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All-optical polarization-state engineering in quantum cavity optomagnonics

Zhu Liang,* Jiahua Li ,† and Ying Wu‡

School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

(Received 29 September 2022; revised 12 February 2023; accepted 14 February 2023; published 1 March 2023)

We theoretically propose an optical polarization-state engineering based on a cavity optomagnonic platform
in the full quantum regime. Here, the optomagnonic interaction can be realized in an yttrium iron garnet
(YIG) sphere, which supports both two traveling-photon modes with orthogonal linear polarizations [i.e.,
horizontally (H -) and vertically (V -) polarized photon modes] and a Kittel magnon mode. In our scheme, the
magnons mediate the photons during polarization conversions, and break the time-reversal symmetry in mutual
interconversions. Through a triple resonance between the magnon mode, H -polarized, and V -polarized photon
modes within the YIG optomagnonic cavity, we demonstrate an all-optical scheme to manipulate the optical
polarization behaviors by adjusting an external driving laser, finding that the polarization states of the output light
can be well mapped to the whole Poincaré sphere and a large polarization rotation of the output light with photon
antibunching and superbunching can be achieved easily for a range of realistic parameters. We find the strong
discrepancy in the polarization response between the exact numerical calculation using the full quantum master
equation and the semiclassical approximation. In addition, we reveal the magnon-induced broken time-reversal
symmetry, which connects the quantum cavity optomagnonics to the classical magneto-optical effect. Our
obtained results have potential application in quantum polarization-state engineering, and also offer a further
understanding for cavity optomagnonics at the quantum level.
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I. INTRODUCTION

The magnons, which are the bosons developed from
the collective excitations of spin states via Holstein-
Primakoff transformation (see, e.g., Refs. [1–5] and the ref-
erences therein), have received considerable research interest
due to the favorable compatibility with atoms [6–8], photons
[9–13], phonons [14,15], polaritons [16,17], and other quanta
[18,19]. Additionally, relying on the ultrahigh quality factor
(Q) for the quanta and the large spin density, the cavity made
of ferromagnetic materials, especially the yttrium iron gar-
net (YIG) sphere, becomes an important physical model and
has motivated extensive investigations [20–27]. Combining
the whispering-gallery-mode (WGM) photons and the Kittel-
mode magnons inside it, the cavity optomagnonic system
supports a three-mode interaction [22–27] and inspires a large
amount of novel applications in magnon cooling [28], magnon
squeezing [29], magnon laser [30,31], and so on. However, it
is notable that all of above works focus on the scalar properties
of photons, such as the frequencies and amplitudes of optical
fields. Moreover, limited by the weak coupling between the
magnons and WGM photons, the semiclassical approach is
conventionally adopted to effectively enhance the magnon-
photon-photon interaction in the previous studies [22–24,29–
31]. Therefore, if the strong-coupling regime of the three-
mode optomagnonic interaction can be reached, there are a lot
of interests in exploring the vector features and the triple-body
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interaction of cavity optomagnonic system in the quantum
regime.

On the other hand, arbitrary manipulation and conversion
of quantum states of photons is a crucial challenge towards the
applications in quantum information and photonic networks
today. It has attracted much attention in the related fields,
such as condensed matter optics [32–34] and quantum optics
[35–38], etc. A standard paradigm in quantum state transfer
is the “beam-splitter” form, which is an optimal assumption
for quantum state transfer between the motion and the light
[39–43]. This kind of semiclassical method can overcome the
weak light-matter coupling, in which the effectively enhanced
linear coupling is proportional to the steady-state cavity am-
plitude [44,45]. Nevertheless, both the phase noise and the
quantum fluctuation are omitted, which are important in a full
quantum system. Recently, a polarization conversion has been
proposed and proved in some works in the cavity–quantum-
dot (QD) system [46,47]. Due to the strong coupling between
the atom and the photon, together with the atom-induced
phase shift on the incident photon [48], optical polarization-
state transfer can be analyzed and achieved in the cavity-QD
system in the quantum approach. In the magnetically biased
materials, as everyone knows, that the polarization of the
traveling light rotates inside the solid block [49–52]. It is
shown that the phase of traveling light can be changed during
propagation in the material. In other words, the magnons can
also induce phase shift on the input photons. Furthermore, an
alternative scheme has been recently proposed and it is shown
that an ultrastrong optomagnonic coupling can be obtained
in the epsilon-near-zero (ENZ) regime [53,54], which offers
some prospects for looking at polarization-state conversion
in cavity optomagnonic system, or other deeper studies in
quantum cavity optomagnonics.
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FIG. 1. (a) Schematic illustration of cavity optomagnonic system
under an externally applied static magnetic field. Two optical WGMs
âV and âH for photons are coupled to a magnetostatic mode m̂, called
a Kittel mode for magnons via the optomagnonic interaction. Each
mode can be individually driven externally, in order to realize the
polarization-state conversion. For example, the photon WGMs of
the YIG sphere can be addressed with an optical nanofiber and the
Kittel magnon mode can be excited with a microwave field from
a network analyzer via a loop coil near the YIG sphere [22,25].
The output signals in various polarization bases can be analyzed by
the polarization tomography technique [47]. (b) TM and TE fields
together with the corresponding polarization states, distinguished by
their electric components. The orange line represents the sine wave
of the electric component of a TM light. The blue marks depict
the antinodes of the electric field of a TE light. The wave vectors
k along the x axis are perpendicular to the saturation value of the
magnetization Ms along the z axis, which corresponds to the Voigt
configuration. The electric field of the TM light oscillates parallel to
Ms, which is defined as the V polarization (abbreviated as V POL).
The electric field of the TE light oscillates perpendicular to Ms, i.e.,
the H polarization (abbreviated as H POL). (c) The down-conversion
of the TM input laser (upper) and the up-conversion of the TE input
laser (lower), respectively. The physical meaning of the other used
notations is described in the text.

Motivated by these developments mentioned above
[46,47,53,54], in this work we explore the polarization dy-
namics of a quantum cavity optomagnonic system (see Fig. 1
below) and propose a magnon-medium polarization-state con-
version inside an YIG sphere with sub-mm radii. Physically,
as a distinctive feature of the magnetized YIG materials,
the Brillouin scattering (BLS) can bring the geometric bire-
fringence and split the degenerate photons into different
WGMs and different polarization states inside the YIG sphere
[22–26]. In view of this BLS, the transverse electric (TE)
field and transverse magnetic (TM) field can propagate in
the spherical cavity with different WGMs, and both the po-
larization state and the wavelength of WGM photons can
be converted by eliminating or creating the Kittel-mode

magnons. Based on such a physical picture, here we focus
mainly on the polarization-state conversion properties of in-
put and output light, to the best of our knowledge, which
is rarely studied in the full quantum regime by taking ad-
vantage of the coupling between two orthogonally polarized
photon modes and a magnon mode inside an optomagnonic
cavity.

To begin with, we present the system Hamiltonian which
governs the two transition channels of photons in WGMs:
(i) A V -polarized photon is Brillouin scattered into an
H-polarized photon by creating a magnon in the Kittel
mode and (ii) an H-polarized photon is Brillouin scattered
into a V -polarized photon by eliminating a magnon in the
Kittel mode, respectively. Compared with the semiclassical
approach in the previous studies [38–42], in which a strong
optical control field and a pump signal are required without
the consideration of quantum fluctuation (incoherence) of
the system, here we only apply a weak optical driving laser
and a weak magnonic microwave drive and include all the
quantum fluctuation. In order to generate different polarized
output photons, the incident polarization angle of the applied
driving field is rotated. By making use of the optomagnonic
Hamiltonian of the driven system, we solve the Lindblad
master equation with numerical simulations to obtain the
density matrix of the whole system in the steady-state limit.
For confirming the appearance of the polarization-state
conversion, we evaluate the average photon numbers of the H
and V polarizations inside the YIG sphere cavity.

Then, resorting to the input-output formalism, the statistics
of the output photons after the conversion can be calculated.
It is found that the dip (the minimum value) of the second-
order correlation function g(2)

i j (0) exhibits the opposite photon

statistics, i.e., g(2)
HH (0) � 1.015 (bunching) for the output H-

polarized photons under the input V -polarized photons and
g(2)

VV (0) � 0.92 (antibunching) for the output V -polarized pho-
tons under the input H-polarized photons, respectively, at
optical resonance and zero-time delay. Apart from that, the
strong superbunching [55,56] with the value of g(2)

HH (0) �
15.51 in the output H-polarized photon statistics preferen-
tially occurs under the input H-polarized photons. In addition,
the steady-state average numbers of the products of output
photonic operators are obtained, which can be used to derive
the Stokes parameters and construct the Poincaré sphere. In
this way, we can perform a complete polarization tomography
to quantify the output polarization states. As the result of a
conversion with a purely V -polarized input light, a close-to-
zero-point rotation of the output polarization can be realized
in the H − V axis. In the meanwhile, we can also produce the
diagonally and antidiagonally (D- and A-) polarized and the
right-hand and left-hand (R- and L-) circularly polarized com-
ponents by the conversion. A rotation by 88◦ can be achieved
both in the latitude and longitude of the Poincaré sphere, with
a polarization purity above 0.35 in the conversion from the
input V -polarized photons to the output H-polarized photons.
It is verified that we can realize an all-optical polarization-
state conversion to enable arbitrary polarization control, by
properly adjusting the frequency and polarization angle of an
incident driving laser.

It is worth pointing out that the strong discrepancy between
the exact numerical calculation using the full quantum master
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equation and the semiclassical approximation can be found
in the polarization tomography. For the polarization purity of
concern, the quantum fluctuations of the cavity optomagnonic
system needs to be considered. The main reason is that the
degree of the quantum fluctuations is to determine the degree
of the polarization purity. Supposing the quantum fluctuations
(or correlations) among the TM photon, TE photon, and Kittel
magnon are neglected (i.e., making the semiclassical or mean-
field approximation, also the factorization approximation), the
purity will be always equal to unity. Yet, beyond the semiclas-
sical image, partial incoherence arises from the fluctuations
(or correlations) experienced by the TM and TE photons
and Kittel magnon. Furthermore, the polarization tomography,
including Stokes parameters and polarization purity, is quite
sensitive to the nature of the incoherence process.

Finally, we focus our attention on the differences be-
tween the steady-state average photon numbers in the mutual
interconversions, and further shed light on this magnon-
induced time-reversal asymmetry by manipulating the thermal
magnons. We find that the reversal asymmetry originates from
the opposite behaviors (creation and annihilation) of the in-
tracavity magnons, and the imbalanced dissipation channels
from or to the thermal reservoir in the two different transition
processes. With the thermal magnon number increasing, the
difference in the results of interconversion becomes smaller.
It means that the time-reversal symmetry which is broken
during the interconversion in the few-magnon regime is re-
vived when the thermal magnon number rises. In addition to
being of a fundamental interest, the obtained results can be
employed to engineer quantum polarization states in solid-
state quantum technologies and to gain new insights into the
magnon-induced reversal asymmetry in the quantum cavity
optomagnonics.

The rest of the paper is organized as follows: In Sec. II, we
describe the cavity optomagnonic system of interest and re-
view briefly the photon-magnon coupling mechanism, which
is derived from the average electromagnetic energy in the
magnetic dielectrics. At the same time, we give the opto-
magnonic interaction Hamiltonian of the hybrid system and
the Lindblad master equation in a frame rotating, which are
the bases of this work. Followed by this, we also elaborate on
the feasibility for a large optomagnonic coupling coefficient.
In Sec. III, we in detail discuss and analyze the polarization
response based on numerical simulations. To be specific, in
Sec. III A, we illustrate that the polarization-state conversion
can be achieved in the driven cavity optomagnonic system.
The new polarization states of photons can be produced,
and subsequently the complete polarization tomography, in-
volving the Stokes parameters, the Poincaré vector, and its
modulus to assess the polarization purity and the departure
from the semiclassical image is performed to quantify these
available states. In Sec. III B, we are attracted to the broken
reversal symmetry in the mutual interconversion between the
two modes of orthogonally polarized photons. Further, we
explore this magnon-induced asymmetric conversion by ma-
nipulating the magnon number. Finally, we conclude our work
in Sec. IV. Appendixes A–E address supplementary technical
details which are omitted in the text for readability. In partic-
ular, in Appendix E, we provide a perturbative treatment to

study the quantum features of the cavity optomagnonic model
via the Schwinger-Keldysh formalism, which further supports
our results.

II. PHYSICAL MODEL AND BASIC EQUATIONS

We start with introducing the physical model for the
polarization-state transfer in the quantum regime based on
ferromagnetic material. We consider the model of Fig. 1(a),
which is similar to that adopted in Ref. [25] and consists of
two optical WGMs with different polarizations and a Kittel
mode. For concreteness, we use a spherical cavity made of
YIG material, which is characterized by the high-Q factors
for all of the excited bosons, and the wide frequency range for
Fe3+ ironic transition in the infrared region. The bosons in the
cavity are spatially overlapped, thus they can interplay with
each other. The Hamiltonian of the three-mode interaction is
given by (here and below, we work in units where h̄ = 1) [25]

Ĥ = �H â†
H âH + �V â†

V âV + �mm̂†m̂

− gâ†
H âV (m̂ + m̂†) − gâH â†

V (m̂ + m̂†), (1)

where the symbols � j are the mode frequencies of the H-
and V -polarized WGM photons and the Kittel mode magnons
with the subscript j ∈ {H,V, m}. The operators âH , âV , and m̂
(â†

H , â†
V , and m̂†) are the annihilation (creation) operators of

the photons and magnons, respectively. The mode frequen-
cies of the bosons are restrained by a frequency matching
�V − �H − �m = 0 in YIG material, i.e., the so-called triple-
resonance condition for BLS [25,26]. We have disregarded
the zero-point energies of the photon and magnon modes. The
interaction part of the system Hamiltonian hints that the Kittel
mode magnons mediate the transfer of the polarized photons,
with a photon-magnon (optomagnonic) coupling coefficient g
governed by

g =
∫

dr εint (M)EiE
∗
j . (2)

In the z-direction saturated magnetization configuration, the
magnetization is given by M = Mxx̂ + Myŷ + Mzẑ and Mz �
Ms, Mx,y � Ms with Ms being the saturation magnetization.
For the given magnetization M, the magneto-optical inter-
action energy is decided by the permittivity tensor εint(M)
with its elements εint

i j (M) = −iε0 f εi jkMk , which is Faraday
effect in essence. The factor ε0 is the permittivity of YIG in
vacuum, εi jk is the Levi-Civita symbol, f is a coefficient for
quantifying the Faraday rotation [26] which can be obtained
by experiments, and the subscripts i, j, k correspond to the
x, y, z direction, respectively. In this paper, we consider the
Voigt configuration, where an external magnetic field B is
set along the z axis. In this scenario, the YIG sphere can get
the full magnetization and, following [22,25], the Kittel-mode
magnons can be driven by a loop coil near the YIG sphere,
with a microwave frequency ωm and a total decay rate κm.
Optical WGMs for photons can be excited by evanescent
coupling to a light source, for instance, a tapered nanofiber, an
illuminated waveguide, or a prism. Additionally, in the Voigt
configuration, the wave vector k of the input light goes for-
ward on the x − y plane. Hence, the magnetized YIG medium
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(or the excited magnons in microcosmic) can scatter the input
light (or photons) via the Faraday effect. In this process, the
TM (TE) input photons propagate into the YIG cavity from
a tapered fiber with an external coupling rate κex, then are
absorbed as π -spin photons and support the Fe3+ irons to
jump from the ground states to the excited states. The excited
irons immediately transition down from the excited states, to
create σ+ (σ−) spin photons and rotate the polarization to
another orthogonal plane. The polarization of σ+ (σ−) spin
photons rotates clockwise (counterclockwise) on the x − y
plane (the surface of the cylinder parallel to the z axis) while
they propagate along the equator of the cavity, and form a
cycloid trajectory [24]. After the photons leak back to the
tapered fiber, the input TM (TE) photons are converted to the
TE (TM) photons. By applying this underlying mechanism,
namely, the so-called spin-orbit coupling [22], the photons
with H or V polarization can interchange with each other by
the intermediary magnons. What is more, the output H/V -
polarized photons are not coherent, as the polarization phases
are changed during the travel in the cavity. The incoherence
phase, brought by the magnons, plays a key role in the full
quantum process. For clarification, the definition of different
inputs with different transverse fields and their corresponding
polarizations are shown in Fig. 1(b). The TM light corre-
sponds to the V -polarized light, and the TE light corresponds
to the H-polarized light.

In what follows, we consider the driving term of the system
for analyzing the quantum polarization-state conversion. We
exploit a weak-driving laser and a weak-driving microwave to
satisfy a few-photon and few-magnon level. We additionally
set an input polarization angle θ , which is the relative angle
between the x axis (i.e., the H polarization) and the electric
field (polarization) of the input light. The definition for optical
polarization versus the input polarization angle θ is clearly
shown by the inset of Fig. 2(a). Specifically, εH = ε cos θ

and εV = ε sin θ are the driving amplitudes for both H and V
polarizations, where ε is the total amplitude of a linearly po-
larized driving laser. Correspondingly, the total driving term in
the polarization-state engineering with a monochromatic driv-
ing laser is then given by Ĥd = εH â†

H e−iωint + εV â†
V e−iωint +

εmm̂†e−iωmt + H.c. Thus, both of the input driving frequencies
in Fig. 1(c) are equal, i.e., ωH,in = ωV,in = ωin. The third term
and its Hermitian conjugation are included as the magnonic
driving term, where εm is the amplitude and ωm is the mi-
crowave frequency of the excited Kittel magnons induced by
the loop coil. When we change the input polarization angle θ ,
the incident photons can acquire different polarization states.
For example, the input photons get completely V (H) polarized
when θ = π/2 (θ = 0); and when θ = π/4, the input laser
gets a balanced polarization just like it goes through a 50-50
polarizing beam splitter.

For convenience, we next switch to a frame rotating via
a time-dependent unitary operator Û (t ) = exp[i(ωH â†

H âH +
ωV â†

V âV + ωmm̂†m̂)t], to make the driving terms and the in-
teraction Hamiltonian time independent. Above, ωH indicates
the frequency ωH,in of the H-polarized input laser (i.e., ωH =
ωH,in = ωin), ωV indicates the frequency ωV,out of the V -
polarized output signal (i.e., ωV = ωV,out = ωin + ωm), which
is just schematic illustration of the upper panel of Fig. 1(c),
and vice versa (see Appendix A for further details). These two

FIG. 2. (a)–(c) Time evolution of the steady-state average photon
numbers nV (t ) and nH (t ) of the intracavity V - and H -polarized
photons with different incident polarization angles: (a) θ = π/2,
(b) θ = π/4, and (c) θ = 0. The evolution time t is normalized to
a dimensionless form by the magnon-mode frequency �m in (a)–(c).
The blue solid lines depict the average photon numbers for the V -
polarized photons and the red dashed lines depict the average photon
numbers for the H -polarized photons. The inset of (a) shows the
definition of the input polarization angle θ . (d) The second-order
correlation functions g(2)

VV (τ ) and g(2)
HH (τ ) as a function of time delay

�mτ in the θ = π/2 configuration (i j = VV with blue solid line and
i j = HH with red dashed line). Also, the time delay τ is normalized
by the magnon-mode frequency �m. (e) The second-order correlation
functions of V - and H -polarized photons in the θ = 0 configuration.
The marked line styles are set to the same as (d). The insets in (d) and
(e) show the details of correlations around τ = 0. The detunings are
set as �m = 0 and �V = �H = � = 0 for (a)–(e) above. (f) The
zero-delay second-order correlations g(2)

i j (0) (i j = HH for an input
polarization angle θ = π/2 and i j = VV for an input polarization
angle θ = 0) as a function of the dimensionless detuning �/�m. Re-
maining parameters are chosen as �m = 2π × 1 GHz, κc = 0.05�m,
κex = 0.5κc, κm = 2.74 × 10−3�m, g = 0.2κc, ε = 0.5κc, εm = κm,
and nm,th = 0, respectively.

scenarios correspond to the two transition channels, as shown
in Fig. 1(c). Furthermore, in conjunction with the rotating-
wave approximation (RWA), the whole Hamiltonian in the
frame rotating is brought to the form

Ĥeff = Ĥrot + Ĥd,rot, (3a)

Ĥrot = −�H â†
H âH − �V â†

V âV − �mm̂†m̂

− g(â†
H âV m̂† + âH â†

V m̂), (3b)

Ĥd,rot = εH (â†
H + âH ) + εV (â†

V + âV )

+εm(m̂† + m̂), (3c)
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with the detuning � j = ω j − � j . In the meanwhile, we adopt
the triple-resonance condition ωV − ωH − ωm = 0 inside the
RWA, which is necessary to guarantee the three-boson interac-
tions, named the magnetic BLS. The quantum system depicted
by the resulting Hamiltonian in Eqs. (3a)–(3c) can effectively
support the two different polarization conversion channels as
follows: (i) A V -polarized photon is down-converted to an H-
polarized photon by creating a magnon or (ii) an H-polarized
photon is up-converted to a V -polarized photon by absorbing
a magnon, both of which are shown in Fig. 1(c). More details
about the model Hamiltonian are presented in Appendix A.
The frequency detunings of the bosons in these two transition
channels are all governed by �V − �H − �m = 0, according
to the triple-resonance condition mentioned above.

In order to confirm our proposal, we numerically study the
full quantum dynamics of this cavity optomagnonic system
in the polarization-state conversion. By introducing a real-
time density matrix ρ̂(t ), the quantum Born-Markov master
equation is yielded by [57–60]

d ρ̂(t )

dt
= i[ρ̂, Ĥeff] + κcD̂[âH ]ρ̂ + κcD̂[âV ]ρ̂

+ κm(nm,th + 1)D̂[m̂]ρ̂ + κmnm,thD̂[m̂†]ρ̂ (4)

to describe the evolution dynamics of the driven cavity op-
tomagnonic system, where D̂[Ô]ρ̂ = Ôρ̂Ô† − 1

2 (Ô†Ôρ̂ +
ρ̂Ô†Ô) are the Lindblad dissipation superoperators, with Ô ∈
{âH , âV , m̂, m̂†}. The thermal fluctuation quantum numbers
of photon and magnon are governed by the Bose-Einstein
distribution n j,th = 1

eh̄� j /kBT −1
where the parameter kB is the

Boltzmann constant, T is the thermodynamic temperature
(Kelvin), and � j indicates the mode frequencies of the
involved bosons, with j ∈ {H,V, m} for the orthogonally po-
larized photons and the magnons, respectively. Here, we only
consider the dissipation superoperators of the photonic an-
nihilation operators, due to the vanishing thermal photon
occupation, i.e., nH (V ),th ∼ 0 at room temperature because of
the high frequency of the cavity field. However, with the GHz-
range magnon frequency �m � �H (V ), the thermal magnon
number nm,th is much larger than nH (V ),th at the same tem-
perature. Thus, we need to include both dissipation channels
of the magnonic operators m̂ and m̂†. Following Ref. [24],
we set the equal decay rates of the two optical WGMs κH =
κV = κc = κin + κex, where κin is the intrinsic photon loss rate
and κex is the external cavity-tapered fiber coupling rate, and
assume that the magnetized YIG sphere has the same internal
and external decay rates κin = κex, i.e., the so-called critical
coupling [61,62]. Above, the intrinsic photon loss is due to the
undesirable scattering and absorption from the cavity-thermal
bath coupling, whereas the external photon loss is owing to
the extraction of cavity photons to the desired external mode
via, e.g., the cavity-tapered fiber coupling. Note that κex can
be experimentally controlled by changing the air gap between
the cavity and tapered fiber [61,62].

Before proceeding, we elucidate the feasibility for a large
optomagnonic coupling by optimizing the YIG cavity and uti-
lizing the novel material. In the previous works [22,23,26], the
single photon-magnon coupling coefficient is pretty weak in a
sub-100-Hz range, which is in the weak-coupling regime (g �
�m) as the state-of-art results. The optomagnonic coupling co-

efficient is so weak that hardly can we observe quantum effect,
even in the simulations. Consequently, we can only study the
cavity optomagnonic system based on the semiclassical ap-
proach, for example, by an enhanced optomagnonic coupling
G = g|α|. The steady-state amplitude of an optical control
field |α| effectively enhances the coupling coefficient g. Fur-
thermore, if we can achieve some optimizations to increase the
overlap between the Kittel modes and the WGMs, a strong op-
tomagnonic coupling around 100 kHz can be attained. Outside
the scope of existing experiments, we can tune the driving-
laser amplitude down to a weak-driving regime, and arrive at
an MHz-coupling range in the meanwhile [24]. Alternatively,
if a low-absorption cavity can be made of some metamaterials
such as the ENZ medium, the single photon-photon-magnon
coupling can be drastically enhanced to the magnon frequency
range (g ∼ �m), due to a great enhancement of the Faraday
effect in essence [54]. With the consideration above, we can
study full quantum dynamics in the cavity optomagnonics
with a moderately strong-coupling coefficient in the follow-
ing.

III. RESULTS AND ANALYSIS ABOUT
POLARIZATION DYNAMICS

In this section, we begin to study the polarization dynamics
of the coupled cavity optomagnonic system based on the full
quantum approach. In order to describe the polarization con-
version conveniently, we utilize Dirac notation to define the
quantum states of H- and V -polarized photons as |H〉 and |V 〉,
respectively. As confirmed in Appendix A, the two transition
channels |H〉 → |V 〉 and |V 〉 → |H〉 can both be described
by the system Hamiltonian in the frame rotating, as given in
Eqs. (3a)–(3c). With a tunable input laser, in the meanwhile
setting different input polarizations, we can well engineer the
polarization states of the output photons. To this end, taking
into account the input-output formalism [58–60]

b̂H = bH,in − i
√

κexâH , (5a)

b̂V = bV,in − i
√

κexâV , (5b)

both of the output signals of H and V polarizations can be
derived, where bH,in and bV,in are the average amplitudes of
the H and V components of the applied input laser. The
average values of the two orthogonal components of the in-
put laser are defined by bH,in ≡ εH/

√
κex = ε cos θ/

√
κex and

bV,in ≡ εV /
√

κex = ε sin θ/
√

κex, respectively, where ε is the
driving amplitude introduced before. Below, we mainly focus
on three types of configurations: (i) When θ = π/2, we have
εV = ε, but εH = 0; (ii) when θ = 0, we have εH = ε, but
εV = 0; and (iii) when θ = π/4, εH and εV are both equal
to

√
2

2 ε. In order to satisfy the few-photon regime to uncover
quantum effect, the optical driving power Pin related to ε is
set to 1 pW, which is much smaller than the power in the
previous experiment [24]. On the other hand, for exciting
the Kittel magnons, a bias magnetic field B is applied to
form the saturated magnetization Ms = 1.4 × 105 A/M. In the
meanwhile, the other system parameters are set as �m/2π =
1 GHz, κc = 0.05�m, κm = 2.74 × 10−3�m, and κex = 0.5κc

[12,24–26]. The driving amplitude can be derived as ε �
0.5κc, according to the definition of average input amplitude
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ε = √
2κcPin/(h̄ωin ), with the optical driving power Pin = 1

pW and frequency ωin/2π = 200 THz. The single photon-
photon-magnon coupling strength can be correspondingly set
to g/2π = 10 MHz (g = 0.2κc), to reveal the behaviors of
the quantum cavity optomagnonic dynamics obviously. Aside
from these, a weak magnonic microwave drive is brought by
the loop coil with a relative amplitude chosen as εm = κm. We
assume that a magnonic resonance condition �m = 0 holds
[25,63]. According to the mode-matching condition of the
frequency detunings �V − �H − �m = 0, the detunings of
both H and V photon modes can be further simplified as
the relationship �V = �H = �. In the above configurations,
we can effectively probe the traveling photons and analyze the
results, to arbitrarily engineer the polarization states. At the
same time, we will introduce some key parameters like
the Stokes parameters and the polarization purity to quantify
the polarization states of the output photons after optical con-
versions.

A. Controlled polarization conversion with different incident
polarization angles

The thermal magnon number nm,th is set to zero for sim-
plification in this subsection and the nonzero thermal magnon
number will be considered in Sec. III B. First of all, we con-
firm whether our model can change the polarization states of
the input photons or not inside the cavity. The average pho-
ton number of intracavity photons in the steady-state limit is
defined by nl ≡ 〈â†

l âl〉, where the index l takes values H or V
accounting for the optical polarizations. As displayed in Fig. 2
on optical resonance � = 0, the behaviors of the conversions
between two polarization states are presented. It can be seen
that the full V -polarized photons transfer to the H-polarized
photons when θ = π/2 in Fig. 2(a). The definition of θ is
shown in the inset in Fig. 2(a). When several V -polarized
photons are pumped by the driving laser field, more than half
of them are converted to the H-polarized photons. Hence, the
red dashed line rises rapidly after the start of the conversion
(0 < �mt < 20). Because some of the produced H-polarized
photons have not left the cavity for a short evolution time,
they can convert back to the V -polarized photons. As a result,
the blue solid line (V -polarized photon number) rises up, with
the red dashed line (H-polarized photon number) decreasing
a little around �mt = 50. Then they reach the steady state
after an enough evolution time �mt > 100. When the input
polarization angle of the driving laser is fixed at θ = π/4
in Fig. 2(b), the input photons can obtain the balanced H
and V polarizations. In this case, we can see that the two
sets of photons with orthogonal polarizations interchange with
each other through the two conversion channels. Thus, the
average photon numbers of both polarizations vary slowly
until stability. When θ = 0, the average photon numbers of
both polarizations are plotted in Fig. 2(c), finding that the fully
H-polarized photons change to the V -polarized photons on the
contrary.

To gain further insight, we define a contrast factor CHV ≡
|(nH − nV )/(nH + nV )| here, for the comparison between the
H- and V -polarized photon numbers in the steady state inside
the cavity. After some calculations, the contrasts for the three
initial polarizations are given by CHV (θ = π/2) = 0.094,

CHV (θ = π/4) = 0.462, and CHV (θ = 0) = 0.900, respec-
tively. We find that the steady-state average photon number
of H-polarized photons in Fig. 2(a) is totally different from
that of V -polarized photons in Fig. 2(c), i.e., CHV (θ = π/2) =
CHV (θ = 0). In particular, there is an obvious gap between
the blue solid line and the red dashed line in Fig. 2(b), i.e.,
CHV (θ = π/4) = 0, when the cavity optomagnonic system
reaches the steady state. The clear difference and the nonzero
value of the contrast factors in the interconversions above
show the broken time-reversal symmetry. It suggests that the
driving field with the same amplitude but different polariza-
tions can not produce the corresponding intracavity photons
which have the same average photon number. Physically, these
phenomena, which reveal asymmetry in the conversions be-
tween H- and V -polarized photons, may be understood by
the special bosonic transition rules in Eqs. (3a)–(3c) and the
Lindblad master equation in Eq. (4). The interaction Hamil-
tonian [see Eq. (3b)] shows that the H mode photon creates
or annihilates synchronously with a magnon. The creation
channel of V -polarized photon is more heavily suppressed
while the intracavity magnon is too few. This is because of the
collective consumption of the quantum state conversion in the
H → V process (governed by â†

V âH m̂ with the commutation
relation [âH , âV ] = 0) and the dissipation channel of m̂ (i.e.,
κmD̂[m̂]ρ̂). More detailed discussions can be found in turn
below.

On the other hand, the second-order correlation functions
of the output H- and V -polarized photons as a specific exam-
ple, given by [57]

g(2)
i j (τ ) = 〈b̂†

i (t )b̂†
j (t + τ )b̂ j (t + τ )b̂i(t )〉

〈b̂†
i (t )b̂i(t )〉〈b̂†

j (t + τ )b̂ j (t + τ )〉 (6)

are plotted in Figs. 2(d)–2(f) to evaluate the quantum nature
of optical polarization-state conversions, where t is the evo-
lution time of the system and τ is the time delay between
photon detection events. Here, the evolution time is large
enough (t → ∞), i.e., we consider the steady-state case for
the second-order correlation function. To clarify the different
photon statistics of the output polarized fields, we state the
distinctions of statistics depending on g(2)

i j (τ ): When the cor-

relations g(2)
i j (τ ) < 1, these refer to photon antibunching. The

values g(2)
i j (τ ) = 1 represent the Poisson statistic of coherent

fields; 1 < g(2)
i j (τ ) < 2 mean photon bunching; and g(2)

i j (τ ) >

2 refer to photon superbunching [55,56]. Then, as can be seen
from Fig. 2(d), under the input V -polarized photons (θ =
π/2), the second-order correlation function of the produced
H-polarized photons g(2)

VV (τ ) exhibits the photon bunching
effect, corresponding to the peak value [g(2)

VV (τ = 0) � 1.58].
This is because of both the contributions from the input V -
polarized photons and a few V -polarized photons which are
converted back from H-polarized photons in the |V 〉 → |H〉
conversion. Aside from this, we observe the slight bunching
effect of the output H-polarized photons as a sign of classical
photon statistics [g(2)

HH (τ = 0) � 1.015]. In contrast, under the
input H-polarized photons (θ = 0) in Fig. 2(e), we find that
the nonclassical antibunching effect appears with g(2)

VV (τ =
0) � 0.92 in the |H〉 → |V 〉 conversion, which differs a lot
from the bunching effect of the produced H-polarized photons
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in Fig. 2(d). With the definition of a time window �T when
g(2)

VV (τ ) < 0.95, we can see the antibunching effect with �T �
20κc from the inset of Fig. 2(e). It reveals a long-temporal
quantum property of the generated V -polarized photons in
the θ = 0 configuration. On the other hand, a pronounced
correlation peak for the output H-polarized photons can be
generated in Fig. 2(e), where g(2)

HH (τ = 0) � 15.51 refers to
the photon superbunching effect [55,56].

By means of the anharmonic energy levels of the cavity
optomagnonic system as shown in Appendix A, there is a
two-photon state at optical detuning � = 0. This is the rea-
son why the photon bunching effect occurs in the θ = π/2
configuration as shown in Fig. 2(d), which is so-called two-
photon collective emission. But, in the meanwhile, for the
θ = 0 configuration as shown in Fig. 2(e), the conventional
photon antibunching can be generated due to the weak drive
of H-polarized photons and the exhaustion of the intermediate
magnons, namely, the low transition rate of |H〉 → |V 〉 con-
version in the weak nonlinear regime of g = 0.2κc. Figure 2(f)
shows the second-order correlation function of the output H-
and V -polarized photons in the θ = 0 and θ = π/2 configura-
tions, respectively. It is easy to see from Fig. 2(f) that quantum
statistics of photons generated by the |H〉 → |V 〉 and |V 〉 →
|H〉 conversions are not reversible. Specifically, the mini-
mum value (the dip) of the second-order correlation function
g(2)

i j (τ = 0) at � = 0 exhibits the opposite photon statistical

characteristics, i.e., g(2)
HH (0) � 1.015 (classical bunching) for

the output H-polarized photons under the input V -polarized
photons and g(2)

VV (0) � 0.92 (nonclassical antibunching) for
the output V -polarized photons under the input H-polarized
photons, respectively.

Next, we explore the polarization-state engineering by
changing the optical detuning �. Here, we introduce the
Stokes parameters and the Poincaré sphere to perform a tomo-
graph of the output polarization states. The former, the Stokes
parameters, defined by the intensities of three sets of orthog-
onally polarized fields (H − V , D − A, and R − L polarized
fields), includes four Stokes components in the following:

S0 ≡ IH + IV = ID + IA = IR + IL, (7a)

S1 ≡ (IH − IV )/(IH + IV ), (7b)

S2 ≡ (ID − IA)/(ID + IA), (7c)

S3 ≡ (IR − IL )/(IR + IL ), (7d)

where S0 stands for the total intensity, or the total average
photon number of an output signal at steady state. Il is the in-
tensity of a polarization component of the output signal given
by Il = 〈b̂†

l b̂l〉, where the subscript l depicts the polarizations
with l ∈ {H,V, D, A, R, L}. The summations of the intensities
of arbitrary two orthogonal components S0 are equal to each
other, which normalizes the other three Stokes components.
The normalized Stokes parameter S1 indicates the difference
of average steady-state photon numbers between H- and V -
polarized states. If S1 = 1 (S1 = −1), the optical field is fully
H (V ) polarized. Likewise, the normalized Stokes parameter
S2 describes the distinction between the D and A polarizations,
where the output operators in the D − A bases are defined as
b̂D = (b̂H + b̂V )/

√
2 and b̂A = (b̂H − b̂V )/

√
2, respectively.

When the given optical field is a balanced polarized light

formed by the positive superposition (the relative polarization
angle of the H and V components is 45◦) of the H- and
V -polarized fields with the same amplitude, the parameters
S1 = 0 and S2 = 1; if it is a negative superposition (the rela-
tive polarization angle of the H and V components is 135◦),
then S1 = 0 and S2 = −1. The normalized Stokes parameter
S3 shows the dominance of R- and L-circularly polarized light,
with the R − L basis defined by b̂R = (b̂H + ib̂V )/

√
2 and

b̂L = (b̂H − ib̂V )/
√

2. The normalized Stokes parameter S3

evaluates the degree of circular polarization and S3 = 1, 0,
−1 represents the ideally R circular, linear polarization, and L
circular polarizations, respectively. It also exhibits the phase
shift between the H and V components.

Through setting the Stokes parameters {S1, S2, S3} as the
orthogonal coordinates with a range from −1 to 1, we can
construct the latter, i.e., the Poincaré sphere, and depict the
quantum polarization states with it. The Poincaré vector, one-
to-one mapped by the polarization state with the definition
v = S1êH + S2êD + S3êR, shows the distribution of the polar-
ization state and the trajectory when it changes. The approach
above allows us to describe the density matrices of polariza-
tion states, which is similar to the Bloch sphere for describing
the models constituted by two subsystems. From these Stokes
parameters, we can derive the population of the corresponding
polarization states, together with S0. In addition, the polar-
ization states in the quantum regime do not always be pure
states after the interactions. To do this, we also introduce the
polarization purity, which is given by

P =
√

S2
1 + S2

2 + S2
3, (8)

where the polarization purity P is normalized to 1. In the
semiclassical optomechanical approach without considering
quantum fluctuation of the field, the purity P is always equal
to unity. This corresponds to the pure polarization states,
and all of the Poincaré vectors point at the surface when
the steady-state amplitude is large enough [38]. It also hints
that the output polarized fields are the completely coherent
superposition of the polarized fields, such as the coherent
H- or V -polarized lights. However, when we study the full
quantum dynamics, the incoherence and quantum fluctuation
of the photons and magnons can diminish the purity of the
polarization states. As a consequence, the vectors are curtailed
inside the Poincaré sphere.

The tomography of the output polarized photons is clearly
shown in Fig. 3, in which we still focus on the three spe-
cific input configurations mentioned before. Figures 3(a)–3(c)
present the Stokes parameters {S1, S2, S3} that depict the po-
larization states decomposed by the corresponding orthogonal
bases {H − V, D − A, R − L}. An input laser with θ = π/2
excites coherent photons with purely V polarization, and the
photons propagate in the YIG cavity. The photons preserve
themselves when the driving-laser frequency is far off reso-
nance. Hence, the Stokes parameters S1 � −1, S2 � 0, and
S3 � 0 when the frequency detuning � is far away from
zero, which seems like that the V -polarized light propagates
through a material without dispersion. However, when the
driving-laser frequency is tuned to � � ±0.012�m, the pa-
rameter S1 goes larger and almost reaches zero. This hints that
a balanced polarization state can be produced in the H − V
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FIG. 3. Stokes parameters, polarization purity, and Poincaré spheres. (a)–(c) Stokes parameters {S1, S2, S3} as functions of the optical
detuning � with the incident polarization angle θ = π/2. (d) Polarization purity P plotted for the polarization-state conversion of the |V 〉 to |H〉
channel with θ = π/2. (e) Poincaré sphere plotted for the conversion of the |V 〉 to |H〉 channel with θ = π/2. The marks are displayed at the
tops of the Poincaré vectors. (f) Poincaré sphere gathering the trajectories of the Poincaré vectors for three different polarization configurations
with θ ∈ {π/2, π/4, 0}. The blue circles are plotted for the purely V -polarized input field (θ = π/2), the red rectangles for the H − V balanced
polarized input (θ = π/4), and the green diamonds for the purely H -polarized input (θ = 0). The symbols |iθ 〉 with the corresponding colors
represent the initial states in the polarization-state conversion for the above three cases, and the arrows denote the movements of the trajectories
from � = −0.2�m to � = 0.2�m. The other parameters are �m = 2π × 1 GHz, �m = 0, κc = 0.05�m, κex = 0.5κc, κm = 2.74 × 10−3�m,
g = 0.2κc, ε = 0.5κc, εm = κm, and nm,th = 0.

representation, just as the situation that the input light goes
through a 50-50 polarization splitter. It is significant that the
shallow dip at optical resonance � = 0 shows the backward
conversion from the produced H-polarized photons to the
V -polarized photons. In the meanwhile, the polarization along
the D − A basis climbs to the maximum, corresponding to
the peaks of S2 at � = 0 in Fig. 3(b). This is the result of
the positive superposition of the balanced H- and V -polarized
fields. The results obtained above confirm that the purely V
polarization state of the input |V 〉 photons is converted to the
superpositions. Notably, when the quantum state conversion
begins (the parameter S1 starts to rise), the incoherent phase
appears meanwhile (as S3 changes). Moreover, the positions
where S1 and S2 change rapidly in Figs. 3(a) and 3(b) cor-
respond to the peak or dip of S3 in Fig. 3(c). The Stokes
parameter S3 varies within a range from −0.37 to 0.37, which
shows the appearance of the phase shift between the H-
and V -polarized photons during the conversion. The rotating
polarization, produced by the magneto-optical effect be-
tween the optical light and magnetic medium in macroscopic
regime (or the interaction between the photons and magnons
in microscopic regime), is the origin of the polarization-
state conversion. Intuitively, the phase shift between the
H and V polarization states is brought by the microwave-
driving magnons. So, the elliptical polarized photons can be
generated.

We notice that, in the semiclassical optomechanical ap-
proach, a strong control pump with both H and V components
is necessary to realize a polarization-state conversion. Ad-
ditionally, if the circularly polarized light is anticipated, a
circularly polarized signal is further needed [38]. On the
contrary, in our proposal, we can realize the polarization-
state conversion, and acquire the elliptically polarized photons
with only a linearly polarized driving laser (even with only
one polarization component) in the full quantum approach.
Moreover, we can reach the different elliptical polarization

states via only tuning the optical driving frequency of the
linear polarized laser field, despite it is not complete enough
now (with a range of about −0.37 ∼ 0.37 for S3). Also, the
polarization purity of the configuration with a 90◦ incident
polarization angle is plotted in Fig. 3(d). When the incident
photons have not affected by the magnons at large optical
detuning, the polarization purity P almost maintains a value
P � 1, corresponding to the pure polarization state. In the
frequency range around optical resonance, the polarization
purity drops rapidly below 0.4. It hints that we get the mixing
polarization states, which is in accord with the influence of
incoherent phase shift, thermal noise, and quantum fluctuation
during the drastic bosonic interaction. The slightly local max-
imum of the polarization purity at optical resonance � = 0
may be caused by the exchange between the input photons
with |V 〉 state and the produced photons with |H〉 state. Such
variation tendency of the purity reveals that the incoherent
components which arise from the quantum fluctuations of the
output photonic fields and the magnon-induced random phase
cause the decreasing polarization purity P < 1. The Stokes
parameters with other initial incident angles, for instance,
θ = π/4 and θ = 0, and more details of them are given in
Appendix B.

After this, the Poincaré sphere in the configuration of
θ = π/2, i.e., with an initial state |iπ/2〉 = |V 〉, is plotted by
the blue circles in Fig. 3(e) for a direct observation of the
output polarization states. The Poincaré vector moves together
with optical detuning � and forms a stereoscopically drop-
like trajectory. The input photons remain at the |V 〉 state in
large-detuning regime, thus the vector points on the surface of
the Poincaré sphere at S1 = −1 (the minimum of the H − V
axis). Then the vector rotates and shortens inside the sphere,
corresponding to the behaviors of the Stokes parameters and
the polarization purity near optical resonance. As a result, in
the |V 〉 → |H〉 conversion, the trajectory of Poincaré vectors
starts at the top of the V axis, excurses inside the Poincaré
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FIG. 4. Stokes parameters {S1, S2, S3} and polarization purities P for the polarization-state conversions with different initial polarizations.
The pictures in the first row are plotted for the purely V -polarized input photons (θ = π/2), the second row for the balanced polarized input
photons (θ = π/4), and the third row for the purely H input photons (θ = 0). Pictures in 1 to 4 columns indicate the Stokes parameters S1, S2,
S3, and P, respectively. The other parameters are �m = 2π × 1 GHz, �m = 0, κc = 0.05�m, κex = 0.5κc, κm = 2.74 × 10−3�m, g = 0.2κc,
ε = 0.5κc, εm = κm, and nm,th = 0.

sphere, and returns to the beginning at the end along with the
tuning of �. Figure 3(f) shows the trajectories of Poincaré
vectors for three different initial polarization photons (with the
input polarization angles θ ∈ {π/2, π/4, 0}) versus the detun-
ing �. As a reversal process of the |V 〉 → |H〉 conversion, the
H-polarized photons at the initial state |i0〉 = |H〉 transfer to
the V -polarized photons when considering the input polariza-
tion angle of θ = 0, plotted by the green diamonds. Obviously,
there is no rotation symmetry by a 180◦ rotation along the
R-L axis between the blue and green trajectories, which re-
veals a reversal asymmetry in the |H〉 � |V 〉 interconversion.
The variation range of the green trajectory is smaller than
the blue one in the H − V basis, which corresponds to the
suppression of |H〉 → |V 〉 process by the imbalanced creation
and collapse of magnons. This suppression originates from
the interaction Hamiltonian and the asymmetric dissipation
channels of the magnons from or to the reservoir. Although the
thermal magnon number nm,th = 0 in this subsection, there is
a magnonic dissipation superoperator D̂[m̂]ρ̂ in the Lindblad
master equation. The red rectangles, moving near the D − A
axis, depict the behavior of the mutual interconversion be-
tween the H- and V -polarized photons in the configuration of
θ = π/4. The quantum states during the mutual interconver-
sion start at the initial state |iπ/4〉 = 1√

2
(|H〉 + |V 〉) and evolve

into the final states which are mapped in the Poincaré sphere.
In the visualization of quantum states, we can see that the red
marks move to the H hemisphere [corresponding to S1 > 0 in
Fig. 4(e)] in the frequency range near optical resonance, which
is caused by the imbalanced suppression mentioned above. It

also hints that the time-reversal symmetry of the interconver-
sion is broken due to the appearance of the excited magnons.
In the following subsection, we further show and illustrate the
influence of the magnons on the polarization-state conversion
and the magnon-induced reversal asymmetry.

Furthermore, in order to exhibit the unique feature of our
proposal in the full quantum regime, we also simulate the
polarization-state conversion via the semiclassical approxi-
mation, and show the details and results in Appendix C.
The strong discrepancies between the exact numerical cal-
culation using the full quantum master equation (4) and the
semiclassical approximation in Appendix C are revealed.
Physically, the vertically polarized input field (TM mode)
is down-converted, whereas the horizontally polarized input
field (TE mode) is up-converted, and the magnetized medium
of YIG sphere (magnon mode) scatters the input photons via
the Faraday effect. During this three-mode interaction beyond
the semiclassical approximation, the generated field includes a
contribution from the quantum fluctuations of all three modes,
which are partially incoherent with respect to the input co-
herent fields due to the quantum correlation among the TM,
TE phonons and Kittel magnon where the residual dephasing
experienced by them exists. Consequently, this partial inco-
herence results in the strong discrepancy of Stokes parameters
represented in the Poincaré sphere of Figs. 5(a) and 5(b) and
also gives rise to the reduced polarization purity below unity
in the blue solid line of Figs. 5(c) and 5(d). However, when the
semiclassical approximation is employed, then the output field
through the cavity optomagnonic system is fully coherent with
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FIG. 5. Comparison between the results obtained via the full
quantum approach (blue circles and solid lines) and the semiclassical
approximation (red rectangles and dashed lines), which are abbre-
viated by “QT” and “SC” in the legend. Panels (a) and (c) are the
Poincaré sphere and the polarization purity plotted for the purely V -
polarized input (θ = π/2). Panels (b) and (d) are similarly plotted for
the balanced polarized driving field (θ = π/4). The other parameters
are the same as those in Fig. 4.

respect to the incident field since the quantum fluctuations
around the average fields have been omitted. The output field
can be entirely described by only the two expectation values
〈b̂H 〉 and 〈b̂V 〉. Either of them has a well-defined amplitude
and phase. This brings about a completely coherent, classical
superposition of horizontal and vertical polarization fields,
namely, a pure polarization state in which the purity arrives
at a constant value of unity as shown by the red dashed line of
Figs. 5(c) and 5(d). We have performed extensive analytical
calculations in Appendix C, and all results support this claim.

As a further remark, we point out that, associating with
the zero-delay second-order correlation functions in Fig. 2(f),
we expand more about the trajectories traveling into the in-
side of the Poincaré sphere, which reveals the presence of
the quantum fluctuations and distinguishes the full quantum
approach from the semiclassical approximation. Differing
from the second-order correlation functions which are always
equal to 1 via the semiclassical approach, we find that the
second-order correlation functions in the full quantum regime
distinctly vary in the whole frequency ranges. We can easily
see that the second-order correlations g(2)

i j (τ = 0) change a
lot near optical resonance � = 0, where the polarization-state
conversions take place and the quantum fluctuations arise.

Specifically, in the semiclassical approach, where the
quantum fluctuations are ignored, the second-order intensity
correlation is a constant. It hints that the output polariza-
tion states are the completely coherent superposition, with
a constant polarization purity P = 1. Thus, the trajectories
of the pure output polarization states locate on the surface
of the Poincaré sphere (see the details in Appendix C). On
the contrary, in the full quantum regime, the second-order

correlation functions show different photon statistics for the
output polarized photons under different input polarization
angles in the steady-state limit. When a V -polarized input field
is applied (θ = π/2), the red dashed line in Fig. 2(f) shows the
photon statistic of the produced H-polarized photons. When
the trajectory on the Poincaré sphere begins to move to the
inside, the phase shift between the H- and V -polarized pho-
tons becomes larger (corresponding to the larger dominance of
R- and L-polarized photons), in the meanwhile the zero-delay
second-order correlation function g(2)

HH (0) also becomes larger
with the decrease of the detuning �, which shows bunching
effect and means that the output H-polarized photons can be
detected more possibly under a zero-time delay. On optical
resonance � = 0, the phase shift returns to zero, and the
correlation goes to the minimum, but still reveals slight bunch-
ing effect with g(2)

HH (0) � 1.015. Similarly, in an H-polarized
input configuration (θ = 0), the zero-delay second-order cor-
relation function for the produced V -polarized photons g(2)

VV (0)
shows slight bunching effect under a large-detuning drive, but
it refers to photon antibunching on resonance to a minimum
g(2)

VV (0) � 0.92, where the phase shift also reduces to zero on
optical resonance � = 0. The above opposite photon statistics
originate from the different behaviors of Kittel magnons in
the |H〉 � |V 〉 conversions, and they also exhibit the quantum
features, which deviate from the results via the semiclassical
approximation.

B. Magnon-induced time-reversal asymmetry in
polarization-state conversion

As we know, an external-bias magnetic field can break the
time-reversal symmetry inside a solid block made of magnetic
material in classical nonlinear optics [64]. For a microscopic
mechanism, in the quantum cavity optomagnonics, we will
show that the broken reversal symmetry can be caused and
affected by the magnons. We first consider the case of a purely
H-polarized input (θ = 0) for finding the influence on the
polarization state conversion by the thermal magnons, shown
in Figs. 6(a) and 6(c). In the zero-temperature limit, there is
no thermal magnon in the reservoir, i.e., nm,th = 0. Starting
at an initial state |i0〉 = |H〉, the trajectory of the Poincaré
vectors versus the optical detuning � after the |H〉 → |V 〉
conversion is plotted by the blue circles in Fig. 6(a), which
is the same as the red trajectory in Fig. 3(f). When we take
nm,th = 1, the tops of the Poincaré vectors move and form
a similar trajectory, but it is smaller and shifts towards the
center of the Poincaré sphere, which is marked by the red
rectangles. Influenced by the thermal magnons, the quantum
state conversion of the |H〉 → |V 〉 case realizes a greater
conversion efficiency in the H − V basis with setting the
thermal magnon number nm,th = 2. As the thermal magnon
number increases, the trajectory is closer to the center of
the Poincaré sphere, which means that the polarization purity
decreases gradually. To clarify this phenomenon, we give a
brief analysis here. During the |H〉 → |V 〉 conversion in the
θ = 0 configuration, the microwave-diving magnons cannot
guarantee the consumption for converting photons, as the
microwave-diving amplitude of magnons εm is much smaller
than the coupling strength g, i.e., εm/g = 0.274. The intra-
cavity magnons can only be pumped by the microwave drive
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FIG. 6. Poincaré spheres and polarization purities plotted for dis-
covering the magnon-induced incoherence and reversal asymmetry.
(a) Poincaré sphere plotted for the |H〉 → |V 〉 conversion channel
with the different thermal magnon numbers nm,th ∈ {0, 1, 2} and the
incident polarization angle θ = 0. The black mark |i0〉 = |H〉 de-
notes an initial state with purely H polarization in the θ = 0 case.
(b) Poincaré sphere plotted for the interconversions with different
nm,th in the same range with (a), and the input polarization angle
is set to θ = π/4. The black mark |iπ/4〉 = 1√

2
(|H〉 + |V 〉) denotes

an initial state with a purely H polarization in the θ = π/4 case.
The black arrows in both of (a) and (b) stand for the movements
of the trajectories versus optical detuning �. (c), (d) Polarization
purities P with the input polarizations corresponding to (a) and (b),
respectively. The blue solid lines are painted for nm,th = 0, the red
dashed lines are painted for nm,th = 1, and the green dotted-dashed
lines are painted for nm,th = 2, corresponding to the colors of the
marks in (a) and (b). The other parameters are the same as those
in Fig. 3.

more slowly, relative to annihilation in the interaction with
the input photons, thus the |H〉 → |V 〉 conversion [governed
by â†

V âH m̂ in Eq. (3b)] is much limited, comparing with the
|V 〉 → |H〉 conversion [governed by âV â†

H m̂† in Eq. (3b)].
However, when the zero-temperature limit is removed, i.e.,
nm,th = 0, the thermal magnons appear in the reservoir. The
thermal magnons can enter into the cavity, governed by the
collapse term κmnm,thD̂[m̂†]ρ̂ in the Lindblad master equa-

FIG. 7. Time evolution of the average photon numbers nH (t )
and nV (t ) of the H - and V -polarized photons in the interconver-
sion (θ = π/4) with the different thermal magnon numbers nm,th ∈
{0, 0.5, 1, 2} for (a)–(d). The red dashed and blue solid lines, re-
spectively, depict the evolution of the photon numbers of H - and
V -polarized photons. The values marked in the top-right corners of
each subpicture are the steady-state average photon numbers, the
colors of which correspond to the H and V polarizations in the
subscripts. The other parameters are the same as those in Fig. 6.

tion in Eq. (4), and assist the microwave-driving magnons in
converting the incident polarized photons. By this mechanism,
the |H〉 → |V 〉 conversion can be greatly encouraged with
the increased thermal magnons. Meanwhile, the conversion
range is diminished from the input H-polarized photons to the
R/L-polarized photons. It hints that the thermal magnons can
become the medium of the quantum state conversion between
the H- and V -polarized photons, but decrease the phase shift
of them. The polarization purity, which falls from P(nm,th =
0) = 0.55 to P(nm,th = 2) = 0.4 at optical resonance � = 0
in Fig. 6(c), also shows the promotion for producing the
mixed polarization states or the encouragement of the quan-
tum polarization-state conversion.

For delicately studying the magnon-induced reversal asym-
metry in the polarization-state conversion, we consider the
interchange between the H- and V -polarized photons starting
at the initial state |iπ/4〉 = 1√

2
(|H〉 + |V 〉), by applying a bal-

anced polarized driving light with the input angle θ = π/4.
Meanwhile setting the thermal magnon number nm,th = 0,
we find a difference between the steady-state average pho-
ton numbers of the H- and V -polarized photons. With the
thermal magnon number nm,th increasing from 0 to 2, the
split between the intracavity photon numbers nH and nV goes
smaller, meanwhile the cavity optomagnonic system can reach
the steady state faster (shown in Fig. 7). We intuitively deem
that this magnon-induced and magnon-influenced distinction
originates from the asymmetric interaction Hamiltonian in
Eq. (3b) and the imbalanced coefficients of the magnonic
damping channels in the Lindblad master equation in Eq. (4).
According to the interaction Hamiltonian, the H-polarized
photons can only create or collapse together with both
of the microwave-driving and thermal magnons during the

033701-11



ZHU LIANG, JIAHUA LI, AND YING WU PHYSICAL REVIEW A 107, 033701 (2023)

FIG. 8. Poincaré spheres for two different polarized driving fields and three thermal magnon numbers. (a)–(c) Show Poincaré spheres
plotted for the purely H -polarized input (θ = 0). Note that, for exhibiting every component of the Stokes parameters obviously, (b) and (c) are
the two views along the D − A and H − V axes correspondingly. (d)–(f) A set of Poincaré spheres plotted for the balanced polarized driving
field (θ = π/4). The thermal magnon numbers are set by nm,th ∈ {0, 1, 2}, with the corresponding colors and marks in the right side of the
figure. The other parameters are the same as those in Fig. 6.

three-boson interactions. These are manifested in the products
of the bosonic operators âV â†

H m̂† and â†
V âH m̂, but without

the terms â†
V âH m̂† and âV â†

H m̂ (which is governed by another
mode-matching condition ωV − ωH + ωm = 0). Additionally,
the two collapse operators D̂[m̂]ρ̂ and D̂[m̂†]ρ̂ act on the den-
sity matrix of the magnonic subsystem, to control the collapse
and excitation of the magnons to or from the thermal reser-
voir, respectively, with the imbalanced efficiency κm(nm,th +
1) and κmnm,th. As a result, this cavity optomagnonic system
shows the intrinsic asymmetric features, without the external
asymmetric elements (such as a spin cavity [65–67] or the
asymmetric control fields [43,68]). By the mechanism above,
the photons can couple to not only the microwave-driving
magnons, but also the thermal magnons and the magnons
which are the by-products in the |V 〉 → |H〉 conversion. In
this way, the H-polarized photons can be converted more
efficiently to the V -polarized photons with higher nm,th, cor-
responding to the smaller difference between the steady-state
average photon numbers inside the cavity.

In order to gain further insight into the magnon-induced
reversal asymmetry during the interconversion process, we
numerically solve the Lindblad master equation in the steady-
state limit to obtain the static density matrix of the intracavity
polarized photons and magnons after the |H〉 � |V 〉 intercon-

version. Additionally, by means of the input-output relations,
the Stokes parameters can be calculated as the functions
of the steady-state average values of the output photonic
operators via Eqs. (7a)–(7d). The Poincaré sphere for the
balanced polarization configuration (θ = π/4) is shown in
Fig. 6(b), and the polarization purity is displayed in Fig. 6(d).
As can be seen from the figures, on the one hand, with the
increase of the thermal magnon number nm,th, the gap of
the trajectory is diminished, which seems to merge along
the D − A axis. The output light is more similar to a bal-
anced polarized light, with the polarization purity going
smaller, i.e., the trajectory is much closer to the surface of
the Poincaré sphere [as shown in Figs. 8(e) and 8(f); also
see Appendix D for a detailed discussion]. It means that
the reversal asymmetry of the interconversion is diminished
by the increased thermal magnons. On the other hand, the
thermal magnons still narrow down the conversion range in
the R − L basis, which is the same trend as that in Fig. 6(a).
Physically, in the interconversion process, the |H〉 → |V 〉
channel is greatly suppressed by the inadequate supply of
the microwave-driving magnons and the magnonic collapse
when nm,th = 0. Consequently, the intensity of the output
H-polarized photons is much larger than that of the V -
polarized photons, corresponding to the blue trajectory which
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shifts a lot to the H axis at optical resonance � = 0 in
Fig. 8(e). Owing to the considerably small value of εm/g =
0.274, the rate of the magnons coupling to the polarized
photons is several times faster than the magnons dissipating
to the reservoir, thus the optomagnonic interaction governed
by â†

V âH m̂ dominates the suppression. Consequently, the in-
tensity of the H component of the output photons is still
larger than the V component with nm,th = 1. When the thermal
magnon number rises to nm,th = 2, the green trajectory almost
reaches the zero point of the H − V axis (S1 = 0) at � = 0.
What is more, the polarization purity in the off-resonance
range becomes smaller with the growth of thermal magnon
number, which evidences that the thermal magnons can boost
the quantum state conversion. But, at optical resonance � =
0, the polarization purity rises from P(nm,th = 0) = 0.14 to
P(nm,th = 2) = 0.32. There is a tendency for the output signal
to be a coherent superposition of the polarized fields, i.e., the
incoherent quantum feature is diminished.

As we simulated and exhibited before, the magnon-induced
reversal asymmetry of the polarization-state conversion in
the cavity optomagnonic system is revealed in the full quan-
tum regime. We illustrate that both of the microwave-driving
magnons and the thermal magnons can mediate the quantum
polarization-state conversion, and the thermal magnons can
also induce and influence the reversal asymmetry in the in-
terconversion. Moreover, as an intuitive extension, we predict
that there will be a critical point of nm,th, where the thermal
magnons can satisfy the consumption for the |H〉 → |V 〉 con-
version, and completely eliminate the reversal asymmetry in
the interconversion. Beyond this critical point, the magnons
can fulfill the polarization-state interconversion, so the Lind-
blad dissipation superoperators in the Born-Markov quantum
master equation will dominate the imbalanced suppression
and revive the reversal asymmetry, such as the previous ex-
periments at the room temperature and with strong driving
[24–26]. In addition, in the regime beyond the critical point,
the thermal magnons diminish the incoherent quantum feature
of the output polarized photons, which may bring the asym-
metric process in quantum cavity optomagnonics back to the
semiclassical regime, even to the classical nonlinear optics
(the large amplitude difference between the two BLS side-
bands, i.e., the reversal asymmetry between the up-conversion
and down-conversion in Refs. [49–52]).

IV. CONCLUSIONS AND OUTLOOK

In summary, we have theoretically elaborated on an optical
polarization-state engineering in the cavity optomagnonic sys-
tem based on a YIG sphere in the quantum regime, and further
have explored a magnon-induced time-reversal asymmetry
in the polarization-state conversion. With this purpose, we
present the effective Hamiltonian of the whole system to de-
pict the two transition channels between the two polarization
states |H〉 and |V 〉, with a monochromatic polarization driving
field and a microwave-driving field which excite both photons
and magnons. For insight into the quantum regime, we set
a weak-enough optical laser and a microwave-driving field
to reach the few-photon and few-magnon level. By rotating
the input polarization angle, we attain the input photons with
three different initial polarizations. We simulate the time evo-

lution of the average photon numbers inside the cavity until
steady state, to reveal the phenomenon of the polarization-
state conversion. To perform the polarization tomography, we
calculate the Stokes parameters to quantify the polarization
states of the output photons, and paint the Poincaré spheres for
mapping the polarization states, which can also represent the
density matrices of the states. So, a quantum polarization-state
engineering is put forward to obtain arbitrary polarization
states, by appropriately tuning the frequency and the po-
larization angle of the input driving laser. The incoherent
component arises from the quantum fluctuations around the
output average field, and the magnon-induced random phase.
Consequently, the output polarizations are not necessarily
pure polarization states. In other words, the full quantum
process is evidenced by the polarization purity P < 1, which
is significantly different from the semiclassical approxima-
tion because the semiclassical image predicts only coherent
outputs, corresponding to pure polarization states at the sur-
face of the Poincaré sphere. In the zero-temperature limit
(the thermal magnon number nm,th = 0), a polarization-state
conversion approaching the zero point of the H − V axis can
be realized in the cases of a single-polarization incident light
(H/V -polarized input is studied in the text). Meanwhile, we
can even produce the elliptically polarized photons with only
using the linearly polarized input photons. The phase shift
can be induced to the input photons by the microwave-driving
magnons in the cavity, hence, the R/L-polarized photons can
be produced. For instance, the conversion of the generated
polarization state |H〉, with the initial photonic polarization
state |V 〉, leads to a large rotation of the output polarization
by 88◦ both in the latitude and longitude of the Poincaré
sphere, accompanied with the slight bunching with a local
maximum g(2)

HH,max(0) � 1.015. Also, we can obtain the V -
polarized photons in the |H〉 → |V 〉 conversion, which brings
a 60◦ rotation and the long-temporal nonclassical antibunch-
ing with g(2)

VV,min(0) � 0.92.
Aside from the tomography for the polarization states, we

put our eyes on the magnon-induced time-reversal asymmetry
in the interconversion, due to the difference on the steady-state
average photon numbers of both polarizations. We find that
the magnons play an essential role in the broken time-reversal
symmetry, as the magnons asymmetrically encourage and
suppress the creation and collapse of the polarized photons
inside the cavity. In the few-magnon regime, the microwave-
driving magnons cannot satisfy the need for converting
the H-polarized photons to the V -polarized photons, which
means that the up-converted channel is much suppressed in
the interconversion. As a result, the magnon-induced rever-
sal asymmetry appears. With the thermal magnon number
nm,th increasing, the thermal magnons provide help to the
microwave-driving magnons, thus, the magnon-induced re-
versal asymmetry is diminished gradually. On the one hand,
the thermal magnons encourage the polarization-state conver-
sion, evidenced by the decreasing polarization purity in the
large optical detuning regime, where the microwave-driving
magnons are exhausted. On the other hand, when the magnons
are enough, the increasing magnons bridge a connection from
the full quantum regime to the semiclassical regime, which
is evidenced by the top of the Stokes vectors being closer to
the surface of the Poincaré sphere in the frequency range near
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optical resonance. This investigation opens up the possibility
of designing a single-photon device for arbitrarily manipulat-
ing the photonic polarization states in the solid-state material,
and offers a further understanding for the magnon-induced
reversal asymmetry in the quantum cavity optomagnonics.

Finally, it is worth pointing out that a few natural ex-
tensions to the present investigation would be interesting
directions. First of all, by analogizing to the Stokes pa-
rameters, the Poincaré vector and its modulus to assess the
polarization purity and the departure from the semiclassical
theory, is it possible to relate the nonclassical antibunch-
ing and classical bunching of the output polarization fields
with the excursions on the surface of the Poincaré sphere?
Second, what happens, for example, if the optomechanical
type of coupling gâ†â(m̂ + m̂†) is taken into account? Third,
can the photon-polarization change mediated by the magnon
be understood intuitively by means of standard perturbation
theory? For example, in Appendix E we have performed a
Schwinger-Keldysh perturbation calculation for the photon-
photon-magnon scattering in the cavity optomagnonic model,
where we regard the optomagnonic coupling g as a pertur-
bation to further examine its effect on the real-time optical
polarization dynamics in the quantum regime. In principle,
for the rest the corresponding discussions can be carried out
as well. Of course, they also are arduous tasks and are left for
further study in the future.
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APPENDIX A: EFFECTIVE HAMILTONIAN OF
TWO-CHANNEL-TRANSITION CAVITY OPTOMAGNONIC

ARCHITECTURE

In the main text, we consider the two transition channels
but with the same input frequency as shown in Fig. 1(c): (i)
a V -polarized photon is down-converted to an H-polarized
photon and (ii) an H-polarized photon to a V -polarized pho-
ton. With these in mind, the original Hamiltonian of the cavity
optomagnonic system reads as

Ĥori = �1H â†
1H â1H + �1V â†

1V â1V

+�2H â†
2H â2H + �2V â†

2V â2V + �mm̂†m̂

− gâ†
1H â1V (m + m†) − gâ1H â†

1V (m + m†)

− gâ†
2H â2V (m + m†) − gâ2H â†

2V (m + m†), (A1)

which describes the two sets of H- and V -polarized WGM
photons, interacting with the Kittel mode magnons. The oper-
ators and notations are defined in the main text, except that the
numbers {1, 2} mean the two transition channels. The notation
1 represents the down-conversion channel pumped by a TM
input light, and the notation 2 accounts for the up-conversion

channel pumped by a TE input light. Here the driving
term is introduced by Ĥd = εV â†

1V e−iω1V t + εH â†
2H e−iω2H t +

εmm̂†e−iωmt + H.c. to excite the cavity WGMs of the photons
and the Kittel mode of the magnons, with the corresponding
frequencies. H.c. means the Hermitian conjugate. The orig-
inal Hamiltonian is so cumbersome that we try to simplify
Eq. (A1). Moreover, the interaction Hamiltonian and the driv-
ing term are transformed to the time-independent forms. To
this purpose, we utilize a unitary operator

Û (t ) = exp

{
i

[ ∑
j=1,2

(ω jH â†
jH â jH + ω jV â†

jV â jV ) + ωmm̂†m̂

]
t

}

(A2)

for a frame rotating with Ĥ = Û ĤoriÛ † − iÛ (∂Û †/∂t ), and
simultaneously consider the triple-resonance condition ωV −
ωH − ωm = 0, the products of operators are derived as

a†
1l a1l + a2l a

†
2l → a†

1l a1l + a2l a
†
2l , (A3a)

a†
1l a2l + a1l a

†
2l → a†

1l a2l e
iωmt + a1l a

†
2l e

−iωmt , (A3b)

a jV a†
jH m† + a j′V a†

j′H m† → a jV a†
jH m† + a j′V a†

j′H m†, (A3c)

a jV a†
j′H m† + a j′V a†

jH m† → a jV a†
j′H m†eiωmt

+ a j′V a†
jH m†e−iωmt , (A3d)

a jV a†
jH m + a j′V a†

j′H m → a jV a†
jH m†e2iωmt

+ a j′V a†
j′H m†e2iωmt, (A3e)

a jV a†
j′H m + a j′V a†

jH m → a jV a†
j′H m†e3iωmt

+ a j′V a†
jH m†eiωmt , (A3f)

where the subscript j indicates the different transition chan-
nels with j ∈ {1, 2} and l indicates the H and V polarizations.
Because of ωm � g, we can safely omit the high-frequency
terms which consist of the mode-mismatching terms and the
interplay terms between the different sets of photons, i.e.,
the so-called RWA. A relationship between the detunings of
two channels is given by �1l = �2l + �BF, where �BF orig-
inates from the magnetic birefringence for the TE and TM
modes with the same orbital angular momentum. The Hamil-
tonian terms of the polarized photons with the geometric
birefringence-induced detuning �BF(â†

2V â2V + â†
2H â2H ) can

be safely dropped, thus we can set �1l = �2l = �l , with
l ∈ {H,V }. Additionally performing a transformation of the
photonic modes âV = â1V + â2V and âH = â1H + â2H , the
Hamiltonian (A1) can be reduced to the form

Ĥrot = −�H â†
H âH − �V â†

V âV − �mm̂†m̂

− gâ†
H âV m̂† − gâH â†

V m̂. (A4)

Supplementally, the mentioned-above driving terms can also
be transformed to a simple form Ĥd,rot = εH â†

H + εV â†
V +

εmm̂† + H.c., which is time independent. As stated above, we
can exploit the effective Hamiltonian in the frame rotating to
depict the cavity optomagnonic interaction of the two sets of
bosons, and to simulate its dynamical evolution.

From the Hamiltonian in Eq. (A4), we analytically
find some eigenstates (energy levels) of the coupled cav-
ity optomagnonic system, and in the following we list
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these anharmonic energy levels in few-photon subspace: (i)
single-photon states |ψ±

1 〉 = 1√
2
(|1, 0, 0〉 ± |0, 1, 1〉), with an

optical detuning � = ±g; (ii) a two-photon singlet |ψ0
2 〉 =

1
3 (

√
6|2, 0, 0〉 − √

3|0, 2, 2〉), with an optical resonance con-
dition � = 0; and (iii) the two-photon doublets |ψ±

2 〉 =
1√
6
(|2, 0, 0〉 ± √

3|1, 1, 1〉 + √
2|0, 2, 2〉), with a detuning

� = ±
√

6
2 g, correspondingly. The notation |nV , nH , nm〉 rep-

resents the Fock state with nV V -polarized photons, nH H-
polarized photons, and nm Kittel magnons.

APPENDIX B: OPTICAL POLARIZATION-STATE
TOMOGRAPHY

During the polarization-state conversion, we need to define
some key parameters for quantifying the output polarization
states. Thus, the Stokes parameters and the polarization purity
are introduced. Deriving from the input-output formalism for
H- and V -polarized output fields, and the definition of the
other output operators b̂l in the main text, the complete input-
output relations of all the orthogonal polarization bases are
given by

b̂H = bH,in − i
√

κexâH , (B1a)

b̂V = bV,in − i
√

κexâV , (B1b)

b̂D = bD,in − i
√

κexâD, (B1c)

b̂A = bA,in − i
√

κexâA, (B1d)

b̂R = bR,in − i
√

κexâR, (B1e)

b̂L = bL,in − i
√

κexâL, (B1f)

with additional definitions bD/A,in = (bH,in ± bV,in )/
√

2,
bR/L,in = (bH,in ± ibV,in )/

√
2, âD/A = (âH ± âV )/

√
2, and

âR/L = (âH ± iâV )/
√

2 (the subscripts D and R correspond to
the symbol “+” while A and L correspond to “−”). In above
equations, b̂l (b̂†

l ) are the annihilation (creation) operators
of the corresponding output polarized photons, âl (â†

l ) are
the annihilation (creation) operators of the corresponding
input polarized photons, and bl,in are the average amplitude
of the input fields in the corresponding polarization bases.
Owing to the linearly polarized input light we set, the average
amplitude of the R and L components are always equal to

zero. Accordingly, the terms bR,in and bL,in are absent in
Eqs. (B1e)–(B1f). The components of the Stokes parameters
have been defined in the main text, as the form in the
following:

S0 ≡ IH + IV = ID + IV = IR + IL, (B2a)

S1 ≡ (IH − IV )/(IH + IV ), (B2b)

S2 ≡ (ID − IA)/(ID + IA), (B2c)

S3 ≡ (IR − IL )/(IR + IL ), (B2d)

where Il is the intensity of a polarization component of the
output signal given by Il = 〈b̂†

l b̂l〉, where the subscript l de-
picts the polarizations with l ∈ {H,V, D, A, R, L}.

Furthermore, by introducing the definition of the D − A
and R − L orthogonal bases

b̂D = (b̂H + b̂V )/
√

2, (B3a)

b̂A = (b̂H − b̂V )/
√

2, (B3b)

b̂R = (b̂H + ib̂V )/
√

2, (B3c)

b̂L = (b̂H − ib̂V )/
√

2, (B3d)

we can simplify the Stokes parameters to the functions of only
the output photonic operators in the H − V representation,
which are yielded by

S0 = IH + IV , (B4a)

S1 = 〈b̂†
H b̂H 〉 − 〈b̂†

V b̂V 〉
IH + IV

, (B4b)

S2 = 〈b̂†
H b̂V 〉 + 〈b̂H b̂†

V 〉
IH + IV

, (B4c)

S3 = i
〈b̂†

H b̂V 〉 − 〈b̂H b̂†
V 〉

IH + IV
. (B4d)

The Dirac brackets 〈·〉 indicate the average values of the
operators inside them in the steady-state limit, which can
be calculated with the steady-state density matrix (t → ∞)
by solving the Lindblad master equation (4). Then, substi-
tuting the output operators b̂l (b̂†

l ) by Eqs. (B1a)–(B1f) into
Eqs. (B4a)–(B4d), the Stokes parameters are derived as

S0 = IH + IV = κex〈1 + i cos θ (â†
H − âH ) + i sin θ (â†

V − âV ) + (â†
H âH + â†

V âV )〉, (B5a)

S1 = κex〈(cos2 θ − sin2 θ ) + i cos θ (â†
H − âH ) − i sin θ (â†

V − âV ) + (â†
H âH − â†

V âV )〉
IH + IV

, (B5b)

S2 = κex〈2 cos θ sin θ + i cos θ (â†
V − âV ) + i sin θ (â†

H − âH ) + (â†
H âV + âH â†

V )〉
IH + IV

, (B5c)

S3 = κex〈cos θ (â†
V + âV ) − sin θ (â†

H + âH ) + i(â†
H âV − âH â†

V )〉
IH + IV

. (B5d)

Based upon Eqs. (B5a)–(B5d), we can evaluate the Stokes
parameters and perform the complete tomography for the
polarization-state engineering in the Poincaré sphere. We nu-

merically simulate the polarization-state conversion in three
types of configurations with the following different input po-
larization angles: (i) θ = π/2, (ii) θ = π/4, and (iii) θ = 0,
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respectively. The results are displayed in Fig. 4, where the
Stokes parameters and the purity of the output polarization
states are plotted as a function of the optical detuning � for
three different polarization angles θ .

APPENDIX C: COMPARISON BETWEEN
SEMICLASSICAL APPROXIMATION AND FULL

QUANTUM APPROACH

As we know, the semiclassical approximation is widely
used in the analyses of quantum state conversion by lin-
earizing an operator and making the Hamiltonian to a
“beam-splitter” form [39–43]. In the weak-driving and weak-
coupling regimes, the semiclassical approximation is an
appropriate method to solve the problem in quantum state
conversion, in which a linearization Ô = 〈Ô〉 + δÔ with a
coherent term 〈Ô〉 and a quantum incoherent term δÔ is
generally suitable for an arbitrary operator Ô. In this way,
for example, the expectation value 〈b̂l〉 describes the optical
output field of b̂l with l ∈ {H,V, D, A, R, L}, and the out-
put intensity can be given by Il = 〈b̂†

l 〉〈b̂l〉, with neglecting
the fluctuation terms. In the semiclassical approximation, the
quantum fluctuations around the expectation values can be
omitted, as the output fields are expected for coherent fields in
the polarization-state conversion. However, in our work, the
quantum fluctuations lead a lot of incoherent components to
the output fields, thus the results of the exact quantum mas-
ter equation calculations are obviously different from what
are obtained by the semiclassical approximation. In the main
text, we have displayed the detailed results in the quantum
regime. Then, in this Appendix, we show the analysis and give
the simulation results with semiclassical approximation for a
comparison.

By including the dissipations and input fields of the pho-
ton and magnon modes, in the meanwhile turning the cavity
optomagnonic system to the interaction picture with the uni-
tary operator Û (t ) [Eq. (A2)] and combining the effective
Hamiltonian [Eqs. (3a) and (3b)], the quantum Langevin
equations (QLEs) of the whole driven system can be given
by

˙̂aH =
(

i�H − κH

2

)
âH + igâV m̂† − iεH − i

√
κin f̂H,in,

(C1a)

˙̂aV =
(

i�V − κV

2

)
âV + igâH m̂ − iεV − i

√
κin f̂V,in,

(C1b)

˙̂m =
(

i�m − κm

2

)
m̂ + igâ†

H âV − iεm − i

√
κm

2
f̂m,in.

(C1c)

The operators f̂H,in, f̂V,in, and f̂m,in are the input noises
introduced for the H- and V -polarized photons and the Kit-
tel magnons, and the definitions of other parameters are
the same as those in the main text. The involved input-
noise operators have zero average values, i.e., 〈 f̂l,in〉 = 0.
Alternatively, the nonzero correlation functions of input op-
erators are exhibited as follows: 〈 f̂H,in(t ) f̂ †

H,in(t ′)〉 = δ(t −
t ′), 〈 f̂V,in(t ) f̂ †

V,in(t ′)〉 = δ(t − t ′), 〈 f̂m,in(t ) f̂ †
m,in(t ′)〉 = (nm,th +

1)δ(t − t ′), and 〈 f̂ †
H,in(t ) f̂H,in(t ′)〉 = nm,thδ(t − t ′) [69]. The

thermal quantum numbers are assumed as nH (V ),th ∼ 0 at
room temperature, and nm,th � nH (V ),th, which are the same
definition in Sec. II of the main text. Under the continuous-
wave drives, the system can evolve to a steady state. We
linearize the operators by rewriting a bosonic operator as a
classical average value plus a quantum fluctuation operator
Ô = 〈Ô〉 + δÔ, with Ô ∈ {âH , âV , m̂}. In the meanwhile, the
second-order terms of the fluctuation operators are gener-
ally neglected, and we apply the semiclassical approximation
with 〈âV m̂†〉 = 〈âV 〉〈m̂†〉, 〈âH m̂〉 = 〈âH 〉〈m̂〉, and 〈â†

H âV 〉 =
〈â†

H 〉〈âV 〉. In this way, according to the QLEs (C1a)–(C1c),
we can directly derive two sets of equations for the classi-
cal average values and quantum fluctuation operators. Still
applying the resonance condition of magnons �m = 0, i.e.,
�V = �H = �, and meanwhile considering the zero average
values of the input noise terms, we can simplify the average-
value equations to the nonlinear equations in the following:

〈âH 〉 = −DH + GV 〈m̂†〉[ − �̃2 − i �(κH +κV )
2

] + g2〈m̂†〉〈m̂〉 , (C2a)

〈âV 〉 = −DH + GV 〈m̂〉[ − �̃2 − i �(κH +κV )
2

] + g2〈m̂†〉〈m̂〉 , (C2b)

〈m̂〉 = 2i(DH + GV 〈m̂†〉)(DV + GH 〈m̂〉)

κm(−�̃2 + g2〈m̂†〉〈m̂〉)2 + κm�2(κH +κV )2

4

, (C2c)

in which the associated coefficients are defined as DH =
εH� + i εH κV

2 , DV = εV � + i εV κH
2 , GV = gεV , GH = gεH ,

�̃2 = �2 − κH κV
4 , and 〈m̂†〉 = 〈m̂〉†. Because of the high-order

nonlinear equation for the steady-state average values of
magnons in Eq. (C2c), we can hardly yield the analytical solu-
tions of the QLEs. Hence, we try to calculate the steady-state
average values based on QLEs [see Eqs. (C2a)–(C2c)] and,
at the same time, numerically solve the master equation in
Eq. (4), and show the distinction of the Poincaré sphere be-
tween the full quantum approach and the semiclassical image.

As shown in Fig. 5, the polarization-state conversions be-
have completely different in what are obtained between the
full quantum regime and the semiclassical regime. With the
semiclassical approximation 〈Ô†

i Ô j〉 = 〈Ô†
i 〉〈Ô j〉, the quan-

tum fluctuations around the steady-state average values in the
QLEs are not considered, which contain abundant incoherent
components of the output fields b̂l and bring full quantum
features to our work. The blue circles and solid lines in Fig. 5
are the results in the full quantum regime. On the contrary,
the trajectories plotted with red rectangles all locate on the
surface of Poincaré sphere, which hint the purely coherent
output fields after the polarization-state conversions. It can
also be confirmed that the polarization purity in Figs. 5(c)
and 5(d) equal to unity throughout all of detuning �. For a
short summary, the comparison in this section exhibits the
great difference between the full quantum and semiclassical
approaches in our work, and the Poincaré sphere clearly vi-
sualizes the difference. On the one hand, in the semiclassical
approach, the fields are generally regarded as averages, thus
the output fields are always the fully coherent superpositions,
i.e., the so-called pure polarization states (P = 1). On the
other hand, the essential feature, quantum fluctuations, bring
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the incoherent components to the output photons after the
quantum polarization-state conversion, hence the trajectories
move into the inside of Poincaré sphere, and the polarization
purities decrease (P < 1).

Besides, it should be stressed that the zero-delay second-
order correlation functions of the output polarized photons
always equal to 1 in the steady-state limit via the semiclassical
approach, such as

g(2)
HH (0) = 〈b̂†

H b̂†
H b̂H b̂H 〉/〈b̂†

H b̂H 〉2

= |cH |4(b∗
H,in + i

√
κexα

∗
H )(b∗

H,in + i
√

κexα
∗
H )(bH,in − i

√
κexαH )(bH,in − i

√
κexαH )

[|cH |2(b∗
H,in + i

√
κexα

∗
H )(bH,in − i

√
κexαH )]2

= 1 (C3a)

for the output H-polarized photons, where the final polariza-
tion state is a complete superposition of the coherent state,
i.e., |ψss〉 = cH |αH 〉 + cV |αV 〉 according to the trajectories on
the surface of the Poincaré sphere under the semiclassical
approximation. The output operator b̂H has been introduced
before, the state |ψss〉 is a final state which has evolved to the
steady-state limit, the factors cH and cV are the probability
amplitudes of corresponding coherent states |αH 〉 and |αV 〉.
Obviously, the coherent state |αH 〉 is an eigenstate of the out-
put operator b̂H (annihilation operator âH ) with the eigenvalue
αH . This leads the second-order correlation function to a con-
stant in Eq. (C3a), i.e., g(2)

HH (0) = 1 (we have confirmed it in
numerical simulation but have not shown it here), which hints
that the output polarized fields are actually coherent fields. It
also differs a lot from the results in the full quantum level
as mentioned in the main text [Fig. 2(f)], and further offers
another view of the comparison between the semiclassical
approximation and full quantum approach.

APPENDIX D: MAGNON-INDUCED REVERSAL
ASYMMETRY IN POLARIZATION-STATE CONVERSION

When we apply a balanced polarized input field and as-
sume the zero-temperature limit nm,th = 0, we can find a
difference between the steady-state average photon numbers
of the H- and V -polarized photons. We intuitively deem that
this asymmetry originates from the asymmetric interaction
Hamiltonian in Eq. (A3) and the imbalanced damping chan-
nels in the Lindblad master equation (4). In the optomagnonic
interplay between the H- and V -polarized photons and the
magnons, the H-polarized photons can only create or annihi-
late together with the excited magnons. They are the forms
of the products of bosonic operators âV â†

H m̂† and â†
V âH m̂

governed by the triple-resonance condition ωV − ωH − ωm =
0, but without the terms âV â†

H m̂ and â†
V âH m̂† which are

governed by another mode-matching condition ωV − ωH +
ωm = 0. In addition, the two collapse operators D̂[m̂]ρ̂ and
D̂[m̂†]ρ̂ apply to the density matrix of the magnonic sub-
system, for controlling the collapse and thermal excitation
of magnons to and from the thermal reservoir, with the im-
balanced efficiencies κm(nm,th + 1) and κmnm,th. These two
mode-matching conditions are dependent on the direction
of the external bias magnetic field [26], with +z and −z,
respectively. Consequently, this cavity optomagnonic system
shows an intrinsic asymmetry based on the magneto-optical
effect, i.e., the Faraday effect here. We delicately study the
intracavity photon numbers in the θ = π/4 configuration,
and show the results in Fig. 7. The contrast factors for

the four cases with different thermal magnon number nm,th

are shown as CHV (nm,th = 0) = 0.462, CHV (nm,th = 0.5) =
0.395, CHV (nm,th = 1) = 0.346, and CHV (nm,th = 2) = 0.288.
These factors reveal that the interconversion is much influ-
enced by the thermal magnons. When the thermal magnon
number nm,th increases, the contrast between the H- and V -
polarized photon numbers decreases, which means that the
magnon-enhanced asymmetry is diminished.

Alternatively, the Poincaré spheres plotted for the different
thermal magnon numbers and the different input polarizations
are shown in Fig. 8. Figures 8(a)–8(c) describe the changes
of the Poincaré vectors with a purely H-polarized input, in-
fluenced by the increasing thermal magnons. We can easily
see that the |H〉 → |V 〉 conversion is encouraged by the in-
creasing thermal magnons. But the channels are suppressed
for the conversion to the |R/L〉 states, which implies that
the thermal magnons can bring less phase information to the
incident H/V -polarized photons. Correspondingly, the green
trajectory is closer to the center than the blue and red marks,
which means that the more thermal magnons can help the
microwave-driving magnons to perform the full quantum state
transfer, and make the polarization states of the output photons
be more similar to the mixed polarization states (the polar-
ization purity P is much smaller than 1). Figures 8(d)–8(f)
are plotted for the balanced polarization configuration. In the
views along the D − A or H − V axes, we can obviously see
that the asymmetry is greatly diminished by the increasing
thermal magnon number nm,th. If the conversions of |H〉 →
|V 〉 and |V 〉 → |H〉 totally obey the reversal symmetry, we
can only obtain a point in Fig. 8(e) and a line in Fig. 8(f).
Analogously, the purity of the polarization states approaches
a constant value close to 1 in the near-resonance range when
nm,th goes larger, corresponding to the blue→ red →green
order.

APPENDIX E: PHOTON-PHOTON-MAGNON
SCATTERING PROBLEM FROM A

SCHWINGER-KELDYSH CALCULATION

For the further study on the BLS scattering in the cavity
optomagnonic system, which is the essence of the optical
polarization-state interconversion in our work, we follow the
Schwinger-Keldysh formalism [70] to obtain the scattering
properties of the involved bosons. As an alternative way for
the scattering problem, the Schwinger-Keldysh formalism is a
pure quantum mechanical process, thus, it can help to confirm
our analysis of the produced (scattered) polarized photons in
the main text.
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In the Schwinger-Keldysh formalism, we can take apart
the total Hamiltonian of a many-body system to study a
real-time perturbation theory of this quantum system [70].
Generally, we set a trivial part as the unperturbed Hamil-
tonian Ĥ0 (e.g., the free Hamiltonian of bosons), and the
remaining part is the nontrivial perturbed terms Ĥ1 (e.g.,
the interaction Hamiltonian). In the perturbative treatment,
as a well-known paradigm in standard textbooks of quantum
mechanics, we can consider a real-time evolution with the
solvable part Ĥ0 and a time-evolution operator Û (t, t0) (it is
also called scattering operator Ŝ in some works). The time-
evolution operator contains the perturbed Hamiltonian, and
reads as Û (t, t0) = T̂ exp[−i

∫ t
t0

dt1Ĥ1(t1)], where the time-

ordering operator T̂ is used to arrange the operators in the
chronological order from the right to the left side. Making
good use of the time-evolution operator Û (t, t0), we can ob-
tain the real-time statistical average of an operator 〈Ô〉U =
tr[ρ̂0ÔÛ (t, t0)], which also depends on an initial state.

In the above-mentioned treatment, we also have to in-
troduce the Green’s functions [71]. Generally, the Green’s
functions are defined as the average values of time-
ordering operator products [72], which are shown as
〈T̂ [â†

j1,U
(t1) . . . â jn,U (tn)]〉U , where the notation j denotes the

degree of freedom of the system, the whole subscript jn,U
represents that the annihilation operator of the nth degree
of freedom, and â jn,U (tn) = Û (t0, t )â jnÛ (t, t0) is translated
from a Heisenberg picture to a Dirac (interaction) picture at
an evolution time tn. Correspondingly, the Dirac bracket 〈·〉U

denotes the real-time average value of the operator products
with respect to the eigenstate of a system Hamiltonian. Obvi-
ously, we understand the operator â jn,U (tn) and then know that
each operator can carry out a forward and a backward time
evolution. But due to the time-ordering operator T̂ , and based
on the Gell-Mann-Low theorem, we can reduce the backward
evolution, and simplify the expectation to the one of forward
evolution along a straight time path. In this way, the pertur-
bative treatment can be reduced to a series expansion of the
time-evolution operator Û (t, t0). As a result, we can obtain the
physical quantities which depend on some expectation values
via a calculation of Green’s functions [73]. For example, the
energy spectrum of a quantum multiparticle system can be
derived from the retarded Green’s functions, and the lesser
or greater Green’s functions can determine the population
N (t ) and pumping rate I j (t ) of particles, from which we have
performed a calculation for the magnons in our work and
display the derivation in the following.

In order to investigate more about the quantum features
of the cavity optomagnonic system to confirm our result via
numerical simulations, we theoretically calculate the pump-
ing rate of the magnons in the polarization-state conversion.
Based on the perturbative treatment, we can work out the
derivation of the statistical expectation, where we do not
have to obey the semiclassical approximation. To this end,
we first divide the Hamiltonian in Eq. (A4) into the fol-
lowing two parts: (i) The first part is a local unperturbed
part, with the form Ĥ0 = −�H â†

H âH − �V â†
V âV − �mm̂†m̂.

(ii) The remaining part is the nonlocal perturbation, which
reads as Ĥ1 = −gâ†

H âV m̂† − gâH â†
V m̂. After this, we are in-

terested in the pumping rate mentioned above, which is the
change of magnon number per unit time in our work. It is

governed by

∂

∂t
�mm̂†m̂ = i�mg(â†

H âV m̂† + âH â†
V m̂) (E1)

in the framework rotating, which arises from the Heisenberg
equation of motion ∂

∂t Ô = [Ô, Ĥ ]/i. As described in the main
text, the magnons create or annihilate together with the H-
polarized photons. Thereby, we can treat the pumping rate of
the magnons and the one of H-polarized photons as the coin-
cidence. Then, by applying the Schwinger-Keldysh formalism
on the cavity optomagnonic model to perturbatively evaluate
the statistical average of operator product in the full quantum
regime, and the pumping rate reads as

Im(t ) = 2�mg Im〈m̂(t+)âH â†
V (t−)〉U , (E2)

where the superscripts “+” and “−” represent the forward and
backward time evolution on the Keldysh contour. The real-
time average inside the pumping rate 〈Ô〉U = tr[ρ̂0ÔÛ (t, t0)]
is governed by the time-evolution operator Û (t, t0), which
originates from the interaction Hamiltonian Ĥ1, with the
above definition Û (t, t0) = T̂ exp[−i

∫ t
t0

dt1Ĥ1(t1)]. Subse-

quently, we make an expansion of the operator Û up to the
first order in the optomagnonic coupling constant g, which is
much smaller than the other involved parameters. Then, we
get the average value in the following:

〈m̂(t+)âH â†
V (t−)〉U

= ig
∫

〈T̂ m̂(t )m̂†(t ′)〉0〈T̂ â†
H (t )âV (t )âH (t ′)â†

V (t ′)〉0dt ′,

(E3)

where the subscript “0” means the average value of an oper-
ator at the initial state 〈Ô〉0 = tr(ρ̂0Ô). Under the Langreth
rule, we can associate the nonequilibrium Green’s functions
with the real-time Green’s functions, and achieve the expres-
sion of the real-time pumping rate as

Im(t ) = 2�mg2Re
∫

FR
t,t ′G<

t ′,t + F<
t,t ′GR

t ′,t dt ′, (E4)

where the nonequilibrium Green’s functions under the integral
in Eq. (E3) are well defined by

iFt,t ′ = 〈T̂ m̂(t )m̂†(t ′)〉0, (E5a)

iGt,t ′ = 〈T̂ â†
H (t )âV (t )âH (t ′)â†

V (t ′)〉0 (E5b)

for the magnonic and polarized optical subsystem, respec-
tively. The subscript of Green’s functions t, t ′ means that the
forward time evolution starts at an initial time, then it excurses
a time t ′ and finally finishes at a time t . The components of the
Green’s functions are defined by

iF<
t,t ′ = −〈m̂†(t ′)m̂(t )〉0, (E6a)

iF>
t,t ′ = 〈m̂(t )m̂†(t ′)〉0, (E6b)

iFR
t,t ′ = iθ (t − t ′)(F>

t,t ′ − F<
t,t ′ ), (E6c)

iG<
t,t ′ = −〈âH (t ′)â†

V (t ′)â†
H (t )âV (t )〉0, (E6d)

iG>
t,t ′ = 〈â†

H (t )âV (t )âH (t ′)â†
V (t ′)〉0, (E6e)

iGR
t,t ′ = iθ (t − t ′)(G>

t,t ′ − G<
t,t ′ ). (E6f)
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The superscripts “<” and “>” represent the normal order
and antinormal order products of the magnonic operators in
Eqs. (E6a)–(E6b), corresponding to the lesser and greater
components of the Green’s functions. And GR

t,t ′ in Eq. (E6c)
is the retarded Green’s function. In Eqs. (E6d)–(E6f), there is
a similar definition of the lesser, greater, and retarded Green’s
functions for the optical subsystem. Furthermore, the optical
subsystem is constituted of two modes, i.e., the H- and V -
polarized photonic modes. As a result, the nonequilibrium
Green’s function of the optical subsystem can be written as
a concise form

Gt,t ′ = i〈T̂ â†
H (t )âV (t )âH (t ′)â†

V (t ′)〉0

= i〈T̂ â†
H (t )âH (t ′)〉0〈T̂ âV (t )â†

V (t ′)〉0. (E7)

Then we take above Green’s functions apart to two series of
functions for the subsystems of H- and V -polarized photons,
the lesser component is shown by

iG<
t,t ′ = −〈âH (t ′)â†

H (t )〉0〈â†
V (t ′)âV (t )〉0 ≡ G<

H ; t ′,t G
>
V ; t,t ′ .

(E8)

And the greater component is shown by

iG>
t,t ′ = 〈â†

H (t )âH (t ′)〉0〈âV (t )â†
V (t ′)〉0 ≡ −G>

H ; t ′,t G
<
V ; t,t ′ .

(E9)

Therefore, the retarded component GR
t,t ′ can be decomposed to

GR
t,t ′ = iθ (t − t ′)(G>

H ; t ′,t G
<
V ; t,t ′ + G<

H ; t ′,t G
>
V ; t,t ′ ). (E10)

In order to solve out this retarded Green’s function, we explic-
itly write the lesser and greater components for each optical
mode as

G<
j; t,t ′ = 〈â†

j (t
′)â j (t )〉0 = 〈â†

j â j〉0e−i� j (t−t ′ ), (E11a)

G>
j; t,t ′ = 〈â†

j (t )â j (t
′)〉0 = 〈â†

j â j〉0e−i� j (t−t ′ ). (E11b)

After this, the retarded component in the time domain can be
obtained as

iGR
t,t ′ = θ (t − t ′) × {2〈â†

H âH 〉0〈â†
V âV 〉0

+〈â†
H âH + â†

H âH 〉0}e−i�m (t−t ′ )

= θ (t − t ′)(2NH,0NV,0 + N0)e−i�m (t−t ′ ), (E12)

where NH,0 and NV,0 are the photon number at the H- and
V -polarized state at the initial time, and N0 is the total photon
number of both optical modes at the initial state. Here we use
the triple-resonance condition �V − �H − �m = 0. Then ap-
plying the Fourier transformation, we can derive the retarded
Green’s function in the frequency domain

GR
ω = 2NH,0NV,0 + N0

� − �m + iκc/2
. (E13)

Similarly, the retarded Green’s function for the magnonic
subsystem can be obtained as

F R
ω = 1

�m + iκm/2
. (E14)

Finally, by making use of the nonequilibrium distribution
difference [74]

δ fω = F<
ω

2i ImF R
ω

− G<
ω

2i ImGR
ω

, (E15)

we can make the integral in Eq. (E4) simpler. As a result,
the pumping rate in the steady-state limit can be written
as

Iss
m = 4ωmg2Im

1

�m + iκm/2
Im

2NH,0NV,0 + N0

� − �m + iκc/2
, (E16)

which is determined by the initial state of the cavity
optomagnonic system and the detunings of the driving
fields.

From the above results via the Schwinger-Keldysh the-
ory, we easily find that when the driving fields of the cavity
optomagnonic system fulfill the magnonic resonance condi-
tion �m = 0, in the meanwhile optical resonance � = 0 is
also satisfied, the pumping rate of the magnons (also the
photons) can reach the maximum. It also means that the
quantum state conversion between the H- and V -polarized
states can work most drastically on the magnonic resonance
�m = 0, which matches the numerical simulations in the main
text and confirms our work. These achievable results based
on the perturbative calculations can help in further under-
standing the quantum features in the cavity optomagnonic
model.
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