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Variance-based sensitivity analysis of �-type quantum memory
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The storage and retrieval of photonic quantum states, quantum memory, is a key resource for a wide range
of quantum applications. Here we investigate the sensitivity of �-type quantum memory to experimental
fluctuations and drift. We use a variance-based approach, focusing on the effects of fluctuations and drift on
memory efficiency. We consider shot-to-shot fluctuations of the memory parameters, and separately we consider
longer timescale drift of the control field parameters. We find the parameters that a quantum memory is most
sensitive to depend on the quantum memory protocol being employed, where the observed sensitivity agrees with
physical interpretation of the protocols. We also present a general framework that is applicable to other figures of
merit beyond memory efficiency. These results have practical ramifications for quantum memory experiments.
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I. INTRODUCTION

In the emerging field of quantum technology, photons play
a critical role as carriers of quantum information [1–3] and
as the fundamental qubits for quantum computation and in-
formation processing [4,5]. Photons are, however, difficult to
synchronize [6–8] and are subject to losses in transmission
[2,9–11]. The ability to store and retrieve photonic quantum
states on demand—quantum memory—provides a path for-
ward to overcome these challenges and is therefore a critical
enabling technology for future quantum applications [12–14].
A considerable body of work has been dedicated to quantum
memories based on atomic ensembles, where the three-level,
resonant, �-type atomic system is the most common [12–24].

In the ideal case, an optical quantum memory is capable of
storing single-photon quantum states and retrieving them on
demand with high efficiency, high fidelity, long storage time,
and broad bandwidth [12–14]. Another critical indicator of
quantum memory performance, however—which has largely
been neglected until only recently [25,26]—is a memory’s
sensitivity to experimental fluctuations and drift. Fluctuations
and drift in experimental parameters are invariably present in
physical quantum memory implementations, and a memory
which is more robust (less sensitive) to experimental noise
is more useful for real-world quantum applications. Here we
quantitatively address this aspect of �-type quantum mem-
ory. (For an analysis of other types of memories, we refer
the reader to Refs. [25,26].) We provide a variance-based
sensitivity analysis [27–34], which sheds light on not only
the sensitivity of an individual quantum memory implemen-
tation with device-specific fluctuations and drift but also on
the intrinsic sensitivity of different physical �-type quantum
memory protocols.

*kais@illinois.edu

We consider quantum memory implementations with
memory parameters M = (d, τFWHMγ ), where the optical
depth d of the atomic ensemble and the intermediate-state
coherence decay rate γ , scaled by the signal photon duration
τFWHM, are considered to be intrinsic and fixed properties of
the memory. We then group the remaining extrinsic, more
readily tunable parameters as G, which parametrize the op-
tical control field used in the memory interaction, and which
we assume have been optimized in order to maximize mem-
ory efficiency. We further partition our analysis according to
whether the parameters of the control field define a Gaussian
temporal envelope GG = (θ,�τ ctrl, τ ctrl

FWHM) or an arbitrary
temporal shape Gs = (ξ1, . . . , ξN ), as investigated in Ref. [35]
(see Fig. 1), where θ , �τ ctrl, and τ ctrl

FWHM correspond to the
Gaussian control field pulse area, delay relative to the sig-
nal field, and duration, respectively, and the points ξi, i =
1, . . . , N correspond to interpolation points along the tem-
poral envelope of the control field. Details on the numerical
calculation of memory efficiency given M and G can be found
in Ref. [35].

In this work we assume a typical scenario for experimen-
tal atomic-ensemble quantum memory, wherein the memory
parameters are fixed with minimal long-timescale drift at a
given setpoint but may undergo non-negligible shot-to-shot
fluctuations. This situation occurs frequently in transient pro-
cesses for generating dense atomic ensembles, such as in
light-induced atomic desorption (LIAD) [36,37] or laser ab-
lation, but applies to equilibrium systems as well. We assume
the optical parameters of the control field possess smaller
shot-to-shot fluctuations (e.g., laser fields with locked fre-
quency, power, timing, etc.), but may either drift over time
or may not be set precisely for optimal memory performance.
We investigate the sensitivity of the memory performance to
the setting of these control parameters, including analysis of
correlations that exist between parameters, which may allow,
for example, for compensating a drop in efficiency due to
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FIG. 1. Control fields of (a) Gaussian shape, defined by the three
parameters GG = (θ,�τ ctrl, τ ctrl

FWHM), where �0 = θ/(2
√

πσ ctrl ) and
σ ctrl = 2

√
2 ln 2/τ ctrl

FWHM, and (b) arbitrary shape, defined by the N
interpolation points Gs = (ξ1, . . . , ξN ).

nonoptimal setting of one parameter by modification of the
remaining parameters. This latter analysis may be important
in situations where one parameter is constrained experimen-
tally, for example in the case of limited laser power, which can
often limit memory efficiency [38–45]. This type of memory
sensitivity can be interpreted as an indicator of the region
of control field phase space where acceptable memory per-
formance can be achieved; low sensitivity implies a large
acceptable region of control field phase space, where the
control field does not require careful fine-tuning, and where
restrictions on one parameter may be compensated for with
changes to the remaining parameters. Equivalently, this type
of memory sensitivity can be interpreted in terms of the mem-
ory’s robustness to experimental drift, where low sensitivity
implies that, given optimal initial control field settings, the
memory will be robust to long-timescale drift in the phase
space surrounding the optimal setpoint.

In the following sections, we restrict our discussion to
resonant �-type memory protocols, but the tools developed
in this work are readily applicable to off-resonant protocols,
as well as other level systems and a wide range of related
techniques [46–48]. In Sec. II, we provide definitions for sev-
eral quantitative aspects of memory sensitivity. In Sec. III we
use these criteria to analyze the sensitivity of resonant �-type
quantum memory to fluctuations in memory parameters, and
in Sec. IV we address sensitivity to improper setting of control
field parameters or experimental drift.

II. VARIANCE-BASED SENSITIVITY ANALYSIS

The sensitivity of classical systems is a much-discussed
subject with well-established theoretical and numerical tools
[27–34,49]. In general, the task is to determine the sensitivity
of a system with performance criterion h(X ,A) to changes
in N input parameters X = (x1, . . . , xN ) when internal sys-
tem parameters A are kept fixed. This performance criterion
may correspond to any desired single-valued metric of the
system; in the case of quantum memory, this may correspond
to memory efficiency, fidelity, storage time, etc. For the sake
of brevity, in Secs. III and IV we focus on memory efficiency
as a key performance criterion, but importantly other criteria
may be used and may be the subject of future work. In this
section, we provide an outline of the theoretical tools used for
a generic criterion h.

The most common method for determining the sensitivity
of h(X ,A) to fluctuations in the input parameters proceeds
as follows [27,34]: We define center values for the input

parameters X , then draw many N-dimensional fluctuations ζ

stochastically from a known probability distribution P(ζ ) and
average over these fluctuations in order to calculate the mean
performance criterion

h(X ) =
∫

dζh(X + ζ ,A)P(ζ ), (1)

and the variance in the system performance

V fluc
h (X ) = Vζ [h(X + ζ ,A)|A], (2)

where Vx[y(x, z)|z] = ∫
dxy2(x, z)P(x) − [

∫
dxy(x, z)P(x)]2

is the unconditional variance of y obtained when x is al-
lowed to vary and z is held constant. In the absence of a
tailored noise model, the probability distribution for fluc-
tuations is commonly approximated as an N-dimensional
normal distribution P(ζ ) ∼ e−|ζ |2/(2ε2 ) with standard deviation
ε. In principle, the complete joint distribution P(ζ ) must be
measured experimentally in order to implement this form
of sensitivity analysis. In practice, this is not always pos-
sible or efficient, and instead an estimate of the memory
sensitivity can be calculated given only the measured expec-
tation values and variances of each fluctuating experimental
parameter. This amounts to approximating the joint distri-
bution P(ζ ) as a factorable distribution of the form P(ζ ) =
P1(ζ1)P2(ζ2) · · · PN (ζN ), where Pi(ζi) ∼ eζ 2

i /(2εi ), and each εi

is the measured standard deviation of the ith experimental
parameter. The resulting standard deviation in performance
criterion h can then be calculated, σ fluc

h (X ) = [V fluc
h (X )]1/2.

The simple variance-based method above provides useful
information on the response of the system to short-timescale,
shot-to-shot fluctuations in input parameters around given
central values X , which typically correspond to the setpoints
of the input parameters. X can also correspond to control
parameters, where the setpoint X is assumed to be at or
near the optimum values for system performance. The method
above does not provide detailed information on the local en-
vironment around the performance optimum, which may be
important for long-timescale drift or for determining which
parameter is most sensitive to experimental error. The sim-
plest method for determining a system’s sensitivity to these
long-timescale changes in input parameters X = (x1, . . . , xN )
is to vary each parameter one-at-a-time (OAT), and to measure
the resulting variance in the system’s performance. This OAT
analysis corresponds to calculating the variances

V OAT
i = Vxi [h(X )|x j �=i] (3)

for each parameter xi, where xi varies over a finite range,
xi ∈ [xmin

i , xmax
i ]. In Eq. (3) and in the following discussion,

we have suppressed the internal parameters that are always
held constant from the notation. We note that Eq. (3) is a
special case of Eq. (2), where P(ζ ) ≈ 1 and only one param-
eter xi is subject to variation. Again, the standard deviation
σ OAT

i = (V OAT
i )1/2 may be used to quantify the change in

system performance due to parameter xi. The parameter xi

with the largest σ OAT
i has the largest effect on the performance

criterion h and therefore the largest sensitivity. In practice,
this means stabilizing and optimizing that parameter is the
most important for system performance and should receive the
largest dedication of resources.
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FIG. 2. Example of three-dimensional phase space spanned by
parameters X = (x1, x2, x3); the sample points connected by the
black lines correspond to one-at-a-time (OAT) analysis of the system
sensitivity, which explores only a small fraction of the total phase
space.

The OAT analysis above provides cross-sectional informa-
tion on the local environment around a performance optimum,
and can be used to rapidly determine if one input parameter is
responsible for the majority of observed variance in system
performance. As correlations between input parameters arise
and the dimensionality of X increases, however, OAT analysis
rapidly becomes insufficient as it ignores control parameter
correlations and explores only a small fraction of the input
phase space (see Fig. 2) [33,34]. When correlations between
parameters exist or the dimensionality of X is large, global
variance-based sensitivity analysis is required, wherein the
most prevalent sensitivity measure is the first-order Sobol’
variance [30,31,49]

Vi = Vxi{E [h(X )|xi]}, (4)

where the inner expectation value E [·] corresponds to the
mean of h(X ) when X is varied over all possible values in
a finite range at fixed xi. The outer variance then measures
the variance of this mean with respect to changes in xi. For
a three-dimensional parameter space, shown in Fig. 2, the
variance V1 in Eq. (4) corresponds to calculating the expecta-
tion value E [h(X )|x1] over each red plane where x1 is fixed
and x2 and x3 are allowed to vary, and taking the variance
of these expectation values. Similarly, V2 (V3) corresponds to
calculating the variance of expectation values taken over the
green (blue) planes. This method fully explores the parameter
phase space in Fig. 2, whereas OAT analysis only explores the
small region of parameter space connected by the black lines.
The first-order Sobol’ sensitivity index can be calculated as

Si = Vi/Vtot, (5)

where Vtot is the total variance VX [h(X )] observed over the
range of interest. Importantly, this technique also allows for
the calculation of higher-order variances and sensitivities:

Vi j = Vxi,x j {E [η(X )|xi, x j]} − Vi − Vj, (6)

Si j = Vi j/Vtot, (7)

which are related with Eqs. (4) and (5) by the conditions

Vtot =
∑

i

Vi +
∑

i

∑
j>i

Vi j + · · · + V1...N , (8)

Stot =
∑

i

Si +
∑

i

∑
j>i

Si j + · · · + S1...N = 1, (9)

and which probe correlations between parameters. In three
dimensions, these higher-order variances correspond to the
variance of expectation values evaluated along lines in the
phase space of Fig. 2, instead of planes.

Sobol’ variances and sensitivity indices provide a complete
picture of the system performance landscape around a central
point of input parameters and allow for identification of which
input parameters are most sensitive globally. This analysis
also probes whether correlations exist between parameters,
which can be leveraged to allow for acceptable system per-
formance at nonoptimal parameter values.

III. FLUCTUATIONS IN RESONANT �-TYPE
QUANTUM MEMORY

We now apply the general discussion in Sec. II to the case
of resonant, �-type quantum memory, beginning with the ef-
fect of fluctuating memory parameters on memory efficiency.
In the resonant case, there exist three well-known quantum
memory protocols: the electromagnetically induced trans-
parency (EIT) [17,21,50,51], Autler-Townes splitting (ATS)
[22,52–54], and absorb-then-transfer (ATT) [17,23,24,35,55]
protocols. A summary of these protocols is given in Ref. [35];
here we provide only the physical information necessary to
understand this article: The EIT protocol requires a con-
trol field of duration longer than the signal field (τ ctrl

FWHM >

τFWHM), which enters the medium ahead of the signal
(�τ ctrl < 0), opening and slowly closing a transparency win-
dow that the signal propagates through. The signal field is
thereby trapped via the slow-light effect. The ATS protocol
requires a control field that propagates along with the signal
field (�τ ctrl = 0) and possesses pulse area θ = 2π . This con-
trol field creates an Autler-Townes doublet that matches the
signal field bandwidth and transfers it to the long-lived spin
state. The ATT protocol has the opposite pulse sequence to
EIT, where the necessary control field is shorter than the signal
field (τ ctrl

FWHM > τFWHM) and arrives after it (�τ ctrl > 0) with
θ = π pulse area. This sequence affects linear absorption of
the signal field and subsequent transfer of the atomic polariza-
tion into the spin-wave state.

Memory efficiency describes the efficiency with which
a quantum memory stores and retrieves single-photon-level
quantum states. Here, we consider the case where fluctuations
in memory efficiency are dominated by fluctuations in the in-
put parameters M, and we assume the control field parameters
G are kept fixed at the optimum values for the average memory
parameters M (i.e., the memory parameter setpoints). We as-
sume a generic noise model where fluctuations ζM = (ζd , ζg)
are drawn stochastically from the probability distribution
P(ζ ) ∼ e−(ζ 2

d g2+ζ 2
g d2 )/[2(εMdg)2] using the Mersenne-Twister al-

gorithm with seed zero, where g = τFWHMγ . This implies
that, e.g., for εM = 5%, both memory parameters vary by
5% of their respective setpoints. We further correlate optical
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FIG. 3. Sensitivity of �-type quantum memory to fluctuations εM in memory parameters around the center points M = (d, τFWHMγ ).
(a) Average efficiency η and (b) fluctuations in memory efficiency σ fluc

η in the presence of fluctuations εM = 5%. (c) Average overlap fidelity
F of optimal Gaussian control field parameters. (d) Fluctuations in memory efficiency as a function of increasing magnitude of fluctuations in
memory parameters for selected points shown in (b). Regions for ATT, ATS, and EIT memory protocols are enclosed with dotted lines.

depth and linewidth so as to preserve atom number. We cal-
culate both η(M) and σ fluc

η (M) following the prescription of
Eqs. (1) and (2), assuming the optimal Gaussian control field
values GG(M) found in Ref. [35]. For each center value M
we average over 1000 random fluctuations ζM. Physically, the
average memory efficiency η represents the average efficiency
of storage and retrieval from the memory in the presence of
fluctuations in the memory parameters. One expects that in
the presence of fluctuations, the memory efficiency should
be, on average, lesser than without fluctuations. Through the
procedure described in Sec. II, we can calculate this aver-
age memory efficiency. In addition, by keeping track of the
shot-to-shot memory efficiencies, we can also calculate the
fluctuations in memory efficiency resulting from fluctuations
in the memory parameters. In general, a quantum memory
with lesser efficiency fluctuations is preferable to a mem-
ory with greater efficiency fluctuations, as is a memory with
higher average efficiency to a memory with lower average
efficiency.

The results of this analysis are shown in Figs. 3(a) and
3(b) for εM = 5%, where we have labeled the respective
regions of memory parameter space for optimal ATT, ATS,
and EIT quantum memory protocols using the same pro-
cedure outlined in Ref. [35]. The regions above and below
the dotted lines in Figs. 3(a)–3(c) enclosing each protocol
name represent the regions of memory parameter space where
each protocol has the highest efficiency. Any protocol may
in principle be implemented at any point in memory param-
eter space, but high-efficiency operation is only possible for
each protocol within the bounded region. We find that the
largest fluctuations in memory efficiency occur in the region
of memory parameter space below the ATS regime, in the ATT
regime. The ATS protocol is much less sensitive to memory
parameter fluctuations, as σ fluc

η is reduced by approximately a
factor of two, but in turn the EIT protocol is approximately a
factor of two less sensitive to these fluctuations than the ATS
protocol.

To explain this behavior physically, we consider the
changes in optimized control field parameters GG as a function
of M. As shown in Ref. [35], the gradient of GG with respect
to changes in M is largest in the nonadiabatic (dτFWHMγ �
1) regime and becomes smaller as the memory adiabatic-
ity increases. This implies that, if the memory protocol is
nonadiabatic, the optimal parameters GG change significantly
even for small changes in M and thus these small changes

may cause comparatively large changes in memory efficiency
compared with the adiabatic regime. This intuition can be
evaluated quantitatively by considering the average overlap
fidelity of G = GG(M) and G ′ = GG(M′) at different memory
parameters M′ = M + m:

F (M) = 1

A

∫ R

0
dm2F (G,G ′), (10)

where m varies over a two-dimensional (2D) region with ra-
dius R and area A, and the overlap fidelity between any two
points is

F (G,G ′) =
∣∣∫ ∞

−∞ dτ�∗(G)�(G ′)
∣∣2

∫ ∞
−∞ dτ |�(G)|2 ∫ ∞

−∞ dτ |�(G ′)|2 . (11)

The control field �(G) is a Gaussian function with area
θ , duration τ ctrl

FWHM, and timing �τ ctrl. Physically, this overlap
fidelity defines how similar a given optimal control field is to
the optimal control fields at neighboring points in M. The
average overlap fidelity in Eq. (10) is shown in Fig. 3(c),
and confirms the intuition that the region of least overlap
corresponds to the absorb-then-transfer protocol, where the
memory parameters are most nonadiabatic. It is therefore this
region that is most sensitive to fluctuations in M [as shown in
Fig. 3(b)].

In addition to the relative sensitivity of the different
memory protocols, the magnitude of memory efficiency fluc-
tuations is of practical interest. In Fig. 3(d) we plot the
dependence of efficiency fluctuations on memory parameter
fluctuations for the four points shown in Fig. 3(b) spanning all
three physical protocols. In each case, σ fluc

η is roughly linear in
εM, with proportionality constants p = 0.38, 0.13, and 0.09 in
the absorb-then-transfer, ATS, and EIT regions, respectively.
Insofar as fluctuations in memory parameters are not ampli-
fied in the resulting fluctuations in memory efficiency (p < 1),
it can be said that all three protocols are “stable.” although the
EIT and ATS protocols are significantly more stable than the
absorb-then-transfer protocol.

IV. DRIFT AND IMPROPER CONTROL FIELD SETTING
IN RESONANT �-TYPE QUANTUM MEMORY

In this section we consider the sensitivity of �-type quan-
tum memory to long-timescale drift in control field parameters
G at fixed memory parameters M. The following analysis
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FIG. 4. One-at-a-time sensitivity of �-type quantum memory
to drift or improper setting of control field variables GG of a
Gaussian control field, as a function of memory parameters M =
(d, τFWHMγ ). Regions for ATT, ATS, and EIT memory protocols are
enclosed with dotted lines.

equivalently provides an indicator of the region of control
field phase space where acceptable memory performance is
achievable. We perform this analysis on both control fields of
Gaussian temporal envelope and control fields with arbitrarily
shaped optimal temporal envelope. Analysis of Gaussian con-
trol fields is significantly less computationally expensive and
allows for one-at-a-time (OAT) and global sensitivity analysis,
whereas it is only computationally feasible to perform OAT
sensitivity analysis on arbitrarily shaped control fields.

A. One-at-a-time analysis

We first consider OAT variation of the control field param-
eters for a Gaussian optimized control field, GG, following
the prescription of Eq. (3) and Sec. II. We allow for drift or
improper setting of the control field pulse area, delay (rela-
tive to the signal field), and pulse duration within εG = 5%
of the optimal setpoints for any given memory parameters.
These calculations are performed sequentially, which allows
us to determine the sensitivity of a given memory (or memory
protocol) to each control field parameter independently.

The results are shown in Figs. 4(a)–4(c). By memory
sensitivity, here we mean the standard deviation in memory
efficiency due to OAT variation of each parameter, σ OAT

i . In
Fig. 4, we report this sensitivity as a percent, which represents
the standard deviation in memory efficiency that results when
each control field parameter is allowed to drift by εG . We
find that sensitivity to drift or improper setting in pulse area
[Fig. 4(a)] is largest in the region of M space below the
ATS region. As the memory protocol in this region relies
on exactly π -pulse control fields to transfer atomic popula-
tion from the excited to storage state, this result agrees with
physical intuition. By contrast, memory sensitivity to drift
or improper setting of control field delay is largest in the
ATS region [Fig. 4(b)]. The ATS protocol relies on signal
and control fields that overlap in time in order to implement
the requisite dynamically controlled Autler-Townes splitting
[22], whereas the absorb-then-transfer and EIT protocols are
relatively robust to improper control field delay setting. Again
the ATS protocol, and the region of mixed ATS-EIT memory
behavior, are most sensitive to variation in control field pulse
duration [Fig. 4(c)], as changes to control pulse duration affect
the dynamical Autler-Townes splitting and the effective pulse
area of the control field overlapping with the signal field.

We also perform an OAT sensitivity analysis for arbi-
trarily shaped optimal control fields. For arbitrarily shaped
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FIG. 5. One-at-a-time sensitivity of �-type quantum memory to
drift or improper setting of arbitrary optimized control field shapes
�(τ ) in the temporal (τ ) domain, described by the control field
parameters Gs, for optical depth d = 50 in the (a) adiabatic regime,
where τFWHMγ = 1.5, and (b) nonadiabatic regime, where τFWHMγ =
0.01. The colormap along each �(τ ) shows the sensitivity of that
region of the control field to drift. Gray dotted lines show the incident
signal field, Ain(τ ).

control fields, given the large number of independent variables
used to define the control field shape, computation of the
shape sensitivity over a large range of optical depths and
signal pulse durations is computationally intractable. Instead,
we pick two pulse durations—τFWHM = 1.5 and τFWHM =
0.01—at an optical depth of d = 50, corresponding to adia-
batic and nonadiabatic memory conditions, respectively. We
parametrize each control field shape, �(τ ), in the temporal
(τ ) domain with 51 and 135 independent spline points spaced
on a Chebyshev grid for τFWHM = 1.5 and τFWHM = 0.01,
respectively. The set of these points, Gs, is drawn schemati-
cally in Fig. 1(b). Each point along the optimal control field
shape is allowed to vary by 5% of its optimal setpoint, as
shown in Fig. 1(b), and the resulting variance and standard
deviation in memory efficiency is recorded. The results of
this OAT analysis are shown as a heat map in Fig. 5. For
τFWHM = 1.5 [Fig. 5(a)], we find the falling edge of the typical
EIT-like control field shape to be most sensitive to drift or
improper setting, in agreement with Ref. [56]. Note that larger
τ on the x axis of Fig. 5 corresponds to later times in the
comoving frame. For τFWHM = 0.01, the optimal control field
shape shows characteristic nonadiabatic ringing, and it is the
points on the shape with the largest amplitude that show the
largest sensitivity, likely due to the fact that changes in these
points cause the greatest change in the control field pulse area,
which must remain close to π in this regime. For both cases
in Fig. 5, the input signal field temporal distribution, Ain(τ ),
is shown for reference. The storage efficiencies for these two
optimized pulse shapes are 95.2% and 58.7% for τFWHM = 1.5
and τFWHM = 0.01, respectively.
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B. Sobol’ analysis

The OAT analysis above provides rapid cross-sectional
information on quantum memory performance around the
optimal control field setpoints and ignores any correlations
between control field parameters. Given the physical descrip-
tions of the three resonant quantum memory protocols, we
expect correlations between control field parameters in both
the ATS and EIT regimes. In the ATS regime, quantum storage
is accomplished with a 2π pulse-area control field which
overlaps in time with the incident signal field; if, for example,
the control field pulse duration is erroneously set to be too
long, we expect that this error can be compensated for—with
minimal effect on storage efficiency—with a larger pulse area,
such that the net pulse area over the temporal extent of the
signal field remains 2π . In the EIT regime, quantum storage
is implemented with a control field that opens a transparency
window at the signal wavelength and then slowly closes this
transparency window as the signal field is compressed and
propagates through the medium [see, e.g., Fig. 5(a)]. In the
EIT case, we expect correlations between all three Gaussian
control field parameters, as it is the slope of the falling edge
of the control field which is most important. Errors or drift in
control field delay, for example, may be compensated for with
larger or smaller pulse area and pulse duration, depending on
the sign of the change in delay. (If the change in delay is
positive, i.e., the control field shifts closer to the signal field, a
reduced pulse area and pulse duration will maintain the same
slope of the control field as it closes the transparency window
around the signal field.) We expect no parameter correlations
in the absorb-then-transfer regime, as this protocol relies on π

pulse-area control fields that arrive after the signal field. Errors

or drift in pulse area, for example, cannot be compensated for
with changes to control field pulse duration or delay. Note
that in the definition of control field pulse area, we account
for a given pulse duration; therefore, changes to pulse dura-
tion in our model do not directly affect pulse area, and vice
versa [35].

To probe these correlations, to determine the global sen-
sitivity of each regime, and to determine which parameters
to tune in order to compensate for drift in a given parameter,
we use the first and higher-order Sobol’ analysis described
in Sec. II. The results of this analysis are shown in Fig. 6.
Importantly, Sobol’ sensitivity analysis also allows for com-
puting single-parameter sensitivities [Eqs. (4) and (5)], which
are shown for Gaussian control field parameters (pulse area,
delay, and pulse duration) in Figs. 6(a)–6(c). Here, sensitiv-
ity is a dimensionless number as defined in Eq. (5), which
physically represents what fraction of the observed variance
in memory efficiency is due to each parameter. The results
of this single-parameter sensitivity calculation largely agree
with the OAT analysis of Sec. IV A and Fig. 4, but are in
principle more reliable. The true advantage to this analysis
however is in the two- and three-parameter sensitivities shown
in Figs. 6(d)–6(f) and Fig. 6(g), respectively, which physically
represents what fraction of the observed variance in memory
efficiency is due to correlations between parameters [Eq. (7)].
In Fig. 6(d), we calculate the second-order Sobol’ sensitivity
index for varying control field delay and pulse duration. We
observe the largest sensitivity in the mixed ATS-EIT region,
implying that these parameters are tightly correlated in this
region of memory parameters. Figure 6(e) shows significant
correlations between pulse area and control field delay in the
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ATS regime, which we can interpret physically as follows: any
drift or deviation in control field delay away from zero in the
ATS regime can be compensated for with a larger control field
pulse area, such that the effective pulse area overlapping with
the temporal extent of the signal field—which controls the
dynamical Autler-Townes splitting—is still 2π . Figure 6(f)
shows a similar correlation between pulse duration and pulse
area in the mixed ATT-ATS region, where presumably it is
the effective pulse area overlapping with the signal field that
is most important for high-efficiency quantum storage. Fig-
ure 6(f) also shows some correlation between control pulse
duration and pulse area in the EIT regime. A similar behav-
ior can be seen in the three-parameter sensitivities shown in
Fig. 6(g), although the magnitude of the sensitivity index is
smaller. We explain both of these correlations along the same
lines discussed in Sec. IV A for Fig. 4(b)—that the physically
important part of the control field in the EIT regime is the
trailing edge that closes the transparency window around the
signal field, and therefore any deviations in pulse area, delay,
or duration can be compensated for with the remaining de-
grees of freedom to ensure that the slope of the falling edge of
the control field remains close to the same. The comparison
between Fig. 6(f) and Fig. 6(g) show, however, that EIT con-
trol pulse duration and pulse area are more tightly correlated
than all three parameters together. This means that if there is
drift in control field pulse area in the EIT regime, for example,
most of the corresponding change in memory efficiency can
be compensated for by tuning the control pulse duration (and
vice versa).

The Sobol’ analysis performed here reveals which param-
eters are correlated, and therefore which parameters to adjust
when one is nonoptimal and constrained, but it does not reveal
the direction in which to adjust the remaining parameters.
If more detailed, directional information is required, partial
derivatives of the memory efficiency with respect to each
remaining parameter can be calculated numerically. Never-
theless, the information revealed by the Sobol’ analysis is
sufficient to develop the physical intuition described above,
and, in practice, knowing which parameter to adjust out of
many is often useful.

V. CONCLUSION

In this work we have presented a general framework for
evaluating the sensitivity of �-type optical quantum memory
to fluctuations and drift (or improper setting) of memory and
control field parameters. We have applied this framework for
the case of non-negligible memory parameter fluctuations,
where we have found that the region of memory parame-
ter space corresponding to the absorb-then-transfer protocol
is most sensitive, yet for all memory parameters, �-type
optical quantum memory is stable insofar as the resulting
fluctuations in memory efficiency are always smaller than the
magnitude of the fluctuations in memory parameters. Further
we have considered the case of drift or improper setting of
control field parameters in both the case of Gaussian con-
trol fields and arbitrarily shaped control fields. The collapse
of the N-dimensional parameter space in the case of full
arbitrary shape-based optimization to just three physically

instructive dimensions in the Gaussian case allows for a phys-
ical interpretation of memory sensitivity, as well as a more
sophisticated Sobol’ analysis of correlations between control
field parameters.

The theoretical predictions of this work serve to instruct
future and ongoing experiments on optical quantum memory.
If average memory efficiency or efficiency fluctuations are of
import to an application of quantum memory, Sec. III demon-
strates that the EIT protocol is the most robust and provides
the smallest efficiency fluctuations out of the three resonant
�-type memory protocols and should therefore be used in
experiments where fluctuations are important. If instead drift
or improper setting of control field parameters is a concern for
experimental implementations of �-type quantum memory,
Sec. IV provides an example for how to calculate these effects
on experimental quantum memories. Furthermore, Sec. IV
provides information on which parameters are most important
to optimize when one control field parameter is constrained or
drifts, as is frequently the case in experiment (e.g., constrained
or drifting control field power). This information can serve as
a practical guide for making experimental quantum memory
more robust to both fluctuations and drift.

To determine which analysis is most relevant for a given
quantum memory experiment, the experimentalist must mea-
sure or estimate the fluctuations in memory parameters εM
and drift in control field parameters εG to determine which
contribution dominates. If εG is dominant, the experimentalist
must then determine if a single control field parameter is
drifting, in which case the one-at-a-time (OAT) analysis of
Sec. IV A is sufficient, or if all control field parameters are
drifting by close to the same fractional amount, in which case
the Sobol’ analysis of Sec. IV B is necessary. If εM and εG
are of similar magnitude, both analyses may be necessary
to accurately estimate the memory sensitivity and resulting
fluctuations and drift of the memory efficiency.

We note that many alternative calculations to those pre-
sented here are also possible. For example, if shot-to-shot
fluctuations exist in the control field parameters instead of
the memory parameters, the same analysis of Sec. III may
be applied, substituting G for M. Variations in two-photon
or single-photon detuning as well as chirp in the optical fields
can also be implemented in a straightforward fashion using
the general framework developed in Sec. II. Additionally, the
present discussion of sensitivity focuses only on sensitivity
with respect to changes in memory efficiency; in principle,
other types of sensitivity are possible beyond this “efficiency
sensitivity.” Caution must be observed when applying the
framework of Sec. II to other parameters, however, as ex-
perimental considerations beyond those discussed here may
come into play. For example, “fidelity sensitivity” is another
possible sensitivity of interest; in this case, however, our anal-
ysis can only calculate an upper bound on memory fidelity
(or a lower bound on fidelity sensitivity) in the presence of
experimental fluctuations and drift.
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