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The propagation of light in nonlinear media is well described by a two-dimensional nonlinear Schrödinger
equation (NLSE) within the paraxial approximation, which is equivalent to the Gross-Pitaevskii equation, the
mean-field description for the dynamics of Bose-Einstein condensates (BECs). Due to this similarity, many
theoretical and experimental investigations of phenomena which have already been studied and realized in
BECs have been recently analyzed in alternative experimental platforms such as hot atomic vapors. In this
work we study the formation of droplets of light in these media, attempting to establish a mapping between
the experimental parameters normally used in BEC experiments and those needed to observe the analogous
phenomenon in hot atomic vapors. We obtain the energy functional for the susceptibility of the medium in the
χ (3), χ (3) + χ (5), and saturating regimes for a two-level atomic configuration considering the focusing (attractive)
regime. We apply a Gaussian variational approach and check its predictions through numerical simulations of
the NLSE for each regime. Finally, we study the real-time dynamics of the system for both the χ (3) + χ (5) and
saturating nonlinearities, focusing our attention on the behavior of the breathing mode and on the analysis of
droplet formation for realistic experimental conditions.
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I. INTRODUCTION

The field of atomic physics has achieved great advances
over the decades, especially due to the progress seen on the
experimental side. The advances obtained with experiments
using ultracold atoms have made it possible to investigate
many phenomena in various branches of physics. However,
such experiments may bring with them some obstacles de-
pending on the physical phenomenon one wants to study as
well as their costs, which can be much higher when compared
to other experimental platforms. For instance, there are many
phenomena observed in Bose-Einstein condensates (BECs)
which have been investigated recently on alternative platforms
such as hot atomic vapors [1,2]. A hot vapor is an extremely
versatile experimental platform and it has been the workhorse
in atomic physics over the years. What makes this transition
possible is the existing analogy between the mean-field de-
scription for BECs, which is given by the Gross-Pitaevskii
equation, and the equation for propagation of light in a non-
linear medium in the paraxial approximation, an example of
a nonlinear Schrödinger equation (NLSE). With that, one can
then attempt to establish a mapping between the experimental
parameters of the condensates and those of the thermal vapors.
In fact, this analogy has already been exploited in several
theoretical and experimental works (using thermal vapors)
including condensation of classical waves [3–5], superfluidity
of a paraxial fluid of light [6–8], vortex generation and control
of their interactions [9], the generation and the dynamics of
dispersive shock and blast waves [10–15], spin-orbit-coupled
mixtures [16], and even the investigation of analog models
in gravity, for instance, the analog of cosmological particle

creation [17]. When compared to ultracold experiments, one
of the advantages of thermal vapors is that they are relatively
cheap and much simpler to set up. Another advantage is
revealed when there is the need to obtain higher densities.
Since the susceptibility of a nonlinear medium depends on the
density of the medium, the use of a thermal vapor helps one
attain higher densities. In ultracold experiments, typical den-
sities vary in the range 1011–1012 cm−3 in a magneto-optical
trap, while in a BEC they range from 1013 to 1015 cm−3.
Meanwhile, hot atomic vapors can have densities orders of
magnitude larger than BECs and are tunable over a much
wider range.

The purpose of this work is to characterize self-bound
states of light in hot vapors, in analogy to droplet states
in binary mixtures of BECs and dipolar systems. Quantum
droplets consist of small clusters of atoms, self-bounded by
the balance of an attractive mean-field energy and repul-
sive beyond mean-field interactions [18]. Several experiments
have successfully observed ultradilute self-bound states in a
variety of configurations such as ultracold dipolar systems
[19,20], Bose-Bose mixtures in quasi-2D and quasi-1D ge-
ometries [21,22], and 3D geometry [23], among others.

In this study we consider a nonlinear hot vapor medium
modeled as an ensemble of two-level systems. Our target is
the focusing (attractive) regime. The physical parameter that
sets the sign of the interaction is the frequency detuning. We
investigate three different regimes: a Kerr medium, i.e., the
refractive index has a linear dependence on the intensity; the
cubic-quintic nonlinearity, that is, up to second order in the
intensity; and finally, the most general saturating nonlinearity.
For each of these situations, we analyze the corresponding
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FIG. 1. Atomic level description. Stationary populations and co-
herence for the two-level system as a function of the frequency
detuning �.

energy functional. For this task, we will make use of a varia-
tional approximation method and exact numerical simulations
[24–28].

This paper is organized as follows. In Sec. II we derive
the effective NLSE for light propagating through an ensemble
of two-level systems with susceptibility χ . In Sec. III we
compute the energy functionals employing a variational Gaus-
sian ansatz. In Sec. IV we address the real-time dynamics.
We briefly analyze the χ (3) regime, focusing on the physics
of the Townes soliton and commenting on its main features
(Sec. IV A). We proceed with the study of collective excita-
tions (the breathing mode), defining the range of parameters
for which they can be observed (Sec. IV B). Also, we establish
a connection with the self-evaporation mechanism and its
influence on droplet dynamic formation within the χ (3) + χ (5)

and saturating regimes. Finally, we study the droplet for-
mation for realistic experimental conditions (Sec. IV C). We
summarize in Sec. V.

II. PHYSICAL SYSTEM

We consider an ensemble of two-level systems formed by a
ground state |g〉 and an excited state |e〉 that can decay into the
ground state at a rate �. The optical Bloch equations (OBEs)
for this configuration are easily obtained and their steady-state
solutions for the populations and the coherence are shown in
Fig. 1 (see Appendix A for the full expressions).

The susceptibility is given by

χ = ρat|deg|2
h̄ε0

−� + i�/2

�2 + �2

4 + |�|2
2

, (1)

where ρat is the atom density and h̄� = −deg · E is the Rabi
frequency, with E the classical external electric field. In
this expression, Re[χ ] represents the refractive index of the
medium, while Im[χ ] is responsible for the absorption. Our
model is a simplified description of the system. In the region
close to the resonance, absorption, collisional, and thermal
effects due the Doppler broadening might play an important

role in the dynamics of the system. However, for sufficiently
high values of the frequency detuning �, such effects turn out
to be negligible. For instance, in the low-saturation regime,
we can provide an estimate of absorption effects by com-
puting the ratio |Im[χ ]/Re[χ ]|. For � = 2π × 1.0 GHz and
for the case of 85Rb whose natural linewidth is equal to
� = 2π × 6.06 MHz for the D2 line, a direct calculation gives
|Im[χ ]/Re[χ ]| ∼ 3 × 10−3. Therefore, our analysis and re-
sults shown hereafter will be relevant for large values of the
frequency detuning.

The linear real susceptibility χ (L) reads

χ (L) = −ρat|deg|2
h̄ε0

�

�2 + �2

4

, (2)

while the real nonlinear part of the full susceptibility is ob-
tained after subtracting χ (L) and taking the real part, yielding

χ (NL) = ρat|deg|2
h̄ε0

�|�|2/2(
�2 + �2

4

)(
�2 + �2

4 + |�|2
2

) . (3)

In the paraxial approximation, the NLSE for the light field
amplitude is given by

i
∂�

∂z
= − 1

2k0
∇2

⊥� − k0

2
χ�. (4)

In this equation, the longitudinal coordinate z plays the role
of an effective time, while the Laplacian is computed with
respect to the transverse coordinates, i.e., r ≡ (x, y), and k0 is
the wave vector.

Performing the transformation

�̄(r, z) = �(r, z) exp

(
−i

k0χ
(L)

2
z

)
, (5)

we are left with the equation

i
∂�

∂z
= − 1

2k0
∇2

⊥� − k0

2
χ (NL)�. (6)

This equation can be written in a dimensionless form by
performing the scalings

r′ = r
r0

, z′ = z

Ld
, ψ = α�, (7)

where r0 is an arbitrary length scale, Ld (r0) = k0r2
0 is the

associated diffraction length, and α is a parameter depending
on the optical parameters whose dimension is the inverse fre-
quency [see Eq. (9a)]. Later on, for the numerical simulations,
we will consider a Gaussian input beam by setting r0 = w0,
where w0 is the initial beam waist [29], for which the Rayleigh
length is defined as zR = 1

2 Ld (w0).
The dimensionless equation of motion then reads

i
∂ψ

∂z′ = −1

2
∇′2

⊥ψ − 1

1 + 2γ |ψ |2 |ψ |2ψ, (8)

where ψ is the scaled light field amplitude. The Laplacian
now has to be computed with respect to the dimensionless
transverse coordinates, i.e., r′ ≡ (x′, y′). It is straightforward
to check that, for γ |ψ |2 � 1, a series expansion of the nonlin-
ear term in Eq. (8) in |ψ |2 will lead to the cubic NLSE (Kerr
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medium) in zeroth order and to the cubic-quintic NLSE up to
first order.

The parameter α in Eq. (7) is related to the strength of
the nonlinearity of the system. It is also connected to the
dimensionless critical optical power Pcr, a quantity that will
be important to classify the regimes for which self-bound state
solutions and collapsing behavior occur. For a description be-
yond the Kerr regime, α will no longer be the only interaction
parameter. This role will be shared with the dimensionless
parameter γ , responsible for turning on the terms beyond the
cubic NLSE.

The parameters α and γ take on the expressions

α = k0r0

2�

√
η

�/�[(
�
�

)2 + 1
4

]2 , (9a)

γ =
[

(k0r0)2η
�/�(

�
�

)2 + 1
4

]−1

, (9b)

where � is the natural linewidth and the dimensionless co-
efficient η is related to the density and consequently to the
temperature of the atomic cloud [30]. Its expression is given
by

η = ρat|deg|2
h̄ε0�

, (10)

where deg is the transition dipole moment between the
ground-state manifold g and the excited-state manifold e.
Alternatively, η can be rewritten in terms of the wavelength
λ employing the spontaneous emission rate � in vacuum,
reading [31]

� = ω3
0

3πε0 h̄c3
|deg|2,

which leads to

η = 3ρatλ
3

8π2
. (11)

The parameter α can be recast to include negative values of
� by taking the absolute value and flipping the global sign
of the nonlinear interaction term in Eq. (8). In our numerical
analysis, the values for the quantities were chosen to consider
the specific case of a thermal vapor of 85Rb whose natural
linewidth is � = 2π × 6.06 MHz for the D2 line (5 2S1/2 →
5 2P3/2 transition). By considering a π -polarized light, it fol-
lows that the value of the effective far-detuned dipole moment
is 2.069 × 10−29 C m while the saturation intensity is equal to
25 W/m2 [30].

III. ENERGY FUNCTIONALS AND THE GAUSSIAN
VARIATIONAL ANSATZ

In this section we study the stationary properties of the
system by means of the analysis of the energy functionals de-
scribing stationary configurations. From the general saturating
nonlinearity, we derive the energy functional for the χ (3) and
χ (3) + χ (5) regimes upon Taylor expansion in the parameter
γ |ψ |2. We then evaluate the resulting expressions using a
Gaussian ansatz for the dimensionless light field amplitude
ψ . The use of a variational approach allows us to derive

analytical results to assess the static and dynamic behaviors
of the system close to the stationary configurations, similar to
the case of BECs [28,32].

A. Energy functionals

The energy functional for the saturating regime, here de-
noted by E (sat), can be obtained directly from Eq. (8), which
yields

E (sat) = 1

2

∫
|∇′

⊥ψ (r′)|2d2r′ − 1

2γ

∫
|ψ (r′)|2d2r′

+ 1

4γ 2

∫
ln[1 + 2γ |ψ (r′)|2]d2r′. (12)

We start by considering the Gaussian input profile [33–35]

ψ (r′) =
√

P
πσ ′2 exp

(
− r′2

2σ ′2

)
, (13)

where the dimensionless width σ ′ = σ/r0 is the variational
parameter and P is the dimensionless power which depends
on the optical parameters of the system through α [see
Eq. (7)]. Although r0 is among the parameters contained in
the definition of α, the values of the physical quantities will
be independent of its choice.

We compute E (sat) using the ansatz given in Eq. (13), which
yields

E (sat) = 1

2σ ′2 P − 1

2γ
P − π

4γ 2
σ ′2Li2

(
− 2γ

πσ ′2 P
)

, (14)

where Li2(x) is the polylogarithmic function of order 2.
For γ |ψ |2 � 1, we can perform a Taylor expansion in the
logarithmic term of Eq. (12). Truncation to the first order
produces the χ (3) regime, whereas the second order leads to
the χ (3) + χ (5) regime. The expressions for E (3) and E (5) are

E (3) = 1

2

∫
|∇′

⊥ψ (r′, z′)|2d2r′ − 1

2

∫
|ψ (r′, z′)|4d2r′,

(15a)

E (5) = 1

2

∫
|∇′

⊥ψ (r′, z′)|2d2r′ − 1

2

∫
|ψ (r′, z′)|4d2r′

+ 2γ

3

∫
|ψ (r′, z′)|6d2r′. (15b)

Employing the Gaussian ansatz from Eq. (13), we obtain

E (3) = 1

2σ ′2 P − 1

4πσ ′2 P
2, (16a)

E (5) = 1

2σ ′2 P − 1

4πσ ′2 P
2 + 2γ

9π2σ ′4 P
3. (16b)

B. Cubic-quintic nonlinearity χ(3) + χ(5)

We now analyze the cubic-quintic nonlinearity. The expan-
sion of Eq. (8) up to first order in γ |ψ |2 � 1 leads to

i
∂ψ

∂z′ = −1

2
∇′2

⊥ψ − |ψ |2ψ + 2γ |ψ |4ψ. (17)

The χ (3) + χ (5) regime provides the suitable conditions for
creating self-bound states due to the competition between
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FIG. 2. Variational approach to the ground state. Energy is com-
puted for the χ (3) (green), χ (3) + χ (5) (black), and saturating (blue)
regimes for p = 0.4 (solid lines) and 1.5 W (dashed lines), and the
frequency detuning equal to � = 2π × 3.0 GHz.

the focusing (attractive) χ (3) and defocusing (repulsive) χ (5)

nonlinearities [36–38]. The conditions leading to self-bound
states of light were pointed out in [39]. There it was shown
that for a four-level system, an adequate choice of the parame-
ters for an electromagnetic-induced transparency scheme may
lead to a giant response for the coefficients of both the cubic
and quintic nonlinearities (with different signs) stabilizing
two-dimensional droplets. More recently, it was shown that
bound states with finite angular momentum with liquidlike
properties can arise when considering a nonlocal photon fluid
with a focusing long-range nonlinearity generated in the trans-
verse plane of a laser beam propagating in a thermo-optic
medium [40,41].

We start with the analysis of the energy functional E (5)

given in Eq. (16b). Setting its derivative with respect to σ ′
to zero leads to

σ ′
c = 4P√

γ

3
√

π
√−2π + P

, (18)

where P > 2π must be satisfied. By taking the second deriva-
tive d2E (5)/dσ ′2 at σ ′ = σ ′

c, we can show that Eq. (18) is
a minimum. Moreover, this is a global minimum, since the
energy is negative at σ ′ = σ ′

c, excluding the presence of
metastable minima.

C. Saturating nonlinearity

Stable self-bound states for the saturating regime were in-
vestigated, for instance, in [42,43]. For the saturating regime,
an analytical expression for the stationary value σ ′ is not
available. For the parameters used in the simulations and in
most analysis throughout this work (unless specifically stated
otherwise), we set the beam waist w0 equal to 7 × 10−4 m
and the coefficient η to unity, leading to an atom density of
ρat = 8.30 × 1019 m−3.

In Fig. 2 we show the energy as a function of σ for the χ (3),
χ (3) + χ (5), and saturating regimes for two different values
of the incident power p and � = 2π × 3.0 GHz. We observe

(a)

(b)

FIG. 3. The rms deviation of the radial position as a function of
the frequency detuning �. The values of the incident powers are (a)
p = 0.4 and (b) p = 1.5 W. The curves with markers refer to the
numerical results (N) obtained from the NLSE: orange triangles for
the χ (3) + χ (5) regime and green octagons for the saturating regime.
For the variational results (V ), the black solid curve represents the
χ (3) + χ (5) regime, while the blue dashed line shows the results
obtained for the saturating regime.

that the energy displays a minimum for the χ (3) + χ (5) and
saturating regimes for a wide range of powers. Similarly,
the χ (3) curves do not hold a minimum: The energy either
decreases or increases indefinitely, depending on whether the
focusing term dominates or the diffraction (kinetic) takes over,
respectively. Notwithstanding, for very high values of � the
nonlinearity becomes irrelevant when compared to diffraction
for all regimes.

Next, we investigate the values of the width σr (z) =√
〈r2〉 − 〈r〉2, a quantity that provides an estimate of the

droplet’s radius σ . We then run numerical simulations of
Eqs. (8) and (17) using imaginary-time evolution to reach the
minimum energy state.

Figure 3 shows a comparison between the variational ap-
proach and the numerical results. There is an upper limit for
� once the incident power p is chosen, which follows from
the constraint over the values of P in Eq. (18). Concurrently,
increasing � makes the nonlinearity weaker, so the droplet
states will not be sustained. The rectangular gray regions in
the plots display the forbidden range of values for �. For
p = 0.4 W, the upper limit is for � ≈ 2π × 6.0 GHz, while
for p = 1.5 W, the limiting value is 2π × 9.6 GHz (magenta
dashed lines).
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(b) (c) (d)

(a)

FIG. 4. Ground state of the system. (a) Phase diagram. After an interval in which diffraction dominates over the nonlinear interaction
(not bound region), from cyan to magenta, one transits from the weakly nonlinear regime (Townes soliton) to the strong nonlinear regime
(droplets). For the pure χ (3) regime (green dotted line), if P/Pcr > 1 then one enters the collapsing region as pictured by the orange dotted
line for γ = 0. When considering the χ (3) + χ (5) (magenta dash-dotted lines) and saturating regimes (blue dashed lines), for any γ > 0, the
collapse is arrested. Also shown are the intensity profiles |ψ (r)|2 for different values of the ratio P/Pcr and γ : (b) P/Pcr = 1 and γ = 0 (red
circle) and γ = 5 × 10−7 (yellow pentagon), (c) P/Pcr = 1.1 and γ = 5 × 10−6 (green square), and (d) P/Pcr ≈ 3 × 103 and γ = 10−7 (blue
triangle).

These results reveal good agreement between the values
obtained through the variational Gaussian ansatz and those
obtained from the numerical simulations of Eqs. (8) and (17).
We see that the values for σ in the χ (3) + χ (5) and saturating
regimes will converge for a wide range of increasing values of
the frequency detuning, except close to the lower and upper
bounds. In these two regions, we observe that the beam can-
not be approximated by a Gaussian profile and therefore we
expect a disagreement between the numerical and variational
results.

D. Ground-state phase diagram

We now investigate the phase diagram of the system. We
run numerical simulations in imaginary time for the differ-
ent regimes. The results obtained for the intensity profiles
(here considering the dimensionless quantities) are shown in
Fig. 4.

In two dimensions, it is known that the focusing cubic
NLSE admits the Townes solution for a specific value of the
dimensionless power that we here denote by Pcr, which equals
Pcr = 5.8504 [29,44]. The Townes soliton is only one of the
stationary solutions that this equation possesses. Higher-order
stationary solutions (all of them with E = 0, like the Townes
soliton) will present nodes in addition to having an associated
power greater than Pcr [45,46]. For values of the dimension-
less power smaller than Pcr, the nonlinear interaction is too
weak and thus the contribution of the transverse Laplacian
dominates, leading to a spreading of the intensity profile.
In the phase diagram, this situation corresponds to the gray
shaded region and it is valid for any value of γ (the black
dotted line corresponds to γ = 0, that is, the pure Kerr non-
linearity). As P slightly increases, we eventually reach the
critical value for the Townes solution, P = Pcr. This point is
represented by the red circle in the phase diagram and by the
green dotted line in Fig. 4(b). At this point we have P/Pcr = 1
and γ = 0. (Further details on the physics of the Townes
soliton will be discussed in Sec. IV.) For the yellow pentagon,
the higher-order nonlinear terms are still irrelevant when com-

pared to the leading-order χ (3) interaction and the intensity
profiles remain the same as seen in Fig. 4(b). However, this
picture dramatically changes when the ratio P/Pcr increases.
In this case, the NLSE containing only the Kerr term will
lead to collapsing solutions, which is indicated in the phase
diagram by the vertical orange dotted line along γ = 0. When
considering the other regimes (which corresponds to the green
square), this collapse is arrested and stable configurations can
be obtained, as shown in Fig. 4(c) for the χ (3) + χ (5) (magenta
dash-dotted line) and saturating regimes (blue dashed line),
although the intensity profiles are practically equal for these
two situations. For this collapsing region, we did not represent
the χ (3) regime because it would require an extremely fine
spatial grid. Here the system suffers a very strong focus-
ing effect, so the peak intensity takes on very high values,
which characterizes the collapsing behavior. By considering
even higher values of the dimensionless power, we start see-
ing some differences between the χ (3) + χ (5) and saturating
regimes. The nonlinearity gets stronger closer to resonance,
and concomitantly, we eventually see the formation of flat-top
profiles for the χ (3) + χ (5) regime while its saturating coun-
terpart displays a Gaussian-like shape as shown in Fig. 4(d).

IV. REAL-TIME DYNAMICS: GENERAL ASPECTS,
BREATHING MODE, AND REALISTIC

EXPERIMENTAL CONDITIONS

In this section we investigate the real-time dynamics of
a Gaussian beam for the nonlinearities presented above.
In Sec. IV A we review the real-time dynamics for the
χ (3) regime and comment on the physics of the Townes
soliton. We proceed in Secs. IV B and IV C with the
investigation of the breathing mode and the real-time dy-
namics for a Gaussian beam under realistic experimental
conditions for both the χ (3) + χ (5) and saturating regimes,
respectively.
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FIG. 5. Numerical solution for the Townes soliton profile R(r′)
using the shooting method.

A. Review of the Kerr nonlinearity and the dynamics of the
Townes soliton (χ(3) regime)

We start with the analysis of the cubic NLSE, which can be
obtained from Eq. (8) for γ |ψ |2 � 1 in zeroth order, yielding

i
∂ψ

∂z′ = −1

2
∇′2

⊥ψ − |ψ |2ψ. (19)

If we assume waveguide solutions of the form ψ =
R(r′) exp(iz′), the stationary equation of motion reduces to

1
2∇′2R − R + R3 = 0, R′(0) = 0, R(∞) = 0. (20)

The solution R(r′) above a critical power is a monotonically
decreasing function, the Townes soliton [29,47].

Before delving into the physics of the Townes soliton, we
review some important aspects of the cubic NLSE. In the
context of cold atoms, solitons were investigated in several
experiments [48–50]. We note that the dimensionality of the
system plays a crucial role. To illustrate this, let us consider
a wave packet of size l whose energy functional is given by
Eq. (15a). In D spatial dimensions, the cubic NLSE leads to
a kinetic term that scales as Ekin ∝ l−2, while the interaction
term goes as Eint ∝ l−D. For D = 1 we know that the energy
displays a stable minimum and then bright solitons exist for
any interaction strength and atom numbers [49,50]. However,
for D = 3, the system is dynamic unstable and no solitons
can be conceived for this specific case of a Kerr nonlinearity
[48,51]. Finally, for D = 2, the system does not possess a
characteristic length scale. A stationary solution is available
only for a discrete value of the interaction strength that makes
Ekin and Eint perfectly balance each other. In our optical
system, this value is converted into the critical value of the
dimensionless power. This stationary solution is exactly the
one obtained by Townes, whose energy is zero and chemical
potential is negative. Solving Eq. (20) numerically for an input
Gaussian beam using the shooting method, we obtain the
Townes soliton shown in Fig. 5.

From the numerical solution of Eq. (20), we compute the
dimensionless critical power Pcr and obtain the value

Pcr =
∫

|R|2d2r′ = 5.8504. (21)

FIG. 6. Matching the Townes soliton condition. The critical
power is plotted as a function of the frequency detuning �. Each
curve is obtained for different values of the dimensionless param-
eter η, and consequently of the atom density, as identified in the
legend. The orange star is computed at � = 2π × 3.0 GHz and
ρat = 8.3 × 1019 m−3 (see the main text).

The solutions of Eq. (19) do not blow up provided the dimen-
sionless incident power, i.e., P = ∫ |ψ (r′, 0)|2d2r′, is strictly
below Pcr [52].

With our simplified two-level description, we can estimate
experimental accessible parameters for realizing a Townes
soliton in a hot vapor setup. Restoring the units and using
the relation between the Rabi frequency and the intensity, we
derive an expression for the dimensional critical power which
matches the condition given in Eq. (21). In doing so, we obtain

pcr = 8Isat

(
5.8504

k2
0η

){
�/�[(

�
�

)2 + 1
4

]2

}−1

, (22)

where Isat is the saturation intensity. In Fig. 6 we show a plot
of pcr as a function of � for different values of the prefactor
η [see Eq. (10)], which in turn depends on the vapor den-
sity. As an example, let us consider � = 2π × 3.0 GHz and
ρat = 8.3 × 1019 m−3. For this case, a power close to 2.3 mW
would be needed to match the Townes condition given in
Eq. (21). This configuration is represented by the orange star
in the plot. We compute the value of the nonlinear refractive
index n2 for the same frequency detuning, saturation intensity,
and atom density and obtain n2 = 1.2 × 10−10 m2/W, in good
agreement with the experimental result obtained in [53]. In
general, we observe that pcr grows as the value of the prefactor
η decreases. In other words, the critical experimental power
has higher values as the atom density of the system decreases.

An additional interesting feature of the cubic NLSE is
that, for self-focusing beams, the dynamic evolution naturally
makes the initial configuration evolve towards the Townes
profile regardless of the initial shape of the beam [47]. A neat
example is the case of an elliptically shaped input beam, ver-
ified experimentally in [54]. We consider the elliptical input
beam

ψ (x, y) =
√

P
2π

exp

(
−x2

8
− y2

2

)
, (23)
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(b)

(a)

FIG. 7. The χ (3) regime. (a) Propagation of an elliptically shaped
input beam (z′ = 0) as it evolves with the effective interaction time.
(b) As the beam propagates, it self-focuses and a circularly symmet-
ric Townes profile is formed at an intermediate state (z′ = 2.5) as the
beam collapses. To guarantee better visibility of the Townes profile,
(b) shows a close-up view.

with scaled power P = 14.5, well above the critical value
for beams with this shape. The plots of the intensity pro-
file (I) in Figs. 7(a) and 7(b) display the initial and the
intermediate state at z′ = 2.5 of the real-time evolution, re-
spectively. In this case, the spatial profile of the collapsing
elliptical input beam evolves to the circularly symmetric
shape profile which characterizes the Townes soliton. Re-
cently, the self-similar evolution related to the Townes soliton
physics was investigated in BECs with two components [55]
and through the use of a Feshbach resonance [56]. Another
remarkable property of the Townes soliton is the scale invari-
ance, recently verified in a 2D Bose gas [57]. From a given
stationary solution R(r′), we can build a family of solutions
with the same critical power through a dilation operation
[44]. Higher nonlinearities explicitly break scale invariance.
Nevertheless, in the limit where the stationary solution is
characterized by a power slightly above the critical value, the
higher-order nonlinearities can be neglected and the solutions

resemble the Townes soliton profile for a long propagation
length.

Finally, we investigate aspects related to the collapsing
behavior of this solution: an exact Townes shape remains
stable in time evolution, but perturbations in shape will lead to
unstable solutions. Following the approach in [58], we derive
an expression for the critical distance for the collapsing of the
wave packet.

Consider the ansatz for the wave function ψ (r, z),

ψ (r, z) = A(z)M

(
r

a(z)

)
exp[iθ (r, z)], (24)

where A(z) is a complex-valued amplitude, a(z) is the wave
radius, and M(r/a(z)) is a real function describing the profile.
The general expression for a(z) can be found by following
a variational procedure which involves obtaining the La-
grangian and later the equations of motion of the system and
solving them for the variable a(z). Following this procedure,
we obtain the expression

a(z) = a0

[
(z

√
2μ)2

(
1 − ν

μ

)
+ 1

]1/2

, (25)

where a0 ≡ a(0) �= 0 is the initial wave radius and ȧ(0) = 0.
The parameters μ and ν are given in terms of the initial condi-
tions and integrals of the profile M(r/a(z)). (See Appendix B
for a detailed derivation.)

From Eq. (25) we determine the collapse distance by set-
ting a(zcr) = 0, which yields

zcr = 1√
2(ν − μ)

. (26)

We provide explicit results for two different test functions, a
Gaussian form (GS) and the hyperbolic secant (HS),

M

(
r

a(z)

)
=

{
exp

( − r2

2a2

)
(GS)√

2sech
(

r
a ) (HS

)
.

(27)

For each of these test functions, we compute the integrals for
the coefficients μ and ν, leading to the following expressions
for a(z):

a(z) =

⎧⎪⎪⎨
⎪⎪⎩

a0

√
z2

a8
0

(
1 − Pa2

0
2π

) + 1 (GS)

a0
3

√
2z2

ζ (3)a8
0

[ 2(1+ln 4)
3 − P (1+ln 16)a2

0
π ln 2

] + 1 (HS).

(28)

In Fig. 8 we show the critical distance zcr as a function of
the frequency detuning. The values considered for the inci-
dent power are equal to p = 0.4 and 1.5 W, while the initial
wave radius a0 is chosen to be equal to the beam waist
w0 = 7 × 10−4 m. The results show that the collapse distance
zcr decreases upon increasing the incident power. Also, we
observe that the detuning range is consistent with the allowed
ranges of Fig. 3.

B. Dynamics of the breathing mode

In this section we analyze the breathing mode in the droplet
dynamics. In the context of ultracold Bose-Bose mixtures,
there have been recent studies aiming at understanding the
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FIG. 8. Collapse analysis. Critical distance zcr as a function of
the frequency detuning � considering different profiles for the test
function M(r/a(z)). The solid curves correspond to the incident
power p = 0.4 W and the dashed ones to p = 1.5 W.

relevant processes involved in the formation of metastable
droplets from out-of-equilibrium mixtures [59–62]. In certain
regimes, droplets cannot sustain any discrete excitation since
all the excited energy states are higher in energy than the
particle emission threshold, hence the name self-evaporation
process. Because of that, the droplet is able to dissipate any
excess energy by releasing atoms or breaking up into smaller
pieces.

For the optical system considered in this work, we derive
the analytical expressions for the chemical potential for both
the χ (3) + χ (5) and saturating regimes. Considering the Gaus-
sian variational ansatz introduced in Sec. III, the breathing
frequency ω is obtained by expanding the energy in the vicin-
ity of σ ′ = σ ′

c.
For the χ (3) + χ (5) regime, we can show that

ω =
√

−81π (2π − P )3

256P3γ 2
, (29)

with P > 2π . The chemical potential is obtained from the
time-dependent NLSE given in Eq. (17), which results in

μ(5) =
(

1

2

∫
|∇ψ (r′, z′)|2d2r′ −

∫
|ψ (r′, z′)|4d2r′

+ 2γ

∫
|ψ (r′, z′)|6d2r′

)/ ∫
|ψ (r′, z′)|2d2r′.

In the Gaussian approximation of Eq. (13) we obtain

μ(5) = 1

2σ ′2 − P
2πσ ′2 + 2γP2

3π2σ ′4 (30)

for the general expression of the chemical potential. A further
evaluation of this expression at σ ′ = σ ′

c yields

μ(5)(P, γ , σ ′ = σ ′
c) = 9(4π2 − P2)

128γP2
. (31)

For the saturating regime, an analytical expression for ω is
not available. On the other hand, the chemical potential is

computed from Eq. (8), which gives

μ(sat) =
(

1

2

∫
|∇ψ (r′)|2d2r′ −

∫ |ψ (r′)|4
1 + 2γ |ψ (r′)|2 d2r′

)/
∫

|ψ (r′)|2d2r′.

Within the Gaussian approximation the expression above
reads

μ(sat) = 1

2σ ′2 − 1

2γ
+ πσ ′2

4γ 2P ln

(
1 + 2γ

πσ ′2 P
)

. (32)

With these expressions, we define the range of parameters to
observe the breathing mode or the self-evaporation.

To identify the behaviors of interest, we look at the cases
in which ω/|μ| � 1 and ω/|μ| < 1. The former indicates the
region where no monopole excitation can be observed, while
the latter is the case where monopole excitations are present.
In the numerical simulations, the breathing mode is excited
by changing the intensity, i.e., |ψ |2, of the ground state by
a factor of 1.05. In the context of a BEC, this would be
equivalent to a slight increase of the particle number. Sub-
sequently, the frequency ω is obtained numerically through
the Fourier analysis of the droplet width σr′ (z). In order to
avoid spurious reflections of the wave function that may take
place at the boundary of the computational domain, we use
absorbing boundary conditions.

In Fig. 9(a) we display the ratio of the breathing frequency
and the chemical potential for different regimes, following the
predictions from the Gaussian ansatz and the results obtained
from numerical simulations at an incident power p = 0.4 W.
The system does not support a breathing mode, as the excita-
tion energy is greater than the chemical potential for a wide
range of allowed values of �. There the droplet width does
not undergo sinusoidal oscillations [see Figs. 10(a) and 10(b)
for the χ (3) + χ (5) and saturating regimes, respectively]: σr (z)
has an initial increase and then decays approaching the value
of equilibrium, that is, the droplet width for the ground state.
This is the behavior for the entire window of � in which
ω/|μ| � 1.

However, there will still be a very limited region which is
characterized by the values of � whose curves are below the
horizontal green dashed line which represents the case that
ω = |μ| and this can be seen in more detail in the inset in
Fig. 9(a). In this very narrow region, σr (z) shows sinusoidal
oscillations, as can be seen in Figs. 10(c) and 10(d).

Before proceeding, we provide a broader analysis of the
existence of the breathing mode for the χ (3) + χ (5) regime.
With the aid of Eqs. (29) and (31), we compute the ratio
ω/|μ|. For this calculation, we should take into account the
fact that, when � > 0, γ is always positive [see its definition
in Eq. (9b)], in addition to obeying the constraint over the
values of P that they should be greater than 2π . In doing so,
we arrive at the following expression:

ω

|μ| = 8
√

(P − 2π )πP
P + 2π

. (33)

Thus, we see that the resulting expression is independent of γ

for the χ (3) + χ (5) regime. It is easy to check that this expres-
sion is smaller than unity for values of P/Pcr contained in the
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(b)

(a)

FIG. 9. (a) Ratio between the excitation energy ω and the abso-
lute value of the chemical potential |μ|. The value of the incident
power is p = 0.4 W. The curves with markers refer to the numerical
results (N): orange triangles for the χ (3) + χ (5) regime and yellow
octagons for the saturating regime. For variational results (V ), the
black solid line is for the χ (3) + χ (5) case and the blue dotted line
is for the saturating case. The inset shows the narrow region where
ω/|μ| < 1, which represents the sector where the breathing mode
can be found. (b) Dynamical phase diagram for the breathing mode
(red region) obtained via the Gaussian variational ansatz for the
χ (3) + χ (5) regime according to Eq. (33). The white dotted line
corresponds to the points shown in (a) for ω/|μ| as a function of
� belonging to the breathing region for the same regime.

interval (1.074,1.095). The phase diagram for this situation is
represented by the red region in Fig. 9(b). In the same plot,
the parametric (white dotted) curve corresponds to the con-
figuration presented in Fig. 9(a) in the narrow window of the
values of � for which the breathing mode can be excited. In
other words, it represents the mapping of the points mentioned
above onto the P/Pcr-γ plane.

For the specific case analyzed above and shown in
Fig. 9(a), the configuration representing the nonoscillatory
region is displayed in Figs. 10(a) and 10(b) and corresponds to
P/Pcr ∼ 3.02, while for the one belonging to the oscillatory
region, which is represented in Figs. 10(c) and 10(d), we have

(b)

(c)

(a)

(d)

FIG. 10. Evolution of the droplet width σr (z) for the two-level
system for both the (a) and (c) χ (3) + χ (5) (blue solid curves) and
(b) and (d) saturating (green solid curves) regimes for (a) and (b) � =
2π × 3.0 GHz and (c) and (d) � = 2π × 6.0 GHz. The horizontal
magenta dashed lines show the stationary equilibrium values. The
power is chosen to be p = 0.4 W .

P/Pcr ∼ 1.075, slightly above the lower bound set by the
Gaussian variational ansatz. Therefore, such values corrobo-
rate the predictions obtained through the variational analysis
for the χ (3) + χ (5) regime.

Next we turn our attention to the self-evaporation mecha-
nism by looking at the fraction of power that is lost so that the
system can then relax to its equilibrium state. Figure 11 shows
the numerical results for the ratio between the final (P f ) and
the initial power (Pi ), revealing that a tiny fraction of power
is lost through self-evaporation in this regime.

C. Dynamics for a Gaussian input beam under realistic
experimental conditions

We now analyze the dynamics for the realistic experimental
case for a Gaussian input beam. We show the results obtained
from 2D numerical simulations of Eqs. (8) and (17) for the
intensity profiles of the system by setting p = 0.4 W and the
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FIG. 11. Fraction of power lost due to the self-evaporation mech-
anism obtained from the numerical simulations of the NLSE. Orange
triangles represent the χ (3) + χ (5) regime and green octagons refer to
the saturating case. The value of the incident power is p = 0.4 W.
The inset shows a close-up of the region where more points were
analyzed, which the Gaussian variational approach predicts to be
within the region in which the breathing mode can exist.

initial beam waist equal to 0.1 mm. We let the system evolve
for a distance zR ≈ 2.0 m.

In the density plots of Figs. 12(a) and 13(a), for � =
2π × 6.0 GHz, we show the initial state of the system for
the χ (3) + χ (5) and saturating regimes, respectively. As the
beam travels through the nonlinear medium, we observe that
the system oscillates with decreasing amplitude as the time
evolves. This oscillatory behavior around the equilibrium con-
figuration of the system is depicted in Figs. 12(b) and 13(b),
which show a cut along y = 0. The equilibrium states are
obtained through imaginary-time simulations of Eqs. (8) and
(17). Due to the use of absorbing boundary conditions, the
curves obtained through propagation in real time shown in
these plots do not overlap perfectly the ones of the equilibrium
states. Before moving on, we briefly describe two examples
of previous experiments with cold atoms [63] and hot vapors
[13]. We verify whether the range of experimental parameters
used in them were optimal for observing droplets of light. For

(a) (b)

FIG. 12. (a) Density plot showing the input beam for the χ (3) +
χ (5) regime when � = 2π × 6.0 GHz. (b) Cut along the y axis,
|�(z, x, 0)/�|2, displaying the evolution of the input beam at dif-
ferent effective lengths.

(a) (b)

FIG. 13. (a) Density plot showing the input beam for the satu-
rating regime when � = 2π × 6.0 GHz. (b) Cut along the y axis,
|�(z, x, 0)/�|2, displaying the evolution of the input beam at differ-
ent effective lengths.

the former, it was shown that, for a near-resonant propagating
beam, a large cloud of cold 87Rb atoms acts as a saturable Kerr
medium and produces self-trapping of light, that is, the waist
remains stationary for an appropriate choice of parameters.
For that experiment, the value of the ratio P/Pcr is approxi-
mately 1.9 and γ = 0.20, which is a highly saturated regime.
Much of the cloud is contained in the droplet region based
on our phase diagram in Fig. 4. Nevertheless, if we compute
the ratio ω/|μ|, it is greater than unity, so we will not be
able to see the manifestation of the breathing mode. For the
latter, the out-of-equilibrium dynamics of a two-dimensional
paraxial fluid of light is analyzed using a near-resonant laser
propagating through a hot atomic vapor and the formation
of shock waves. For this experiment, P/Pcr > 1 for a broad
range of the frequency detuning and we can eventually reach
conditions by increasing � for which the observation of the
breathing mode is possible, although at this point it is un-
certain whether this would occur for realistic propagation
lengths, and consequently a more careful analysis supported
by numerical simulations would be required.

Figures 14 and 15 display the results for � = 2π ×
3.0 GHz for the χ (3) + χ (5) and saturating regimes, respec-
tively. Again, the oscillatory behavior around the equilibrium
is present. Nevertheless, it is clear that the shrinkage of the

FIG. 14. 2D numerical simulations. (a) Density plot showing the
input beam for the χ (3) + χ (5) regime when � = 2π × 3.0 GHz.
(b) Cut along the y axis, |�(z, x, 0)/�|2, displaying the evolution of
the input beam at different effective lengths.
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FIG. 15. 2D numerical simulations. (a) Density plot showing
the input beam for the saturating regime when � = 2π × 3.0 GHz.
(b) Cut along the y axis, |�(z, x, 0)/�|2, displaying the evolution of
the input beam at different effective lengths.

input beam is much more pronounced than that observed for
� = 2π × 6.0 GHz and this only gets more accentuated as the
frequency detuning is decreased (strength of the nonlinearity
increases).

Actually, this strong effect of the nonlinearity that makes
the input beam shrink to a point leads to difficulties in the
numerical simulations, as problems with spatial resolution
start to appear. Furthermore, as we approach the resonance,
the radial symmetry starts to break down and because of
that, 1D and 2D numerical simulations display very opposite
behavior for this system in this region. In fact, 1D simulations
are not adequate to represent the dynamics of the system close
to resonance. A faithful representation of the dynamics of the
system in this region is only possible and reliable through
full 2D numerical simulations. To give an estimate of at what
point the 1D and 2D numerical simulations stop agreeing, we
compare the curves obtained for the intensity and find that
there is a quite fair overlap until � = 2π × 3.0 GHz.

This inconsistency can be made more clear if we check
the outcomes of numerical simulations for lower values of
�. For the full 2D case, different dynamical behaviors can
emerge. One of them is that the input beam, due to the strong
nonlinearity, can eventually shrink dramatically such that it
breaks completely into small fragments, even for short prop-
agation effective lengths. This fragmentation process in the
optical system considered here could be linked to the results
of the physics investigated in [56], in which the universal
nonequilibrium dynamics in degenerate 2D Bose gases was

(a) (b)

FIG. 16. 2D numerical simulations. Cut along the transversal y
direction of the intensity profile for (a) the χ (3) + χ (5) regime and
(b) the saturating regime for � = 2π × 6.0 GHz.

(a) (b)

FIG. 17. 2D numerical simulations. Cut along the transversal y
direction of the intensity profile for (a) the χ (3) + χ (5) regime and
(b) the saturating regime for � = 2π × 3.0 GHz.

investigated. The authors considered an initially large sample
and then performed a quench from repulsive (defocusing) to
attractive (focusing) interactions through the use of a Fesh-
bach resonance. If the appropriate regime is reached, which
means that the value of the product between particle number
and interacting strength N |g| is close to the Townes threshold,
then this quench procedure makes possible the observation of
the dynamic formation of Townes solitons from modulational
instability (MI). The MI breaks up the initial sample into
fragments, universally around the Townes threshold. We leave
the detailed investigation of fragmentation within our model
for future work.

Finally, we compare the dynamics for the different regimes
in this realistic scenario. In Figs. 16 and 17 we show the inte-
grated beam profile for the χ (3) + χ (5) and saturating regimes
for � = 2π × 6.0 and 2π × 3.0 GHz, while in Fig. 18 we
display the results for the χ (3) regime. It is clear how the effect
of self-focusing makes the width of the intensity profile in the
χ (3) regime shrink dramatically when compared to the other
two regimes, in which the defocusing effect of χ (5) and the
saturation hinder this focusing behavior.

V. CONCLUSION

Motivated by recent experiments on quantum fluids of light
well described within the paraxial approximation and their
analogy to Bose-Einstein condensates described by the Gross-
Pitaevskii equation, we investigated the conditions to observe
droplets of light in nonlinear optical media. We reviewed the
cubic focusing NLSE and the physics of the Townes soliton.
For this regime, it is known that self-bound states cannot

(b)(a)

FIG. 18. 2D numerical simulations. Cut along the transversal y
direction of the intensity profile for the χ (3) regime considering (a)
� = 2π × 3.0 GHz and (b) � = 2π × 6.0 GHz.
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be formed as there is no mechanism to compensate for the
combined repulsive effects due to diffraction and the focusing
(attractive) Kerr nonlinearity. When anomalous second-order
dispersion is taken into account, the system becomes 3 + 1
dimensional with the proper time playing the role of a third
spatial coordinate. In this scenario, the existence of optical
bullets was foreseen [64], though these structures would be
unstable. We then concentrated our efforts on the χ (3) + χ (5)

and saturating nonlinearities. For the cubic-quintic NLSE,
several works had already pointed out the possibility of having
self-bound states [36], while for the saturating regime only
the optical bullets were predicted in the presence of anoma-
lous dispersion [65]. By using the variational Gaussian ansatz
approach, we obtained an analytical expression for the radial
width of the droplet of light for the χ (3) + χ (5) regime. The
variational results were then compared with numerical simu-
lations. We found good agreement, certifying the reliability of
the variational method. We also investigated the dynamics of
the breathing mode and how the self-evaporation mechanism
can influence the dynamical process of formation of droplets
of light for both the χ (3) + χ (5) and saturating regimes. Our
study revealed that the system may sustain collective excita-
tions only for a very limited region of the frequency detuning,
while overdamped oscillations are present in a wide range of
�. This analysis can be made broader when translated in terms
of the parameters P/Pcr and γ . We made it for the χ (3) + χ (5)

regime for which the ratio ω/|μ| has an analytical expression.
For the saturating regime, an extensive numerical analysis is
required. We found that the breathing mode can be excited
in a very narrow range of the values of P/Pcr and that it is
independent of the parameter γ . For realistic experimental
conditions, we employed 1D and 2D numerical simulations.
The former predicted that close to resonance a flat-top pro-
file is formed for the χ (3) + χ (5) regime and an oscillatory
behavior in the saturating case. However, refined 2D numer-
ical simulations revealed that, close to resonance, the radial
symmetry no longer holds, with the input beam becoming
susceptible to fragmentation for the regimes of interest. On
the other hand, if we consider increasing frequency detuning,
the behavior shown by the system becomes very similar for
both regimes with identical 1D or 2D simulation results. In
conclusion, this study enabled us to establish the values of
experimental parameters for which the droplet states can be
observed in platforms such as hot atomic vapors and to predict
some important aspects of the formation of such self-bound
light states. Extensions of this work may include a detailed
study of the stability of these droplets and a refinement of
our model by extending it for lower values of the frequency
detuning with the addition of thermal effects brought about by
the Doppler broadening, collisional effects, and the inclusion
of absorption. For the thermal effects, there have been recent
studies using ultrafast laser fields in which such obstacles can
be overcome [66,67]. Nevertheless, in the case of a hot vapor,
thermal effects may significantly alter the dynamics of the
system close to resonance. On the other hand, we can also
advance the understanding of the self-evaporation mechanism
and the effects of effective nonlocal nonlinearities [68]. The
presence of nonlocality might determine the formation of non-
trivial patterns, similar to the case of ultracold Bose gases with
magnetic [69,70] or soft-core interactions [71–74]. Finally, a

better understanding of multilevel atomic configurations [75]
as well as the realization of optical droplets in such cases is
another possible and exciting path to be pursued [76].
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APPENDIX A: OPTICAL BLOCH EQUATIONS FOR THE
TWO-LEVEL SYSTEM

This Appendix is devoted to the presentation of the optical
Bloch equations for the two-level system considered in this
work and their corresponding solutions for the coherences
and populations in the steady state. The characterization of
this system was given in Sec. II. The OBEs for the two-level
configuration after having applied the rotating-wave approxi-
mation are given by

ρ̇gg = i
�

2
ρge − i

�∗

2
ρeg + �ρee, (A1a)

ρ̇ee = −i
�

2
ρge + i

�∗

2
ρeg − �ρee, (A1b)

ρ̇ge = −i�ρge − i
�∗

2
(ρee − ρgg) − �

2
ρge, (A1c)

ρ̇eg = i�ρeg + i
�

2
(ρee − ρgg) − �

2
ρeg, (A1d)

where � ≡ ω − (ωe − ωg) is the frequency detuning. If we
solve for the steady state, then the expressions for the popula-
tions and coherences are simply

ρgg = �2 + 4�2 + |�|2
�2 + 4�2 + 2|�|2 , (A2a)

ρee = |�|2
�2 + 4�2 + 2|�|2 , (A2b)

ρge = (i� + 2�)�∗

�2 + 4�2 + 2|�|2 , (A2c)

ρeg = (−i� + 2�)�

�2 + 4�2 + 2|�|2 . (A2d)
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APPENDIX B: WAVE COLLAPSE IN THE χ(3) REGIME:
A VARIATIONAL APPROACH

In this Appendix we derive the expression of the collapsing
distance zcr for the cubic NLSE. This derivation follows a
similar analysis introduced in [58].

The Lagrangian density for the cubic NLSE given in
Eq. (19) is

L = i

2
(ψ∗∂zψ − ψ∂zψ

∗) − H, H =
∣∣∣∣∂ψ

∂r

∣∣∣∣
2

− |ψ |4
2

.

(B1)

Next we build an ansatz for the wave function ψ (r, z). We
assume a self-similar trial function

ψ (r, z) = A(z)M

(
r

a(z)

)
exp[iθ (r, z)], (B2)

where M(r/a(z)) is an arbitrary real profile function only
depending on the spatial coordinate ξ = r/a(z) rescaled with
respect to the wave radius a(z) and A(z) is a normalization
factor at distance z. Plugging this ansatz into Eq. (B1) and
integrating over the radial coordinates yields

L = −|A|2a2

{
α0θ̇0 + α2a2

[
θ̇2 + 2θ2

2

] + λ

2a2
− |A|2β

2

}
.

(B3)

The coefficients

αm ≡ ‖rm/2M‖2, β ≡ ‖M‖4, λ ≡ ‖∂rM‖2, (B4)

where we define ‖ f ‖p = 2π
∫ +∞

0 f p(r)r dr. Let us now con-
sider A(z), θ0(z), θ2(z), and a(z) as canonical variables. We

are then led to the dynamical equations

|A|2a2 = P = const,

θ2(z) = ȧ

2a
,

d2a

dz2
= λ

α2a3
− Pβ

α2a3
,

(B5)

and by multiplying both sides of the equation for a(z) by
ȧ(z), the remaining expression can be easily integrated, which
results in

1

2

[
d

dz

(
a

a0

)]2

+ �

(
a

a0

)
= 0, (B6)

with

�(x) ≡ (μ − ν)

(
1

x2
− 1

)
, μ ≡ 2λ

α2a4
0

, ν ≡ |A0|2β
α2a2

0

,

(B7)

which applies to the case in which a0 ≡ a(z = 0) �= 0 and
ȧ(0) = ȧ(z = 0) = 0. It follows that the solution for Eq. (B6)
becomes

a(z) = a0

[
(z

√
2μ)2

(
1 − ν

μ

)
+ 1

]1/2

, (B8)

which predicts that the wave collapses with a(z) → 0 at the
finite distance

zcr = 1√
2(ν − μ)

, (B9)

under the constraint that ν/μ > 1. In the main text, this
expression was applied, considering different forms for the
function M(r/a(z)) and with a0 being the beam waist.
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