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Efficient biphoton emission in semiconductors by single-photon recycling
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An efficient biphoton emission process in semiconductors can enable the realization of highly tunable lasers,
squeezed light sources, and entangled photon pair sources on an integrated platform. We propose a general
single-photon recycling scheme to improve the overall efficiency of the typically weak biphoton emission
process in a broad class of semiconductor materials. Using a rate-equation-based analysis, we first frame the
general design principles and subsequently design a one-dimensional photonic crystal cavity to reach the ideal
photon recycling limit for the spontaneously emitted single photons. The cavity is designed with realistic
constituent materials to achieve high biphoton output efficiency in the absence of nonradiative recombination
channels.
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I. INTRODUCTION

Biphoton emission in semiconductors, where an electron-
hole pair (or an exciton) recombines, emitting a photon pair,
holds the promise of enabling a broad class of semiconductor-
based light sources ranging from highly tunable lasers to
squeezed light sources and entangled photon pair sources
[1–6]. The realization of these light sources on a semicon-
ductor platform is crucial for various applications in light
amplification [4,7,8], quantum metrology [9–12], quantum
communication [13,14], and quantum information processing
[15,16]. As compared to the more commonly used non-
linear optical crystal based implementations [17–19], the
semiconductor-based quantum light sources offer unique
advantages in terms of mature semiconductor technology,
integrated on-chip realization, and enable both electronic in-
jection and optical injection.

Owing to these above-mentioned advantages and follow-
ing the experimental demonstration of biphoton emission in
III-V compound semiconductors, there has been a lot of
interest in realizing optoelectronic devices using biphoton
emission [1,4,20]. The primary challenge plaguing the de-
velopment of these devices is the inherent low efficiency
and the broadband nature of the biphoton emission process.
The biphoton emission in typical direct-band-gap semicon-
ductors is a second-order electron-hole recombination process
where the sum frequency of the emitted photon pair is
close to the band gap �. This process has a significantly
lower transition rate as compared to the dominant single-
photon emission process that emits a photon with frequencies
near �. Thus improving the biphoton emission efficiency is
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a fundamental requirement for any further development of
biphoton-emission-based optoelectronic or quantum devices.

Here we propose and design a photonic structure which
relies upon single-photon recycling to achieve a high bipho-
ton output efficiency. The fundamental idea is to suppress
the single-photon emission to free space and to reabsorb the
photons emitted via the single-photon emission process to
further boost the biphoton emission efficiency. We design a
one-dimensional (1D) photonic-crystal-based structure which
traps the photons emitted by the single-photon emission pro-
cess to facilitate their reabsorption. Theoretically, in the ideal
case, the proposed structure could achieve a 100% photon
recycling efficiency. Equally important, the designed structure
enables efficient extraction of photon pairs emitted via the
biphoton emission process near frequency �/2 in a narrow an-
gular range and can potentially serve as an efficient source of
polarization-entangled photon pairs. We also note that a three-
dimensional (3D) photonic crystal with a complete band gap
at � can also suppress the single-photon emission by reducing
the photonic density of states to zero [21,22] and thus improve
the biphoton emission efficiency. Our proposed structure is
inherently different from such a complete band-gap structure
and does not significantly alter the total single-photon emis-
sion rate but improves the biphoton emission efficiency by
preventing the out-coupling of photons, at frequencies near
�, outside the structure and thus having a high photon recy-
cling efficiency. As compared to the 3D photonic crystals, the
proposed 1D structure is much simpler to fabricate using the
existing semiconductor manufacturing processes.

The paper is organized as follows. We start with a general
rate equation analysis in Sec. II to evaluate the biphoton emis-
sion efficiency and the effect of single-photon recycling. In
Sec. III we present our proposed 1D photonic-crystal-based
design. In Sec. IV we discuss simulation results related to
single-photon emission and biphoton emission in the designed
photonic structure. The conclusions are given in Sec. V.
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II. RATE EQUATION ANALYSIS

In this section we model and study a general
semiconductor-based light source using semiclassical rate
equations [23]. We consider an optically active material
with allowed radiative transitions between a group of upper
electronic levels and a group of lower electronic levels. In
particular, these could either be the conduction and valence
bands in a bulk semiconductor material, quantum wells,
or the discrete excited- and ground-state energy levels in a
collection of quantum dots. We consider the following three
processes driving transition of an electron from upper energy
levels to the lower energy levels: spontaneous single-photon
emission, spontaneous biphoton emission, and nonradiative
processes. We ignore both stimulated single and biphoton
emission processes, assuming a weak excitation or pump.
This assumption is valid when the optical intensity is lower
than the saturation intensity for the electronic system, or
equivalently, when the excited-state population is negligible
as compared to the ground-state population [24–26]. For
the transition of an electron from lower electronic levels
into upper electronic levels, we consider the following
two processes: optical pumping or electronic injection at a
constant rate E and reabsorption of the spontaneously emitted
single photons. We ignore the typically weak biphoton
absorption process, owing to the weak excitation assumption,
which retains the linearity of the rate equations.

The following set of first-order linear differential equa-
tions describe the rate of change in the electron and the photon
populations as a result of the aforementioned processes:
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Here, n is the population in the upper electronic levels, p(1)
i

is the number of photons in the optical mode i around the
single-photon emission frequency of approximately � [the
superscript (1) in Eqs. (1)– (3) represents the processes that
occur for photons at frequencies near �], A(1)

i is the sponta-
neous single-photon emission rate into the ith optical mode,
d (1)

i and γ
(1)

i are the absorption and out-coupling rates of pho-
tons in the ith optical mode, respectively, p(2)

i is the number of
photons in the ith optical mode at biphoton emission frequen-
cies around �/2 [the superscript (2) represents the processes
that occur for photons at frequencies around �/2], A(2)

i, j is the
biphoton emission rate with a single photon each in the optical
modes i and j, and γ

(2)
i is the photon out-coupling rate for the

optical mode i at frequencies corresponding to the biphoton
emission process. In the above rate equations it is assumed
that there is no optical mode where the photon emission
occurs via both the single-photon emission and the biphoton
emission processes. This is justified since in direct-band-gap
semiconductors, the spontaneous single-photon emission oc-
curs close to the electronic band-gap frequency (�), whereas
the biphoton emission occurs at photon frequencies smaller

than �. While this assumption might not be strictly true in
materials with a highly broadened single-photon emission
spectrum, in such material systems one can still write a sim-
ilar set of rate equations by ignoring the biphoton emission
into the optical modes with both single-photon emission and
biphoton emission contribution. This is justified because the
single-photon emission rates are typically several orders of
magnitude higher than the biphoton emission rates [1–4].
Thus, the above set of rate equations is quite general and
should apply to a broad range of material systems.

Before solving these equations to obtain the steady-state
solution, we briefly describe here the biphoton emission
process in a semiconductor quantum dot. In the biphoton
emission process, an electron in the upper energy level (|e〉)
first makes a virtual transition to an intermediate higher en-
ergy state (|i〉), emitting the first photon in the process, and
subsequently makes another virtual transition from the in-
termediate state to the lower energy level (|g〉), emitting the
second photon. Assuming the two virtual transitions to be
of electric dipole type, the biphoton emission rate A(2)

p,q as
computed from the second-order perturbation theory is given
by [2,3],

A(2)
p,q =

∣∣∣∣∣
∑

i

〈g|εp(r0) · r|i〉〈i|εq(r0) · r|e〉
Ee − Ei − h̄ωq

+ 〈g|εq(r0) · r|i〉〈i|εp(r0) · r|e〉
Ee − Ei − h̄ωp

∣∣∣∣∣
2

× 2π

h̄
e4δ(h̄� − h̄ωp − h̄ωq), (4)

where h̄ is the reduced Planck’s constant, e is the electron
charge, r is the quantum mechanical position operator for
the electron, εp/q(r0) is the quantized electric field amplitude
vector for the optical mode p/q at the quantum dot position
r0, ωp/q is the frequency corresponding to the pth/qth optical
mode, Ee, Ei, and Eg are, respectively, the energies associated
with the electron states |e〉, |i〉, and |g〉, and h̄� = Ee − Eg.
With the understanding that A(2)

p,q is the rate at which the quan-
tum dot emits a photon pair with a single photon in the optical
modes p and q each, and with the observation A(2)

p,q = A(2)
q,p

[Eq. (4)], the factor of 1/2 multiplying the biphoton emission
term in the rate equation (1) is to avoid double counting.

Now we proceed to solving the rate equations (1)–(3) in
the steady-state operation, where the electron and the photon
populations in all the modes are time independent. The net
photon fluxes from the single-photon emission (S1), and the
biphoton emission (S2) processes are computed to be
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∑
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∑

i

γ
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i p(2)
i = 1 − S1/E

1 + �/A2
E ,

where A2 = 1/2
∑

i, j A(2)
i, j is the total biphoton emission rate.

From the above expressions, one can also compute the single
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and biphoton output efficiencies η1 and η2, respectively, as
follows:
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In the limit of strong photon reabsorption, i.e.,
A(1)

i γ
(1)

i /d (1)
i → 0 ∀ i, the single-photon output efficiency

η1 → 0 and the biphoton output efficiency η2 is enhanced.
If the nonradiative recombination rate � is also much
smaller than the total biphoton emission rate A2, the strong
photon reabsorption limit results in an ideal biphoton output
efficiency (η2 = 1). In the next section we will design a
photonic structure to achieve the strong photon reabsorption
limit by reducing the effective photon out-coupling rate,
γ

(1)
eff,i ≡ A(1)

i γ
(1)

i /d (1)
i , to zero for all the modes around the

single-photon emission frequency �. We note that the
proposed photon-recycling-based scheme to improve the
biphoton emission efficiency is quite general in applicability,
with the constraint that the photon reabsorption should
primarily occur in the optically active medium.

To summarize the general design principles to enhance
single-photon recycling, one needs to design a photonic struc-
ture around the emitting medium which can suppress the
spontaneous single-photon emission into the modes lying in-
side the escape cone at the medium-air interface, i.e., have a
poor extraction efficiency. As we will discuss in the following
section, we realize this using a 1D photonic crystal with a
band gap for all the photonic modes inside the escape cone
to suppress the corresponding density of states to zero at the
emission frequency.

III. PHOTONIC STRUCTURE DESIGN

As suggested by the rate-equation-based analysis in the
previous section, it is desirable to reduce the effective photon
out-coupling rates for all the optical modes around the single-
photon emission frequency �. For the designed photonic
structure to also work for material systems with broadened
single-photon emission spectrum (both homogeneous and
inhomogeneous broadening), it should prevent photon out-
coupling in a broad frequency range. The designed structure
should also facilitate an efficient out-coupling of photons
emitted via the biphoton emission process in a narrow angular
range along a well-defined direction. Additionally, it is also
desirable for the designed photonic structure to be simple to
fabricate.

To meet all these requirements, we first design a 1D
photonic crystal satisfying the design criteria of being an
omnidirectional reflector for light incident from air at both
frequencies � and �/2 [27–29]. We then design a Fabry-Pérot
cavity resonance at frequency �/2 in the normal direction
by introducing a planar defect into an otherwise perfectly
periodic photonic crystal [30]. The cavity/defect is designed
in such a way that it does not introduce any additional modes

FIG. 1. (a) Unit cell of the 1D photonic crystal with period
a = 250 nm, and (b) projected band structure of the photonic crystal
showing both transverse magnetic (TM) and transverse electric (TE)
polarizations.

around frequency �. The use of an omnidirectional reflector at
� prevents the out-coupling of photons emitted via the single-
photon emission process. The cavity enhances and facilitates
an efficient extraction of photons of frequency �/2 along the
normal direction emitted via the degenerate biphoton emis-
sion process, while the use of an omnidirectional reflector
suppresses the output of photons at �/2 at other angles.

Figure 1 shows the unit cell and the projected band struc-
ture of the photonic crystal designed for the particular case
of λ0 = 2πc/� = 775 nm. Note that in this case �/2 cor-
responds to the telecommunication wavelength 1.55 μm.
Throughout the paper we use the convention of the z axis
being along the normal direction. All the photonic structures
discussed in this paper are one dimensional, having transla-
tional invariance in the xy plane. The unit cell in Fig. 1(a)
has a period of a = 250 nm and is comprised of two layers
of equal thicknesses made up of materials with refractive
indices n1 = 4.5 and n2 = 2. These values are typically avail-
able in materials such as MoS2 (n1 ∼ 4.5) and boron nitride
(n2 ∼ 2). The parameters are chosen such that the resulting
band structure as shown in Fig. 1(b) satisfies the criteria as
outlined above. In the band-structure plot, the red (left) and
the blue (right) subplots correspond to the transverse magnetic
(TM) and transverse electric (TE) polarizations, respectively.
The band structure is only shown for the positive kx values,
as the negative kx part of the band structure is symmetric
and can be obtained by taking the mirror image about the
vertical (ω) axis. The two horizontal black lines are constant
frequency lines at ω = �/2 and ω = �, the two oblique black
lines are the light lines in vacuum, and the green oblique
line has a slope corresponding to the Brewster angle θB =
arctan (n1/n2) for the media n1 and n2. Within the vacuum
light lines there are no optical modes in a finite frequency
range around the two frequencies �/2 and � for both TE
and TM polarizations. Thus, a finite lattice of the designed
photonic crystal would act as a polarization-insensitive omni-
directional mirror with very high reflection efficiency for light
incident from air around these two frequencies [27–29].

Having designed an omnidirectional mirror, we now pro-
ceed to next step and design a Fabry-Pérot cavity. Figure 2(a)
shows the designed cavity with a resonant mode at frequency
�/2 for kx = ky = 0. The central cavity and/or defect layer
(outlined by the red rectangle) has thickness d0 = 316.9 nm,
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FIG. 2. (a) Schematics of the 1D Fabry-Pérot cavity realized
by introducing a defect (outlined by the red rectangle) in the pho-
tonic crystal designed previously, and (b) projected band structure
of a 1D photonic crystal with the unit cell as shown in (a). The
left and right subplots correspond to the TM and TE polarizations,
respectively.

refractive index n2 = 2, and is surrounded by an omnidirec-
tional mirror on each side. The number of DBR (distributed
Bragg reflector) periods (n = 2) shown in Fig. 2(a) is for
illustration purposes, and we will later study the influence of
the number of DBR periods on both the single and biphoton
emission properties. To understand the properties of the cavity
resonant modes, we compute the band structure of a photonic
crystal with the unit cell shown in Fig. 2(a). Figure 2(b)
shows the projected band structure with the red (left) and the
blue (right) subplots corresponding to the TM and TE po-
larizations, respectively. Similar to the band-structure plot in
Fig. 1(b), the two horizontal black lines are constant frequency
lines at ω = �/2 and ω = �, the two oblique black lines are
the light lines in vacuum, and the green oblique line has a
slope corresponding to the Brewster angle θB for the media
n1 and n2. The band-structure plot in Fig. 2(b) shares many
similarities with that of Fig. 1(b) with a few crucial differences
arising due to the extra cavity and/or defect layer. By design,
the defect layer introduces two degenerate Fabry-Pérot res-
onant modes (corresponding to TE and TM polarizations) at
the frequency �/2 in the normal direction, i.e., at kx = ky = 0,
while preserving the omnidirectional gap at frequency �. The
Fabry-Pérot resonances also extend to higher frequencies, but
in the off-normal direction (kx �= 0). As we will see in the next
section, the Fabry-Pérot resonances at �/2 help in achieving
high biphoton extraction efficiency in a narrow angular range
around the normal (z) direction, while the omnidirectional
gap at frequency � enhances the single-photon recycling by
reducing the effective photon out-coupling rate γ

(1)
eff,i to zero

for all the optical modes around the single-photon emission
frequency �.

IV. RESULTS

In this section we discuss the emission characteristics of
a quantum dot placed at the center (z = 0 plane) of the de-
signed cavity as shown in Fig. 3(a). We consider a symmetric
cavity having an equal number of DBR periods on each side
and with the air or vacuum medium outside the finite cavity
structure. We model the quantum dot [shown as a red circle
in Fig. 3(a)] as a point source assuming the quantum dot size

(b)

(d)(c)

(a)

FIG. 3. (a) A quantum dot embedded in a symmetric cavity with
n DBR periods on each side. (b) Normalized angular emission in-
tensity from the dipole rotating at frequency � for different numbers
of DBR periods n. (c) Normalized total radiated power outside the
cavity structure as a function of n for dipole oscillation frequencies
� (solid curve) and �/2 (dashed curve). (d) Normalized angular
emission intensity from the dipole rotating at frequency �/2 for
different values of n.

to be much smaller than the optical wavelength of interest.
This assumption is also equally valid for 1D semiconductor
quantum-well-based photon sources as the characteristic exci-
ton (electron-hole pair) radius is typically much smaller than
the optical wavelengths [31,32]. Even though we consider
emission from a single quantum dot, it is implicitly assumed
that there is a collection of quantum dots in the infinite z = 0
plane which radiate incoherently, i.e., without fixed phase
relation between any two sources. This is crucial for photon
recycling, as the single photons emitted by a quantum dot can
get reabsorbed and reemitted by another at a different location.
As discussed earlier, the quantum dots can either emit a single
photon at frequency � or can emit a photon pair at frequencies
ω1 and ω2 such that ω1 + ω2 = �.

A. Single-photon emission

We first explore the single-photon emission properties
of a quantum dot embedded inside the designed cavity. To
study the spontaneous single-photon emission properties of
the quantum dot, we consider a classical point dipole source
with electric dipole moment phasor p0(x̂ + jŷ)/

√
2 oscillat-

ing at single-photon emission frequency �. The choice of a
dipole rotating in the xy plane is arbitrary, and the follow-
ing results also apply qualitatively for any random dipole
orientation. We first define dipole far-field angular emission
intensity in air [I (1)

n (θ, φ)] as the radiated power per unit
solid angle in the direction (θ, φ), where θ and φ are the
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polar and azimuthal angles, respectively [Fig. 3(a)], and n is
the number of DBR periods on each side of the cavity. The
total power emitted outside the structure, i.e., into air, can
be computed as P(1)

out,n = ∫ 2π

0 dφ
∫ π

0 dθ sin θ I (1)
n (θ, φ). Due to

the azimuthal symmetry (rotational invariance about the z
axis), the emission intensity only depends on the polar angle
θ [I (1)

n (θ, φ) ≡ I (1)
n (θ )]. Furthermore, since the cavity has an

equal number of DBR periods on top and bottom, the z = 0
plane, the plane the dipole is located in [Fig. 3(a)], is a mirror
symmetry plane. This results in identical emission from the
top and the bottom of the structure [I (1)

n (θ ) = I (1)
n (π − θ )].

These symmetry considerations also apply for the biphoton
emission characteristics, which will be discussed later.

Figure 3(b) plots the normalized angular emission intensity
for dipole emission into air for different numbers of DBR
periods n. We have normalized the emission intensity with
respect to the dipole radiated power in vacuum at frequency �

(P(1)
vac). Due to the above-discussed symmetry considerations,

in Fig. 3(b) we plot the emission intensity only as a function
of polar angle θ in the range [0, π/2]. We see that the single-
photon emission occurs in a very broad angular range with
negligible angular selectivity for all values of n. Increasing
the number of DBR periods suppresses the emission intensity
for all angles due to the band-gap effect.

The solid curve in Fig. 3(c) plots the total power radiated
outside the structure (P(1)

out,n) as a function of n on a semilog
scale. As before, we plot the normalized dimensionless quan-
tity P(1)

out,n/P(1)
vac . The power radiated outside the structure can

be seen to decrease exponentially as n increases with P(1)
out,n,

decreasing approximately by a factor of 4 with each addition
of a DBR period on each side of the cavity, i.e., P(1)

out,n+1 ≈
P(1)

out,n/4. As discussed in Sec. II, for an ideal photon recycling,
the effective photon out-coupling rates γ

(1)
eff,i(= A(1)

i γ
(1)

i /d (1)
i )

for all the optical modes around the single-photon emission
frequency � should be zero, which also implies P(1)

out,n → 0.
The designed photonic structure approaches this ideal pho-
ton recycling limit for sufficiently large n by reducing the
spontaneous single-photon emission rates A(1)

i to zero for all
the optical modes within the vacuum light line around fre-
quency �. Note that besides the emission into air (P(1)

out,n),
the dipole also emits into the guided modes of the structure,
i.e., modes outside the vacuum light line [Fig. 2(b)]. Since
by definition, the photon out-coupling rates γ

(1)
i for all the

guided modes in an infinite structure (infinite in the xy plane)
are zero, for these modes the ideal photon recycling limit is
already satisfied irrespective of n. Thus the designed struc-
ture, in the large n limit, achieves ideal photon recycling for
all the optical modes within and outside the vacuum light
line around the single-photon emission frequency �. For the
sake of completeness, we also mention here that even though
P(1)

out,n becomes vanishingly small in the large n limit, the
total emitted power including the emission into the guided
modes of the structure does not decrease and converges to
2.4 × P(1)

vac , where P(1)
vac as defined before is the total emitted

power from the same dipole when placed in vacuum. The
factor 2.4 here is related to the enhancement of the total den-
sity of states inside the 1D photonic crystal at the frequency
� (Fig. 2) as compared with the total density of states in
vacuum.

B. Biphoton emission

Having discussed the single-photon emission and the ideal
photon recycling limit, we now study the biphoton emission
characteristics of the quantum dot. We assume the bipho-
ton emission to occur via a single intermediate state (|i〉)
closest in energy to the excited-state level with the two vir-
tual transitions (|e〉 → |i〉, |i〉 → |g〉) being of electric dipole
type. We assume the two associated transition dipole mo-
ments (〈e|er|i〉, 〈i|er|g〉) to be oriented in the xy plane with
p1 = 〈e|er|i〉 = p1(x̂ + jŷ)/

√
2, and p2 = 〈i|er|g〉 = p2(x̂ −

jŷ)/
√

2. This corresponds to the two dipoles rotating in op-
posite directions, i.e., one in a clockwise sense and the other
in an anticlockwise sense. This could occur for biphoton
transitions between electronic states |e〉 and |g〉 having equal
angular momenta via an intermediate state |i〉 with a different
angular momentum. For our biphoton emission calculations,
we also assume the two transition dipole moments to have
equal magnitude, i.e., p1 = p2 = p0. As can be seen from
Eq. (4), assumptions different from above simply change the
biphoton emission rates by an overall scalar factor and do
not make a qualitative difference for any of the following
discussions. We only study the degenerate biphoton emission
at the cavity resonance frequency �/2.

To compute the biphoton emission rate A(2)
i, j into a pair

of optical modes (i, j) using Eq. (4), we observe that A(2)
i, j

depends on the electric dipole coupling amplitudes into the
optical modes i and j, which can be obtained from a classical
calculation of emission from dipoles p1 and p2 oscillating
at frequency �/2. The biphoton emission angular intensity
distribution and the net biphoton emission rate can be obtained
directly from the classical electric dipole radiation. Thus, we
first show results corresponding to radiation from dipoles p1
and p2 placed inside the cavity [in the z = 0 plane as shown in
Fig. 3(a)], oscillating at frequency �/2. The radiation pattern
for the two dipoles are identical since p1 = p∗

2 . The dashed
curve in Fig. 3(c) shows the total power radiated outside the
cavity (P(2)

out,n) as a function of the number of DBR periods n.
As before, we plot the dimensionless quantity ln(P(2)

out,n/P(2)
vac ),

where P(2)
vac is the total emitted power from the same dipole

when placed in vacuum. Unlike the dipole emission at fre-
quency � [solid curve in Fig. 3(c)], here P(2)

out,n remains almost
unchanged as n is varied. We observe that for n � 2, P(2)

out,n ≈
2.8P(2)

vac . The factor 2.8 here is related to the enhancement of
the total density of states inside the 1D photonic crystal at the
frequency �/2 (Fig. 2) as compared with the total density of
states in vacuum.

Figure 3(d) shows the normalized angular intensity dis-
tribution [I (2)

n (θ, φ)/P(2)
vac ≡ I (2)

n (θ )/P(2)
vac] for dipole emission

into air for different numbers of DBR periods n. For better
visualization, Fig. 4 shows the 3D far-field dipole radia-
tion pattern I (2)

n (θ, φ) outside the cavity. Here, for a point
(r, θ, φ) on the radiation pattern surface, the distance r from
the origin is equal to the normalized angular emission in-
tensity [I (2)

n (θ, φ)/max(I (2)
n )] in air in the direction (θ, φ).

Figures 3(d) and 4 clearly show that as the number of DBR
periods increases, the radiation pattern becomes narrower
with the emission primarily occurring in a narrow angular
range around the normal direction. In contrast to the dipole
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FIG. 4. Far-field radiation patterns for a point dipole oscillating
at a frequency �/2 and placed inside a cavity with n DBR periods
on each side for (a) n = 1, (b) n = 2, (c) n = 3, and (d) n = 4. For
a point (r, θ, φ) on the radiation pattern surface, the distance r from
the origin is equal to the normalized angular emission intensity in air
[I (2)

n (θ, φ)/max(I (2)
n )].

radiation at frequency �, the highly directional nature of
dipole emission here is attributed to the presence of the Fabry-
Pérot resonance in the normal direction at frequency �/2. As
the number of DBR periods n is increased, the quality factor
of the resonant mode increases and the emission pattern be-
comes narrower. Even though the angular emission intensity
changes with n, the total power radiated outside the cavity
P(2)

out,n = ∫ 2π

0 dφ
∫ π

0 dθ sin θ I (2)
n (θ, φ) is almost independent

of the number of DBR periods for n � 2 [Fig. 3(c)]. This
phenomenon is a result of resonant dipole emission and is
explained using a simple analytical model presented in the
Appendix. Furthermore, in the large n limit, the emission
from the dipole p1 (p2) is right (left) circularly polarized. The
designed cavity resonances at the frequency �/2 also assist
in achieving a high extraction efficiency, which is defined
as the ratio of power radiated outside the cavity to the total
radiated power (ηout,n = P(2)

out,n/P(2)
tot,n). ηout,n converges to 0.86

for n � 2 and is related to the relative ratio of the density of
states lying inside the vacuum light line to the total density of
states of the structure at the frequency �/2 (Fig. 2). As we
will discuss next, the dipole emission into a narrow angular
range with high extraction efficiency also leads to narrow
biphoton emission pattern with high efficiency. Finally, as a
second-order effect, we also note here that the peak emission
intensity in Fig. 3(d) occurs at an angle slightly different from
the normal direction (θ = 0) and changes with the number
of DBR periods n. This is because the reflection phase for
reflection from the 1D photonic crystal surrounding the cavity
is a weak function of the angle of incidence and the number
of DBR periods n.

FIG. 5. (a) Angular biphoton emission rate distribution of degen-
erate photon pairs emitted outside into air by a quantum dot placed
inside a cavity with n DBR periods on each side for (a) n = 1,
(b) n = 2, (c) n = 3, and (d) n = 4.

For the biphoton emission we define a quantity
R(2)

n (θ1, φ1, θ2, φ2) as the rate of emission of degenerate
photon pairs of arbitrary polarization at frequency �/2 per
unit solid angles with one photon each in the directions
(θ1, φ1) and (θ2, φ2). As per our convention, the subscript
n denotes the number of DBR periods on each side of the
cavity. It can be computed from the biphoton emission rates
A(2)

i, j as follows. If the index i for an optical mode in air
corresponds to an out-going plane wave with wave vector in
the direction (θi, φi ) and polarization xi, then the following
equation follows:

R(2)
n (θ1, φ1, θ2, φ2) =

∑
i, j:θi=θ1,φi=φ1,θ j=θ2,φ j=φ2

A(2)
i, j . (7)

Experimentally, one can measure R(2)
n (θ1, φ1, θ2, φ2) by

counting coincidences on two single-photon detectors placed
in the direction (θ1, φ1) and (θ2, φ2). Due to azimuthal
symmetry, R(2)

n (θ1, φ1, θ2, φ2) is independent of φ1 and
φ2 for |φ1 − φ2| ∈ (0, 2π ) and thus R(2)

n (θ1, φ1, θ2, φ2) ≡
R(2)

n (θ1, θ2). Additionally, since photons are identical parti-
cles, R(2)

n (θ1, θ2) = R(2)
n (θ2, θ1). Figure 5 plots R(2)

n (θ1, θ2) for
different numbers of DBR periods n. We plot here the nor-
malized biphoton emission intensity R(2)

n (θ1, θ2)/S(2)
vac on a log

scale, where S(2)
vac is the total biphoton emission rate when

the quantum dot is placed in vacuum. Similar to the dipole
emission pattern at frequency �/2 [I (2)

n (θ, φ)] as shown in
Fig. 4, the angular distribution of biphoton emission also gets
narrower as n increases. The maximum biphoton emission in-
tensity is observed close to the normal direction (θ1, θ2 → 0◦),
and the minimum biphoton emission intensity occurs close to
the glancing angle (θ1, θ2 → 90◦). The maximum biphoton
emission intensity can be seen to increase exponentially as
the number of DBR periods n is increased. In the large n
limit, the two emitted photons are completely circularly po-
larized with opposite polarizations and R(2)

n (θ1, φ1, θ2, φ2) ∝
I (2)
n (θ1, φ1)I (2)

n (θ2, φ2). Thus, a large dipole emission intensity
in a narrow angular range around the normal direction as
realized by the cavity design here also helps in achieving a
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FIG. 6. Total degenerate biphoton emission rate into air by a
quantum dot placed inside a cavity with n DBR periods on each side.

large biphoton emission rate in an even narrower range of
angles around the normal direction.

Finally, in Fig. 6 we plot the normalized to-
tal biphoton emission rate S(2)

out/S(2)
vac, where S(2)

out =∫ 2π

0 dφ1
∫ 2π

0 dφ2
∫ π

0 dθ1 sin θ1
∫ π

0 dθ2 sin θ2 R(2)
n (θ1, φ1, θ2, φ2)

is the total biphoton emission rate with both the photons being
emitted outside the structure. The Fabry-Pérot resonance at
frequency �/2 can be seen to enhance the total rate of
biphoton emission outside the cavity by more than 500%
as compared to the biphoton emission rate in vacuum.
Furthermore, the total biphoton emission rate does not vary
appreciably as the number of DBR periods is changed.

Thus the designed resonant cavity enhances the degenerate
biphoton emission and makes it highly directional, with both
the photons coming out in the normal direction with opposite
polarization. For the case of a symmetric cavity as considered
here, there is an equal chance for the photons to get emitted
either from the top or from the bottom of the cavity. Thus there
is a 50% probability for the degenerate biphoton emission to
occur with one of the photons emitted in the upward normal
direction and the other photon coming out in the downward
normal direction. As the only constraint is for the two photons
to have opposite polarization, the upward and the downward
emitted photons are therefore polarization entangled. Hence
the proposed structure can potentially serve as an efficient
source of degenerate polarization-entangled photon pairs. As
a final remark, we also note that the designed structure also
allows for nondegenerate biphoton emission, with at least one
of the photons being emitted into the guided modes of the
structure which exist at all the frequencies [Fig. 2(b)].

V. FINAL REMARKS

The geometry of the designed 1D photonic-crystal-based
biphoton source is essentially similar to widely employed
layered quantum well structures in semiconductors that can be
fabricated using various deposition and crystal growth tech-
niques. The optically active (photon-emitting) layer can either
be a thin planar layer of a direct-band-gap semiconductor
or a collection of semiconductor quantum dots distributed
in a plane inside the designed cavity. For efficient photon

recycling, the band gap of the materials constituting the DBR
mirrors of the cavity needs to be larger than the band gap of
the optically active layer. Besides making metal contacts for
electron injection into the optically active layer, the proposed
design does not need any complex lithography steps and thus
is simple to fabricate.

In summary, we showed that photon recycling could po-
tentially boost the efficiency of the inherently weak biphoton
emission process in semiconductors. We also designed a one-
dimensional photonic-crystal-based structure to achieve the
ideal photon recycling limit and thus a high biphoton output
efficiency. The proposed structure is simple to fabricate, is
suitable for a broad class of semiconductor materials, and
could potentially lead to realization of entangled photon pair
sources, squeezed light sources, and highly tunable biphoton-
emission-based lasers, all integrated on the same on-chip
platform.
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APPENDIX: DIPOLE EMISSION IN PLANAR
STRUCTURES

1. Methods

All the photonic band structure and the classical dipole
emission calculations were performed using the standard
transfer matrix method (TMM). To prevent the numerical field
amplitude singularities arising from the TMM method for
dipole emission into the guided modes of the structure, a thin
lossy layer was artificially introduced, and a convergence test
was performed for both the dipole emission into air and into
the guided modes [33–35].

2. Resonant dipole emission inside a 1D cavity

We consider the dipole-cavity system shown in Fig. 3(a)
and compute the power radiated into the uniform medium
(air) outside the structure. We evaluate the emission from the
electric dipole p1 oscillating at the resonant frequency of the
1D cavity ω0 = �/2. Nevertheless, the following analysis is
general and can be applied for resonant dipole emission inside
any arbitrary 1D structure. From the band-structure plot for
an infinite periodic cavity structure shown in Fig. 2(b), we
observe that there is a single mode each for the TE and TM po-
larizations around frequency �/2 inside the vacuum light line.
Since only the modes inside the vacuum light line contribute
to the radiation extracted outside the cavity, we only need to
consider these two modes. These two modes correspond to
the two Fabry-Pérot resonances in our finite cavity structure
with sufficiently large number of DBR periods (n � 2). As
discussed before, the Fabry-Pérot resonances are in the normal
direction [k‖ = (kx, ky) = (0, 0)] at the frequency �/2 and
extend to higher frequencies in the off-normal directions.

Considering a large volume V = L × L × L enclosing the
cavity, all the propagating electromagnetic modes in air can be
expressed as a linear combination of plane waves indexed by
the incident wave vector in air k ≡ (k‖, kz ) and polarization
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u ∈ {s, p} as follows:

Eu
k(r) =

⎧⎨
⎩

1√
V

[ûk exp( jk · r) + rkûk− exp( jk− · r)], for kzz < 0 & |z| > Dn/2

1√
V

tk exp( jk · r), for kzz > 0 & |z| > Dn/2,
(A1)

where Eu
k is the electric field phasor, k− = (k‖,−kz ) is the wave vector of the reflected wave, Dn is the total thickness of the

cavity structure with n DBR periods on each side, ûk and ûk− are the unit electric field polarization vectors for a u-polarized
plane wave propagating in the k and k− directions, respectively, and rk and tk are the reflection and transmission coefficients,
respectively.

To compute the dipole emission, we need the field amplitudes at the dipole position (r = 0), which is inside the medium with
refractive index n0. For a wave incident at angle θv = cos−1(kz/k) from air, the fundamental Fabry-Pérot resonance occurs at
frequency ωθ ≈ ω0/| cos(θ )|, where θ = sin−1[sin(θv )/n0] is the angle of refraction inside the medium n0. All the modes inside
the vacuum light line lie in the range θ ∈ R = [0, θc] ∪ [π − θc, π ], where θc = sin−1(1/n0) is the critical angle in the medium
n0. At resonance one has rk = 0 and |tk| = 1. Since the dipole plane z = 0 is a mirror symmetry plane, at the fundamental Fabry-
Pérot resonant frequency, the electric field maximum occurs in the z = 0 plane. Around the Fabry-Pérot resonant frequency, the
maximum electric field amplitude can be approximated by a Lorentzian function as

∥∥Eu
k(z = 0)

∥∥2 = 1

V

1

πQu
θn0

ω2
θ

[ωk − ωθ ]2 + [
ωθ

/(
2Qu

θ

)]2 , (A2)

where ωk = c|k| is the frequency, c is the speed of light in vacuum, and Qu
θ is the quality factor for the Fabry-Pérot resonance

along the direction θ ∈ R. Now the power radiated into these resonant modes can be evaluated by the classical expression [36]

P(2)
out,n = πω2

0

4ε0

∑
k,u

∣∣p1 · Eu
k(0)

∣∣2
δ(ωk − ω0) = πω2

0 p2
0

4ε0

∑
k

∥∥Es
k(0)

∥∥2 + cos2(θ )
∥∥E p

k (0)
∥∥2

2
δ(ωk − ω0). (A3)

For a simple first-order model, we assume that the quality factor for the Fabry-Pérot resonances is identical across all the angles
and for both the polarizations and only depends on the number of DBR periods n. From Eqs. (A2) and (A3), substituting Qu

θ = Q,
and taking the continuum limit as V → ∞, we get

P(2)
out,n = ω2

0 p2
0

32ε0π2

∫
k

d3k
1 + cos2(θ )

2

1/(πQn0)

(ωk/ωθ − 1)2 + [1/(2Q)]2 δ(ωk − ω0)

= ω2
0 p2

0

32ε0π2

∫ ∞

0
dk

∫ π

0
dθv

∫ 2π

0
dφk2 sin(θv )

1 + cos2(θ )

2

1/(πQn0)

(ωk/ωθ − 1)2 + [1/(2Q)]2 δ(ωk − ω0)

= ω4
0 p2

0

16ε0πc3

∫ π

0
dθv sin(θv )

1 + cos2(θ )

2

1/(πQn0)

(ω0/ωθ − 1)2 + [1/(2Q)]2 .

(A4)

Now using ωθ = ω0/| cos θ | and substituting a δ function for
the Lorentzian function in the limit of large Q,

P(2)
out = ω4

0 p2
0

16πε0c3n0

∫ π

0
dθv sin(θv )[1 + cos2(θ )]

× δ[cos(θ ) − 1] (A5)

⇒ P(2)
out = ω4

0 p2
0n0

8πε0c3
= 3n0

2
P(2)

vac . (A6)

Thus, for a rotating electric point dipole inside a medium
with refractive index n0 enclosed within a 1D DBR cavity

with moderately high quality factor (Q � 100), the power
extracted in the medium (vacuum) outside the cavity con-
verges to a value 3n0/2 times the power radiated by the
dipole when placed in vacuum. The exact numerical results
agrees well with the above analysis with more than 90%
accuracy for a broad range of parameters. We also explicitly
state that the above analysis does not make any prediction
about the extraction efficiency. Although the extracted power
increases linearly with the refractive index of the emitting
medium, the extraction efficiency typically goes down due to
a steeper increase in the emission into the guided modes of
the structure.
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