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Superradiant phase transition induced by the indirect Rabi interaction
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We theoretically study the superradiant phase transition (SPT) in an indirect Rabi model, where both a two-
level system and a single-mode bosonic field couple to an auxiliary bosonic field. We find that the indirect
spin-field coupling induced by the virtual excitation of the auxiliary field can allow the occurrence of a SPT at a
critical point, and the influence of the so-called A2 term in the normal Rabi model is naturally avoided. In the large
detuning regime, we present the analytical expression of quantum critical point in terms of the original system
parameters. The critical atom-field coupling strength is tunable, which will loosen the conditions on realizing the
SPT. Considering a hybrid magnon-cavity-qubit system, we predict the squeezed cat state of magnon generated
with feasible experimental parameters, which has potential applications in quantum metrology and quantum
information processing.

DOI: 10.1103/PhysRevA.107.033702

I. INTRODUCTION

Quantum phase transition has been a subject of tremendous
importance in quantum physics and is not only fundamen-
tally interesting, but also provides remarkable advantages
for quantum techniques [1–8]. In the 1970s, the superradi-
ant phase transition (SPT) [9,10] was proposed in the Dicke
model, which describes N two-level emitters interacting with
a single-mode bosonic field. In the thermodynamic limit, i.e.,
N → ∞, the system suddenly transitions from normal phase
to superradiant phase, when tuning the light-matter coupling
strength to a critical point. In the superradiant phase, the
emitters can emit light in a coherent manner and the radiance
intensity proportional to N2, i.e., the superradiance, which
means the ground state is a superradiative state. Then, the
process of the SPT can provide a method to realize super-
radiant effect [11,12]. Typically, this phase transition occurs
at zero temperature and thus it is induced by the quantum
fluctuations. Widespread attention has been paid to explore
SPT based on the Dicke model in both theoretical [13–21]
and experimental [22–24] studies.

However, the SPT occurs not only in the N → ∞ limit,
but also in finite-emitter systems. Recently, it was shown
from Ref. [25] that the quantum Rabi model (a single two-
level emitter coupled to a single-mode bosonic field) also
can undergo a SPT, when the ratio of atomic transition fre-
quency � to the field frequency ω approaches infinity, i.e.,
�/ω → ∞. Such SPT requires a large light-matter interaction
strength located in the ultrastrong-coupling regime [26–34],
which has been probed in a single trapped ion setup [35,36]
and nuclear magnetic resonance (NMR) quantum simulator
[37] with the great progress of experimental technologies.
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Motivated by the SPT of the Rabi model, there has been a
considerable number of studies concentrating on the extended
Rabi models [38–51]. The coexistence of the first-order and
second-order quantum phase transition is predicted in the
anisotropic Rabi model [40], whose coupling strengths of
rotating term and counterrotating term are anisotropic. An-
other expansion is the two-mode Rabi model [47] composed
of two field modes interacting with a common qubit simul-
taneously, and it has revealed a critical point smaller than
the normal Rabi model, which means the light-matter cou-
pling strength is largely loosened. Apart from these linear
expansions, nonlinear Rabi models were proposed to ex-
plore various physical properties, e.g., the two-photon Rabi
model [42,43], the Rabi-Stark model [45], and the mixed
linear-nonlinear Rabi model [46,49]. Indeed, plentiful fas-
cinating phenomenons have been founded in the quantum
systems where the two-level system directly couples to a
single bosonic mode, such as the universality classes [45,49],
spectral collapse [43], multicriticalities [49], as well as the
rich phase diagram [49,50]. However, some direct spin-boson
coupling strength is very weak in newly developing systems
[52,53], e.g., qubit-magnon interaction. A natural question is
whether the indirect spin-boson interaction could induce the
occurrence of SPT. The crossover between quantum criticality
and indirect interaction becomes an important issue, which
remains largely unexplored.

Here we propose to realize the SPT based on an indirect
Rabi model and discuss the associated quantum criticality.
The indirect Rabi model means that a two-level system in-
directly couples to a bosonic field via an auxiliary mode, as
shown in Fig. 1(a). When the frequencies of the two-level
system and the field mode are far detuned from the auxiliary
mode frequency, an effective Rabi model depending on the
original system parameters is obtained after eliminating the
auxiliary mode. Using the diagonalization approach and order
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FIG. 1. (a) Schematic of an indirect Rabi model. A two-level emitter σ+ and a bosonic mode b simultaneously interact with an auxiliary
mode a with strengths g and J , respectively. The frequencies of the system are ωq, ωb, and ωa. (b) The realizations of this model in a hybrid
magnon-cavity-qubit system, where a superconducting qubit and a YIG sphere couple to the microwave cavity field simultaneously. A local
static magnetic field is applied to make the YIG sphere a single-domain ferromagnet. (c) The realizations of this model in a hybrid circuit
QED system, which is comprised of two LC resonators and a qubit. The two LC resonators are coupled through inductive coupling and one
resonator couples to the qubit through a capacitor.

parameter analysis, we find that the second-order quantum
phase transition occurs without the requirement of the direct
Rabi-type interaction. This SPT is naturally immune to the
so-called A2 term that appeared in the direct spin-field interac-
tions, and it has a tunable critical coupling strength compared
with the standard Rabi model. Our proposal is general, and it
can be implemented in a hybrid magnon-cavity-qubit system.
By presenting the Wigner function distribution in the phase
space, we clearly show the appearance of the squeezed cat
state in the superradiant phase, which offers an alternative
method for obtaining a magnon macroscopic quantum super-
position. Our work might inspire the following study of the
applications of the indirect Rabi model in quantum precision
measurement.

II. MODEL AND HAMILTONIAN

We consider an indirect Rabi model shown in Fig. 1(a),
which is applicable to a variety of physical systems, with a
total Hamiltonian (h̄ = 1)

H = ωq

2
σz + ωaa†a + ωbb†b + g(a† + a)σx

+ J (a† + a)(b† + b), (1)

where a (a†) and b (b†) are the annihilation (creation) opera-
tors of the bosonic modes with different frequency ωa and ωb,
respectively, and σz, σx are the Pauli operators of the two-level
emitter with transition frequency ωq. The parameter g de-
scribes the coupling strength between the bosonic mode a and
the two-level emitter, and J denotes the hopping amplitude
between the bosonic modes a and b. Note that the uncoupled
two-level emitter and bosonic mode b constitute the main part
of our model. We use |↓〉 and |↑〉 to denote the eigenstates of
σz, and |n〉a and |n〉b are the eigenstates of a†a and b†b, respec-
tively. The parity operator � = eiπ[a†a+b†b+ 1

2 (1+σz )] commutes
with the Hamiltonian (1), indicating that the system posses a
Z2 symmetry. Considering the hopping amplitude J = 0, the
Hamiltonian (1) becomes a standard Rabi model in which a
superradiant quantum phase transition occurs when the cou-
pling strength exceeds a critical point, i.e., g >

√
ωqωa/2.

Therefore, the bosonic mode a generates a ground-state super-
radiance. However, we are interested in whether the bosonic
mode b, without directly interacting with the two-level

emitter, can exhibit such a superradiance. Thus, we will focus
on the condition of J �= 0 and analyze the physical mechanism
of SPT in the indirect Rabi model.

Actually, the indirect Rabi model just describes the hybrid
magnon-cavity-qubit system depicted in Fig. 1(b), which is
experimentally realized in Refs. [52,53] based on the quan-
tum magnonics [54,55]. The collective mode of spins in the
yttrium iron garnet (YIG) sphere, termed as the magnon mode,
has a self-Hamiltonian −γ BzSz, where γ = 28 GHz/T is the
gyromagnetic ratio and Bz is the external bias magnetic field.
The collective spin operators are defined as Sx,y,z = ∑

n sn
x,y,z

and then the raising and lowering operators S± = Sx ± iSy

can be introduced. Using the Holstein-Primakoff transfor-
mations [56], S+ = (

√
2S − m†m)m, S− = m†(

√
2S − m†m),

Sz = S − m†m, the collective spin operators can be expressed
in terms of the magnon operator m and m†, where S is the
total spin number. The self-Hamiltonian is reduced to ωmm†m,
where ωm = γ Bz is the magnon frequency that can be ad-
justed from a few hundred MHz to a few tens of GHz. The
macrospin is coupled to the microwave photons via magnetic
dipole interaction, which can be described by the Hamiltonian
gs(a† + a)(S+ + S−) [57]. For low spin excitations (m†m 	
2S), one has S+ ≈ √

2Sm and S− ≈ √
2Sm†. Thus, the in-

teraction becomes gs

√
2S(a† + a)(m + m†), where gs is the

coupling strength between the photon and a single spin. The
superconducting qubit, acting as a two-level system, is electri-
cally coupled to the cavity field. Note that the direct coupling
between the qubit and the magnon mode is too weak, and then
it can be ignored safely. Moreover, it was found that either the
qubit-cavity coupling rate or the magnon-cavity coupling rate
can enter into the strong-coupling (SC) regime [58–61] and
further into the ultrastrong-coupling (USC) regime [62–66].

Another platform for performing this model is the hybrid
circuit QED system [67], shown in Fig. 1(c). Here, the LC
resonator, made of a capacitor and an inductor, takes the place
of the bosonic mode, and the transmon qubit serves as the
two-level system. The coupling rate between the resonator
and qubit has been realized in the USC regime [26–34,67]
or even in the deep-strong-coupling (DSC) regime [68]. Anal-
ogously, these two resonators are coupled to each other and
the USC regime has been achieved with recent state-of-the-art
technologies, like being mediated by a superconducting inter-
ference device (SQUID) [69] or a Josephson junction [70].

033702-2



SUPERRADIANT PHASE TRANSITION INDUCED BY THE … PHYSICAL REVIEW A 107, 033702 (2023)

III. THE OCCURRENCE OF SPT

We now assume that the frequency ωa of the auxiliary
mode a is much larger than the frequency ωb (ωq) of the
bosonic mode b (the two-level system), and the detunings
�b = ωa − ωb and �q = ωa − ωq are much larger than the
coupling strengths J and g, i.e., the large detuning regime.
In this case, there is no obvious energy exchange between
the ancillary mode and the two-level system (and b mode)
[71,72], and the average occupation of the auxiliary mode is
very small, called virtual excitation. Although the excitation
of the auxiliary mode is very small, it establishes a coupling
channel between the b mode and the two-level emitter due to
the fact that the auxiliary mode couples to the b mode and
the two-level emitter simultaneously. Correspondingly, the
Hamiltonian H , after eliminating the degree of freedom of the
bosonic mode a with the Fröhlich-Nakajima transformation
[73,74] UV = eV up to the second order, becomes (see details
in Appendix A)

Heff = U †
V HUV

= ωq

2
σz + ωbb†b − χ (b† + b)σx − ξ (b† + b)2, (2)

where the generator is

V = g/ηq(aσ− − a†σ+) + g/�q(aσ+ − a†σ−)

+ J/ηb(ab − a†b†) + J/�b(ab† − a†b). (3)

The third term in Eq. (2) describes the interaction between
the bosonic mode b and the two-level system induced by
the auxiliary mode, and its coupling strength χ = gJ (�−1

b +
η−1

b + �−1
q + η−1

q )/2 with ηb(q) = ωa + ωb(q) depends on the
original system parameters. The last term ∝ (b + b†)2 with
coefficient ξ = J2(�−1

b + η−1
b )/2 induces the squeezing ef-

fect of the bosonic mode b. The higher-order terms of this
unitary transformation can be ignored safely, when the large
detuning condition is satisfied. By applying a squeezing
operator Sb(r) = exp{ r

2 [(b†)2 − b2]} with r = −(1/4)ln(1 −
4ξ/ωb) into the effective Hamiltonian Heff, we obtain

Hr = S†
b (r)HeffSb(r)

= ωq

2
σz + ωrb†b − χr (b + b†)σx + Cr, (4)

where ωr = ωbexp(−2r), χr = χexp(r), and Cr =
(ωb/2)[exp(−2r) − 1]. It obviously shows that the effective
interaction between these two uncoupled systems, triggered
by virtual excitation of the bosonic mode a, is equal
to a parameter-dependent Rabi model. Considering the
stabilization limitation of ωr > 0, the hopping interaction
strength J should satisfy

J <

√
ωaωb

2

√
1 − ω2

b/ω
2
a. (5)

To investigate the ground-state properties, we can di-
agonalize the Hamiltonian (4) in the ωq/ωb → ∞ limit
(see discussions in Appendix B), and here we have intro-
duced two dimensionless parameters: g̃ = 2g/

√
ωaωq and J̃ =

2J/
√

ωaωb. A critical coupling value g̃c can be derived from
the excitation energy εnp in Eq. (B6). Specifically, εnp is real

for g̃ � g̃c and vanishes at

g̃c ≈
√

1 − J̃2

J̃
, (6)

indicating the occurrence of SPT. The system is in the normal
phase for g̃ < g̃c, and it has a ground state |φnp〉G = Sb(r +
rnp)|0〉b|↓〉 with rnp = − 1

4 ln[1 − (4χ2/ωq)/(ωb − 4ξ )]. In
this phase, |φnp〉G has even parity, confirmed by the total
excitation number 0. When g̃ > g̃c, the system transitions to
the superradiant phase, in which the mode b is macroscopi-
cally populated, whereas the mean occupation number of the
ancillary mode a is very small due to the fact that there are
no energy exchanges between the ancillary mode a and
the two subsystems under large detuning conditions. Now
the excitation energy εsp in Eq. (B13) is real for g̃ > g̃c and
the ground state becomes double degenerate, given by |φsp〉±G
(the specific forms shown in the Appendix B). The superra-
diant phase breaks the Z2 symmetry spontaneously, as evident
from the nonzero coherence of mode b, i.e., 〈b〉g = ±exp(r)α.

The rescaled occupation number nb = [exp(−4r)ωb/

ωq]〈b†b〉g is

nb ≈
{

g̃2J̃2/(4−4J̃2)−(1−J̃2)/(4g̃2J̃2), g̃> g̃c

0, g̃< g̃c
, (7)

which can be served as an order parameter. In Fig. 2, we
show the dependence of the rescaled excitation number nb on
the coupling strengths J̃ and g̃ with the approximate analytic
result and the numerical result based on the effective Hamil-
tonian in finite parameters. The red dashed contour given by
Eq. (6) indicates the phase boundary that separates the normal
phase (NP) nb = 0 from the superradiant phase (SP) nb > 0.
First of all, one can find that the SPT occurs from the NP to
SP by increasing the values of g̃ or J̃ . This demonstrates that
even though the bosonic mode b does not interact with the
two-level emitter directly, this SPT still occurs by introducing
an auxiliary mode a. The physical mechanism of this SPT
is that there exists indirect interaction between these two un-
coupled subsystems induced by the virtual excitation number
of the auxiliary mode a. Moreover, it is also shown from
Fig. 2(a) that the critical coupling strength g̃c becomes smaller
along with increasing the hopping amplitude J̃ . The reason
is that both coupling channels contribute to the effective in-
teraction χ . Thus, the above results mean that here we not
only realize the SPT induced by the indirect Rabi interaction,
but also obtain a tunable critical point compared with the
standard Rabi model, whose critical coupling value is fixed
at gcR = √

ωbωq/2 [25]. Secondly, comparing the numerical
result [Fig. 2(b)] with the analytical result, it is shown that
the dependence of the order parameter nb on g̃ or J̃ in finite
frequency ωq/ωb = 5 approaches the case of ωq/ωb → ∞.
Lastly, Fig. 2(b) also shows that the SPT can be observed
in a wide coupling range from the SC regime ({g, J}/ωa �
0.01) to approximately the USC regime ({g, J}/ωa � 0.1),
which would loosen the conditions on realizing the SPT in
experiment.

In Fig. 3, we show the presence of the quantum phase
transition more clearly. It is shown from Fig. 3(a) that the
analytical solution in the ωq/ωb → ∞ limit is consistent with
the numerical results based on the effective Hamiltonian (2).
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FIG. 2. The order parameter nb is plotted as a function of the di-
mensionless parameters J̃ = 2J/

√
ωaωb and g̃ = 2g/

√
ωaωq. (a) The

analytical result in the ωq/ωb → ∞. (b) The numerical result in
finite parameter (ωq/ωb = 5). Other parameters are ωa/ωb = 40 and
ωb = 1 GHz. The red dashed contour shows the phase boundary
between the normal phase (NP) and superradiant phase (SP).

Both demonstrate that the SPT occurs at the critical point g̃c ≈
0.3287, where nb changes suddenly from zero to nonzero. To
further show the validity of the above results, we plot the
numerical result of nb based on the initial Hamiltonian in
Eq. (1) in Fig. 3(b) (the black solid curve), which agrees well
with the one obtained by the effective Hamiltonian (2) (the
black dashed curve). Meanwhile, the inset plots the rescaled
occupation of the auxiliary oscillator a. In large detuning
conditions, na is smaller than nb by one order of magnitude,
which is enough to guarantee the validity of the effective
Hamiltonian through adiabatic elimination of the auxiliary
mode.

IV. INFLUENCE OF THE A2 TERM ON SPT

As is well known, the SPT is challenged by the squared
electromagnetic vector potential A2 term, D(a† + a)2, of the
field stemming from the spin-field interaction. This corre-
sponds to the no-go theorem, which states that the SPT does
not occur any longer in the normal Rabi model even if the

FIG. 3. The order parameter nb vs the dimensionless parameter
g̃ for J̃ = 0.95. (a) The analytical result (the red solid contour) and
the numerical result (the black dashed line) based on the effective
Hamiltonian Heff when ωq/ωb = 5. (b) The comparison of nb (na =
[exp(−4r)ωb/ωq]〈a†a〉g in the inset) obtained numerically with the
initial Hamiltonian in Eq. (1) (the black solid curve) and the effective
Hamiltonian Heff (the black dashed curve). Other parameters are the
same as in Fig. 2.

value of g is very large when D � g2/ωq (determined by
the Thomas-Reiche-Kuhn sum rule). We have ignored the A2

term in the previous section, and now we discuss how the A2

term does influence SPT induced by the indirect spin-field
interaction. Incorporating the A2 term into the Hamiltonian
H in Eq. (1) and taking the coefficient D as D̃g2/ωq, the
total Hamiltonian HA = H + D̃g2/ωq(a† + a)2. By applying
a squeezing transformation Sa(ra) = exp{ ra

2 [(a†)2 − a2]} with
ra = −(1/4)ln[1 + 4D̃g2/(ωaωq)], the Hamiltonian HA can
be transformed into the same form of Eq. (1),

H̄A = ωq

2
σz + ω̄aa†a + ωbb†b + ḡ(a† + a)σx

+ J̄ (a† + a)(b† + b), (8)

where ω̄a=ωaexp(−2ra), ḡ = gexp(ra) and J̄ = Jexp(ra). Ac-
cordingly, we can derive the critical coupling strengths g̃A

c ,
J̃A

c and order parameter nA
b in a similar way. The critical cou-

pling strengths g̃A
c and J̃A

c approximately satisfy the following
equality:

g̃J̃

1 + D̃g̃2

1√
1 − J̃2/(1 + D̃g̃2)

≡ 1. (9)

The order parameter nA
b is zero when the left-hand side of

Eq. (9) is less than 1, and nA
b is nonzero when the left-hand

side of Eq. (9) is greater than 1 and is given by

nA
b ≈ g̃2J̃2

4(1+D̃g̃2)(1+D̃g̃2−J̃2)
− (1+D̃g̃2)(1+D̃g̃2−J̃2)

4g̃2J̃2
.

(10)

Taking into account the stabilization limitation ωA
r � 0 [see

Eq. (A11)], we find that the SP occurs when J̃ �
√

1 + D̃g̃2.
The system enters into the unstable phase (UP) when
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FIG. 4. The order parameter nA
b vs J̃ and g̃ for different values

of the dimensionless parameter D̃. (a) D̃ = 0.5 and (b) D̃ = 1.0. The
red (black) dashed contour indicates the position where nA

b becomes
nonzero (an imaginary number), locating the phase transition from
NP to SP (SP to UP).

J̃ >
√

1 + D̃g̃2, i.e., the white areas under the black dashed
curves in Figs. 4 and 5(a).

In Fig. 4, we show how the order parameter nA
b varies

as a function of the rescaled coupling strengths J̃ and g̃ for
different values of D̃. Figure 4(a) corresponds to the case
of D̃ = 0.5, where one finds that system transition from NP
to SP by increasing g̃, and the critical coupling strength g̃A

c
becomes smaller upon increasing J̃ until a threshold value
J̃A

c ≈ 0.9978, determined by Eq. (9). When 0.9978 < J̃ �√
1 + D̃g̃2, the system is bounded in SP within the parameter

range. For D̃ = 1, the system cannot reach the SP even at
larger g̃ (corresponding to the no-go theorem) when J̃ < 1
as shown in Fig. 4(b). It is interesting that the SPT recovers
when J̃ > 1 but, conversely, the system enters into the SP by
decreasing g̃, which shows a reversed SPT. For D̃ > 1, the re-
versed scenario still exists, as shown in Fig. 5. One can see that
the system enters into the SP when g̃ is smaller than the critical
coupling g̃A

c and the critical value decreases with increased
D̃, as shown in Fig. 5(a). To display the feature clearly, we
choose D̃ = 1.5 in Fig. 5(b). The order parameter nA

b suddenly
changes from a finite value to zero, indicating a reversed SPT.

FIG. 5. (a) The order parameter nA
b vs g̃ and D̃. The red (black)

dashed contour shows the phase boundary between NP and SP (SP
and UP). (b) Line cut of the order parameter of D̃ = 1.5. The analyt-
ical result (the red solid contour) and the numerical result (the black
dashed line) based on the effective Hamiltonian Eq. (A10). We take
J̃ = 1.03, and other parameters are the same as in Fig. 2.

Moreover, the analytical and numerical solutions are still in
good agreement. Therefore, the influence of the A2 term with
arbitrary amplitude on SPT can be circumvented when tuning
the hopping strength above J̃A

c , determined by Eq. (9).

V. SCHRÖDINGER CAT STATE OF MAGNON

Considering the implementation of the indirect Rabi model
with the hybrid magnon-cavity-qubit system as illustrated in
Fig. 1(b), our work offers an alternative method for realiz-
ing the Schrödinger cat state of magnon. Here, the system
Hamiltonian can be written in the same form as Eq. (1),
with b superseded by the magnon operator m. As previously
discussed, the mediating effect of the microwave cavity field
is reflected as an effective coupling between the magnon mode
and the qubit, which is the key to indirectly generate a magnon
cat state.

To display this, we calculate the Wigner function of the
reduced density matrix ρm based on the effective Hamilto-
nian (2), as plotted in Fig. 6. The quadratures are defined as
x = (a + a†)/

√
2 and y = (a − a†)/

√
2i. For moderate cou-

pling strength g (corresponding to the NP), the ground state of
the system is a squeezed vacuum state with a Gaussian distri-
bution shown in Fig. 6(a). Increasing the coupling strength g
above the critical point, the system is in the SP and the ground
state can be written as [75–77]

|φsp〉G = 1√
2

[Sm(r)D(α)Sm(rsp)|0〉m|↓〉+
+ Sm(r)D(−α)Sm(rsp)|0〉m|↓〉−], (11)

where |↓〉± is defined in Appendix B. Performing a state
measurement on the two-level emitter, the magnon part of
the state |φsp〉G is projected onto the squeezed cat state
[Sm(r)D(α)Sm(rsp)|0〉m ± Sm(r)D(−α)Sm(rsp)|0〉m]/

√
2 if the

qubit is observed in (|↓〉+ ± |↓〉−)/
√

2. The properties of
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FIG. 6. The Wigner functions of the state of oscillator b in the
ground state for (a) g = 2.0ωb (corresponding to the normal phase
regime) and (b) g = 3.4ωb (corresponding to the superradiant phase
regime), respectively. The Wigner function distribution in (b) dis-
plays features of a squeezed cat state (measuring the two-level
emitter in (|↓〉+ + |↓〉−)/

√
2). Here, we take J = 3.0ωb in our nu-

merical calculation, and the other system parameters we use are the
same as in Fig. 2.

the magnon cat state can be characterized by the Wigner
function [see Fig. 6(b)]. The two peaks symmetrical about
the y axis are associated with the two cat components
[Sm(r)D(±α)Sm(rsp)|0〉m. The other peaks in the center, os-
cillating between positive and negative values, represent the
interference fringes that reveal the coherent superposition
of the two components. The system can be prepared in the
ground state through adiabatically controlling the coupling
strengths if the change in the control parameters is very slow
[37]. Tuning the coupling strengths above the critical value,
the system would finally evolve to the cat state. Taking the
effect of measurement into account, the system will be in-
evitably disturbed. Fortunately, the qubit does not directly
couple to the magnon mode in our scheme, and thus it is
expected to generate a high-quality magnon cat state.

To implement this scheme, the key lies in approximately
reaching the ultrastrong magnon-to-photon coupling (J/ωa ∼
0.1). A directly utilized method is to increase the YIG
sphere diameter (2.5 mm) and reduce the microwave cavity
size (7.0 × 5.0 × 3.2 mm3), which yields a coupling ratio

J/ωa = 6.7% [J ∝ √
ωa(Vm/Va)] at room temperature [63],

where Va(m) is the volume of the cavity mode (YIG sphere). In
addition, this coupling ratio can be further enhanced through
cavity engineering and focusing on nonspherical YIG, e.g.,
placing a YIG block inside a reentrant cavity (J/ωa = 46%
is achieved), or by using a loop gap cavity with a YIG disk
(giving J/ωa = 34%) [65].

VI. CONCLUSION

In this work, we have proposed a scheme to realize the
SPT and the associated quantum superposition in a hybrid
system described by an indirect Rabi model. This scheme
is based on the effective Rabi interaction between two un-
coupled subsystems, including the two-level emitter and the
bosonic mode b, mediated by the virtual excitation of an
auxiliary mode a. In the large detuning regime and classical
oscillator limit ωq/ωb → ∞, we give the analytical results of
the ground state in both the NP and SP. In comparison with the
standard Rabi model, the critical coupling for SPT becomes
adjustable and the SPT still occurs in the presence of the A2

term. Besides, we show that the cat state can be generated
via indirect atom-field interaction. The state of the b mode
collapses into a cat state by making projective measurements
on the atom, and the resulting cat state may not be disturbed
because there is no direct interaction between the atom and
the b mode. When our proposal is implemented in the hybrid
magnon-cavity-qubit systems, it provides a method for realiz-
ing SPT and macroscopic quantum superposition of magnon
[78–81], which might expand the cavity magnonics domain
and have potential applications in ultrasensitive magnetic field
detection.
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APPENDIX A: THE EFFECTIVE HAMILTONIAN IN EQ. (2)

In order to get the effective coupling between the bosonic
mode b and two-level system, we apply the Fröhlich-
Nakajima transformation [73,74]. We now rewrite the total
Hamiltonian (1) into two parts: one is the free Hamiltonian,

H0 = 1
2ωqσz + ωaa†a + ωbb†b, (A1)

and the other one is the interaction Hamiltonian,

HI = g(a† + a)(σ+ + σ−) + J (a† + a)(b† + b). (A2)

We further consider that the bosonic mode b and the two-level
system are both coupled to the auxiliary mode a in the large
detuning regime, i.e.,

J

ωa − ωb
	 1,

g

ωa − ωq
	 1. (A3)

Then we can use the Fröhlich-Nakajima transformation UV =
eV to derive the effective Hamiltonian. The operator V
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satisfies HI + [H0,V ] = 0 and takes the form

V = μq(aσ− − a†σ+) + νq(aσ+ − a†σ−)

+μb(ab − a†b†) + νb(ab† − a†b), (A4)

where μq = g/ηq, νq = g/�q, and μb = J/ηb, νb = J/�b and
ηq(b) = ωa + ωq(b),�q(b) = ωa − ωq(b). Applying the unitary
transformation to H , we obtain

Heff = U †
V HUV = H0 + 1

2 [HI ,V ] + 1
3 [[HI ,V ],V ] + · · · .

(A5)

Note that the coefficients μq(b) and νq(b) are small under the
large detuning condition, and thus the effective Hamiltonian
considered up to the second-order term [HI ,V ] remains valid
with neglecting the higher-order terms. Moreover, we assume
that the cavity mode is approximately in the vacuum state.
The b mode can couple to the two-level system through virtual
excitation of the a mode, and thus we eliminate the degrees of
freedom of a and obtain

Heff = ωq

2
σz + ωbb†b − χ (b† + b)(σ+ + σ−)

− ξ (b† + b)2 + C(a† + a)2 + F (a† + a)2σz, (A6)

where

χ = gJ

2

(
1

�q
+ 1

ηq
+ 1

�b
+ 1

ηb

)
, (A7)

ξ = J2

2

(
1

�b
+ 1

ηb

)
. (A8)

Here, we can ignore the last two terms in Eq. (C4), whose co-
efficients C = J2

2 ( 1
�b

− 1
ηb

) and F = − g2

2 ( 1
�q

− 1
ηq

) are much
smaller than both effective couplings χ and ξ . Therefore, we
obtain an effective Hamiltonian,

Heff = ωq

2
σz + ωbb†b − χ (b† + b)σx − ξ (b† + b)2, (A9)

which is exactly Eq. (2) of the main text.
Considering the A2 term, we can obtain the effective

Hamiltonian of the Hamiltonian Eq. (8) in the same way,

Heff = ωq

2
σz + ωA

r b†b − χA
r (b† + b)σx, (A10)

where

ωA
r = ωbexp(−2rA), (A11)

χA
r = ḡJ̄exp(rA)

2

(
1

�̄q
+ 1

η̄q
+ 1

�̄b
+ 1

η̄b

)
, (A12)

where �̄b(q) = ω̄a − ωb(q), η̄b(q) = ω̄a + ωb(q) and rA =
−(1/4)ln[1 − 2J̄2(�̄−1

b + η̄−1
b )/ωb].

APPENDIX B: DETAILS OF DIAGONALIZATION
PROCEDURE

In this section, we show details of diagonalizing Hamil-
tonian (4) in the ωq/ωb → ∞ limit. Concretely, in the NP,
performing a Schrieffer-Wolff transformation U = exp(S) on
the Hamiltonian Hr in Eq. (4), we can obtain

H ′
r = U †HrU =

∞∑
k=0

[Hr, S](k)

k!
, (B1)

where S = exp[−iχr/ωq(b† + b)σy], and [Hr, S](k) ≡
[[Hr, S](k−1), S] with [Hr, S](0) = Hr . Expanding Eq. (B1)
up to the second order in χ ′

r = 2χr/
√

ωrωq, the transformed
Hamiltonian becomes

H ′
r = ωq

2
σz + ωrb†b + χ ′

r
2
ωr

4
(b† + b)2σz

+Cr + χ ′
r

2
ω2

r

4ωq
+ O

(
χ ′

r
4
ω2

r

16ω2
q

)
. (B2)

In the limit ωq/ωr → ∞, the constant χ ′
r

2
ω2

r /(4ωq) and
high-order terms can be neglected. Considering that the trans-
formed Hamiltonian has spin-up and spin-down subspaces
decoupled with each other, the low-energy effective Hamil-
tonian can be obtained by projecting H ′

r into spin-down
subspace, taking the form of

Hnp = ωrb†b − χ ′
r

2
ωr

4
(b† + b)2 − ωq

2
+ Cr . (B3)

Then, we can use a squeezing transformation Sb(rnp) =
exp{ rnp

2 [(b†)2 − b2]} with rnp = −(1/4)ln[1 − 4χ2
r /(ωqωr )],

to diagonalize this Hamiltonian in the form of

Hnp =
√

ω2
r − 4χ2

r ωr/ωqb†b − ωq

2
+ Cr

+
√

ω2
r − 4χ2

r ωr/ωq − ωr

2
, (B4)

where the ground-state energy is

Eg =
√

ω2
r − 4χ2

r ωr/ωq − ωr

2
− ωq

2
+ Cr, (B5)

and the excitation energy is

εnp =
√

ω2
r − 4χ2

r ωr/ωq. (B6)

And the ground state of the system is |φnp〉G = Sb(r +
rnp)|0〉b|↓〉, with Sb(r + rnp) = exp{ r+rnp

2 [(b†)2 − b2]} pos-
sessing even parity, which is confirmed by the total excitation
number 0. A critical coupling value gc can be derived from the
vanishing of excitation energy (i.e., εnp = 0), and we obtain

gc =
√

ωq
[
ωb − 2J2

(
�−1

b + η−1
b

)]
J
(
�−1

b + η−1
b + �−1

q + η−1
q

) . (B7)

Having introduced two dimensionless parameters, g̃ =
2g/

√
ωaωq and J̃ = 2J/

√
ωaωb, the critical condition can be

changed into the form independent of frequencies,

g̃c ≈
√

1 − J̃2

J̃
. (B8)

The excitation energy εnp is real for g̃ � g̃c and zero at g̃ = g̃c,
indicating the occurrence of the SPT.

When g̃ > g̃c, the system transitions to the SP, in which
the oscillator b is macroscopically populated. Thus, we first
apply a displacement operator D(α) = exp[α(b† − b)] with

α = ±
√

ωq

4ωr
(χ ′

r
2 − χ ′

r
−2) upon the Hamiltonian (4) in the

main text, and we obtain

H̃r = ωrb†b + ω̃q

2
τz − χ̃r (b† + b)τx + ωrα

2 + Cr, (B9)
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where the renormalized frequency ω̃q = 4χ2
r /ωr and the

renormalized coupling strength χ̃r = 1
4ωrωq/χr . Here, τz and

τx are the revolved Pauli operators that can be expressed in the
rotated bases {|↑̃〉, |↓̃〉}, taking forms as

|↑̃〉 = cos(θ )|↑〉 + sin(θ )|↓〉, (B10)

|↓̃〉 = −sin(θ )|↑〉 + cos(θ )|↓〉, (B11)

with tan(2θ ) = −4χrα/ωq. Since H̃r and the Hamiltonian (4)
have the same form, one can diagonalize H̃r by using a similar
procedure to that described for Hnp. The diagonalized form of
H̃r is Hsp = εspb†b + Ẽg with the ground-state energy

Ẽg = 1

2

(√
ω2

r − ω2
qω

4
r χ

−4
r

/
16 − ωr

) − χ2
r

ωr
− ω2

qωr

16χ2
r

+ Cr,

(B12)

and excitation energy

εsp =
√

ω2
r − ω2

qω
4
r

16χ4
r

. (B13)

The ground state of Hsp is now twofold degenerate
given by |φsp〉±G = Sb(r)D(±α)Sb(rsp)|0〉b|↓〉± with rsp =
−(1/4)ln[1 − ω2

qω
2
r /(16χ4

r )], and the low-energy states of
spin given by

|↓〉± =
√

1

2

(
1+ ωrωq

4χ2
r

)
|↓〉 ±

√
1

2

(
1− ωrωq

4χ2
r

)
|↑〉. (B14)

Thus, the corresponding Z2 symmetry of the ground state is
spontaneously broken, as evident from the nonzero coherence
of oscillator 〈b〉g = ±exp(r)α.

One often uses various order parameters to character-
ize quantum phase transition, and here we have defined
the renormalized occupation number of the b mode nb =
[exp(−4r)ωb/ωq]〈b†b〉g as an order parameter. We separately
calculate nb in the normal phase regime and superradiant
phase regime, giving the analytical results

nb =
{

χ2

ωqωb−4ωqξ
− ωqωb−4ωqξ

16χ2 , g>gc

0, g<gc
. (B15)

In terms of the rescaled parameters g̃ and J̃ , the order param-
eter approximately becomes

nb ≈
{

g̃2 J̃2

(4−4J̃2 )
− (1−J̃2 )

4g̃2 J̃2 , g̃ > g̃c

0, g̃ < g̃c
. (B16)

APPENDIX C: THE SPT IN ANISOTROPIC HOPPING
INTERACTION

We now consider the case where the hopping interaction
is anisotropic, and the Hamiltonian can be rewritten as H =
H0 + HI in terms of the free Hamiltonian

H0 = 1
2ωqσz + ωaa†a + ωbb†b (C1)

and the interaction Hamiltonian

HI = g(a† + a)(σ+ + σ−) + J1(ab† + a†b) + J2(ab + a†b†).
(C2)

Using the same procedure described in Appendix A, we can
derive the effective Hamiltonian. In this case,the Fröhlich-
Nakajima transformation UV = eV adopts the form

V = μq(aσ− − a†σ+) + νq(aσ+ − a†σ−)

+μ′
b(ab − a†b†) + ν ′

b(ab† − a†b), (C3)

where μq = g/ηq, νq = g/�q, and μ′
b = J2/ηb, ν

′
b = J1/�b

and ηq(b) = ωa + ωq(b),�q(b) = ωa − ωq(b). Then, we elimi-
nate the degrees of freedom of a and obtain

Heff = ωq

2
σz + ωbb†b − χ2(b†σ+ + bσ−) − χ1(b†σ− + bσ+)

− ξ2(b†2 + b2) − ξ1(b†b + bb†), (C4)

where

χ1 =
(

gJ2

(ωa + ωb)
+ gJ1

(ωa − ωb)

+ gJ2

(ωa + ωq)
+ gJ1

(ωa − ωq)

)
/2,

χ2 =
(

gJ2

(ωa + ωb)
+ gJ1

(ωa − ωb)

+ gJ2

(ωa − ωq)
+ gJ1

(ωa + ωq)

)
/2,

ξ1 =
(

J2
2

(ωa + ωb)
+ J2

1

(ωa − ωb)

)
/2,

ξ2 =
(

J1J2

(ωa − ωb)
+ J1J2

(ωa + ωb)

)
/2. (C5)

Similarly, the effective Hamiltonian remains valid in
the large detuning regime, i.e., g/(ωa − ωq) 	 1 and
{J1, J2}/(ωa − ωq) 	 1, {J1, J2}/(ωa − ωb) 	 1. Different
from the effective Hamiltonian Eq. (A9), this effective
Hamiltonian has unequal interaction strengths of rotating-
wave and counterrotating-wave terms. By applying a
squeezing transformation Sb(r′) = exp{ r′

2 [(b†)2 − b2]} with
r′ = −(1/4)ln[1 − 4ξ2/(ωb − 2ξ1 + 2ξ2)] into the effective
Hamiltonian Heff, we obtain

Hr′ = ωq

2
σz + ω′

rb†b − χ1r (b†σ− + bσ+)

−χ2r (b†σ+ + bσ−) + C′
r, (C6)

where

ω′
r = (ωb − 2ξ1)(e2r′ +e−2r′

)

2
− ξ2(e2r′ −e−2r′

),

χ1r = (χ1 + χ2)er

2
+ (χ1 − χ2)e−r

2
,

χ2r = (χ1 + χ2)er

2
− (χ1 − χ2)e−r

2
,

C′
r = ωb

2

(
e2r′ + e−2r′

2
− 1

)
− ξ1(e2r′ + e−2r′

)

2

− ξ2(e2r′ − e−2r′
)

2
. (C7)

It obviously shows this effective Hamiltonian is equivalent to
the anisotropic Rabi model [40].
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FIG. 7. The ratio χ2r/χ1r vs J1/ωb and J2/ωb. The red dashed
curve denotes J1 = J2. We take g = 2.5ωb, and the other parameters
are the same as in Fig. 2.

In Fig. 7, we plot the ratio of χ2r to χ1r as a function
of coupling strengths J1 and J2, where the white area in the
upper right corner denotes the unstable regime corresponding
to the condition 1 − 4ξ2/(ωb − 2ξ1 + 2ξ2) < 0. It shows that

0.4

0.2

0
0 1.0 2.0 3.0

FIG. 8. The order parameter nb versus g/ωb for J1/ωb =
2.5, J2/ωb = 3.5 (dash-dotted red curve), J1/ωb = 3.5, J2/ωb = 2.5
(solid green curve), J1/ωb = 3.0, J2/ωb = 3.0 (dashed blue curve).
Other parameters are the same as in Fig. 2.

the effective coupling strengths of rotating and counterrotat-
ing terms are approximately close to each other in the large
detuning parameter regime. Therefore, the SPT can also exist
in the case of J1 �= J2, the same as with the case of J1 = J2 in
the main text. To demonstrate this, we show how the rescaled
occupation number nb obtained from exact diagonalization
varies as a function of the coupling strength g when J1 > J2,
J1 = J2 and J1 < J2 in Fig. 8. It shows that the behaviors of
the order parameter nb, changing with the coupling strength g,
are roughly same for these three cases.
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