected particle. The measurement
therefore gives the probabilities of the eigenvalues of the spin
component on a quantization axis Z[k], which must be chosen
with respect to a coordinate system {x[k], y[k], z[k]} attached
to the detected particle. Finally, it is possible to measure, on
a particle of spin s, the probability of finding the result σ for
its spin component on a Z[k] axis if the measurement of its
momentum gives the result h̄k. It is therefore a conditional
probability.

By convention, the coordinate system attached to the in-
cident particle is the laboratory frame of reference (Fig. 1)
whose z ≡ z[k0] axis is in the direction of the momentum h̄k0.
For the detected particle, we choose the coordinate system ob-
tained from the laboratory frame of reference by the rotation
R(φ, θ, 0), where the Euler angles are defined according to
the z-y-z convention, so that φ and θ are the azimuth and the
polar angle, respectively, of k. Hence

l[k] = R(φ, θ, 0)l[k0], l = x, y, z; z[k] ‖ k. (4)

The zero value of the third Euler angle defines a choice of
the directions of the x[k] and y[k] axes in the transverse
plane to k such that the coordinate system attached to the
detected particle in the case φ = θ = 0 is coincident with the
laboratory frame of reference.

Two very different cases arise concerning the quantization
axis. For a nonrelativistic particle, this axis can be chosen in
any direction. There is then an infinite number of possible
Z[k] axes for each vector k. On the other hand, for a relativis-
tic particle, the quantization axis must be in the direction of
the momentum because the only spin component eigenstates
are the helicity states [15]. There is then only one possibility,
which is Z[k] = z[k], according to the above convention.

B. Diffraction operator

1. Measurement of the position of the incident particles

Since it is possible to measure the momentum PDF and
the polarization of the particles associated with the diffracted
wave at infinity, we can consider the construction of a quan-
tum model whose purpose is to provide the expressions of
these quantities. The model proposed here is based on the
assumption that each incident particle undergoes a position
measurement as it passes through the aperture. The detection
of a particle beyond the diaphragm can indeed be considered
as proof that it effectively passed through the aperture and was
therefore localized at this place during a short period of time
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with a precision of the order of the size of the aperture [19].
For simplicity, we consider that the localization occurs instan-
taneously. We then assume that the source emits a particle
at time t0, that this particle passes through the aperture at
time t1, and that it is detected at time t2. The time t1 can
then be interpreted as the time when the state of the particle
changes because of the position measurement performed by
the diaphragm and the purpose of the model is to build a
diffraction operator which describes this change of state.

2. Using S-matrix theory formalism.

The quantum state of the particle of spin s at time t is
assumed to be a pure state denoted by |ψ (s)(t )〉. Since the
incident wave is close to a monochromatic plane wave with
wave vector k0 and given (2), the incident particle and the
particle associated with the diffracted wave are in an energy
state close to the eigenstate of eigenvalue h̄ω0, where ω0 =
c(h̄−2m2c2 + k0

2)1/2. The initial and final states are therefore
close to stationary states of the form∣∣ψ (s)

in (t )
〉 = exp(−iω0t )

∣∣ϕ(s)
in

〉
, t0 < t < t1,∣∣ψ (s)

out (t )
〉 = exp(−iω0t )

∣∣ϕ(s)
out

〉
, t1 < t < t2, (5)

where |ϕ(s)
in 〉 and |ϕ(s)

out〉 are time-independent states. Since a
time dependence only appears in global phase factors, know-
ing the exact values of t0, t1, and t2 is not essential and, as
in the S-matrix theory, we consider a diffraction operator D̂(s)

which projects the initial time-independent state on the final
time-independent state (called the initial state and final state
in the following). The change of state is expressed by∣∣ϕ(s)

out

〉 = [N (s)]−1/2D̂(s)
∣∣ϕ(s)

in

〉
, (6)

where N (s) is the normalization factor

N (s) ≡ 〈
ϕ

(s)
in

∣∣D̂(s)†D̂(s)
∣∣ϕ(s)

in

〉
. (7)

All the information on the particle-diaphragm interaction is
contained in the matrix elements of the diffraction operator
from which we can get the transition amplitudes between
the initial state and the final momentum and spin component
eigenstates. Since we only consider one-particle states, these
eigenstates are represented by the state vectors

â†(k)|vac〉 = |k〉, s = 0,

â†(k, [σ ]Z[k] )|vac〉 = |k〉 ⊗ |σ 〉Z[k], s �= 0, (8)

where |vac〉 is the vacuum state, â†(k, [σ ]Z[k] ) is the creation
operator of a particle of momentum h̄k and spin component σ

on the quantization axis Z[k], and |σ 〉Z[k] is the eigenstate of
spin component σ on Z[k]. The initial state is given by

∣∣ϕ(s)
in

〉 =
{|k0〉 if s = 0
|k0〉 ⊗ ∣∣χ (s)

in

〉
if s �= 0,

(9)

where |χ (s)
in 〉 is the initial state of spin polarization prepared

with the amplitudes Z[k0]〈σ |χ (s)
in 〉.

3. Structure of the diffraction operator

From (6) and (9), the non-normalized final state for a
particle without spin is expressed by

D̂(0)
∣∣ϕ(0)

in

〉 = D̂(0)|k0〉 =
∫

d3k|k〉〈k|D̂(0)|k0〉. (10)

To generalize this expression to the case of a particle of
nonzero spin, we rely on the following observation. For the
photon, the quantization axis is in the direction of the mo-
mentum and the eigenvalue zero of the spin component is
impossible [15]. Therefore, the change in the direction of the
momentum of the photon due to diffraction causes a modifi-
cation of its spin polarization so that this impossibility of the
eigenvalue zero is preserved. More generally, we assume that
for any particle, the momentum exchange with the diaphragm
causes a specific change in spin polarization.

The change in polarization corresponds to a rearrangement
of the spin component wave functions and therefore results
from the action of a unitary rotation operator. So we are led
to assume that if the measurement of the momentum of the
detected particle gives the result h̄k, then the probabilities
of the results of a simultaneous measurement of the spin
component correspond to a polarization state which depends
on k in the form∣∣χ (s)

out (k)
〉 = R̂(s)[α1(k), α2(k), α3(k)]

∣∣χ (s)
in

〉
, (11)

where R̂(s)[α1(k), α2(k), α3(k)] is the operator of the spin
rotation associated with the momentum transfer h̄k0 → h̄k.
The state |χ (s)

out (k)〉 is in some way the conditional state of
polarization associated with the momentum eigenstate |k〉.
The Euler angles α j (k) are defined with respect to the quanti-
zation axis Z[k0] and are three parameters of the model. They
are functions of k, not known a priori. They also depend on
k0 and possibly on other parameters such as the spin of the
particle: α j (k) ≡ α

k0,s,...
j (k).

An additional assumption is needed to generalize (10).
For a spinless particle, the position and momentum wave
functions are Fourier transforms of each other. In the case
of diffraction with a diaphragm, the shape of the final mo-
mentum distribution is therefore determined by the shape of
the aperture. We assume that this determination is the same
if the particle has spin, so the final momentum distribution of
a particle with spin is the same as that of a spinless particle
that would have the same energy. There do not seem to be any
experimental facts invalidating this assumption.

The easiest way to generalize (10) taking into ac-
count (9), (11), and the additional assumption above is
to express the action of D̂(s) on the initial state in the
following form (we use the notation R̂(s)(k) instead of
R̂(s)[α1(k), α2(k), α3(k)] for simplicity and we insert the iden-
tity operator

∑
σ |σ 〉Z[k]Z[k]〈σ |):

D̂(s)
∣∣ϕ(s)

in

〉 = D̂(s)
(|k0〉 ⊗ ∣∣χ (s)

in

〉)
=

∫
d3k|k〉〈k|D̂(0)|k0〉 ⊗ ∣∣χ (s)

out (k)
〉

=
∫

d3k|k〉〈k|D̂(0)|k0〉

⊗
∑

σ

|σ 〉Z[k]Z[k]〈σ |R̂(s)(k)
∣∣χ (s)

in

〉
, s �= 0. (12)
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From (6), (9), (10), and (12), the final state is a linear combina-
tion of the momentum and spin component eigenstates given
by (8) and the diffraction operator is

D̂(s) =
{

D̂(0) if s = 0∫
d3k|k〉〈k|D̂(0) ⊗ R̂(s)(k) if s �= 0.

(13)

The operator D̂(0) will be called the momentum part of the
diffraction operator D̂(s).

4. General expressions of the final amplitudes and probabilities

From (11) and since R̂(s)(k) is unitary,〈
χ

(s)
out (k)

∣∣χ (s)
out (k)

〉 = 〈
χ

(s)
in

∣∣χ (s)
in

〉 = 1. (14)

From (7), into which we substitute (10) (if s = 0) or (12) (if
s �= 0), and given (14), we find that the normalization factor is
independent of the spin:

N (s) ≡ N =
∫

d3k|〈k|D̂(0)|k0〉|2 ∀ s. (15)

If s = 0, the probability amplitude to detect the particle
with momentum h̄k is obtained by substituting (10) into (6).
Given (9) and (15), this leads to〈

k|ϕ(0)
out

〉 = N−1/2〈k|D̂(0)|k0〉. (16)

The PDF to detect the particle with momentum h̄k is

f (0)
K (k) = ∣∣〈k∣∣ϕ(0)

out

〉∣∣2
. (17)

If s �= 0, the probability amplitude to detect the particle
with momentum h̄k and spin component σ on the Z[k] axis
is obtained by substituting (12) into (6). Given (15) and (16),
this leads to

(〈k| ⊗ Z[k]〈σ |)∣∣ϕ(s)
out

〉 = 〈
k
∣∣ϕ(0)

out

〉
Z[k]

〈
σ
∣∣χ (s)

out (k)
〉
. (18)

The joint probability function to detect the particle with
momentum h̄k and spin component σ on the Z[k] axis is
expressed, according to the definition of the conditional prob-
ability and from (18), by

F (s)
K,[�]Z[K]

(k, [σ ]Z[k] ) = f (s)
K (k)P(s)

[�]Z[K]|K=k([σ ]Z[k] )

= ∣∣〈k|ϕ(0)
out

〉∣∣2∣∣
Z[k]

〈
σ
∣∣χ (s)

out (k)
〉∣∣2

, (19)

where f (s)
K (k) is the PDF to detect, without polariza-

tion measurement, the particle with momentum h̄k and
P(s)

[�]Z[K]|K=k([σ ]Z[k] ) is the conditional probability to detect
the particle with spin component σ on the Z[k] axis if its
momentum is h̄k.

If s �= 0, f (s)
K (k) is the marginal PDF obtained by sum-

ming (19) over σ . Given (14) and (17), this leads to f (s)
K (k) =

f (0)
K (k). Hence, given (16) and (17),

f (s)
K (k) ≡ fK(k) = N−1|〈k|D̂(0)|k0〉|2 ∀ s, (20)

which expresses that the momentum PDF of the detected
particle without polarization measurement is independent of
its spin and initial polarization. Moreover, substituting (16)
into (19) and given (20), we get

P(s)
[�]Z[K]|K=k([σ ]Z[k] ) = ∣∣

Z[k]

〈
σ
∣∣χ (s)

out (k)
〉∣∣2

. (21)

The experimentally accessible quantities are those given
by (20) and (21). To calculate them, we therefore need

to express the matrix elements 〈k|D̂(0)|k0〉 and the ampli-
tudes Z[k]〈σ |χ (s)

out (k)〉. This is the subject of the next two
subsections.

C. Momentum part of the diffraction operator

In this subsection, we first deal with the case of non-
relativistic particles. We will then show that the developed
formalism can be transposed to the case of photons.

1. Position measurement and the Huygens-Fresnel principle

At the time t1 of the position measurement, the position
wave function of the particle undergoes a localization at
the aperture of the diaphragm (postulate of wave function
reduction). During this temporary localization, the transverse
coordinates of the particle correspond to the aperture and the
longitudinal coordinate is equal or close to z = 0 since the
particle then crosses the plane of the diaphragm. The position
measurement is therefore a measurement of the three spatial
coordinates.

The measurement of the transverse coordinates is associ-
ated with the projector

P̂A
T ≡

∫
A

dx dy|xy〉〈xy|, (22)

where A is the aperture. Then the easiest way to describe the
measurement of z is to use a projector of the form

P̂�z
L ≡

∫ +�z/2

−�z/2
dz|z〉〈z|, (23)

where the width �z of the interval [−�z/2,+�z/2] is a
parameter of the model whose value is not known a priori.
Finally, the measurement of the three coordinates (x, y, z) is
assumed to be associated with the projector

P̂A,�z ≡ P̂A
T ⊗ P̂�z

L . (24)

Since the aperture A is a 2D surface, we should have
in principle �z = 0, but the integral on the right-hand side
of (23) is zero in this case. Suppose then that �z �= 0.
From (24) we have P̂A,�z|k0〉 = P̂A

T |k0xk0y〉 ⊗ P̂�z
L |k0z〉. There-

fore, from (23), the PDF corresponding to the probability of
finding a result within the interval [z, z + dz] when measuring
the longitudinal coordinate is proportional to

∣∣〈z∣∣P̂�z
L |k0z

〉∣∣2 =
{

(2π )−1 if z ∈ [−�z/2,+�z/2]
0 if z /∈ [−�z/2,+�z/2].

(25)

If �z is small, the action of P̂A,�z localizes the probability
of presence of the particle in a narrow region around the
wavefront at the aperture and consequently its longitudinal
coordinate is z = 0 with excellent accuracy. This localization
of the probability of presence occurs at time t1. Therefore, at
any time t > t1, the diffracted wave has been emitted from a
volume including the wavefront at the aperture and its close
vicinity. We are then close to a situation consistent with the
Huygens-Fresnel principle. Perfect compatibility would there-
fore be obtained if �z = 0; however, in this case, it is not
possible to obtain a PDF from the function expressed by (25)
because it is zero everywhere except at z = 0, where its value
is finite. However, if the value at z = 0 were infinite, we would
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obtain a PDF equal to the Dirac distribution δ(z). Thus, given
the good agreement between the measurements performed so
far and the predictions of the classical theories based on the
Huygens-Fresnel principle, this is worth looking for a way
to treat this limit case. Fortunately, it turns out that this is
possible provided, however, that the notion of projector is
generalized.

2. Position filtering operator: Multi-wavefront
Huygens-Fresnel principle

If �z = 0, a PDF equal to δ(z) can be obtained by using,
instead of the projector (23), a filtering operator F̂�z

L defined
as

F̂�z
L ≡

∫
dz

√
δ̃�z

L (z)|z〉〈z|, (26)

where δ̃�z
L (z) is a positive function normalized to 1 such that

its integral outside the interval [−�z/2,+�z/2] is negligible
and such that

lim
�z→0

δ̃�z
L (z) = δ(z). (27)

From (26),∣∣〈z∣∣F̂�z
L

∣∣k0z
〉∣∣2 = |〈z|k0z〉|2δ̃�z

L (z) = (2π )−1δ̃�z
L (z). (28)

Therefore, given (27), if �z = 0, |〈z|F̂�z
L |k0z〉|2 is defined and

proportional to δ(z). This allows us to obtain a PDF equal to
δ(z) after normalization.

However, the problem is not completely solved because,
from (26) and (27), F̂�z

L is not defined if �z = 0 since the
square root of δ(z) is not defined. So we are in a way com-
pelled to assume that �z is not zero (but possibly close to
zero, so that the PDF can then be expressed with a good
approximation by the Dirac distribution). This implies review-
ing the question of the connection between diffraction and
the Huygens-Fresnel principle. The case �z = 0 corresponds
to the Kirchhoff integral where a single-wavefront Huygens-
Fresnel principle is applied: The wavelets contributing to
the diffracted wave are emitted from one wavefront located
at the aperture. The case �z > 0, suggested by the quan-
tum approach, would then correspond to a multi-wavefront
Huygens-Fresnel principle where several neighboring wave-
fronts contribute with different weights whose distribution is
the function δ̃�z

L (z).
Moreover, from the first equality of (28), δ̃�z

L (z) can also
be interpreted as the weight with which the filtering operator
selects the result z from the value at z of the position wave
function in the initial state |k0z〉. This weight, as a function of
z, will be called the longitudinal position filtering function.

For the transverse coordinates, the projector (22) can be
replaced by the filtering operator

F̂ A
T ≡

∫
dx dy

√
δ̃A

T (x, y)|xy〉〈xy|, (29)

where δ̃A
T (x, y) is the transverse position filtering function. It

can be considered that the transmission of the incident wave
is the same over the entire area of the aperture so that this
function corresponds to a uniform filtering which truncates

the wave function. Hence

δ̃A
T (x, y) = S(A)−1 ×

{
1 if (x, y) ∈ A
0 if (x, y) /∈ A,

(30)

where S(A) is the area of A. From (22), (29), and (30), F̂ A
T =

S(A)−1/2P̂A
T , so the action of the two operators leads to the

same state after normalization. More generally, any projector
is equivalent to a uniform filtering operator.

The filtering operator allows us to consider the case of
a nonuniform filtering. In particular, the longitudinal filter-
ing could be nonuniform contrary to the transverse filtering
because the aperture is limited by a material edge in the trans-
verse plane whereas there are no edges along the longitudinal
direction. The longitudinal filtering function could then be a
continuous function forming a peak centered around z = 0
and of width �z. The precise shape of the filtering function is
part of the assumptions of the model. This shape may matter
if �z is large, but probably not if �z is close to zero because
the PDF is then close to the Dirac distribution.

Finally, given (26) and (29), we replace the projector P̂A,�z

defined in (24) by the filtering operator

F̂ A,�z ≡ F̂ A
T ⊗ F̂�z

L =
∫

d3r
√

δ̃A,�z(r)|r〉〈r|,

δ̃A,�z(r) ≡ δ̃A
T (x, y)δ̃�z

L (z). (31)

The volume A × [−�z/2,+�z/2] of transverse section A
and length �z, centered at the origin O, is called a three-
dimensional (3D) aperture. The 3D aperture can be defined
as the region where the position wave function of the parti-
cle is temporarily localized during the position measurement.
The aperture A and the interval [−�z/2,+�z/2] are called
the transverse 2D aperture and the longitudinal 1D aperture,
respectively (Fig. 2).

In the case of a uniform filtering, the aperture is the re-
gion where the filtering function is nonzero. In the case of
a nonuniform filtering, the filtering function can be nonzero

longitudinal position filtering function

O

 x

 y
 z

transverse
2D aperture

tran
sverse p

o
sitio

n
 filterin

g
 fu

n
ctio

n

z (longitudinalΔ
        1D aperture)

3D aperture

FIG. 2. Example of a 3D aperture [section in the (Ox, Oz) plane]
with the corresponding transverse and longitudinal position filtering
functions.
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everywhere (for example, if it is a Gaussian). We are then led
to define more generally the aperture as the region outside of
which the integral of the filtering function is negligible.

In (31), �z does not depend on x and y, which is an implicit
assumption in the definition (26). More generally, the position
filtering operator is defined by

F̂A =
∫

d3r
√

δ̃A(r)|r〉〈r|, (32)

where A is the 3D aperture whose shape can be assumed to be
more or less complicated and δ̃A(r) is the position filtering
function whose expression can be assumed to be different
from a product of the form (31).

3. The need to consider kinematics

From (32), |〈r|F̂A|k0〉|2 is proportional to δ̃A(r). So the
state F̂A|k0〉 is associated with the momentum PDF of the par-
ticle just after its localization at the aperture, when it is about
to move away from the diaphragm. Moreover, from (20), the
state D̂(0)|k0〉 corresponds to the momentum PDF fK(k) of
the particle detected beyond the diaphragm. Since the particle
is free after its passage through the aperture, its momentum
is conserved until its detection, which suggests that D̂(0) is
nothing other than F̂A. However, this cannot be the case
for the following reason. From (32), the momentum wave
function of the state F̂A|k0〉 is expressed by

〈k|F̂A|k0〉 = (2π )−3/2FA(k − k0), (33)

where FA(k − k0) is the Fourier transform of the square root
of the position filtering function

FA(k − k0) ≡ (2π )−3/2
∫

d3r
√

δ̃A(r) exp[−i(k − k0) · r].

(34)

If D̂(0) is equal to F̂A, the PDF fK(k) is obtained by sub-
stituting (33) into (20). Then the widths �kx, �ky, and �kz

of this PDF are those of the distribution associated with the
Fourier transform FA(k − k0) and are therefore related to the
widths �x, �y, and �z of the 3D aperture by the uncertainty
relations. However, if �x, for example, is small enough, the
relation �x�kx � 1 implies that �kx can be sufficiently large
so that |kx| > k0 with nonzero probability and therefore the
relation (2) is not satisfied in such a case. However, this is not
possible because (2) results from kinematics and is moreover
confirmed by experiment. This issue comes from the fact that
the position wave function of the state F̂A|k0〉 is localized
in the 3D aperture A and that consequently its momentum
wave function is spread out, which results in a spreading of
the distribution of the momentum modulus and therefore of
the energy. For (2) to be satisfied, we are led to assume that
D̂(0) is not simply equal to F̂A but is rather of the form

D̂(0) = F̂ k0 F̂A, (35)

where F̂ k0 is an energy-momentum filtering operator whose
role is to act on the state F̂A|k0〉, which is then a localized
transitional state, to obtain a final state of same energy as that
of the initial state.

4. Energy-momentum filtering operator

The filtering operator F̂ k0 must be associated with the
domain K0 of the momentum space that corresponds to the
vectors k compatible with kinematics. So we define, using an
expression similar to (32),

F̂ k0 ≡
∫

d3k
√

δ̃K0 (k)|k〉〈k|, (36)

where δ̃K0 (k) is a momentum-energy filtering function which
must represent the weight with which the filtering operator
selects the result k from the value at k of the momentum wave
function in the localized transitional state F̂A|k0〉. From (2)
and (3) we are led to assume that this function is of the form

δ̃K0 (k) ≡ Cδ̃�k (|k| − k0)δ1sgn[kz], (37)

where C is a normalization constant that will be calculated
below, δ̃�k (|k| − k0) is a function of the modulus of k forming
a peak centered at |k| = k0 and of width �k close to zero
[in accordance with (2)], and the Kronecker delta δ1sgn[kz]

ensures that δ̃K0 (k) is zero if kz � 0 [in accordance with (3)].
From (37), using the spherical coordinates, the normalization
to 1 of δ̃K0 (k) is expressed by

1 = C
∫ ∞

0
dk k2δ̃�k (k − k0)

∫ π

0
dθ sin θδ1sgn[cos θ]

∫ 2π

0
dφ.

(38)

Since �k is close to zero, we can replace δ̃�k (k − k0) by
δ(k − k0) in the integral over k whose value is therefore close
to k0

2. Then (38) implies C � k0
−2(2π )−1. Substituting (37)

with this value of C into (36), we get

F̂ k0 � (2π )−1/2k−1
0

∫
d3k

√
δ̃�k (|k| − k0)δ1sgn[kz]|k〉〈k|.

(39)

We can interpret F̂ k0 as an operator which represents an
energy-momentum measurement including a measurement of
the momentum modulus (in other words, of the energy) giving
the result h̄k0 with near certainty and a measurement of the
momentum longitudinal component giving the result h̄kz > 0.

5. Matrix element of the momentum part
of the diffraction operator

Substituting (32), in which we insert the identity operator∫
d3k|k〉〈k| after |r〉〈r|, and (39) into (35), and given (34), we

obtain

D̂(0) � (2π )−2k−1
0

∫
d3k

√
δ̃�k (|k| − k0)δ1sgn[kz]

×
∫

d3k′FA(k − k′)|k〉〈k′|. (40)

Hence, instead of (33),

〈k|D̂(0)|k0〉 � (2π )−2k−1
0

√
δ̃�k (|k| − k0)δ1sgn[kz]FA(k − k0).

(41)

6. Photons

A position filtering operator of the form (32), where the
projector |r〉〈r| is involved, cannot be used for the photon
because the localized photon states are eigenstates of a photon
position operator different from the position observable of

033706-6



POSITION MEASUREMENT AND THE HUYGENS-FRESNEL … PHYSICAL REVIEW A 107, 033706 (2023)

the nonrelativistic case. Several problems were encountered
and then finally resolved to construct this photon position
operator and, more generally, to elaborate a true quantum
mechanics of the photon [20–29]. The localized photon states
are biorthogonal [26] with a specific scalar product [27] and it
follows that the appropriate operator to replace the projector
|r〉〈r| in the photon case is Â(−)(r, t )|vac〉 · 〈vac|Ê(+)(r, t),
where Â(±)(r, t ) and Ê(±)(r, t ) are the positive and negative
frequency field operators of the transverse vector potential and
electric field. These field operators are given by [30]

Â(−)(r, t ) = [Â(+)(r, t )]† =
√

h̄

2ε0
(2π )−3/2

×
∫

d3k√
ω

∑
l=x,y

exp[i(ωt − k · r)]e(l )
k â†(k, l[k]),

Ê(−)(r, t ) = [Ê(+)(r, t )]† = − ∂

∂t
Â(−)(r, t ), (42)

where ω = ck, e(l )
k is the unitary vector of the l[k] axis of a

coordinate system such that z[k] ‖ k, and â†(k, l[k]) is the
creation operator of a photon of momentum h̄k and linearly
polarized in the direction of the l[k] axis. Similarly to (8), we
have

â†(k, l[k])|vac〉 = |k〉 ⊗ |l〉k, (43)

where |l〉k is the basis state of linear polarization in the direc-
tion of the l[k] axis. From (42) and (43),

Â(−)(r, t )|vac〉 · 〈vac|Ê(+)(r, t)

= ih̄

2ε0
(2π )−3

∫
d3k

∫
d3k′√k′/k

× exp{i[(ω − ω′)t − (k − k′) · r]}
× |k〉〈k′| ⊗

∑
l=x,y

∑
l ′=x,y

e(l )
k · e(l ′ )

k′ |l〉k k′〈l ′|. (44)

The photon has a spin 1 and this implies that its spin projection
eigenstates are equivalent to vectors of complex components
in the basis {e(x)

k , e(y)
k , e(z)

k } [31]. Moreover, the basis states
|l〉k are specific linear combinations of the spin projection
eigenstates [30,32] such that |l〉k is equivalent to the real
vector e(l )

k . Therefore, e(l )
k · e(l ′ )

k′ = e(l )
k

∗ · e(l ′ )
k′ = k〈l|l ′〉k′ . So the

double sum over l and l ′ in (44) is the product of the identity
operator by itself, successively expressed by the closure re-
lations of the bases {|x〉k, |y〉k} and {|x〉k′, |y〉k′ }. The action
of the operator Â(−)(r, t )|vac〉 · 〈vac|Ê(+)(r, t) therefore has
no effect on the polarization states, so we can just consider
its restriction to the subspace of the momentum states. So
replacing in (32) |r〉〈r| by the right-hand side of (44) without
the double sum over l and l ′ and multiplying by the factor
−2iε0/h̄ to obtain the same dimension as that of F̂A (length
to the power −3/2), we are led to assume that the position
filtering operator for the photon is

F̂A
phot (t ) = (2π )−3

∫
d3r

√
δ̃A(r)

∫
d3k

∫
d3k′

×
√

k′/k exp{i[(ω − ω′)t − (k − k′) · r]}|k〉〈k′|.
(45)

Furthermore, we express the momentum part of the diffraction
operator in a form similar to (35),

D̂(0)
phot (t ) = F̂ k0 F̂A

phot (t ). (46)

Then, substituting (39) and (45) into (46), and given (34), we
finally obtain

D̂(0)
phot (t )

� (2π )−2k−1
0

∫
d3k

√
δ̃�k (|k| − k0)δ1sgn[kz]

×
∫

d3k′√k′/k exp[i(ω − ω′)t]FA(k − k′)|k〉〈k′|.
(47)

By calculating the matrix element 〈k|D̂(0)
phot (t )|k0〉 from (47),

we get an expression with the factor exp[i(ω − ω0)t]. Now,
from (2), k � k0 and so ω � ω0. Therefore, the matrix element
in question does not actually depend on time and we find
that its expression is nothing other than (41). This relation
can therefore be used both for nonrelativistic particles and for
photons.

7. Characteristics of the measurement process

From (35) and (46) we see that the momentum part D̂(0)

of the diffraction operator depends on the momentum mod-
ulus k0 of the incident particle. Therefore, the initial state is
changed by the action of an operator which depends on this
initial state itself. This reflects the fact that the diaphragm and
the particle form an inseparable system during the measure-
ment, in accordance with the Copenhagen interpretation of
quantum mechanics.

Moreover, using (32), (39), and (45), we can verify that the
product of operators on the right-hand sides of (35) and (46)
is not commutative. This noncommutativity imposes the order
in which the operators act to create the final state from the
initial state. This order is related to the temporal unfolding of
an irreversible process whose sequence is as follows: initial
state → position measurement (F̂A) → localized transitional
state → energy-momentum measurement (F̂ k0 ) → final state
→ measurement of momentum and polarization (detectors).
The two first measurements (D̂(0)) are not equivalent to one
measurement to which the uncertainty relations apply. These
relations are satisfied for each of the two measurements. Let
�x and �kx be the uncertainties of the first measurement
which creates the localized transitional state and �′x, �′kx

those of the second measurement which creates the final state.
So �x is the width of the aperture and �′kx is the width of
the distribution of kx in the final state. In this state, we have
−k � kx � +k, so �′kx � 2k. Hence, because of kinematics
[Eq. (2)], �′kx � 2k0, which is finite. Therefore, if �x is
small enough, we then have �x�′kx � 1, but this is not a
problem because �x is associated with the first measurement
while �′kx is associated with the second measurement. On
the other hand, we have �x�kx � 1 and �′x�′kx � 1, where
�′x corresponds to the extent of the diffracted wave. We also
have the relations �t�ω � 1 and �′t�′ω � 1 between the
lifetimes and the widths in energy of the transitional state and
of the final state. We can assume that �t � �z/v, where v

033706-7



BERNARD FABBRO PHYSICAL REVIEW A 107, 033706 (2023)

is the speed of the particle. Because of the Huygens-Fresnel
principle, it is expected that �z � 0 (Sec. II C 2). So �t � 0.
Moreover, given (2), we have �′ω � 0. Hence �t�′ω � 1.

D. Polarization amplitudes of the detected particles

1. Nonrelativistic particles

The quantization axis Z[k] belongs to a coordinate system
{X [k],Y [k], Z[k]} defined by L[k] = R(�,�,�)l[k] (L =
X,Y, Z and l = x, y, z), where R(�,�,�) is a rotation whose
Euler angles can be chosen arbitrarily and {x[k], y[k], z[k]}
is the coordinate system attached to the particle. Moreover,
according to (4), l[k] = R(φ, θ, 0)l[k0]. The rotation of the
eigenstates has the same Euler angle as the rotation of the axes
because a physical system in a given eigenstate must rotate
with the coordinate system associated with the quantization

axis to remain in this eigenstate. Therefore,

|σ 〉Z[k],� = R̂(s)(�,�,�)|σ 〉z[k],

|σ 〉z[k] = R̂(s)(φ, θ, 0)|σ 〉z[k0]. (48)

In the present case, where the directions of the L[k] axes are
defined by the rotation R(�,�,�), the angle � must be men-
tioned in the notation |σ 〉Z[k],� because Z[k] only depends on
� and �, whereas the rotation operator R̂(s)(�,�,�) (so a
priori the resulting state) also depends on �.

To express the final polarization amplitudes (quantiza-
tion axis Z[k]) as a function of the initial amplitudes
(quantization axis Z[k0]), we multiply the relation (11) on
the left by Z[k],�〈σ | and we insert the identity operator∑

σ ′ |σ ′〉Z[k0],�0 Z[k0],�0 〈σ ′| before the ket |χ (s)
in 〉. We then

use (48) and the relation R̂(s)(α, β, γ )† = R̂(s)(α, β, γ )−1 =
R̂(s)(−γ ,−β,−α), which results from the unitarity of the
rotation operators. We get

Z[k],�
〈
σ
∣∣χ (s)

out (k)
〉 =

∑
σ ′

z[k0]〈σ |R̂(s)(0,−θ,−φ)R̂(s)(−�,−�,−�)R̂(s)(α1, α2, α3)R̂(s)(�0,�0, �0)|σ ′〉z[k0] Z[k0],�0

〈
σ ′∣∣χ (s)

in

〉
,

(49)

where Z[k] = Z[k; �,�], Z[k0] = Z[k0; �0,�0],
α j ≡ α j (k), and k ≡ k(k, θ, φ). The matrix element of
the product of the four rotation operators can be calculated
from the standard formula

〈σ |R̂(s)(α, β, γ )|σ ′〉 = exp[−i(σα + σ ′γ )]d (s)
σσ ′ (β ), (50)

where (d (s)
σσ ′ (β )) is a (2s + 1) × (2s + 1) matrix whose ex-

pression is known [32].

2. Relativistic particles

The quantization axis Z[k] must have the same direction as
that of the momentum k. Since z[k] ‖ k [Eq. (4)], this implies
Z[k] = z[k]. We then have � = 0 and R(�, 0, �) = R(� +
�, 0, 0) = R(0, 0,� + �), which is a rotation of arbitrary
angle � + � around z[k]. To simplify, we choose � = 0 and
R(0, 0, �). We then apply the first relation of (48) to the
rotation R̂(s)(0, 0, �). Using (50) and the property d (s)

σσ ′ (0) =
δσσ ′ [32], this leads to |σ 〉Z[k],� = exp(−iσ�)|σ 〉z[k]. Then,
since Z[k] = z[k] and z[k] ‖ k, we will use the notation
|σ 〉k,� for simplicity. Finally,

|σ 〉k,� ≡ R̂(s)(0, 0, �)|σ 〉k = exp(−iσ�)|σ 〉k. (51)

Substituting into (49), we get

k
〈
σ
∣∣χ (s)

out (k)
〉

=
∑
σ ′

k0〈σ |R̂(s)(0,−θ,−φ)R̂(s)(α1, α2, α3)|σ ′〉k0

×k0

〈
σ ′∣∣χ (s)

in

〉
. (52)

In the rest of this subsection, we apply the model to the
case of the photon.

3. Helicity amplitudes of the detected photons

Since the photon is relativistic and has a spin 1, its spin
component eigenstates are the helicity states | + 1〉k, |0〉k, and
| − 1〉k. However, the photon is also massless, so its helicity
can only have the values ±1 [15]; the value zero is impossible,
whatever the momentum. Hence

k
〈
0
∣∣χ (1)

out (k)
〉 = k0

〈
0
∣∣χ (1)

in

〉 = 0. (53)

This relation determines the functions α1[k(k, θ, φ)] and
α2[k(k, θ, φ)]. Indeed, substituting it into (52) applied to
s = 1 and σ = 0, we obtain

0 =
∑

σ ′=±1

k0〈0|R̂(1)(0,−θ,−φ)

× R̂(1)(α1, α2, α3)|σ ′〉k0k0

〈
σ ′∣∣χ (1)

in

〉
, (54)

which must be satisfied whatever the initial state. Hence

k0〈0|R̂(1)(0,−θ,−φ)R̂(1)(α1, α2, α3)| ± 1〉k0 = 0. (55)

We then express the left-hand side by using (50) applied to
s = 1 where the matrix (d (1)

σσ ′ (β )) is given by [32]

(
d (1)

σσ ′ (β )
)= 1

2

⎛
⎜⎝

1 + cos β −√
2 sin β 1 − cos β√

2 sin β 2 cos β −√
2 sin β

1 − cos β
√

2 sin β 1 + cos β

⎞
⎟⎠. (56)

(Note that the order of the values of σ and σ ′ is +1, 0,−1).
This leads to the equations

sin θ sin(φ − α1) = 0,

sin θ cos α2 cos(φ − α1) − cos θ sin α2 = 0. (57)

The first equation implies α1(k) = φ + nπ , n = 0, 1. Substi-
tuting into the second equation, we get α2(k) = (−1)nθ +
n′π , n′ = 0, 1. If φ = θ = 0, we then have k = k0, which
implies α1(k0) = nπ and α2(k0) = n′π . However, if k = k0,
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there is no reason for the spin polarization state to change.
Hence, from (11), R̂(1)[α1(k0), α2(k0), α3(k0)] is equal to the
identity operator, which implies α1(k0) = α2(k0) = α3(k0) =
0. Therefore, n = n′ = 0 and we get

α1(k) = φ, α2(k) = θ, (58)

α3(k0) = 0. (59)

From (50), (56), and (58), the matrix whose elements appear
on the right-hand side of (52) is given by(

k0〈σ |R̂(1)(0,−θ,−φ)R̂(1)[φ, θ, α3(k)]|σ ′〉k0

)

=
⎛
⎝exp[−iα3(k)] 0 0

0 1 0
0 0 exp[iα3(k)]

⎞
⎠. (60)

Finally, from (52), (58), and (60),

k
〈
σ
∣∣χ (1)

out (k)
〉 = exp[−iσα3(k)] k0

〈
σ
∣∣χ (1)

in

〉
. (61)

Diffraction causes a phase shift of 2α3(k) between the ampli-
tudes of the helicity states | ± 1〉 and conserves the modulus
of each of these amplitudes.

4. Linear polarization amplitudes of the detected photons

It is useful to express the amplitudes of linear polariza-
tion for any direction of the maximum transmission axis of
the analyzer. We associate with the analyzer the coordinate
system {X [k],Y [k], z[k]} associated with the quantization
axis z[k] and we assume by convention that the axis X [k] =
R(0, 0, �)x[k] ≡ x[k, �] is the maximum transmission axis
whose direction is therefore defined by the choice of the value
of �.

The helicity states and the basis states of linear polarization
in the directions of the l[k, �] axes (l = x, y) are related
by [30,32]

|ξ 〉k,� = −ξ√
2

(|x〉k,� + iξ |y〉k,� ), (62)

where ξ = ±1 is the helicity. According to (51) applied to the
helicity states |ξ 〉k,� and |ξ 〉k expressed from (62), the basis
states |l〉k transform like the real unitary vectors e(l )

k of the
l[k] axes,

|x〉k,� = cos �|x〉k + sin �|y〉k,

|y〉k,� = − sin �|x〉k + cos �|y〉k, (63)

which implies, in particular,

|y〉k,� = |x〉k,�+π/2. (64)

Finally, from (61)–(63), we get

k,�

〈
x
∣∣χ (1)

out (k)
〉 = cos[α3(k) − �] k0

〈
x
∣∣χ (1)

in

〉
− sin[α3(k) − �] k0

〈
y
∣∣χ (1)

in

〉
, (65)

from which we deduce k,�〈y|χ (1)
out (k)〉 by using (64).

5. Case of an initial state elliptically polarized (photons)

By generalizing (62), we can express any elliptically polar-
ized initial state in the form∣∣χ̃ (1)

in

〉 ≡ −ξ0(cos η0|x〉k0,ζ0 + iξ0 sin η0|y〉k0,ζ0 ), (66)

where ζ0, η0, and ξ0 represent the major axis azimuth, the
ellipticity angle, and the handedness, respectively.1

The final state resulting from the initial state |χ̃ (1)
in 〉 is also

an elliptically polarized state which we denote |χ̃ (1)
out (k)〉. In-

deed, by applying (65) to |χ̃ (1)
in 〉 defined by (66) and using (63),

we obtain

k,�

〈
x
∣∣χ̃ (1)

out (k)
〉 = −ξ0 cos η0 cos[ζ0 + α3(k) − �]

+ i sin η0 sin[ζ0 + α3(k) − �]. (67)

Then, by making the identity operator
∑

l=x,y |l〉kk〈l| act on

the state |χ̃ (1)
out (k)〉 and using successively (67) (applied with

� = 0), (64), and (63), we get∣∣χ̃ (1)
out (k)

〉 = −ξ0
[

cos η0|x〉k,ζ0+α3(k) + iξ0 sin η0|y〉k,ζ0+α3(k)

]
.

(68)

Comparing with (66), we see that the ellipticity and the
handedness are conserved and that the ellipse axes undergo
a rotation of angle α3(k). The major axis azimuth in the
transverse plane {x[k], y[k]} is ζ (k) = ζ0 + α3(k).

III. SOME PREDICTIONS OF THE MODEL

A. Relative intensity (polarization not measured)

1. Angular distribution of the final momentum

From (20) and (41), the PDF of the final momentum if the
polarization is not measured is expressed by

fK(k) � N−1(2π )−4k−2
0 δ̃�k (|k| − k0)δ1sgn[kz]|FA(k − k0)|2.

(69)

Since the experimental setup directly measures the direc-
tion of k, it is useful to replace the Cartesian components by
the modulus and two angles giving the direction. This change
of variables must be done by a one-to-one transformation,
which must moreover be defined in the half space kz > 0
because of (3). The spherical coordinates k, θ , and φ cannot be
used because the associated transformation is not one to one
(if θ = 0, φ is undetermined and the Jacobian is zero). On the
other hand, we can use the diffraction angles θx and θy [18],
which are the projections of the polar angle θ on the planes
(x, z) and (y, z) (Fig. 3). The new variables (k, θx, θy) are such
that k > 0, −π/2 < θx < +π/2, −π/2 < θy < +π/2, and

1We use the following definitions: ζ0 ≡ ζ (k0) is the angle between
the x[k0] axis and the major axis of the ellipse in the transverse plane
to k0, 0 � ζ0 < π ; η0 = arctan[(length of the minor axis)/(length of
the major axis)], 0 � η0 � π/4; and ξ0 = ±1 represents the direc-
tion of rotation of the electric field vector (provided that η0 �= 0).
The value ξ0 = +1 corresponds to a counterclockwise rotation if the
rotation axis and the momentum of the photon are directed toward
the receiver. If η0 = 0, the polarization is linear along the direction
defined by the angle ζ0. If η0 = π/4, the polarization is circular and
ξ0 is equal to the helicity because (66) becomes identical to (62)
applied to ξ = ξ0, k = k0, and � = ζ0.
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FIG. 3. Diffraction angles θx and θy.

the required transformation (kx, ky, kz ) ↔ (k, θx, θy) is

k(k, θx, θy) = k cos θ

⎛
⎝tan θx

tan θy

1

⎞
⎠,

cos θ = (1 + tan2θx + tan2θy)−1/2, 0 � θ < π/2.

(70)

The change of PDF due to the change of variables is expressed
by

fK,�x,�y
(k, θx, θy) = |J (k, θx, θy)| fK[k(k, θx, θy)], (71)

where J (k, θx, θy) is the determinant of the Jacobian of the
transformation (70), which is finite and nonzero and whose
calculation leads to the angular factor

�(θx, θy) ≡ k−2|J (k, θx, θy)| = cos θ

1 − sin2 θx sin2 θy
. (72)

Expressing fK[k(k, θx, θy)] from (69) and substituting
into (71), given (72), we get

fK,�x,�y
(k, θx, θy)

� N−1(2π )−4k−2
0 k2δ̃�k (k − k0)

× �(θx, θy)|FA[k(k, θx, θy) − k(k0, 0, 0)]|2. (73)

From (2), �k is close to zero. We can therefore replace the
function δ̃�k (k − k0) by the Dirac distribution δ(k − k0) and
express the angular distribution of the final momentum by

f�x,�y
(θx, θy) ≡

∫ ∞

0
dk′ fK,�x,�y

(k′, θx, θy)

� �(θx, θy)

(2π )4N
|FA[k(k, θx, θy) − k(k, 0, 0)]|2,

(74)

where we now consider for simplicity that k represents both
the modulus of k0 and that of k. The normalization factor
N can be expressed by substituting (41) into (15). Using the
change of variables (70) and given (2), we get

N � (2π )−4
∫ +π/2

−π/2
dθx

∫ +π/2

−π/2
dθy

×�(θx, θy)|FA[k(k, θx, θy) − k(k, 0, 0)]|2. (75)

2. Quantum formula of the relative intensity
in Fraunhofer scalar diffraction

To avoid calculating the integral (75), we consider the ratio
of the values of the angular distribution between the direction
(θx, θy) and the forward direction (0,0). This ratio is nothing
other than the relative intensity between the directions of k
and k0. Thus, in the quantum model (QM), the expression of
the relative intensity is[

I (θx, θy)

I (0, 0)

]A

QM

=
f�x,�y

(θx, θy)

f�x,�y
(0, 0)

. (76)

From (74) and since �(0, 0) = 1, this leads to[
I (θx, θy)

I (0, 0)

]A

QM

� �(θx, θy)
|FA[k(k, θx, θy) − k(k, 0, 0)]|2

|FA(0)|2 .

(77)

For an aperture of the form A ≡ A × [−�z/2,+�z/2],
where �z is independent of (x, y), the position filtering func-
tion δ̃A(r) is equal to δ̃A,�z(r) given by (31). From this
and (30), the relation (34) leads to

FA(k − k0) = FA
T (kx, ky)F�z

L (kz − k), (78)

where

FA
T (kx, ky) ≡ (2π )−1S(A)−1/2

∫
A

dx dy exp[−i(kxx + kyy)],

(79)

F�z
L (kz − k) ≡ (2π )−1/2

∫
dz

√
δ̃�z

L (z) exp[−i(kz − k)z].

(80)

Substituting (78) into (77) and expressing k(k, θx, θy)
from (70), we obtain[

I (θx, θy)

I (0, 0)

]A

QM

� �(θx, θy)T A(k, θx, θy)L�z(k, θ ), (81)

where θ and �(θx, θy) are given by (70) and (72), respectively,
T A(k, θx, θy) is the transverse diffraction term

T A(k, θx, θy) ≡
∣∣FA

T (k cos θ tan θx, k cos θ tan θy)
∣∣2∣∣FA

T (0, 0)
∣∣2 , (82)

and LA(k, θ ) is the longitudinal diffraction term

L�z(k, θ ) ≡
∣∣F�z

L [k(cos θ − 1)]
∣∣2∣∣F�z

L (0)
∣∣2 . (83)

3. Test of the Huygens-Fresnel principle

The relative intensity expressed by the quantum for-
mula (81) depends on the width �z of the longitudinal 1D
aperture (Fig. 2). The value of �z can therefore be fit-
ted to data obtained from the measurement of the intensity
as a function of the diffraction angle. As previously men-
tioned (Sec. II C 2), �z is the width of the distribution of
the wavefronts emitting the wavelets which contribute to the
diffracted wave. An experimental study directly concerning
the Huygens-Fresnel principle can therefore be considered.
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4. Comparison with the predictions of the scalar theories
of wave optics

In wave optics (WO), there are several versions of the
scalar theory of diffraction which differ by their assumed
boundary conditions. The best known are the theories of
Fresnel-Kirchhoff (FK) and Rayleigh-Sommerfeld (RS1 and
RS2). In Fraunhofer diffraction, for an initial monochromatic
plane wave in normal incidence, the amplitude predicted by
these theories at a point of radius vector d beyond the di-
aphragm can be expressed, given (1), in the form [16,17]

UA
WO(d) ≡ UA,k

WO

(
d,

k
k

)
� −C0

ik

2π

exp[ik(d0 + d )]

d0d

×�[(k0, k)]
∫

A
dx dy exp

[
−ik

(
kx

k
x + ky

k
y

)]
,

(84)

where C0 is a constant, d0 is the distance source-aperture,
and �[(k0, k)] is the obliquity factor. The latter depends on
the deflection angle (k0, k), which is also the polar angle θ

(Fig. 3). Its value is specific to the theory:

�(θ ) =
⎧⎨
⎩

(1 + cos θ )/2 (FK)
cos θ (RS1)
1 (RS2).

(85)

From (1), the intensity at the point of radius vector d is
proportional to the intensity in the direction of k(k, θx, θy).
Hence [

I (θx, θy)

I (0, 0)

]A

WO

=
∣∣UA,k

WO[d, k(k, θx, θy)/k]
∣∣2∣∣UA,k

WO[d, k(k, 0, 0)/k]
∣∣2 . (86)

Expressing k(k, θx, θy) and k(k, 0, 0) from (70) and substitut-
ing into (84) and then into (86), we see that d is eliminated.
Then, since �(0) = 1 and given (79) and (82),[

I (θx, θy)

I (0, 0)

]A

WO

� �(θ )2T A(k, θx, θy). (87)

The comparison of the formulas (81) and (87) shows that
the transverse diffraction term T A(k, θx, θy) is the same in the
two cases. This is because the integrals in (79) and (84) are the
same. The differences come from the angular factors �(θx, θy)
and �(θ )2 and from the presence of the longitudinal diffrac-
tion term L�z(k, θ ) in the quantum formula. If the angles
are small, the angular factors and the longitudinal diffraction
term are all close to 1 so that the quantum model gives the
same result as that of wave optics. On the other hand, if the
angles increase, discrepancies appear between the different
predictions.

5. Example of comparison

Let us consider the intensity variation in the horizontal
plane (Ox, Oz) for which we have θy = 0 and θx = θ if θx �
0, and θx = −θ if θx � 0. In this case, it is convenient to make
the notation change (θx, θ ) → (θ, |θ |), where −π/2 < θ <

+π/2 (diffraction angle) and 0 � |θ | < +π/2 (polar angle in
the half space z > 0). Since cos |θ | = cos θ , the relations (72)

and (85) then lead to

�(θ, 0) = cos θ, �(|θ |) = �(θ ). (88)

We now consider the case of a rectangular slit R of width
2a and of height 2b centered at (x, y) = (0, 0). The expres-
sion (79) leads to

FR
T (kx, ky) =

√
ab

π

sin akx

akx

sin bky

bky
. (89)

Given the notation change introduced above, the rela-
tion (70) implies kx = k cos |θ |tan θ = k sin θ and ky = 0.
Applying (89) to these values and substituting into (82), we
get the well-known result

T R(k, θ, 0) =
[

sin(ak sin θ )

ak sin θ

]2

. (90)

Then we suppose that the longitudinal filtering function is,
for example, a Gaussian. In this case, the width of the longi-
tudinal aperture depends on the standard deviation and on a
threshold under which the integral of the Gaussian outside the
interval [−�z(σz )/2,+�z(σz )/2] is considered as negligible
[for example, with a threshold of 10−2 we have �z(σz ) �
5.16σz [33]]. Assuming that δ̃

�z(σz )
L (z) is a Gaussian centered

at z = 0 and of standard deviation σz, the expression (80) leads
to [34]

F�z(σz )
L (kz − k) =

(
2

π

)1/4√
σz exp

[ − σz
2(kz − k)2

]
. (91)

Substituting into (83), we get

L�z(σz )(k, |θ |) = exp
[ − 8σz

2k2 sin4(θ/2)
]
. (92)

Curves obtained from the formulas (81) and (87) [applied
with (85), (88), (90), and (92)] are shown in Fig. 4 for a case
of photon diffraction.

If σz = 0, the longitudinal diffraction term is equal to 1.
This corresponds to the largest values predicted by the quan-
tum model. It is with the FK theory that the quantum model
(QM1) is in better agreement. However, at 90◦, the FK theory
predicts values that are generally nonzero, which does not
seem plausible (same for the RS2 theory). The angular factors
�(θ, 0) = cos θ of the quantum model and �(θ )2 = cos2 θ

of the RS1 theory are the only ones which account for the
decrease in intensity towards zero at 90◦. However, the factor
cos θ seems more likely because it is the same as that ob-
tained by applying the exact calculation of the diffraction by
a wedge [35] to the case of two wedges of zero angle placed
opposite one another to form a slit [36].

If σz > 0, the longitudinal diffraction term is strictly less
than 1. The values of the quantum model, maximum for
σz = 0, undergo a damping which increases with |θ | and σz.
As σz increases from zero, the QM curve deviates more and
more from the QM1 curve and then goes below the RS1
curve. Coincidentally, the curves QM and RS1 can be very
close, but not for all values of θ since the angular factors
are different. If σz is large enough, the QM curve globally
decreases much more rapidly than the WO and QM1 curves
and the gap becomes significant at not too large angles (QM2).
Such a result obtained experimentally would be a signal of the
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FIG. 4. Comparison between different theoretical predictions of
the relative intensity in Fraunhofer diffraction as a function of the
diffraction angle in the horizontal plane for a rectangular slit of width
2a = 10 µm and an incident monochromatic plane wave correspond-
ing to photons of wavelength λ = 632.8 nm (helium-neon laser).
Five predictions are presented: three predictions of wave optics (WO)
corresponding to the scalar theories of Fresnel-Kirchhoff (FK) and
Rayleigh-Sommerfeld (RS1 and RS2) and two predictions of the
quantum model (QM) corresponding to two values of the standard
deviation σz associated with a Gaussian longitudinal filtering (GLF)
of the incident wave: σz = 0 (QM1) and σz = a/10 (QM2). The val-
ues of the five intensities are distributed according to the decreasing
order RS2, FK, QM1, RS1, and QM2, whatever θ is over the entire
range 0◦–90◦. These predictions correspond to the case where the
polarization is not measured.

need to use a multi-wavefront Huygens-Fresnel principle to
describe the diffraction by an aperture.

6. Large diffraction angles

From the above analysis, it turns out that the relative gaps
between the predictions of the different models considered
here are significant at large angles. Moreover, from a survey of
the literature, it seems that no accurate experimental study of
the diffraction in this region has been carried out so far. Since
the time when the FK and RS1-2 theories were formulated
(late 19th century), technologies in optics have made tremen-
dous progress due in particular to accurate measurements of
intensity by charge-coupled devices which make it possible
to achieve a sufficiently expanded dynamic range. An exper-
imental study of this still little explored region is therefore
probably feasible at the present time.

B. Polarization probabilities (photons)

From (21) and (61), the conditional probability to detect a
photon of helicity ξ if its momentum is h̄k is

P(1)
[�]K |K=k([ξ ]k) = ∣∣

k

〈
ξ
∣∣χ (1)

out (k)
〉∣∣2 = ∣∣

k0

〈
ξ
∣∣χ (1)

in

〉∣∣2
. (93)

So the probabilities of the helicity states and consequently of
the circular polarizations are conserved.

Note that for an aperture of subwavelength size, circular
polarization probabilities are not conserved for all diffraction
angles because the aperture limits the transmission of circu-
larly polarized light [37]. This effect is not taken into account
in the assumption (11) and consequently the polarization pre-
dicted by the model does not match the experiment in this
specific case.

For an elliptically polarized initial state |χ̃ (1)
in 〉, with ma-

jor axis azimuth ζ0, ellipticity angle η0, and handedness ξ0

[Eq. (66)], the conditional probabilities of linear polarization
in the direction defined by the angle � with respect to the x[k]
axis are expressed, from (67), by

P(1)
[X ]K,� |K=k([x]k,� ) = ∣∣

k,�

〈
x
∣∣χ̃ (1)

out (k)
〉∣∣2

= 1
2 {1 + cos 2η0 cos 2[ζ0 + α3(k) − �]},

(94)

whatever ξ0, where α3(k) is the rotation angle of the ellipse
axes due to diffraction. From (94) we have

α3(k) = � − ζ0 + 1

2
arccos

2
∣∣
k,�

〈
x
∣∣χ̃ (1)

out (k)
〉∣∣2 − 1

cos 2η0
, (95)

where k = k(k, θ, φ). Therefore, the measurement of the
probability |k,�〈x|χ̃ (1)

out (k)〉|2 as a function of k, θ , and φ makes
it possible to fit the function α3[k(k, θ, φ)] to the experimental
data (provided that η0 �= π/4). From (4) and (59) its expected
value is zero for θ = φ = 0.

In the case of a linear polarization (η0 = 0), the final po-
larization is also linear in the direction defined by the angle
ζ0 + α3(k) [Eq. (68)]. Assuming that the maximum trans-
mission axis of the analyzer is the axis R(0, 0, �)x[k], the
device can be rotated around z[k] so as to find the angle
�1(k) such that |k,�1(k)〈x|χ̃ (1)

out (k)〉|2 = 1. Then (95) leads to
α3(k) = �1(k) − ζ0.

IV. CONCLUSION

It is possible to construct a model based exclusively on
quantum mechanics to describe the Fraunhofer diffraction
by a diaphragm. In the model presented here, the quantum
concept of measurement was used, within the framework of
the S-matrix formalism, to describe the passage of the par-
ticles through the aperture. The notion of projector had to
be generalized by that of filtering operator in order to ob-
tain a description of the measurement compatible with the
Huygens-Fresnel principle. Then, because of kinematics, it
was necessary to assume that the passage of the particle
through the aperture is described by a double measurement
starting with the measurement of position (which creates a lo-
calized transitional state of indeterminate energy) and ending
with an energy-momentum measurement (which creates the
final state with the same energy as the initial state).
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The model suggests that the wavelets involved in the
Huygens-Fresnel principle are emitted from several neigh-
boring wavefronts distributed along the longitudinal direction
in the aperture region. These wavefronts contribute with dif-
ferent weights to the amplitude of the diffracted wave and
the width of their distribution, not known a priori, can be
fitted to the data from measurement of the intensity as a
function of the diffraction angle. If this width is large enough,
a significant damping of the intensity at large angles is pre-
dicted. A direct experimental study of the Huygens-Fresnel
principle is therefore possible. Moreover, the model provides
predictions concerning the still little explored region of large
diffraction angles. In particular, it predicts the decrease in
intensity towards zero at 90◦, contrary to most of the scalar
theories of wave optics. Finally, in the case of light in single-
photon states and for an incident monochromatic plane wave,
the model predicts that the transfer of momentum between
the photon and the diaphragm conserves the probabilities of
the circular polarizations but can cause a phase shift between
the amplitudes of the associated helicity states. For an initial
state elliptically polarized, the conservation of the ellipticity

and of the handedness is predicted. The phase shift between
the amplitudes of the helicity states corresponds to a rotation
of the axes of the ellipse. The angle of this rotation depends
on the diffraction angles and is not known a priori. Its values
can be fitted to the data from measurements of the polarization
of the photons detected beyond the diaphragm. It would thus
be possible to get information on how diffraction modifies the
polarization of light.
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Correction: The last term in Eq. (43) contained an error and
has been fixed. The previously published Figure 3 contained
an error and has been replaced. The caption in Fig. 4 contained
a typographical error in the penultimate sentence and has been
fixed.
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